124aa5c593f8da7aba6643bc609a332744d10ba6
[cascardo/linux.git] / arch / x86 / kernel / fpu / xstate.c
1 /*
2  * xsave/xrstor support.
3  *
4  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5  */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 #include <linux/mman.h>
9 #include <linux/pkeys.h>
10
11 #include <asm/fpu/api.h>
12 #include <asm/fpu/internal.h>
13 #include <asm/fpu/signal.h>
14 #include <asm/fpu/regset.h>
15 #include <asm/fpu/xstate.h>
16
17 #include <asm/tlbflush.h>
18
19 /*
20  * Although we spell it out in here, the Processor Trace
21  * xfeature is completely unused.  We use other mechanisms
22  * to save/restore PT state in Linux.
23  */
24 static const char *xfeature_names[] =
25 {
26         "x87 floating point registers"  ,
27         "SSE registers"                 ,
28         "AVX registers"                 ,
29         "MPX bounds registers"          ,
30         "MPX CSR"                       ,
31         "AVX-512 opmask"                ,
32         "AVX-512 Hi256"                 ,
33         "AVX-512 ZMM_Hi256"             ,
34         "Processor Trace (unused)"      ,
35         "Protection Keys User registers",
36         "unknown xstate feature"        ,
37 };
38
39 /*
40  * Mask of xstate features supported by the CPU and the kernel:
41  */
42 u64 xfeatures_mask __read_mostly;
43
44 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
45 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
46 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
47
48 /*
49  * The XSAVE area of kernel can be in standard or compacted format;
50  * it is always in standard format for user mode. This is the user
51  * mode standard format size used for signal and ptrace frames.
52  */
53 unsigned int fpu_user_xstate_size;
54
55 /*
56  * Clear all of the X86_FEATURE_* bits that are unavailable
57  * when the CPU has no XSAVE support.
58  */
59 void fpu__xstate_clear_all_cpu_caps(void)
60 {
61         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
62         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
63         setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
64         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
65         setup_clear_cpu_cap(X86_FEATURE_AVX);
66         setup_clear_cpu_cap(X86_FEATURE_AVX2);
67         setup_clear_cpu_cap(X86_FEATURE_AVX512F);
68         setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
69         setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
70         setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
71         setup_clear_cpu_cap(X86_FEATURE_AVX512DQ);
72         setup_clear_cpu_cap(X86_FEATURE_AVX512BW);
73         setup_clear_cpu_cap(X86_FEATURE_AVX512VL);
74         setup_clear_cpu_cap(X86_FEATURE_MPX);
75         setup_clear_cpu_cap(X86_FEATURE_XGETBV1);
76         setup_clear_cpu_cap(X86_FEATURE_PKU);
77 }
78
79 /*
80  * Return whether the system supports a given xfeature.
81  *
82  * Also return the name of the (most advanced) feature that the caller requested:
83  */
84 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
85 {
86         u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
87
88         if (unlikely(feature_name)) {
89                 long xfeature_idx, max_idx;
90                 u64 xfeatures_print;
91                 /*
92                  * So we use FLS here to be able to print the most advanced
93                  * feature that was requested but is missing. So if a driver
94                  * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
95                  * missing AVX feature - this is the most informative message
96                  * to users:
97                  */
98                 if (xfeatures_missing)
99                         xfeatures_print = xfeatures_missing;
100                 else
101                         xfeatures_print = xfeatures_needed;
102
103                 xfeature_idx = fls64(xfeatures_print)-1;
104                 max_idx = ARRAY_SIZE(xfeature_names)-1;
105                 xfeature_idx = min(xfeature_idx, max_idx);
106
107                 *feature_name = xfeature_names[xfeature_idx];
108         }
109
110         if (xfeatures_missing)
111                 return 0;
112
113         return 1;
114 }
115 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
116
117 static int xfeature_is_supervisor(int xfeature_nr)
118 {
119         /*
120          * We currently do not support supervisor states, but if
121          * we did, we could find out like this.
122          *
123          * SDM says: If state component 'i' is a user state component,
124          * ECX[0] return 0; if state component i is a supervisor
125          * state component, ECX[0] returns 1.
126          */
127         u32 eax, ebx, ecx, edx;
128
129         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
130         return !!(ecx & 1);
131 }
132
133 static int xfeature_is_user(int xfeature_nr)
134 {
135         return !xfeature_is_supervisor(xfeature_nr);
136 }
137
138 /*
139  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
140  * a processor implementation detects that an FPU state component is still
141  * (or is again) in its initialized state, it may clear the corresponding
142  * bit in the header.xfeatures field, and can skip the writeout of registers
143  * to the corresponding memory layout.
144  *
145  * This means that when the bit is zero, the state component might still contain
146  * some previous - non-initialized register state.
147  *
148  * Before writing xstate information to user-space we sanitize those components,
149  * to always ensure that the memory layout of a feature will be in the init state
150  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
151  * see some stale state in the memory layout during signal handling, debugging etc.
152  */
153 void fpstate_sanitize_xstate(struct fpu *fpu)
154 {
155         struct fxregs_state *fx = &fpu->state.fxsave;
156         int feature_bit;
157         u64 xfeatures;
158
159         if (!use_xsaveopt())
160                 return;
161
162         xfeatures = fpu->state.xsave.header.xfeatures;
163
164         /*
165          * None of the feature bits are in init state. So nothing else
166          * to do for us, as the memory layout is up to date.
167          */
168         if ((xfeatures & xfeatures_mask) == xfeatures_mask)
169                 return;
170
171         /*
172          * FP is in init state
173          */
174         if (!(xfeatures & XFEATURE_MASK_FP)) {
175                 fx->cwd = 0x37f;
176                 fx->swd = 0;
177                 fx->twd = 0;
178                 fx->fop = 0;
179                 fx->rip = 0;
180                 fx->rdp = 0;
181                 memset(&fx->st_space[0], 0, 128);
182         }
183
184         /*
185          * SSE is in init state
186          */
187         if (!(xfeatures & XFEATURE_MASK_SSE))
188                 memset(&fx->xmm_space[0], 0, 256);
189
190         /*
191          * First two features are FPU and SSE, which above we handled
192          * in a special way already:
193          */
194         feature_bit = 0x2;
195         xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
196
197         /*
198          * Update all the remaining memory layouts according to their
199          * standard xstate layout, if their header bit is in the init
200          * state:
201          */
202         while (xfeatures) {
203                 if (xfeatures & 0x1) {
204                         int offset = xstate_comp_offsets[feature_bit];
205                         int size = xstate_sizes[feature_bit];
206
207                         memcpy((void *)fx + offset,
208                                (void *)&init_fpstate.xsave + offset,
209                                size);
210                 }
211
212                 xfeatures >>= 1;
213                 feature_bit++;
214         }
215 }
216
217 /*
218  * Enable the extended processor state save/restore feature.
219  * Called once per CPU onlining.
220  */
221 void fpu__init_cpu_xstate(void)
222 {
223         if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask)
224                 return;
225         /*
226          * Make it clear that XSAVES supervisor states are not yet
227          * implemented should anyone expect it to work by changing
228          * bits in XFEATURE_MASK_* macros and XCR0.
229          */
230         WARN_ONCE((xfeatures_mask & XFEATURE_MASK_SUPERVISOR),
231                 "x86/fpu: XSAVES supervisor states are not yet implemented.\n");
232
233         xfeatures_mask &= ~XFEATURE_MASK_SUPERVISOR;
234
235         cr4_set_bits(X86_CR4_OSXSAVE);
236         xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
237 }
238
239 /*
240  * Note that in the future we will likely need a pair of
241  * functions here: one for user xstates and the other for
242  * system xstates.  For now, they are the same.
243  */
244 static int xfeature_enabled(enum xfeature xfeature)
245 {
246         return !!(xfeatures_mask & (1UL << xfeature));
247 }
248
249 /*
250  * Record the offsets and sizes of various xstates contained
251  * in the XSAVE state memory layout.
252  */
253 static void __init setup_xstate_features(void)
254 {
255         u32 eax, ebx, ecx, edx, i;
256         /* start at the beginnning of the "extended state" */
257         unsigned int last_good_offset = offsetof(struct xregs_state,
258                                                  extended_state_area);
259         /*
260          * The FP xstates and SSE xstates are legacy states. They are always
261          * in the fixed offsets in the xsave area in either compacted form
262          * or standard form.
263          */
264         xstate_offsets[0] = 0;
265         xstate_sizes[0] = offsetof(struct fxregs_state, xmm_space);
266         xstate_offsets[1] = xstate_sizes[0];
267         xstate_sizes[1] = FIELD_SIZEOF(struct fxregs_state, xmm_space);
268
269         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
270                 if (!xfeature_enabled(i))
271                         continue;
272
273                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
274
275                 /*
276                  * If an xfeature is supervisor state, the offset
277                  * in EBX is invalid. We leave it to -1.
278                  */
279                 if (xfeature_is_user(i))
280                         xstate_offsets[i] = ebx;
281
282                 xstate_sizes[i] = eax;
283                 /*
284                  * In our xstate size checks, we assume that the
285                  * highest-numbered xstate feature has the
286                  * highest offset in the buffer.  Ensure it does.
287                  */
288                 WARN_ONCE(last_good_offset > xstate_offsets[i],
289                         "x86/fpu: misordered xstate at %d\n", last_good_offset);
290                 last_good_offset = xstate_offsets[i];
291         }
292 }
293
294 static void __init print_xstate_feature(u64 xstate_mask)
295 {
296         const char *feature_name;
297
298         if (cpu_has_xfeatures(xstate_mask, &feature_name))
299                 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
300 }
301
302 /*
303  * Print out all the supported xstate features:
304  */
305 static void __init print_xstate_features(void)
306 {
307         print_xstate_feature(XFEATURE_MASK_FP);
308         print_xstate_feature(XFEATURE_MASK_SSE);
309         print_xstate_feature(XFEATURE_MASK_YMM);
310         print_xstate_feature(XFEATURE_MASK_BNDREGS);
311         print_xstate_feature(XFEATURE_MASK_BNDCSR);
312         print_xstate_feature(XFEATURE_MASK_OPMASK);
313         print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
314         print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
315         print_xstate_feature(XFEATURE_MASK_PKRU);
316 }
317
318 /*
319  * This check is important because it is easy to get XSTATE_*
320  * confused with XSTATE_BIT_*.
321  */
322 #define CHECK_XFEATURE(nr) do {         \
323         WARN_ON(nr < FIRST_EXTENDED_XFEATURE);  \
324         WARN_ON(nr >= XFEATURE_MAX);    \
325 } while (0)
326
327 /*
328  * We could cache this like xstate_size[], but we only use
329  * it here, so it would be a waste of space.
330  */
331 static int xfeature_is_aligned(int xfeature_nr)
332 {
333         u32 eax, ebx, ecx, edx;
334
335         CHECK_XFEATURE(xfeature_nr);
336         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
337         /*
338          * The value returned by ECX[1] indicates the alignment
339          * of state component 'i' when the compacted format
340          * of the extended region of an XSAVE area is used:
341          */
342         return !!(ecx & 2);
343 }
344
345 /*
346  * This function sets up offsets and sizes of all extended states in
347  * xsave area. This supports both standard format and compacted format
348  * of the xsave aread.
349  */
350 static void __init setup_xstate_comp(void)
351 {
352         unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
353         int i;
354
355         /*
356          * The FP xstates and SSE xstates are legacy states. They are always
357          * in the fixed offsets in the xsave area in either compacted form
358          * or standard form.
359          */
360         xstate_comp_offsets[0] = 0;
361         xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
362
363         if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
364                 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
365                         if (xfeature_enabled(i)) {
366                                 xstate_comp_offsets[i] = xstate_offsets[i];
367                                 xstate_comp_sizes[i] = xstate_sizes[i];
368                         }
369                 }
370                 return;
371         }
372
373         xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
374                 FXSAVE_SIZE + XSAVE_HDR_SIZE;
375
376         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
377                 if (xfeature_enabled(i))
378                         xstate_comp_sizes[i] = xstate_sizes[i];
379                 else
380                         xstate_comp_sizes[i] = 0;
381
382                 if (i > FIRST_EXTENDED_XFEATURE) {
383                         xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
384                                         + xstate_comp_sizes[i-1];
385
386                         if (xfeature_is_aligned(i))
387                                 xstate_comp_offsets[i] =
388                                         ALIGN(xstate_comp_offsets[i], 64);
389                 }
390         }
391 }
392
393 /*
394  * Print out xstate component offsets and sizes
395  */
396 static void __init print_xstate_offset_size(void)
397 {
398         int i;
399
400         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
401                 if (!xfeature_enabled(i))
402                         continue;
403                 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
404                          i, xstate_comp_offsets[i], i, xstate_sizes[i]);
405         }
406 }
407
408 /*
409  * setup the xstate image representing the init state
410  */
411 static void __init setup_init_fpu_buf(void)
412 {
413         static int on_boot_cpu __initdata = 1;
414
415         WARN_ON_FPU(!on_boot_cpu);
416         on_boot_cpu = 0;
417
418         if (!boot_cpu_has(X86_FEATURE_XSAVE))
419                 return;
420
421         setup_xstate_features();
422         print_xstate_features();
423
424         if (boot_cpu_has(X86_FEATURE_XSAVES))
425                 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
426
427         /*
428          * Init all the features state with header.xfeatures being 0x0
429          */
430         copy_kernel_to_xregs_booting(&init_fpstate.xsave);
431
432         /*
433          * Dump the init state again. This is to identify the init state
434          * of any feature which is not represented by all zero's.
435          */
436         copy_xregs_to_kernel_booting(&init_fpstate.xsave);
437 }
438
439 static int xfeature_uncompacted_offset(int xfeature_nr)
440 {
441         u32 eax, ebx, ecx, edx;
442
443         /*
444          * Only XSAVES supports supervisor states and it uses compacted
445          * format. Checking a supervisor state's uncompacted offset is
446          * an error.
447          */
448         if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) {
449                 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
450                 return -1;
451         }
452
453         CHECK_XFEATURE(xfeature_nr);
454         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
455         return ebx;
456 }
457
458 static int xfeature_size(int xfeature_nr)
459 {
460         u32 eax, ebx, ecx, edx;
461
462         CHECK_XFEATURE(xfeature_nr);
463         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
464         return eax;
465 }
466
467 /*
468  * 'XSAVES' implies two different things:
469  * 1. saving of supervisor/system state
470  * 2. using the compacted format
471  *
472  * Use this function when dealing with the compacted format so
473  * that it is obvious which aspect of 'XSAVES' is being handled
474  * by the calling code.
475  */
476 int using_compacted_format(void)
477 {
478         return boot_cpu_has(X86_FEATURE_XSAVES);
479 }
480
481 static void __xstate_dump_leaves(void)
482 {
483         int i;
484         u32 eax, ebx, ecx, edx;
485         static int should_dump = 1;
486
487         if (!should_dump)
488                 return;
489         should_dump = 0;
490         /*
491          * Dump out a few leaves past the ones that we support
492          * just in case there are some goodies up there
493          */
494         for (i = 0; i < XFEATURE_MAX + 10; i++) {
495                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
496                 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
497                         XSTATE_CPUID, i, eax, ebx, ecx, edx);
498         }
499 }
500
501 #define XSTATE_WARN_ON(x) do {                                                  \
502         if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {        \
503                 __xstate_dump_leaves();                                         \
504         }                                                                       \
505 } while (0)
506
507 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {                      \
508         if ((nr == nr_macro) &&                                         \
509             WARN_ONCE(sz != sizeof(__struct),                           \
510                 "%s: struct is %zu bytes, cpu state %d bytes\n",        \
511                 __stringify(nr_macro), sizeof(__struct), sz)) {         \
512                 __xstate_dump_leaves();                                 \
513         }                                                               \
514 } while (0)
515
516 /*
517  * We have a C struct for each 'xstate'.  We need to ensure
518  * that our software representation matches what the CPU
519  * tells us about the state's size.
520  */
521 static void check_xstate_against_struct(int nr)
522 {
523         /*
524          * Ask the CPU for the size of the state.
525          */
526         int sz = xfeature_size(nr);
527         /*
528          * Match each CPU state with the corresponding software
529          * structure.
530          */
531         XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
532         XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
533         XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
534         XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
535         XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
536         XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
537         XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
538
539         /*
540          * Make *SURE* to add any feature numbers in below if
541          * there are "holes" in the xsave state component
542          * numbers.
543          */
544         if ((nr < XFEATURE_YMM) ||
545             (nr >= XFEATURE_MAX) ||
546             (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
547                 WARN_ONCE(1, "no structure for xstate: %d\n", nr);
548                 XSTATE_WARN_ON(1);
549         }
550 }
551
552 /*
553  * This essentially double-checks what the cpu told us about
554  * how large the XSAVE buffer needs to be.  We are recalculating
555  * it to be safe.
556  */
557 static void do_extra_xstate_size_checks(void)
558 {
559         int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
560         int i;
561
562         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
563                 if (!xfeature_enabled(i))
564                         continue;
565
566                 check_xstate_against_struct(i);
567                 /*
568                  * Supervisor state components can be managed only by
569                  * XSAVES, which is compacted-format only.
570                  */
571                 if (!using_compacted_format())
572                         XSTATE_WARN_ON(xfeature_is_supervisor(i));
573
574                 /* Align from the end of the previous feature */
575                 if (xfeature_is_aligned(i))
576                         paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
577                 /*
578                  * The offset of a given state in the non-compacted
579                  * format is given to us in a CPUID leaf.  We check
580                  * them for being ordered (increasing offsets) in
581                  * setup_xstate_features().
582                  */
583                 if (!using_compacted_format())
584                         paranoid_xstate_size = xfeature_uncompacted_offset(i);
585                 /*
586                  * The compacted-format offset always depends on where
587                  * the previous state ended.
588                  */
589                 paranoid_xstate_size += xfeature_size(i);
590         }
591         XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
592 }
593
594
595 /*
596  * Get total size of enabled xstates in XCR0/xfeatures_mask.
597  *
598  * Note the SDM's wording here.  "sub-function 0" only enumerates
599  * the size of the *user* states.  If we use it to size a buffer
600  * that we use 'XSAVES' on, we could potentially overflow the
601  * buffer because 'XSAVES' saves system states too.
602  *
603  * Note that we do not currently set any bits on IA32_XSS so
604  * 'XCR0 | IA32_XSS == XCR0' for now.
605  */
606 static unsigned int __init get_xsaves_size(void)
607 {
608         unsigned int eax, ebx, ecx, edx;
609         /*
610          * - CPUID function 0DH, sub-function 1:
611          *    EBX enumerates the size (in bytes) required by
612          *    the XSAVES instruction for an XSAVE area
613          *    containing all the state components
614          *    corresponding to bits currently set in
615          *    XCR0 | IA32_XSS.
616          */
617         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
618         return ebx;
619 }
620
621 static unsigned int __init get_xsave_size(void)
622 {
623         unsigned int eax, ebx, ecx, edx;
624         /*
625          * - CPUID function 0DH, sub-function 0:
626          *    EBX enumerates the size (in bytes) required by
627          *    the XSAVE instruction for an XSAVE area
628          *    containing all the *user* state components
629          *    corresponding to bits currently set in XCR0.
630          */
631         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
632         return ebx;
633 }
634
635 /*
636  * Will the runtime-enumerated 'xstate_size' fit in the init
637  * task's statically-allocated buffer?
638  */
639 static bool is_supported_xstate_size(unsigned int test_xstate_size)
640 {
641         if (test_xstate_size <= sizeof(union fpregs_state))
642                 return true;
643
644         pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
645                         sizeof(union fpregs_state), test_xstate_size);
646         return false;
647 }
648
649 static int init_xstate_size(void)
650 {
651         /* Recompute the context size for enabled features: */
652         unsigned int possible_xstate_size;
653         unsigned int xsave_size;
654
655         xsave_size = get_xsave_size();
656
657         if (boot_cpu_has(X86_FEATURE_XSAVES))
658                 possible_xstate_size = get_xsaves_size();
659         else
660                 possible_xstate_size = xsave_size;
661
662         /* Ensure we have the space to store all enabled: */
663         if (!is_supported_xstate_size(possible_xstate_size))
664                 return -EINVAL;
665
666         /*
667          * The size is OK, we are definitely going to use xsave,
668          * make it known to the world that we need more space.
669          */
670         fpu_kernel_xstate_size = possible_xstate_size;
671         do_extra_xstate_size_checks();
672
673         /*
674          * User space is always in standard format.
675          */
676         fpu_user_xstate_size = xsave_size;
677         return 0;
678 }
679
680 /*
681  * We enabled the XSAVE hardware, but something went wrong and
682  * we can not use it.  Disable it.
683  */
684 static void fpu__init_disable_system_xstate(void)
685 {
686         xfeatures_mask = 0;
687         cr4_clear_bits(X86_CR4_OSXSAVE);
688         fpu__xstate_clear_all_cpu_caps();
689 }
690
691 /*
692  * Enable and initialize the xsave feature.
693  * Called once per system bootup.
694  */
695 void __init fpu__init_system_xstate(void)
696 {
697         unsigned int eax, ebx, ecx, edx;
698         static int on_boot_cpu __initdata = 1;
699         int err;
700
701         WARN_ON_FPU(!on_boot_cpu);
702         on_boot_cpu = 0;
703
704         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
705                 pr_info("x86/fpu: Legacy x87 FPU detected.\n");
706                 return;
707         }
708
709         if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
710                 WARN_ON_FPU(1);
711                 return;
712         }
713
714         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
715         xfeatures_mask = eax + ((u64)edx << 32);
716
717         if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
718                 /*
719                  * This indicates that something really unexpected happened
720                  * with the enumeration.  Disable XSAVE and try to continue
721                  * booting without it.  This is too early to BUG().
722                  */
723                 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
724                 goto out_disable;
725         }
726
727         xfeatures_mask &= fpu__get_supported_xfeatures_mask();
728
729         /* Enable xstate instructions to be able to continue with initialization: */
730         fpu__init_cpu_xstate();
731         err = init_xstate_size();
732         if (err)
733                 goto out_disable;
734
735         /*
736          * Update info used for ptrace frames; use standard-format size and no
737          * supervisor xstates:
738          */
739         update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR);
740
741         fpu__init_prepare_fx_sw_frame();
742         setup_init_fpu_buf();
743         setup_xstate_comp();
744         print_xstate_offset_size();
745
746         pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
747                 xfeatures_mask,
748                 fpu_kernel_xstate_size,
749                 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
750         return;
751
752 out_disable:
753         /* something went wrong, try to boot without any XSAVE support */
754         fpu__init_disable_system_xstate();
755 }
756
757 /*
758  * Restore minimal FPU state after suspend:
759  */
760 void fpu__resume_cpu(void)
761 {
762         /*
763          * Restore XCR0 on xsave capable CPUs:
764          */
765         if (boot_cpu_has(X86_FEATURE_XSAVE))
766                 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
767 }
768
769 /*
770  * Given an xstate feature mask, calculate where in the xsave
771  * buffer the state is.  Callers should ensure that the buffer
772  * is valid.
773  *
774  * Note: does not work for compacted buffers.
775  */
776 void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
777 {
778         int feature_nr = fls64(xstate_feature_mask) - 1;
779
780         if (!xfeature_enabled(feature_nr)) {
781                 WARN_ON_FPU(1);
782                 return NULL;
783         }
784
785         return (void *)xsave + xstate_comp_offsets[feature_nr];
786 }
787 /*
788  * Given the xsave area and a state inside, this function returns the
789  * address of the state.
790  *
791  * This is the API that is called to get xstate address in either
792  * standard format or compacted format of xsave area.
793  *
794  * Note that if there is no data for the field in the xsave buffer
795  * this will return NULL.
796  *
797  * Inputs:
798  *      xstate: the thread's storage area for all FPU data
799  *      xstate_feature: state which is defined in xsave.h (e.g.
800  *      XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
801  * Output:
802  *      address of the state in the xsave area, or NULL if the
803  *      field is not present in the xsave buffer.
804  */
805 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
806 {
807         /*
808          * Do we even *have* xsave state?
809          */
810         if (!boot_cpu_has(X86_FEATURE_XSAVE))
811                 return NULL;
812
813         /*
814          * We should not ever be requesting features that we
815          * have not enabled.  Remember that pcntxt_mask is
816          * what we write to the XCR0 register.
817          */
818         WARN_ONCE(!(xfeatures_mask & xstate_feature),
819                   "get of unsupported state");
820         /*
821          * This assumes the last 'xsave*' instruction to
822          * have requested that 'xstate_feature' be saved.
823          * If it did not, we might be seeing and old value
824          * of the field in the buffer.
825          *
826          * This can happen because the last 'xsave' did not
827          * request that this feature be saved (unlikely)
828          * or because the "init optimization" caused it
829          * to not be saved.
830          */
831         if (!(xsave->header.xfeatures & xstate_feature))
832                 return NULL;
833
834         return __raw_xsave_addr(xsave, xstate_feature);
835 }
836 EXPORT_SYMBOL_GPL(get_xsave_addr);
837
838 /*
839  * This wraps up the common operations that need to occur when retrieving
840  * data from xsave state.  It first ensures that the current task was
841  * using the FPU and retrieves the data in to a buffer.  It then calculates
842  * the offset of the requested field in the buffer.
843  *
844  * This function is safe to call whether the FPU is in use or not.
845  *
846  * Note that this only works on the current task.
847  *
848  * Inputs:
849  *      @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
850  *      XFEATURE_MASK_SSE, etc...)
851  * Output:
852  *      address of the state in the xsave area or NULL if the state
853  *      is not present or is in its 'init state'.
854  */
855 const void *get_xsave_field_ptr(int xsave_state)
856 {
857         struct fpu *fpu = &current->thread.fpu;
858
859         if (!fpu->fpstate_active)
860                 return NULL;
861         /*
862          * fpu__save() takes the CPU's xstate registers
863          * and saves them off to the 'fpu memory buffer.
864          */
865         fpu__save(fpu);
866
867         return get_xsave_addr(&fpu->state.xsave, xsave_state);
868 }
869
870 #ifdef CONFIG_ARCH_HAS_PKEYS
871
872 #define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2)
873 #define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1)
874 /*
875  * This will go out and modify PKRU register to set the access
876  * rights for @pkey to @init_val.
877  */
878 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
879                 unsigned long init_val)
880 {
881         u32 old_pkru;
882         int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
883         u32 new_pkru_bits = 0;
884
885         /*
886          * This check implies XSAVE support.  OSPKE only gets
887          * set if we enable XSAVE and we enable PKU in XCR0.
888          */
889         if (!boot_cpu_has(X86_FEATURE_OSPKE))
890                 return -EINVAL;
891         /*
892          * For most XSAVE components, this would be an arduous task:
893          * brining fpstate up to date with fpregs, updating fpstate,
894          * then re-populating fpregs.  But, for components that are
895          * never lazily managed, we can just access the fpregs
896          * directly.  PKRU is never managed lazily, so we can just
897          * manipulate it directly.  Make sure it stays that way.
898          */
899         WARN_ON_ONCE(!use_eager_fpu());
900
901         /* Set the bits we need in PKRU:  */
902         if (init_val & PKEY_DISABLE_ACCESS)
903                 new_pkru_bits |= PKRU_AD_BIT;
904         if (init_val & PKEY_DISABLE_WRITE)
905                 new_pkru_bits |= PKRU_WD_BIT;
906
907         /* Shift the bits in to the correct place in PKRU for pkey: */
908         new_pkru_bits <<= pkey_shift;
909
910         /* Get old PKRU and mask off any old bits in place: */
911         old_pkru = read_pkru();
912         old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
913
914         /* Write old part along with new part: */
915         write_pkru(old_pkru | new_pkru_bits);
916
917         return 0;
918 }
919 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
920
921 /*
922  * This is similar to user_regset_copyout(), but will not add offset to
923  * the source data pointer or increment pos, count, kbuf, and ubuf.
924  */
925 static inline int xstate_copyout(unsigned int pos, unsigned int count,
926                                  void *kbuf, void __user *ubuf,
927                                  const void *data, const int start_pos,
928                                  const int end_pos)
929 {
930         if ((count == 0) || (pos < start_pos))
931                 return 0;
932
933         if (end_pos < 0 || pos < end_pos) {
934                 unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos));
935
936                 if (kbuf) {
937                         memcpy(kbuf + pos, data, copy);
938                 } else {
939                         if (__copy_to_user(ubuf + pos, data, copy))
940                                 return -EFAULT;
941                 }
942         }
943         return 0;
944 }
945
946 /*
947  * Convert from kernel XSAVES compacted format to standard format and copy
948  * to a ptrace buffer. It supports partial copy but pos always starts from
949  * zero. This is called from xstateregs_get() and there we check the CPU
950  * has XSAVES.
951  */
952 int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
953                         void __user *ubuf, struct xregs_state *xsave)
954 {
955         unsigned int offset, size;
956         int ret, i;
957         struct xstate_header header;
958
959         /*
960          * Currently copy_regset_to_user() starts from pos 0:
961          */
962         if (unlikely(pos != 0))
963                 return -EFAULT;
964
965         /*
966          * The destination is a ptrace buffer; we put in only user xstates:
967          */
968         memset(&header, 0, sizeof(header));
969         header.xfeatures = xsave->header.xfeatures;
970         header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR;
971
972         /*
973          * Copy xregs_state->header:
974          */
975         offset = offsetof(struct xregs_state, header);
976         size = sizeof(header);
977
978         ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count);
979
980         if (ret)
981                 return ret;
982
983         for (i = 0; i < XFEATURE_MAX; i++) {
984                 /*
985                  * Copy only in-use xstates:
986                  */
987                 if ((header.xfeatures >> i) & 1) {
988                         void *src = __raw_xsave_addr(xsave, 1 << i);
989
990                         offset = xstate_offsets[i];
991                         size = xstate_sizes[i];
992
993                         ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count);
994
995                         if (ret)
996                                 return ret;
997
998                         if (offset + size >= count)
999                                 break;
1000                 }
1001
1002         }
1003
1004         /*
1005          * Fill xsave->i387.sw_reserved value for ptrace frame:
1006          */
1007         offset = offsetof(struct fxregs_state, sw_reserved);
1008         size = sizeof(xstate_fx_sw_bytes);
1009
1010         ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count);
1011
1012         if (ret)
1013                 return ret;
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * Convert from a ptrace standard-format buffer to kernel XSAVES format
1020  * and copy to the target thread. This is called from xstateregs_set() and
1021  * there we check the CPU has XSAVES and a whole standard-sized buffer
1022  * exists.
1023  */
1024 int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
1025                      struct xregs_state *xsave)
1026 {
1027         unsigned int offset, size;
1028         int i;
1029         u64 xfeatures;
1030         u64 allowed_features;
1031
1032         offset = offsetof(struct xregs_state, header);
1033         size = sizeof(xfeatures);
1034
1035         if (kbuf) {
1036                 memcpy(&xfeatures, kbuf + offset, size);
1037         } else {
1038                 if (__copy_from_user(&xfeatures, ubuf + offset, size))
1039                         return -EFAULT;
1040         }
1041
1042         /*
1043          * Reject if the user sets any disabled or supervisor features:
1044          */
1045         allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR;
1046
1047         if (xfeatures & ~allowed_features)
1048                 return -EINVAL;
1049
1050         for (i = 0; i < XFEATURE_MAX; i++) {
1051                 u64 mask = ((u64)1 << i);
1052
1053                 if (xfeatures & mask) {
1054                         void *dst = __raw_xsave_addr(xsave, 1 << i);
1055
1056                         offset = xstate_offsets[i];
1057                         size = xstate_sizes[i];
1058
1059                         if (kbuf) {
1060                                 memcpy(dst, kbuf + offset, size);
1061                         } else {
1062                                 if (__copy_from_user(dst, ubuf + offset, size))
1063                                         return -EFAULT;
1064                         }
1065                 }
1066         }
1067
1068         /*
1069          * The state that came in from userspace was user-state only.
1070          * Mask all the user states out of 'xfeatures':
1071          */
1072         xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR;
1073
1074         /*
1075          * Add back in the features that came in from userspace:
1076          */
1077         xsave->header.xfeatures |= xfeatures;
1078
1079         return 0;
1080 }