Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         if (host) {
1060                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1061                         WARN_ON(adjustment < 0);
1062                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1063         }
1064
1065         svm->vmcb->control.tsc_offset += adjustment;
1066         if (is_guest_mode(vcpu))
1067                 svm->nested.hsave->control.tsc_offset += adjustment;
1068         else
1069                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1070                                      svm->vmcb->control.tsc_offset - adjustment,
1071                                      svm->vmcb->control.tsc_offset);
1072
1073         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1074 }
1075
1076 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1077 {
1078         u64 tsc;
1079
1080         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1081
1082         return target_tsc - tsc;
1083 }
1084
1085 static void init_vmcb(struct vcpu_svm *svm)
1086 {
1087         struct vmcb_control_area *control = &svm->vmcb->control;
1088         struct vmcb_save_area *save = &svm->vmcb->save;
1089
1090         svm->vcpu.fpu_active = 1;
1091         svm->vcpu.arch.hflags = 0;
1092
1093         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1095         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1096         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1098         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1099         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1100
1101         set_dr_intercepts(svm);
1102
1103         set_exception_intercept(svm, PF_VECTOR);
1104         set_exception_intercept(svm, UD_VECTOR);
1105         set_exception_intercept(svm, MC_VECTOR);
1106
1107         set_intercept(svm, INTERCEPT_INTR);
1108         set_intercept(svm, INTERCEPT_NMI);
1109         set_intercept(svm, INTERCEPT_SMI);
1110         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1111         set_intercept(svm, INTERCEPT_RDPMC);
1112         set_intercept(svm, INTERCEPT_CPUID);
1113         set_intercept(svm, INTERCEPT_INVD);
1114         set_intercept(svm, INTERCEPT_HLT);
1115         set_intercept(svm, INTERCEPT_INVLPG);
1116         set_intercept(svm, INTERCEPT_INVLPGA);
1117         set_intercept(svm, INTERCEPT_IOIO_PROT);
1118         set_intercept(svm, INTERCEPT_MSR_PROT);
1119         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1120         set_intercept(svm, INTERCEPT_SHUTDOWN);
1121         set_intercept(svm, INTERCEPT_VMRUN);
1122         set_intercept(svm, INTERCEPT_VMMCALL);
1123         set_intercept(svm, INTERCEPT_VMLOAD);
1124         set_intercept(svm, INTERCEPT_VMSAVE);
1125         set_intercept(svm, INTERCEPT_STGI);
1126         set_intercept(svm, INTERCEPT_CLGI);
1127         set_intercept(svm, INTERCEPT_SKINIT);
1128         set_intercept(svm, INTERCEPT_WBINVD);
1129         set_intercept(svm, INTERCEPT_MONITOR);
1130         set_intercept(svm, INTERCEPT_MWAIT);
1131         set_intercept(svm, INTERCEPT_XSETBV);
1132
1133         control->iopm_base_pa = iopm_base;
1134         control->msrpm_base_pa = __pa(svm->msrpm);
1135         control->int_ctl = V_INTR_MASKING_MASK;
1136
1137         init_seg(&save->es);
1138         init_seg(&save->ss);
1139         init_seg(&save->ds);
1140         init_seg(&save->fs);
1141         init_seg(&save->gs);
1142
1143         save->cs.selector = 0xf000;
1144         save->cs.base = 0xffff0000;
1145         /* Executable/Readable Code Segment */
1146         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1147                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1148         save->cs.limit = 0xffff;
1149
1150         save->gdtr.limit = 0xffff;
1151         save->idtr.limit = 0xffff;
1152
1153         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1154         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1155
1156         svm_set_efer(&svm->vcpu, 0);
1157         save->dr6 = 0xffff0ff0;
1158         kvm_set_rflags(&svm->vcpu, 2);
1159         save->rip = 0x0000fff0;
1160         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1161
1162         /*
1163          * This is the guest-visible cr0 value.
1164          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1165          */
1166         svm->vcpu.arch.cr0 = 0;
1167         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1168
1169         save->cr4 = X86_CR4_PAE;
1170         /* rdx = ?? */
1171
1172         if (npt_enabled) {
1173                 /* Setup VMCB for Nested Paging */
1174                 control->nested_ctl = 1;
1175                 clr_intercept(svm, INTERCEPT_INVLPG);
1176                 clr_exception_intercept(svm, PF_VECTOR);
1177                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1178                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1179                 save->g_pat = 0x0007040600070406ULL;
1180                 save->cr3 = 0;
1181                 save->cr4 = 0;
1182         }
1183         svm->asid_generation = 0;
1184
1185         svm->nested.vmcb = 0;
1186         svm->vcpu.arch.hflags = 0;
1187
1188         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1189                 control->pause_filter_count = 3000;
1190                 set_intercept(svm, INTERCEPT_PAUSE);
1191         }
1192
1193         mark_all_dirty(svm->vmcb);
1194
1195         enable_gif(svm);
1196 }
1197
1198 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1199 {
1200         struct vcpu_svm *svm = to_svm(vcpu);
1201         u32 dummy;
1202         u32 eax = 1;
1203
1204         init_vmcb(svm);
1205
1206         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1207         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1208 }
1209
1210 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1211 {
1212         struct vcpu_svm *svm;
1213         struct page *page;
1214         struct page *msrpm_pages;
1215         struct page *hsave_page;
1216         struct page *nested_msrpm_pages;
1217         int err;
1218
1219         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1220         if (!svm) {
1221                 err = -ENOMEM;
1222                 goto out;
1223         }
1224
1225         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1226
1227         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1228         if (err)
1229                 goto free_svm;
1230
1231         err = -ENOMEM;
1232         page = alloc_page(GFP_KERNEL);
1233         if (!page)
1234                 goto uninit;
1235
1236         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1237         if (!msrpm_pages)
1238                 goto free_page1;
1239
1240         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1241         if (!nested_msrpm_pages)
1242                 goto free_page2;
1243
1244         hsave_page = alloc_page(GFP_KERNEL);
1245         if (!hsave_page)
1246                 goto free_page3;
1247
1248         svm->nested.hsave = page_address(hsave_page);
1249
1250         svm->msrpm = page_address(msrpm_pages);
1251         svm_vcpu_init_msrpm(svm->msrpm);
1252
1253         svm->nested.msrpm = page_address(nested_msrpm_pages);
1254         svm_vcpu_init_msrpm(svm->nested.msrpm);
1255
1256         svm->vmcb = page_address(page);
1257         clear_page(svm->vmcb);
1258         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1259         svm->asid_generation = 0;
1260         init_vmcb(svm);
1261
1262         svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1263                                    MSR_IA32_APICBASE_ENABLE;
1264         if (kvm_vcpu_is_bsp(&svm->vcpu))
1265                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1266
1267         svm_init_osvw(&svm->vcpu);
1268
1269         return &svm->vcpu;
1270
1271 free_page3:
1272         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1273 free_page2:
1274         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1275 free_page1:
1276         __free_page(page);
1277 uninit:
1278         kvm_vcpu_uninit(&svm->vcpu);
1279 free_svm:
1280         kmem_cache_free(kvm_vcpu_cache, svm);
1281 out:
1282         return ERR_PTR(err);
1283 }
1284
1285 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1286 {
1287         struct vcpu_svm *svm = to_svm(vcpu);
1288
1289         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1290         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1291         __free_page(virt_to_page(svm->nested.hsave));
1292         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1293         kvm_vcpu_uninit(vcpu);
1294         kmem_cache_free(kvm_vcpu_cache, svm);
1295 }
1296
1297 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1298 {
1299         struct vcpu_svm *svm = to_svm(vcpu);
1300         int i;
1301
1302         if (unlikely(cpu != vcpu->cpu)) {
1303                 svm->asid_generation = 0;
1304                 mark_all_dirty(svm->vmcb);
1305         }
1306
1307 #ifdef CONFIG_X86_64
1308         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1309 #endif
1310         savesegment(fs, svm->host.fs);
1311         savesegment(gs, svm->host.gs);
1312         svm->host.ldt = kvm_read_ldt();
1313
1314         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1315                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1316
1317         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1318             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1319                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1320                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1321         }
1322 }
1323
1324 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1325 {
1326         struct vcpu_svm *svm = to_svm(vcpu);
1327         int i;
1328
1329         ++vcpu->stat.host_state_reload;
1330         kvm_load_ldt(svm->host.ldt);
1331 #ifdef CONFIG_X86_64
1332         loadsegment(fs, svm->host.fs);
1333         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1334         load_gs_index(svm->host.gs);
1335 #else
1336 #ifdef CONFIG_X86_32_LAZY_GS
1337         loadsegment(gs, svm->host.gs);
1338 #endif
1339 #endif
1340         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1341                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1342 }
1343
1344 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1345 {
1346         return to_svm(vcpu)->vmcb->save.rflags;
1347 }
1348
1349 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1350 {
1351        /*
1352         * Any change of EFLAGS.VM is accompained by a reload of SS
1353         * (caused by either a task switch or an inter-privilege IRET),
1354         * so we do not need to update the CPL here.
1355         */
1356         to_svm(vcpu)->vmcb->save.rflags = rflags;
1357 }
1358
1359 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1360 {
1361         switch (reg) {
1362         case VCPU_EXREG_PDPTR:
1363                 BUG_ON(!npt_enabled);
1364                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1365                 break;
1366         default:
1367                 BUG();
1368         }
1369 }
1370
1371 static void svm_set_vintr(struct vcpu_svm *svm)
1372 {
1373         set_intercept(svm, INTERCEPT_VINTR);
1374 }
1375
1376 static void svm_clear_vintr(struct vcpu_svm *svm)
1377 {
1378         clr_intercept(svm, INTERCEPT_VINTR);
1379 }
1380
1381 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1382 {
1383         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1384
1385         switch (seg) {
1386         case VCPU_SREG_CS: return &save->cs;
1387         case VCPU_SREG_DS: return &save->ds;
1388         case VCPU_SREG_ES: return &save->es;
1389         case VCPU_SREG_FS: return &save->fs;
1390         case VCPU_SREG_GS: return &save->gs;
1391         case VCPU_SREG_SS: return &save->ss;
1392         case VCPU_SREG_TR: return &save->tr;
1393         case VCPU_SREG_LDTR: return &save->ldtr;
1394         }
1395         BUG();
1396         return NULL;
1397 }
1398
1399 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1400 {
1401         struct vmcb_seg *s = svm_seg(vcpu, seg);
1402
1403         return s->base;
1404 }
1405
1406 static void svm_get_segment(struct kvm_vcpu *vcpu,
1407                             struct kvm_segment *var, int seg)
1408 {
1409         struct vmcb_seg *s = svm_seg(vcpu, seg);
1410
1411         var->base = s->base;
1412         var->limit = s->limit;
1413         var->selector = s->selector;
1414         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1415         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1416         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1417         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1418         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1419         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1420         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1421
1422         /*
1423          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1424          * However, the SVM spec states that the G bit is not observed by the
1425          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1426          * So let's synthesize a legal G bit for all segments, this helps
1427          * running KVM nested. It also helps cross-vendor migration, because
1428          * Intel's vmentry has a check on the 'G' bit.
1429          */
1430         var->g = s->limit > 0xfffff;
1431
1432         /*
1433          * AMD's VMCB does not have an explicit unusable field, so emulate it
1434          * for cross vendor migration purposes by "not present"
1435          */
1436         var->unusable = !var->present || (var->type == 0);
1437
1438         switch (seg) {
1439         case VCPU_SREG_TR:
1440                 /*
1441                  * Work around a bug where the busy flag in the tr selector
1442                  * isn't exposed
1443                  */
1444                 var->type |= 0x2;
1445                 break;
1446         case VCPU_SREG_DS:
1447         case VCPU_SREG_ES:
1448         case VCPU_SREG_FS:
1449         case VCPU_SREG_GS:
1450                 /*
1451                  * The accessed bit must always be set in the segment
1452                  * descriptor cache, although it can be cleared in the
1453                  * descriptor, the cached bit always remains at 1. Since
1454                  * Intel has a check on this, set it here to support
1455                  * cross-vendor migration.
1456                  */
1457                 if (!var->unusable)
1458                         var->type |= 0x1;
1459                 break;
1460         case VCPU_SREG_SS:
1461                 /*
1462                  * On AMD CPUs sometimes the DB bit in the segment
1463                  * descriptor is left as 1, although the whole segment has
1464                  * been made unusable. Clear it here to pass an Intel VMX
1465                  * entry check when cross vendor migrating.
1466                  */
1467                 if (var->unusable)
1468                         var->db = 0;
1469                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1470                 break;
1471         }
1472 }
1473
1474 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1475 {
1476         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1477
1478         return save->cpl;
1479 }
1480
1481 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1482 {
1483         struct vcpu_svm *svm = to_svm(vcpu);
1484
1485         dt->size = svm->vmcb->save.idtr.limit;
1486         dt->address = svm->vmcb->save.idtr.base;
1487 }
1488
1489 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1490 {
1491         struct vcpu_svm *svm = to_svm(vcpu);
1492
1493         svm->vmcb->save.idtr.limit = dt->size;
1494         svm->vmcb->save.idtr.base = dt->address ;
1495         mark_dirty(svm->vmcb, VMCB_DT);
1496 }
1497
1498 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1499 {
1500         struct vcpu_svm *svm = to_svm(vcpu);
1501
1502         dt->size = svm->vmcb->save.gdtr.limit;
1503         dt->address = svm->vmcb->save.gdtr.base;
1504 }
1505
1506 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1507 {
1508         struct vcpu_svm *svm = to_svm(vcpu);
1509
1510         svm->vmcb->save.gdtr.limit = dt->size;
1511         svm->vmcb->save.gdtr.base = dt->address ;
1512         mark_dirty(svm->vmcb, VMCB_DT);
1513 }
1514
1515 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1516 {
1517 }
1518
1519 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522
1523 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526
1527 static void update_cr0_intercept(struct vcpu_svm *svm)
1528 {
1529         ulong gcr0 = svm->vcpu.arch.cr0;
1530         u64 *hcr0 = &svm->vmcb->save.cr0;
1531
1532         if (!svm->vcpu.fpu_active)
1533                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1534         else
1535                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1536                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1537
1538         mark_dirty(svm->vmcb, VMCB_CR);
1539
1540         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1541                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1542                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1543         } else {
1544                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1545                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1546         }
1547 }
1548
1549 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1550 {
1551         struct vcpu_svm *svm = to_svm(vcpu);
1552
1553 #ifdef CONFIG_X86_64
1554         if (vcpu->arch.efer & EFER_LME) {
1555                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1556                         vcpu->arch.efer |= EFER_LMA;
1557                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1558                 }
1559
1560                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1561                         vcpu->arch.efer &= ~EFER_LMA;
1562                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1563                 }
1564         }
1565 #endif
1566         vcpu->arch.cr0 = cr0;
1567
1568         if (!npt_enabled)
1569                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1570
1571         if (!vcpu->fpu_active)
1572                 cr0 |= X86_CR0_TS;
1573         /*
1574          * re-enable caching here because the QEMU bios
1575          * does not do it - this results in some delay at
1576          * reboot
1577          */
1578         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1579         svm->vmcb->save.cr0 = cr0;
1580         mark_dirty(svm->vmcb, VMCB_CR);
1581         update_cr0_intercept(svm);
1582 }
1583
1584 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1585 {
1586         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1587         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1588
1589         if (cr4 & X86_CR4_VMXE)
1590                 return 1;
1591
1592         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1593                 svm_flush_tlb(vcpu);
1594
1595         vcpu->arch.cr4 = cr4;
1596         if (!npt_enabled)
1597                 cr4 |= X86_CR4_PAE;
1598         cr4 |= host_cr4_mce;
1599         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1600         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1601         return 0;
1602 }
1603
1604 static void svm_set_segment(struct kvm_vcpu *vcpu,
1605                             struct kvm_segment *var, int seg)
1606 {
1607         struct vcpu_svm *svm = to_svm(vcpu);
1608         struct vmcb_seg *s = svm_seg(vcpu, seg);
1609
1610         s->base = var->base;
1611         s->limit = var->limit;
1612         s->selector = var->selector;
1613         if (var->unusable)
1614                 s->attrib = 0;
1615         else {
1616                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1617                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1618                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1619                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1620                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1621                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1622                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1623                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1624         }
1625
1626         /*
1627          * This is always accurate, except if SYSRET returned to a segment
1628          * with SS.DPL != 3.  Intel does not have this quirk, and always
1629          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1630          * would entail passing the CPL to userspace and back.
1631          */
1632         if (seg == VCPU_SREG_SS)
1633                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1634
1635         mark_dirty(svm->vmcb, VMCB_SEG);
1636 }
1637
1638 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1639 {
1640         struct vcpu_svm *svm = to_svm(vcpu);
1641
1642         clr_exception_intercept(svm, DB_VECTOR);
1643         clr_exception_intercept(svm, BP_VECTOR);
1644
1645         if (svm->nmi_singlestep)
1646                 set_exception_intercept(svm, DB_VECTOR);
1647
1648         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1649                 if (vcpu->guest_debug &
1650                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1651                         set_exception_intercept(svm, DB_VECTOR);
1652                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1653                         set_exception_intercept(svm, BP_VECTOR);
1654         } else
1655                 vcpu->guest_debug = 0;
1656 }
1657
1658 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1659 {
1660         if (sd->next_asid > sd->max_asid) {
1661                 ++sd->asid_generation;
1662                 sd->next_asid = 1;
1663                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1664         }
1665
1666         svm->asid_generation = sd->asid_generation;
1667         svm->vmcb->control.asid = sd->next_asid++;
1668
1669         mark_dirty(svm->vmcb, VMCB_ASID);
1670 }
1671
1672 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1673 {
1674         return to_svm(vcpu)->vmcb->save.dr6;
1675 }
1676
1677 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1678 {
1679         struct vcpu_svm *svm = to_svm(vcpu);
1680
1681         svm->vmcb->save.dr6 = value;
1682         mark_dirty(svm->vmcb, VMCB_DR);
1683 }
1684
1685 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1686 {
1687         struct vcpu_svm *svm = to_svm(vcpu);
1688
1689         get_debugreg(vcpu->arch.db[0], 0);
1690         get_debugreg(vcpu->arch.db[1], 1);
1691         get_debugreg(vcpu->arch.db[2], 2);
1692         get_debugreg(vcpu->arch.db[3], 3);
1693         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1694         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1695
1696         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1697         set_dr_intercepts(svm);
1698 }
1699
1700 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1701 {
1702         struct vcpu_svm *svm = to_svm(vcpu);
1703
1704         svm->vmcb->save.dr7 = value;
1705         mark_dirty(svm->vmcb, VMCB_DR);
1706 }
1707
1708 static int pf_interception(struct vcpu_svm *svm)
1709 {
1710         u64 fault_address = svm->vmcb->control.exit_info_2;
1711         u32 error_code;
1712         int r = 1;
1713
1714         switch (svm->apf_reason) {
1715         default:
1716                 error_code = svm->vmcb->control.exit_info_1;
1717
1718                 trace_kvm_page_fault(fault_address, error_code);
1719                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1720                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1721                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1722                         svm->vmcb->control.insn_bytes,
1723                         svm->vmcb->control.insn_len);
1724                 break;
1725         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1726                 svm->apf_reason = 0;
1727                 local_irq_disable();
1728                 kvm_async_pf_task_wait(fault_address);
1729                 local_irq_enable();
1730                 break;
1731         case KVM_PV_REASON_PAGE_READY:
1732                 svm->apf_reason = 0;
1733                 local_irq_disable();
1734                 kvm_async_pf_task_wake(fault_address);
1735                 local_irq_enable();
1736                 break;
1737         }
1738         return r;
1739 }
1740
1741 static int db_interception(struct vcpu_svm *svm)
1742 {
1743         struct kvm_run *kvm_run = svm->vcpu.run;
1744
1745         if (!(svm->vcpu.guest_debug &
1746               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1747                 !svm->nmi_singlestep) {
1748                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1749                 return 1;
1750         }
1751
1752         if (svm->nmi_singlestep) {
1753                 svm->nmi_singlestep = false;
1754                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1755                         svm->vmcb->save.rflags &=
1756                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1757                 update_db_bp_intercept(&svm->vcpu);
1758         }
1759
1760         if (svm->vcpu.guest_debug &
1761             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1762                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1763                 kvm_run->debug.arch.pc =
1764                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1765                 kvm_run->debug.arch.exception = DB_VECTOR;
1766                 return 0;
1767         }
1768
1769         return 1;
1770 }
1771
1772 static int bp_interception(struct vcpu_svm *svm)
1773 {
1774         struct kvm_run *kvm_run = svm->vcpu.run;
1775
1776         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1777         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1778         kvm_run->debug.arch.exception = BP_VECTOR;
1779         return 0;
1780 }
1781
1782 static int ud_interception(struct vcpu_svm *svm)
1783 {
1784         int er;
1785
1786         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1787         if (er != EMULATE_DONE)
1788                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1789         return 1;
1790 }
1791
1792 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1793 {
1794         struct vcpu_svm *svm = to_svm(vcpu);
1795
1796         clr_exception_intercept(svm, NM_VECTOR);
1797
1798         svm->vcpu.fpu_active = 1;
1799         update_cr0_intercept(svm);
1800 }
1801
1802 static int nm_interception(struct vcpu_svm *svm)
1803 {
1804         svm_fpu_activate(&svm->vcpu);
1805         return 1;
1806 }
1807
1808 static bool is_erratum_383(void)
1809 {
1810         int err, i;
1811         u64 value;
1812
1813         if (!erratum_383_found)
1814                 return false;
1815
1816         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1817         if (err)
1818                 return false;
1819
1820         /* Bit 62 may or may not be set for this mce */
1821         value &= ~(1ULL << 62);
1822
1823         if (value != 0xb600000000010015ULL)
1824                 return false;
1825
1826         /* Clear MCi_STATUS registers */
1827         for (i = 0; i < 6; ++i)
1828                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1829
1830         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1831         if (!err) {
1832                 u32 low, high;
1833
1834                 value &= ~(1ULL << 2);
1835                 low    = lower_32_bits(value);
1836                 high   = upper_32_bits(value);
1837
1838                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1839         }
1840
1841         /* Flush tlb to evict multi-match entries */
1842         __flush_tlb_all();
1843
1844         return true;
1845 }
1846
1847 static void svm_handle_mce(struct vcpu_svm *svm)
1848 {
1849         if (is_erratum_383()) {
1850                 /*
1851                  * Erratum 383 triggered. Guest state is corrupt so kill the
1852                  * guest.
1853                  */
1854                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1855
1856                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1857
1858                 return;
1859         }
1860
1861         /*
1862          * On an #MC intercept the MCE handler is not called automatically in
1863          * the host. So do it by hand here.
1864          */
1865         asm volatile (
1866                 "int $0x12\n");
1867         /* not sure if we ever come back to this point */
1868
1869         return;
1870 }
1871
1872 static int mc_interception(struct vcpu_svm *svm)
1873 {
1874         return 1;
1875 }
1876
1877 static int shutdown_interception(struct vcpu_svm *svm)
1878 {
1879         struct kvm_run *kvm_run = svm->vcpu.run;
1880
1881         /*
1882          * VMCB is undefined after a SHUTDOWN intercept
1883          * so reinitialize it.
1884          */
1885         clear_page(svm->vmcb);
1886         init_vmcb(svm);
1887
1888         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1889         return 0;
1890 }
1891
1892 static int io_interception(struct vcpu_svm *svm)
1893 {
1894         struct kvm_vcpu *vcpu = &svm->vcpu;
1895         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1896         int size, in, string;
1897         unsigned port;
1898
1899         ++svm->vcpu.stat.io_exits;
1900         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1901         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1902         if (string || in)
1903                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1904
1905         port = io_info >> 16;
1906         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1907         svm->next_rip = svm->vmcb->control.exit_info_2;
1908         skip_emulated_instruction(&svm->vcpu);
1909
1910         return kvm_fast_pio_out(vcpu, size, port);
1911 }
1912
1913 static int nmi_interception(struct vcpu_svm *svm)
1914 {
1915         return 1;
1916 }
1917
1918 static int intr_interception(struct vcpu_svm *svm)
1919 {
1920         ++svm->vcpu.stat.irq_exits;
1921         return 1;
1922 }
1923
1924 static int nop_on_interception(struct vcpu_svm *svm)
1925 {
1926         return 1;
1927 }
1928
1929 static int halt_interception(struct vcpu_svm *svm)
1930 {
1931         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1932         skip_emulated_instruction(&svm->vcpu);
1933         return kvm_emulate_halt(&svm->vcpu);
1934 }
1935
1936 static int vmmcall_interception(struct vcpu_svm *svm)
1937 {
1938         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1939         skip_emulated_instruction(&svm->vcpu);
1940         kvm_emulate_hypercall(&svm->vcpu);
1941         return 1;
1942 }
1943
1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1945 {
1946         struct vcpu_svm *svm = to_svm(vcpu);
1947
1948         return svm->nested.nested_cr3;
1949 }
1950
1951 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1952 {
1953         struct vcpu_svm *svm = to_svm(vcpu);
1954         u64 cr3 = svm->nested.nested_cr3;
1955         u64 pdpte;
1956         int ret;
1957
1958         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1959                                   offset_in_page(cr3) + index * 8, 8);
1960         if (ret)
1961                 return 0;
1962         return pdpte;
1963 }
1964
1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1966                                    unsigned long root)
1967 {
1968         struct vcpu_svm *svm = to_svm(vcpu);
1969
1970         svm->vmcb->control.nested_cr3 = root;
1971         mark_dirty(svm->vmcb, VMCB_NPT);
1972         svm_flush_tlb(vcpu);
1973 }
1974
1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1976                                        struct x86_exception *fault)
1977 {
1978         struct vcpu_svm *svm = to_svm(vcpu);
1979
1980         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1981                 /*
1982                  * TODO: track the cause of the nested page fault, and
1983                  * correctly fill in the high bits of exit_info_1.
1984                  */
1985                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1986                 svm->vmcb->control.exit_code_hi = 0;
1987                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1988                 svm->vmcb->control.exit_info_2 = fault->address;
1989         }
1990
1991         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1992         svm->vmcb->control.exit_info_1 |= fault->error_code;
1993
1994         /*
1995          * The present bit is always zero for page structure faults on real
1996          * hardware.
1997          */
1998         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1999                 svm->vmcb->control.exit_info_1 &= ~1;
2000
2001         nested_svm_vmexit(svm);
2002 }
2003
2004 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2005 {
2006         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
2007
2008         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2009         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2010         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2011         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2012         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2013         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2014 }
2015
2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2017 {
2018         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2019 }
2020
2021 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2022 {
2023         if (!(svm->vcpu.arch.efer & EFER_SVME)
2024             || !is_paging(&svm->vcpu)) {
2025                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2026                 return 1;
2027         }
2028
2029         if (svm->vmcb->save.cpl) {
2030                 kvm_inject_gp(&svm->vcpu, 0);
2031                 return 1;
2032         }
2033
2034        return 0;
2035 }
2036
2037 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2038                                       bool has_error_code, u32 error_code)
2039 {
2040         int vmexit;
2041
2042         if (!is_guest_mode(&svm->vcpu))
2043                 return 0;
2044
2045         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2046         svm->vmcb->control.exit_code_hi = 0;
2047         svm->vmcb->control.exit_info_1 = error_code;
2048         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2049
2050         vmexit = nested_svm_intercept(svm);
2051         if (vmexit == NESTED_EXIT_DONE)
2052                 svm->nested.exit_required = true;
2053
2054         return vmexit;
2055 }
2056
2057 /* This function returns true if it is save to enable the irq window */
2058 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2059 {
2060         if (!is_guest_mode(&svm->vcpu))
2061                 return true;
2062
2063         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2064                 return true;
2065
2066         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2067                 return false;
2068
2069         /*
2070          * if vmexit was already requested (by intercepted exception
2071          * for instance) do not overwrite it with "external interrupt"
2072          * vmexit.
2073          */
2074         if (svm->nested.exit_required)
2075                 return false;
2076
2077         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2078         svm->vmcb->control.exit_info_1 = 0;
2079         svm->vmcb->control.exit_info_2 = 0;
2080
2081         if (svm->nested.intercept & 1ULL) {
2082                 /*
2083                  * The #vmexit can't be emulated here directly because this
2084                  * code path runs with irqs and preemption disabled. A
2085                  * #vmexit emulation might sleep. Only signal request for
2086                  * the #vmexit here.
2087                  */
2088                 svm->nested.exit_required = true;
2089                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2090                 return false;
2091         }
2092
2093         return true;
2094 }
2095
2096 /* This function returns true if it is save to enable the nmi window */
2097 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2098 {
2099         if (!is_guest_mode(&svm->vcpu))
2100                 return true;
2101
2102         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2103                 return true;
2104
2105         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2106         svm->nested.exit_required = true;
2107
2108         return false;
2109 }
2110
2111 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2112 {
2113         struct page *page;
2114
2115         might_sleep();
2116
2117         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2118         if (is_error_page(page))
2119                 goto error;
2120
2121         *_page = page;
2122
2123         return kmap(page);
2124
2125 error:
2126         kvm_inject_gp(&svm->vcpu, 0);
2127
2128         return NULL;
2129 }
2130
2131 static void nested_svm_unmap(struct page *page)
2132 {
2133         kunmap(page);
2134         kvm_release_page_dirty(page);
2135 }
2136
2137 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2138 {
2139         unsigned port, size, iopm_len;
2140         u16 val, mask;
2141         u8 start_bit;
2142         u64 gpa;
2143
2144         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2145                 return NESTED_EXIT_HOST;
2146
2147         port = svm->vmcb->control.exit_info_1 >> 16;
2148         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2149                 SVM_IOIO_SIZE_SHIFT;
2150         gpa  = svm->nested.vmcb_iopm + (port / 8);
2151         start_bit = port % 8;
2152         iopm_len = (start_bit + size > 8) ? 2 : 1;
2153         mask = (0xf >> (4 - size)) << start_bit;
2154         val = 0;
2155
2156         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2157                 return NESTED_EXIT_DONE;
2158
2159         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161
2162 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2163 {
2164         u32 offset, msr, value;
2165         int write, mask;
2166
2167         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2168                 return NESTED_EXIT_HOST;
2169
2170         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2171         offset = svm_msrpm_offset(msr);
2172         write  = svm->vmcb->control.exit_info_1 & 1;
2173         mask   = 1 << ((2 * (msr & 0xf)) + write);
2174
2175         if (offset == MSR_INVALID)
2176                 return NESTED_EXIT_DONE;
2177
2178         /* Offset is in 32 bit units but need in 8 bit units */
2179         offset *= 4;
2180
2181         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2182                 return NESTED_EXIT_DONE;
2183
2184         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2185 }
2186
2187 static int nested_svm_exit_special(struct vcpu_svm *svm)
2188 {
2189         u32 exit_code = svm->vmcb->control.exit_code;
2190
2191         switch (exit_code) {
2192         case SVM_EXIT_INTR:
2193         case SVM_EXIT_NMI:
2194         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2195                 return NESTED_EXIT_HOST;
2196         case SVM_EXIT_NPF:
2197                 /* For now we are always handling NPFs when using them */
2198                 if (npt_enabled)
2199                         return NESTED_EXIT_HOST;
2200                 break;
2201         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2202                 /* When we're shadowing, trap PFs, but not async PF */
2203                 if (!npt_enabled && svm->apf_reason == 0)
2204                         return NESTED_EXIT_HOST;
2205                 break;
2206         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2207                 nm_interception(svm);
2208                 break;
2209         default:
2210                 break;
2211         }
2212
2213         return NESTED_EXIT_CONTINUE;
2214 }
2215
2216 /*
2217  * If this function returns true, this #vmexit was already handled
2218  */
2219 static int nested_svm_intercept(struct vcpu_svm *svm)
2220 {
2221         u32 exit_code = svm->vmcb->control.exit_code;
2222         int vmexit = NESTED_EXIT_HOST;
2223
2224         switch (exit_code) {
2225         case SVM_EXIT_MSR:
2226                 vmexit = nested_svm_exit_handled_msr(svm);
2227                 break;
2228         case SVM_EXIT_IOIO:
2229                 vmexit = nested_svm_intercept_ioio(svm);
2230                 break;
2231         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2232                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2233                 if (svm->nested.intercept_cr & bit)
2234                         vmexit = NESTED_EXIT_DONE;
2235                 break;
2236         }
2237         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2238                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2239                 if (svm->nested.intercept_dr & bit)
2240                         vmexit = NESTED_EXIT_DONE;
2241                 break;
2242         }
2243         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2244                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2245                 if (svm->nested.intercept_exceptions & excp_bits)
2246                         vmexit = NESTED_EXIT_DONE;
2247                 /* async page fault always cause vmexit */
2248                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2249                          svm->apf_reason != 0)
2250                         vmexit = NESTED_EXIT_DONE;
2251                 break;
2252         }
2253         case SVM_EXIT_ERR: {
2254                 vmexit = NESTED_EXIT_DONE;
2255                 break;
2256         }
2257         default: {
2258                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2259                 if (svm->nested.intercept & exit_bits)
2260                         vmexit = NESTED_EXIT_DONE;
2261         }
2262         }
2263
2264         return vmexit;
2265 }
2266
2267 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2268 {
2269         int vmexit;
2270
2271         vmexit = nested_svm_intercept(svm);
2272
2273         if (vmexit == NESTED_EXIT_DONE)
2274                 nested_svm_vmexit(svm);
2275
2276         return vmexit;
2277 }
2278
2279 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2280 {
2281         struct vmcb_control_area *dst  = &dst_vmcb->control;
2282         struct vmcb_control_area *from = &from_vmcb->control;
2283
2284         dst->intercept_cr         = from->intercept_cr;
2285         dst->intercept_dr         = from->intercept_dr;
2286         dst->intercept_exceptions = from->intercept_exceptions;
2287         dst->intercept            = from->intercept;
2288         dst->iopm_base_pa         = from->iopm_base_pa;
2289         dst->msrpm_base_pa        = from->msrpm_base_pa;
2290         dst->tsc_offset           = from->tsc_offset;
2291         dst->asid                 = from->asid;
2292         dst->tlb_ctl              = from->tlb_ctl;
2293         dst->int_ctl              = from->int_ctl;
2294         dst->int_vector           = from->int_vector;
2295         dst->int_state            = from->int_state;
2296         dst->exit_code            = from->exit_code;
2297         dst->exit_code_hi         = from->exit_code_hi;
2298         dst->exit_info_1          = from->exit_info_1;
2299         dst->exit_info_2          = from->exit_info_2;
2300         dst->exit_int_info        = from->exit_int_info;
2301         dst->exit_int_info_err    = from->exit_int_info_err;
2302         dst->nested_ctl           = from->nested_ctl;
2303         dst->event_inj            = from->event_inj;
2304         dst->event_inj_err        = from->event_inj_err;
2305         dst->nested_cr3           = from->nested_cr3;
2306         dst->lbr_ctl              = from->lbr_ctl;
2307 }
2308
2309 static int nested_svm_vmexit(struct vcpu_svm *svm)
2310 {
2311         struct vmcb *nested_vmcb;
2312         struct vmcb *hsave = svm->nested.hsave;
2313         struct vmcb *vmcb = svm->vmcb;
2314         struct page *page;
2315
2316         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2317                                        vmcb->control.exit_info_1,
2318                                        vmcb->control.exit_info_2,
2319                                        vmcb->control.exit_int_info,
2320                                        vmcb->control.exit_int_info_err,
2321                                        KVM_ISA_SVM);
2322
2323         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2324         if (!nested_vmcb)
2325                 return 1;
2326
2327         /* Exit Guest-Mode */
2328         leave_guest_mode(&svm->vcpu);
2329         svm->nested.vmcb = 0;
2330
2331         /* Give the current vmcb to the guest */
2332         disable_gif(svm);
2333
2334         nested_vmcb->save.es     = vmcb->save.es;
2335         nested_vmcb->save.cs     = vmcb->save.cs;
2336         nested_vmcb->save.ss     = vmcb->save.ss;
2337         nested_vmcb->save.ds     = vmcb->save.ds;
2338         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2339         nested_vmcb->save.idtr   = vmcb->save.idtr;
2340         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2341         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2342         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2343         nested_vmcb->save.cr2    = vmcb->save.cr2;
2344         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2345         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2346         nested_vmcb->save.rip    = vmcb->save.rip;
2347         nested_vmcb->save.rsp    = vmcb->save.rsp;
2348         nested_vmcb->save.rax    = vmcb->save.rax;
2349         nested_vmcb->save.dr7    = vmcb->save.dr7;
2350         nested_vmcb->save.dr6    = vmcb->save.dr6;
2351         nested_vmcb->save.cpl    = vmcb->save.cpl;
2352
2353         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2354         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2355         nested_vmcb->control.int_state         = vmcb->control.int_state;
2356         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2357         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2358         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2359         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2360         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2361         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2362         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2363
2364         /*
2365          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366          * to make sure that we do not lose injected events. So check event_inj
2367          * here and copy it to exit_int_info if it is valid.
2368          * Exit_int_info and event_inj can't be both valid because the case
2369          * below only happens on a VMRUN instruction intercept which has
2370          * no valid exit_int_info set.
2371          */
2372         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2373                 struct vmcb_control_area *nc = &nested_vmcb->control;
2374
2375                 nc->exit_int_info     = vmcb->control.event_inj;
2376                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2377         }
2378
2379         nested_vmcb->control.tlb_ctl           = 0;
2380         nested_vmcb->control.event_inj         = 0;
2381         nested_vmcb->control.event_inj_err     = 0;
2382
2383         /* We always set V_INTR_MASKING and remember the old value in hflags */
2384         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2385                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2386
2387         /* Restore the original control entries */
2388         copy_vmcb_control_area(vmcb, hsave);
2389
2390         kvm_clear_exception_queue(&svm->vcpu);
2391         kvm_clear_interrupt_queue(&svm->vcpu);
2392
2393         svm->nested.nested_cr3 = 0;
2394
2395         /* Restore selected save entries */
2396         svm->vmcb->save.es = hsave->save.es;
2397         svm->vmcb->save.cs = hsave->save.cs;
2398         svm->vmcb->save.ss = hsave->save.ss;
2399         svm->vmcb->save.ds = hsave->save.ds;
2400         svm->vmcb->save.gdtr = hsave->save.gdtr;
2401         svm->vmcb->save.idtr = hsave->save.idtr;
2402         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2403         svm_set_efer(&svm->vcpu, hsave->save.efer);
2404         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2405         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2406         if (npt_enabled) {
2407                 svm->vmcb->save.cr3 = hsave->save.cr3;
2408                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2409         } else {
2410                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2411         }
2412         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2413         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2414         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2415         svm->vmcb->save.dr7 = 0;
2416         svm->vmcb->save.cpl = 0;
2417         svm->vmcb->control.exit_int_info = 0;
2418
2419         mark_all_dirty(svm->vmcb);
2420
2421         nested_svm_unmap(page);
2422
2423         nested_svm_uninit_mmu_context(&svm->vcpu);
2424         kvm_mmu_reset_context(&svm->vcpu);
2425         kvm_mmu_load(&svm->vcpu);
2426
2427         return 0;
2428 }
2429
2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2431 {
2432         /*
2433          * This function merges the msr permission bitmaps of kvm and the
2434          * nested vmcb. It is optimized in that it only merges the parts where
2435          * the kvm msr permission bitmap may contain zero bits
2436          */
2437         int i;
2438
2439         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2440                 return true;
2441
2442         for (i = 0; i < MSRPM_OFFSETS; i++) {
2443                 u32 value, p;
2444                 u64 offset;
2445
2446                 if (msrpm_offsets[i] == 0xffffffff)
2447                         break;
2448
2449                 p      = msrpm_offsets[i];
2450                 offset = svm->nested.vmcb_msrpm + (p * 4);
2451
2452                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2453                         return false;
2454
2455                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2456         }
2457
2458         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2459
2460         return true;
2461 }
2462
2463 static bool nested_vmcb_checks(struct vmcb *vmcb)
2464 {
2465         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2466                 return false;
2467
2468         if (vmcb->control.asid == 0)
2469                 return false;
2470
2471         if (vmcb->control.nested_ctl && !npt_enabled)
2472                 return false;
2473
2474         return true;
2475 }
2476
2477 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2478 {
2479         struct vmcb *nested_vmcb;
2480         struct vmcb *hsave = svm->nested.hsave;
2481         struct vmcb *vmcb = svm->vmcb;
2482         struct page *page;
2483         u64 vmcb_gpa;
2484
2485         vmcb_gpa = svm->vmcb->save.rax;
2486
2487         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2488         if (!nested_vmcb)
2489                 return false;
2490
2491         if (!nested_vmcb_checks(nested_vmcb)) {
2492                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2493                 nested_vmcb->control.exit_code_hi = 0;
2494                 nested_vmcb->control.exit_info_1  = 0;
2495                 nested_vmcb->control.exit_info_2  = 0;
2496
2497                 nested_svm_unmap(page);
2498
2499                 return false;
2500         }
2501
2502         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2503                                nested_vmcb->save.rip,
2504                                nested_vmcb->control.int_ctl,
2505                                nested_vmcb->control.event_inj,
2506                                nested_vmcb->control.nested_ctl);
2507
2508         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2509                                     nested_vmcb->control.intercept_cr >> 16,
2510                                     nested_vmcb->control.intercept_exceptions,
2511                                     nested_vmcb->control.intercept);
2512
2513         /* Clear internal status */
2514         kvm_clear_exception_queue(&svm->vcpu);
2515         kvm_clear_interrupt_queue(&svm->vcpu);
2516
2517         /*
2518          * Save the old vmcb, so we don't need to pick what we save, but can
2519          * restore everything when a VMEXIT occurs
2520          */
2521         hsave->save.es     = vmcb->save.es;
2522         hsave->save.cs     = vmcb->save.cs;
2523         hsave->save.ss     = vmcb->save.ss;
2524         hsave->save.ds     = vmcb->save.ds;
2525         hsave->save.gdtr   = vmcb->save.gdtr;
2526         hsave->save.idtr   = vmcb->save.idtr;
2527         hsave->save.efer   = svm->vcpu.arch.efer;
2528         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2529         hsave->save.cr4    = svm->vcpu.arch.cr4;
2530         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2531         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2532         hsave->save.rsp    = vmcb->save.rsp;
2533         hsave->save.rax    = vmcb->save.rax;
2534         if (npt_enabled)
2535                 hsave->save.cr3    = vmcb->save.cr3;
2536         else
2537                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2538
2539         copy_vmcb_control_area(hsave, vmcb);
2540
2541         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2542                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2543         else
2544                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2545
2546         if (nested_vmcb->control.nested_ctl) {
2547                 kvm_mmu_unload(&svm->vcpu);
2548                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2549                 nested_svm_init_mmu_context(&svm->vcpu);
2550         }
2551
2552         /* Load the nested guest state */
2553         svm->vmcb->save.es = nested_vmcb->save.es;
2554         svm->vmcb->save.cs = nested_vmcb->save.cs;
2555         svm->vmcb->save.ss = nested_vmcb->save.ss;
2556         svm->vmcb->save.ds = nested_vmcb->save.ds;
2557         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2558         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2559         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2560         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2561         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2562         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2563         if (npt_enabled) {
2564                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2565                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2566         } else
2567                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2568
2569         /* Guest paging mode is active - reset mmu */
2570         kvm_mmu_reset_context(&svm->vcpu);
2571
2572         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2573         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2574         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2575         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2576
2577         /* In case we don't even reach vcpu_run, the fields are not updated */
2578         svm->vmcb->save.rax = nested_vmcb->save.rax;
2579         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2580         svm->vmcb->save.rip = nested_vmcb->save.rip;
2581         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2582         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2583         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2584
2585         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2586         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2587
2588         /* cache intercepts */
2589         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2590         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2591         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2592         svm->nested.intercept            = nested_vmcb->control.intercept;
2593
2594         svm_flush_tlb(&svm->vcpu);
2595         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2596         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2597                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2598         else
2599                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2600
2601         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2602                 /* We only want the cr8 intercept bits of the guest */
2603                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2604                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2605         }
2606
2607         /* We don't want to see VMMCALLs from a nested guest */
2608         clr_intercept(svm, INTERCEPT_VMMCALL);
2609
2610         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2611         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2612         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2613         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2614         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2615         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2616
2617         nested_svm_unmap(page);
2618
2619         /* Enter Guest-Mode */
2620         enter_guest_mode(&svm->vcpu);
2621
2622         /*
2623          * Merge guest and host intercepts - must be called  with vcpu in
2624          * guest-mode to take affect here
2625          */
2626         recalc_intercepts(svm);
2627
2628         svm->nested.vmcb = vmcb_gpa;
2629
2630         enable_gif(svm);
2631
2632         mark_all_dirty(svm->vmcb);
2633
2634         return true;
2635 }
2636
2637 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2638 {
2639         to_vmcb->save.fs = from_vmcb->save.fs;
2640         to_vmcb->save.gs = from_vmcb->save.gs;
2641         to_vmcb->save.tr = from_vmcb->save.tr;
2642         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2643         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2644         to_vmcb->save.star = from_vmcb->save.star;
2645         to_vmcb->save.lstar = from_vmcb->save.lstar;
2646         to_vmcb->save.cstar = from_vmcb->save.cstar;
2647         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2648         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2649         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2650         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2651 }
2652
2653 static int vmload_interception(struct vcpu_svm *svm)
2654 {
2655         struct vmcb *nested_vmcb;
2656         struct page *page;
2657
2658         if (nested_svm_check_permissions(svm))
2659                 return 1;
2660
2661         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2662         if (!nested_vmcb)
2663                 return 1;
2664
2665         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666         skip_emulated_instruction(&svm->vcpu);
2667
2668         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2669         nested_svm_unmap(page);
2670
2671         return 1;
2672 }
2673
2674 static int vmsave_interception(struct vcpu_svm *svm)
2675 {
2676         struct vmcb *nested_vmcb;
2677         struct page *page;
2678
2679         if (nested_svm_check_permissions(svm))
2680                 return 1;
2681
2682         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2683         if (!nested_vmcb)
2684                 return 1;
2685
2686         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2687         skip_emulated_instruction(&svm->vcpu);
2688
2689         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2690         nested_svm_unmap(page);
2691
2692         return 1;
2693 }
2694
2695 static int vmrun_interception(struct vcpu_svm *svm)
2696 {
2697         if (nested_svm_check_permissions(svm))
2698                 return 1;
2699
2700         /* Save rip after vmrun instruction */
2701         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2702
2703         if (!nested_svm_vmrun(svm))
2704                 return 1;
2705
2706         if (!nested_svm_vmrun_msrpm(svm))
2707                 goto failed;
2708
2709         return 1;
2710
2711 failed:
2712
2713         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2714         svm->vmcb->control.exit_code_hi = 0;
2715         svm->vmcb->control.exit_info_1  = 0;
2716         svm->vmcb->control.exit_info_2  = 0;
2717
2718         nested_svm_vmexit(svm);
2719
2720         return 1;
2721 }
2722
2723 static int stgi_interception(struct vcpu_svm *svm)
2724 {
2725         if (nested_svm_check_permissions(svm))
2726                 return 1;
2727
2728         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729         skip_emulated_instruction(&svm->vcpu);
2730         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2731
2732         enable_gif(svm);
2733
2734         return 1;
2735 }
2736
2737 static int clgi_interception(struct vcpu_svm *svm)
2738 {
2739         if (nested_svm_check_permissions(svm))
2740                 return 1;
2741
2742         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743         skip_emulated_instruction(&svm->vcpu);
2744
2745         disable_gif(svm);
2746
2747         /* After a CLGI no interrupts should come */
2748         svm_clear_vintr(svm);
2749         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2750
2751         mark_dirty(svm->vmcb, VMCB_INTR);
2752
2753         return 1;
2754 }
2755
2756 static int invlpga_interception(struct vcpu_svm *svm)
2757 {
2758         struct kvm_vcpu *vcpu = &svm->vcpu;
2759
2760         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2761                           vcpu->arch.regs[VCPU_REGS_RAX]);
2762
2763         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2765
2766         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767         skip_emulated_instruction(&svm->vcpu);
2768         return 1;
2769 }
2770
2771 static int skinit_interception(struct vcpu_svm *svm)
2772 {
2773         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2774
2775         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776         return 1;
2777 }
2778
2779 static int xsetbv_interception(struct vcpu_svm *svm)
2780 {
2781         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2782         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2783
2784         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2785                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2786                 skip_emulated_instruction(&svm->vcpu);
2787         }
2788
2789         return 1;
2790 }
2791
2792 static int task_switch_interception(struct vcpu_svm *svm)
2793 {
2794         u16 tss_selector;
2795         int reason;
2796         int int_type = svm->vmcb->control.exit_int_info &
2797                 SVM_EXITINTINFO_TYPE_MASK;
2798         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2799         uint32_t type =
2800                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2801         uint32_t idt_v =
2802                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2803         bool has_error_code = false;
2804         u32 error_code = 0;
2805
2806         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2807
2808         if (svm->vmcb->control.exit_info_2 &
2809             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2810                 reason = TASK_SWITCH_IRET;
2811         else if (svm->vmcb->control.exit_info_2 &
2812                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2813                 reason = TASK_SWITCH_JMP;
2814         else if (idt_v)
2815                 reason = TASK_SWITCH_GATE;
2816         else
2817                 reason = TASK_SWITCH_CALL;
2818
2819         if (reason == TASK_SWITCH_GATE) {
2820                 switch (type) {
2821                 case SVM_EXITINTINFO_TYPE_NMI:
2822                         svm->vcpu.arch.nmi_injected = false;
2823                         break;
2824                 case SVM_EXITINTINFO_TYPE_EXEPT:
2825                         if (svm->vmcb->control.exit_info_2 &
2826                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2827                                 has_error_code = true;
2828                                 error_code =
2829                                         (u32)svm->vmcb->control.exit_info_2;
2830                         }
2831                         kvm_clear_exception_queue(&svm->vcpu);
2832                         break;
2833                 case SVM_EXITINTINFO_TYPE_INTR:
2834                         kvm_clear_interrupt_queue(&svm->vcpu);
2835                         break;
2836                 default:
2837                         break;
2838                 }
2839         }
2840
2841         if (reason != TASK_SWITCH_GATE ||
2842             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2843             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2844              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2845                 skip_emulated_instruction(&svm->vcpu);
2846
2847         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2848                 int_vec = -1;
2849
2850         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2851                                 has_error_code, error_code) == EMULATE_FAIL) {
2852                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2853                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2854                 svm->vcpu.run->internal.ndata = 0;
2855                 return 0;
2856         }
2857         return 1;
2858 }
2859
2860 static int cpuid_interception(struct vcpu_svm *svm)
2861 {
2862         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2863         kvm_emulate_cpuid(&svm->vcpu);
2864         return 1;
2865 }
2866
2867 static int iret_interception(struct vcpu_svm *svm)
2868 {
2869         ++svm->vcpu.stat.nmi_window_exits;
2870         clr_intercept(svm, INTERCEPT_IRET);
2871         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2872         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2873         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2874         return 1;
2875 }
2876
2877 static int invlpg_interception(struct vcpu_svm *svm)
2878 {
2879         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2880                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2881
2882         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2883         skip_emulated_instruction(&svm->vcpu);
2884         return 1;
2885 }
2886
2887 static int emulate_on_interception(struct vcpu_svm *svm)
2888 {
2889         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2890 }
2891
2892 static int rdpmc_interception(struct vcpu_svm *svm)
2893 {
2894         int err;
2895
2896         if (!static_cpu_has(X86_FEATURE_NRIPS))
2897                 return emulate_on_interception(svm);
2898
2899         err = kvm_rdpmc(&svm->vcpu);
2900         kvm_complete_insn_gp(&svm->vcpu, err);
2901
2902         return 1;
2903 }
2904
2905 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2906 {
2907         unsigned long cr0 = svm->vcpu.arch.cr0;
2908         bool ret = false;
2909         u64 intercept;
2910
2911         intercept = svm->nested.intercept;
2912
2913         if (!is_guest_mode(&svm->vcpu) ||
2914             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2915                 return false;
2916
2917         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2918         val &= ~SVM_CR0_SELECTIVE_MASK;
2919
2920         if (cr0 ^ val) {
2921                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2922                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2923         }
2924
2925         return ret;
2926 }
2927
2928 #define CR_VALID (1ULL << 63)
2929
2930 static int cr_interception(struct vcpu_svm *svm)
2931 {
2932         int reg, cr;
2933         unsigned long val;
2934         int err;
2935
2936         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2937                 return emulate_on_interception(svm);
2938
2939         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2940                 return emulate_on_interception(svm);
2941
2942         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2943         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2944
2945         err = 0;
2946         if (cr >= 16) { /* mov to cr */
2947                 cr -= 16;
2948                 val = kvm_register_read(&svm->vcpu, reg);
2949                 switch (cr) {
2950                 case 0:
2951                         if (!check_selective_cr0_intercepted(svm, val))
2952                                 err = kvm_set_cr0(&svm->vcpu, val);
2953                         else
2954                                 return 1;
2955
2956                         break;
2957                 case 3:
2958                         err = kvm_set_cr3(&svm->vcpu, val);
2959                         break;
2960                 case 4:
2961                         err = kvm_set_cr4(&svm->vcpu, val);
2962                         break;
2963                 case 8:
2964                         err = kvm_set_cr8(&svm->vcpu, val);
2965                         break;
2966                 default:
2967                         WARN(1, "unhandled write to CR%d", cr);
2968                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2969                         return 1;
2970                 }
2971         } else { /* mov from cr */
2972                 switch (cr) {
2973                 case 0:
2974                         val = kvm_read_cr0(&svm->vcpu);
2975                         break;
2976                 case 2:
2977                         val = svm->vcpu.arch.cr2;
2978                         break;
2979                 case 3:
2980                         val = kvm_read_cr3(&svm->vcpu);
2981                         break;
2982                 case 4:
2983                         val = kvm_read_cr4(&svm->vcpu);
2984                         break;
2985                 case 8:
2986                         val = kvm_get_cr8(&svm->vcpu);
2987                         break;
2988                 default:
2989                         WARN(1, "unhandled read from CR%d", cr);
2990                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2991                         return 1;
2992                 }
2993                 kvm_register_write(&svm->vcpu, reg, val);
2994         }
2995         kvm_complete_insn_gp(&svm->vcpu, err);
2996
2997         return 1;
2998 }
2999
3000 static int dr_interception(struct vcpu_svm *svm)
3001 {
3002         int reg, dr;
3003         unsigned long val;
3004
3005         if (svm->vcpu.guest_debug == 0) {
3006                 /*
3007                  * No more DR vmexits; force a reload of the debug registers
3008                  * and reenter on this instruction.  The next vmexit will
3009                  * retrieve the full state of the debug registers.
3010                  */
3011                 clr_dr_intercepts(svm);
3012                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3013                 return 1;
3014         }
3015
3016         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3017                 return emulate_on_interception(svm);
3018
3019         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3020         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3021
3022         if (dr >= 16) { /* mov to DRn */
3023                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3024                         return 1;
3025                 val = kvm_register_read(&svm->vcpu, reg);
3026                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3027         } else {
3028                 if (!kvm_require_dr(&svm->vcpu, dr))
3029                         return 1;
3030                 kvm_get_dr(&svm->vcpu, dr, &val);
3031                 kvm_register_write(&svm->vcpu, reg, val);
3032         }
3033
3034         skip_emulated_instruction(&svm->vcpu);
3035
3036         return 1;
3037 }
3038
3039 static int cr8_write_interception(struct vcpu_svm *svm)
3040 {
3041         struct kvm_run *kvm_run = svm->vcpu.run;
3042         int r;
3043
3044         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3045         /* instruction emulation calls kvm_set_cr8() */
3046         r = cr_interception(svm);
3047         if (irqchip_in_kernel(svm->vcpu.kvm))
3048                 return r;
3049         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3050                 return r;
3051         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3052         return 0;
3053 }
3054
3055 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3056 {
3057         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3058         return vmcb->control.tsc_offset +
3059                 svm_scale_tsc(vcpu, host_tsc);
3060 }
3061
3062 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3063 {
3064         struct vcpu_svm *svm = to_svm(vcpu);
3065
3066         switch (ecx) {
3067         case MSR_IA32_TSC: {
3068                 *data = svm->vmcb->control.tsc_offset +
3069                         svm_scale_tsc(vcpu, native_read_tsc());
3070
3071                 break;
3072         }
3073         case MSR_STAR:
3074                 *data = svm->vmcb->save.star;
3075                 break;
3076 #ifdef CONFIG_X86_64
3077         case MSR_LSTAR:
3078                 *data = svm->vmcb->save.lstar;
3079                 break;
3080         case MSR_CSTAR:
3081                 *data = svm->vmcb->save.cstar;
3082                 break;
3083         case MSR_KERNEL_GS_BASE:
3084                 *data = svm->vmcb->save.kernel_gs_base;
3085                 break;
3086         case MSR_SYSCALL_MASK:
3087                 *data = svm->vmcb->save.sfmask;
3088                 break;
3089 #endif
3090         case MSR_IA32_SYSENTER_CS:
3091                 *data = svm->vmcb->save.sysenter_cs;
3092                 break;
3093         case MSR_IA32_SYSENTER_EIP:
3094                 *data = svm->sysenter_eip;
3095                 break;
3096         case MSR_IA32_SYSENTER_ESP:
3097                 *data = svm->sysenter_esp;
3098                 break;
3099         /*
3100          * Nobody will change the following 5 values in the VMCB so we can
3101          * safely return them on rdmsr. They will always be 0 until LBRV is
3102          * implemented.
3103          */
3104         case MSR_IA32_DEBUGCTLMSR:
3105                 *data = svm->vmcb->save.dbgctl;
3106                 break;
3107         case MSR_IA32_LASTBRANCHFROMIP:
3108                 *data = svm->vmcb->save.br_from;
3109                 break;
3110         case MSR_IA32_LASTBRANCHTOIP:
3111                 *data = svm->vmcb->save.br_to;
3112                 break;
3113         case MSR_IA32_LASTINTFROMIP:
3114                 *data = svm->vmcb->save.last_excp_from;
3115                 break;
3116         case MSR_IA32_LASTINTTOIP:
3117                 *data = svm->vmcb->save.last_excp_to;
3118                 break;
3119         case MSR_VM_HSAVE_PA:
3120                 *data = svm->nested.hsave_msr;
3121                 break;
3122         case MSR_VM_CR:
3123                 *data = svm->nested.vm_cr_msr;
3124                 break;
3125         case MSR_IA32_UCODE_REV:
3126                 *data = 0x01000065;
3127                 break;
3128         default:
3129                 return kvm_get_msr_common(vcpu, ecx, data);
3130         }
3131         return 0;
3132 }
3133
3134 static int rdmsr_interception(struct vcpu_svm *svm)
3135 {
3136         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3137         u64 data;
3138
3139         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3140                 trace_kvm_msr_read_ex(ecx);
3141                 kvm_inject_gp(&svm->vcpu, 0);
3142         } else {
3143                 trace_kvm_msr_read(ecx, data);
3144
3145                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3146                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3147                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3148                 skip_emulated_instruction(&svm->vcpu);
3149         }
3150         return 1;
3151 }
3152
3153 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3154 {
3155         struct vcpu_svm *svm = to_svm(vcpu);
3156         int svm_dis, chg_mask;
3157
3158         if (data & ~SVM_VM_CR_VALID_MASK)
3159                 return 1;
3160
3161         chg_mask = SVM_VM_CR_VALID_MASK;
3162
3163         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3164                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3165
3166         svm->nested.vm_cr_msr &= ~chg_mask;
3167         svm->nested.vm_cr_msr |= (data & chg_mask);
3168
3169         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3170
3171         /* check for svm_disable while efer.svme is set */
3172         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3173                 return 1;
3174
3175         return 0;
3176 }
3177
3178 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3179 {
3180         struct vcpu_svm *svm = to_svm(vcpu);
3181
3182         u32 ecx = msr->index;
3183         u64 data = msr->data;
3184         switch (ecx) {
3185         case MSR_IA32_TSC:
3186                 kvm_write_tsc(vcpu, msr);
3187                 break;
3188         case MSR_STAR:
3189                 svm->vmcb->save.star = data;
3190                 break;
3191 #ifdef CONFIG_X86_64
3192         case MSR_LSTAR:
3193                 svm->vmcb->save.lstar = data;
3194                 break;
3195         case MSR_CSTAR:
3196                 svm->vmcb->save.cstar = data;
3197                 break;
3198         case MSR_KERNEL_GS_BASE:
3199                 svm->vmcb->save.kernel_gs_base = data;
3200                 break;
3201         case MSR_SYSCALL_MASK:
3202                 svm->vmcb->save.sfmask = data;
3203                 break;
3204 #endif
3205         case MSR_IA32_SYSENTER_CS:
3206                 svm->vmcb->save.sysenter_cs = data;
3207                 break;
3208         case MSR_IA32_SYSENTER_EIP:
3209                 svm->sysenter_eip = data;
3210                 svm->vmcb->save.sysenter_eip = data;
3211                 break;
3212         case MSR_IA32_SYSENTER_ESP:
3213                 svm->sysenter_esp = data;
3214                 svm->vmcb->save.sysenter_esp = data;
3215                 break;
3216         case MSR_IA32_DEBUGCTLMSR:
3217                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3218                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3219                                     __func__, data);
3220                         break;
3221                 }
3222                 if (data & DEBUGCTL_RESERVED_BITS)
3223                         return 1;
3224
3225                 svm->vmcb->save.dbgctl = data;
3226                 mark_dirty(svm->vmcb, VMCB_LBR);
3227                 if (data & (1ULL<<0))
3228                         svm_enable_lbrv(svm);
3229                 else
3230                         svm_disable_lbrv(svm);
3231                 break;
3232         case MSR_VM_HSAVE_PA:
3233                 svm->nested.hsave_msr = data;
3234                 break;
3235         case MSR_VM_CR:
3236                 return svm_set_vm_cr(vcpu, data);
3237         case MSR_VM_IGNNE:
3238                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3239                 break;
3240         default:
3241                 return kvm_set_msr_common(vcpu, msr);
3242         }
3243         return 0;
3244 }
3245
3246 static int wrmsr_interception(struct vcpu_svm *svm)
3247 {
3248         struct msr_data msr;
3249         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3250         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3251                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3252
3253         msr.data = data;
3254         msr.index = ecx;
3255         msr.host_initiated = false;
3256
3257         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3258         if (kvm_set_msr(&svm->vcpu, &msr)) {
3259                 trace_kvm_msr_write_ex(ecx, data);
3260                 kvm_inject_gp(&svm->vcpu, 0);
3261         } else {
3262                 trace_kvm_msr_write(ecx, data);
3263                 skip_emulated_instruction(&svm->vcpu);
3264         }
3265         return 1;
3266 }
3267
3268 static int msr_interception(struct vcpu_svm *svm)
3269 {
3270         if (svm->vmcb->control.exit_info_1)
3271                 return wrmsr_interception(svm);
3272         else
3273                 return rdmsr_interception(svm);
3274 }
3275
3276 static int interrupt_window_interception(struct vcpu_svm *svm)
3277 {
3278         struct kvm_run *kvm_run = svm->vcpu.run;
3279
3280         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3281         svm_clear_vintr(svm);
3282         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3283         mark_dirty(svm->vmcb, VMCB_INTR);
3284         ++svm->vcpu.stat.irq_window_exits;
3285         /*
3286          * If the user space waits to inject interrupts, exit as soon as
3287          * possible
3288          */
3289         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3290             kvm_run->request_interrupt_window &&
3291             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3292                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3293                 return 0;
3294         }
3295
3296         return 1;
3297 }
3298
3299 static int pause_interception(struct vcpu_svm *svm)
3300 {
3301         kvm_vcpu_on_spin(&(svm->vcpu));
3302         return 1;
3303 }
3304
3305 static int nop_interception(struct vcpu_svm *svm)
3306 {
3307         skip_emulated_instruction(&(svm->vcpu));
3308         return 1;
3309 }
3310
3311 static int monitor_interception(struct vcpu_svm *svm)
3312 {
3313         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3314         return nop_interception(svm);
3315 }
3316
3317 static int mwait_interception(struct vcpu_svm *svm)
3318 {
3319         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3320         return nop_interception(svm);
3321 }
3322
3323 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3324         [SVM_EXIT_READ_CR0]                     = cr_interception,
3325         [SVM_EXIT_READ_CR3]                     = cr_interception,
3326         [SVM_EXIT_READ_CR4]                     = cr_interception,
3327         [SVM_EXIT_READ_CR8]                     = cr_interception,
3328         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3329         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3330         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3331         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3332         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3333         [SVM_EXIT_READ_DR0]                     = dr_interception,
3334         [SVM_EXIT_READ_DR1]                     = dr_interception,
3335         [SVM_EXIT_READ_DR2]                     = dr_interception,
3336         [SVM_EXIT_READ_DR3]                     = dr_interception,
3337         [SVM_EXIT_READ_DR4]                     = dr_interception,
3338         [SVM_EXIT_READ_DR5]                     = dr_interception,
3339         [SVM_EXIT_READ_DR6]                     = dr_interception,
3340         [SVM_EXIT_READ_DR7]                     = dr_interception,
3341         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3342         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3343         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3344         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3345         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3346         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3347         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3348         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3349         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3350         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3351         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3352         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3353         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3354         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3355         [SVM_EXIT_INTR]                         = intr_interception,
3356         [SVM_EXIT_NMI]                          = nmi_interception,
3357         [SVM_EXIT_SMI]                          = nop_on_interception,
3358         [SVM_EXIT_INIT]                         = nop_on_interception,
3359         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3360         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3361         [SVM_EXIT_CPUID]                        = cpuid_interception,
3362         [SVM_EXIT_IRET]                         = iret_interception,
3363         [SVM_EXIT_INVD]                         = emulate_on_interception,
3364         [SVM_EXIT_PAUSE]                        = pause_interception,
3365         [SVM_EXIT_HLT]                          = halt_interception,
3366         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3367         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3368         [SVM_EXIT_IOIO]                         = io_interception,
3369         [SVM_EXIT_MSR]                          = msr_interception,
3370         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3371         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3372         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3373         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3374         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3375         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3376         [SVM_EXIT_STGI]                         = stgi_interception,
3377         [SVM_EXIT_CLGI]                         = clgi_interception,
3378         [SVM_EXIT_SKINIT]                       = skinit_interception,
3379         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3380         [SVM_EXIT_MONITOR]                      = monitor_interception,
3381         [SVM_EXIT_MWAIT]                        = mwait_interception,
3382         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3383         [SVM_EXIT_NPF]                          = pf_interception,
3384 };
3385
3386 static void dump_vmcb(struct kvm_vcpu *vcpu)
3387 {
3388         struct vcpu_svm *svm = to_svm(vcpu);
3389         struct vmcb_control_area *control = &svm->vmcb->control;
3390         struct vmcb_save_area *save = &svm->vmcb->save;
3391
3392         pr_err("VMCB Control Area:\n");
3393         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3394         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3395         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3396         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3397         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3398         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3399         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3400         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3401         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3402         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3403         pr_err("%-20s%d\n", "asid:", control->asid);
3404         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3405         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3406         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3407         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3408         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3409         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3410         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3411         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3412         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3413         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3414         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3415         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3416         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3417         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3418         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3419         pr_err("VMCB State Save Area:\n");
3420         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3421                "es:",
3422                save->es.selector, save->es.attrib,
3423                save->es.limit, save->es.base);
3424         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3425                "cs:",
3426                save->cs.selector, save->cs.attrib,
3427                save->cs.limit, save->cs.base);
3428         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3429                "ss:",
3430                save->ss.selector, save->ss.attrib,
3431                save->ss.limit, save->ss.base);
3432         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3433                "ds:",
3434                save->ds.selector, save->ds.attrib,
3435                save->ds.limit, save->ds.base);
3436         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3437                "fs:",
3438                save->fs.selector, save->fs.attrib,
3439                save->fs.limit, save->fs.base);
3440         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3441                "gs:",
3442                save->gs.selector, save->gs.attrib,
3443                save->gs.limit, save->gs.base);
3444         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3445                "gdtr:",
3446                save->gdtr.selector, save->gdtr.attrib,
3447                save->gdtr.limit, save->gdtr.base);
3448         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3449                "ldtr:",
3450                save->ldtr.selector, save->ldtr.attrib,
3451                save->ldtr.limit, save->ldtr.base);
3452         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3453                "idtr:",
3454                save->idtr.selector, save->idtr.attrib,
3455                save->idtr.limit, save->idtr.base);
3456         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3457                "tr:",
3458                save->tr.selector, save->tr.attrib,
3459                save->tr.limit, save->tr.base);
3460         pr_err("cpl:            %d                efer:         %016llx\n",
3461                 save->cpl, save->efer);
3462         pr_err("%-15s %016llx %-13s %016llx\n",
3463                "cr0:", save->cr0, "cr2:", save->cr2);
3464         pr_err("%-15s %016llx %-13s %016llx\n",
3465                "cr3:", save->cr3, "cr4:", save->cr4);
3466         pr_err("%-15s %016llx %-13s %016llx\n",
3467                "dr6:", save->dr6, "dr7:", save->dr7);
3468         pr_err("%-15s %016llx %-13s %016llx\n",
3469                "rip:", save->rip, "rflags:", save->rflags);
3470         pr_err("%-15s %016llx %-13s %016llx\n",
3471                "rsp:", save->rsp, "rax:", save->rax);
3472         pr_err("%-15s %016llx %-13s %016llx\n",
3473                "star:", save->star, "lstar:", save->lstar);
3474         pr_err("%-15s %016llx %-13s %016llx\n",
3475                "cstar:", save->cstar, "sfmask:", save->sfmask);
3476         pr_err("%-15s %016llx %-13s %016llx\n",
3477                "kernel_gs_base:", save->kernel_gs_base,
3478                "sysenter_cs:", save->sysenter_cs);
3479         pr_err("%-15s %016llx %-13s %016llx\n",
3480                "sysenter_esp:", save->sysenter_esp,
3481                "sysenter_eip:", save->sysenter_eip);
3482         pr_err("%-15s %016llx %-13s %016llx\n",
3483                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3484         pr_err("%-15s %016llx %-13s %016llx\n",
3485                "br_from:", save->br_from, "br_to:", save->br_to);
3486         pr_err("%-15s %016llx %-13s %016llx\n",
3487                "excp_from:", save->last_excp_from,
3488                "excp_to:", save->last_excp_to);
3489 }
3490
3491 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3492 {
3493         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3494
3495         *info1 = control->exit_info_1;
3496         *info2 = control->exit_info_2;
3497 }
3498
3499 static int handle_exit(struct kvm_vcpu *vcpu)
3500 {
3501         struct vcpu_svm *svm = to_svm(vcpu);
3502         struct kvm_run *kvm_run = vcpu->run;
3503         u32 exit_code = svm->vmcb->control.exit_code;
3504
3505         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3506                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3507         if (npt_enabled)
3508                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3509
3510         if (unlikely(svm->nested.exit_required)) {
3511                 nested_svm_vmexit(svm);
3512                 svm->nested.exit_required = false;
3513
3514                 return 1;
3515         }
3516
3517         if (is_guest_mode(vcpu)) {
3518                 int vmexit;
3519
3520                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3521                                         svm->vmcb->control.exit_info_1,
3522                                         svm->vmcb->control.exit_info_2,
3523                                         svm->vmcb->control.exit_int_info,
3524                                         svm->vmcb->control.exit_int_info_err,
3525                                         KVM_ISA_SVM);
3526
3527                 vmexit = nested_svm_exit_special(svm);
3528
3529                 if (vmexit == NESTED_EXIT_CONTINUE)
3530                         vmexit = nested_svm_exit_handled(svm);
3531
3532                 if (vmexit == NESTED_EXIT_DONE)
3533                         return 1;
3534         }
3535
3536         svm_complete_interrupts(svm);
3537
3538         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3539                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3540                 kvm_run->fail_entry.hardware_entry_failure_reason
3541                         = svm->vmcb->control.exit_code;
3542                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3543                 dump_vmcb(vcpu);
3544                 return 0;
3545         }
3546
3547         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3548             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3549             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3550             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3551                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3552                        "exit_code 0x%x\n",
3553                        __func__, svm->vmcb->control.exit_int_info,
3554                        exit_code);
3555
3556         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3557             || !svm_exit_handlers[exit_code]) {
3558                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3559                 kvm_queue_exception(vcpu, UD_VECTOR);
3560                 return 1;
3561         }
3562
3563         return svm_exit_handlers[exit_code](svm);
3564 }
3565
3566 static void reload_tss(struct kvm_vcpu *vcpu)
3567 {
3568         int cpu = raw_smp_processor_id();
3569
3570         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3571         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3572         load_TR_desc();
3573 }
3574
3575 static void pre_svm_run(struct vcpu_svm *svm)
3576 {
3577         int cpu = raw_smp_processor_id();
3578
3579         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3580
3581         /* FIXME: handle wraparound of asid_generation */
3582         if (svm->asid_generation != sd->asid_generation)
3583                 new_asid(svm, sd);
3584 }
3585
3586 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3587 {
3588         struct vcpu_svm *svm = to_svm(vcpu);
3589
3590         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3591         vcpu->arch.hflags |= HF_NMI_MASK;
3592         set_intercept(svm, INTERCEPT_IRET);
3593         ++vcpu->stat.nmi_injections;
3594 }
3595
3596 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3597 {
3598         struct vmcb_control_area *control;
3599
3600         control = &svm->vmcb->control;
3601         control->int_vector = irq;
3602         control->int_ctl &= ~V_INTR_PRIO_MASK;
3603         control->int_ctl |= V_IRQ_MASK |
3604                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3605         mark_dirty(svm->vmcb, VMCB_INTR);
3606 }
3607
3608 static void svm_set_irq(struct kvm_vcpu *vcpu)
3609 {
3610         struct vcpu_svm *svm = to_svm(vcpu);
3611
3612         BUG_ON(!(gif_set(svm)));
3613
3614         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3615         ++vcpu->stat.irq_injections;
3616
3617         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3618                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3619 }
3620
3621 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3622 {
3623         struct vcpu_svm *svm = to_svm(vcpu);
3624
3625         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3626                 return;
3627
3628         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3629
3630         if (irr == -1)
3631                 return;
3632
3633         if (tpr >= irr)
3634                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3635 }
3636
3637 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3638 {
3639         return;
3640 }
3641
3642 static int svm_vm_has_apicv(struct kvm *kvm)
3643 {
3644         return 0;
3645 }
3646
3647 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3648 {
3649         return;
3650 }
3651
3652 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3653 {
3654         return;
3655 }
3656
3657 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3658 {
3659         return;
3660 }
3661
3662 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3663 {
3664         struct vcpu_svm *svm = to_svm(vcpu);
3665         struct vmcb *vmcb = svm->vmcb;
3666         int ret;
3667         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3668               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3669         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3670
3671         return ret;
3672 }
3673
3674 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3675 {
3676         struct vcpu_svm *svm = to_svm(vcpu);
3677
3678         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3679 }
3680
3681 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3682 {
3683         struct vcpu_svm *svm = to_svm(vcpu);
3684
3685         if (masked) {
3686                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3687                 set_intercept(svm, INTERCEPT_IRET);
3688         } else {
3689                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3690                 clr_intercept(svm, INTERCEPT_IRET);
3691         }
3692 }
3693
3694 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3695 {
3696         struct vcpu_svm *svm = to_svm(vcpu);
3697         struct vmcb *vmcb = svm->vmcb;
3698         int ret;
3699
3700         if (!gif_set(svm) ||
3701              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3702                 return 0;
3703
3704         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3705
3706         if (is_guest_mode(vcpu))
3707                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3708
3709         return ret;
3710 }
3711
3712 static void enable_irq_window(struct kvm_vcpu *vcpu)
3713 {
3714         struct vcpu_svm *svm = to_svm(vcpu);
3715
3716         /*
3717          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3718          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3719          * get that intercept, this function will be called again though and
3720          * we'll get the vintr intercept.
3721          */
3722         if (gif_set(svm) && nested_svm_intr(svm)) {
3723                 svm_set_vintr(svm);
3724                 svm_inject_irq(svm, 0x0);
3725         }
3726 }
3727
3728 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3729 {
3730         struct vcpu_svm *svm = to_svm(vcpu);
3731
3732         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3733             == HF_NMI_MASK)
3734                 return; /* IRET will cause a vm exit */
3735
3736         /*
3737          * Something prevents NMI from been injected. Single step over possible
3738          * problem (IRET or exception injection or interrupt shadow)
3739          */
3740         svm->nmi_singlestep = true;
3741         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3742         update_db_bp_intercept(vcpu);
3743 }
3744
3745 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3746 {
3747         return 0;
3748 }
3749
3750 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3751 {
3752         struct vcpu_svm *svm = to_svm(vcpu);
3753
3754         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3755                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3756         else
3757                 svm->asid_generation--;
3758 }
3759
3760 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3761 {
3762 }
3763
3764 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3765 {
3766         struct vcpu_svm *svm = to_svm(vcpu);
3767
3768         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3769                 return;
3770
3771         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3772                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3773                 kvm_set_cr8(vcpu, cr8);
3774         }
3775 }
3776
3777 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3778 {
3779         struct vcpu_svm *svm = to_svm(vcpu);
3780         u64 cr8;
3781
3782         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3783                 return;
3784
3785         cr8 = kvm_get_cr8(vcpu);
3786         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3787         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3788 }
3789
3790 static void svm_complete_interrupts(struct vcpu_svm *svm)
3791 {
3792         u8 vector;
3793         int type;
3794         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3795         unsigned int3_injected = svm->int3_injected;
3796
3797         svm->int3_injected = 0;
3798
3799         /*
3800          * If we've made progress since setting HF_IRET_MASK, we've
3801          * executed an IRET and can allow NMI injection.
3802          */
3803         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3804             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3805                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3806                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3807         }
3808
3809         svm->vcpu.arch.nmi_injected = false;
3810         kvm_clear_exception_queue(&svm->vcpu);
3811         kvm_clear_interrupt_queue(&svm->vcpu);
3812
3813         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3814                 return;
3815
3816         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3817
3818         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3819         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3820
3821         switch (type) {
3822         case SVM_EXITINTINFO_TYPE_NMI:
3823                 svm->vcpu.arch.nmi_injected = true;
3824                 break;
3825         case SVM_EXITINTINFO_TYPE_EXEPT:
3826                 /*
3827                  * In case of software exceptions, do not reinject the vector,
3828                  * but re-execute the instruction instead. Rewind RIP first
3829                  * if we emulated INT3 before.
3830                  */
3831                 if (kvm_exception_is_soft(vector)) {
3832                         if (vector == BP_VECTOR && int3_injected &&
3833                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3834                                 kvm_rip_write(&svm->vcpu,
3835                                               kvm_rip_read(&svm->vcpu) -
3836                                               int3_injected);
3837                         break;
3838                 }
3839                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3840                         u32 err = svm->vmcb->control.exit_int_info_err;
3841                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3842
3843                 } else
3844                         kvm_requeue_exception(&svm->vcpu, vector);
3845                 break;
3846         case SVM_EXITINTINFO_TYPE_INTR:
3847                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3848                 break;
3849         default:
3850                 break;
3851         }
3852 }
3853
3854 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3855 {
3856         struct vcpu_svm *svm = to_svm(vcpu);
3857         struct vmcb_control_area *control = &svm->vmcb->control;
3858
3859         control->exit_int_info = control->event_inj;
3860         control->exit_int_info_err = control->event_inj_err;
3861         control->event_inj = 0;
3862         svm_complete_interrupts(svm);
3863 }
3864
3865 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3866 {
3867         struct vcpu_svm *svm = to_svm(vcpu);
3868
3869         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3870         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3871         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3872
3873         /*
3874          * A vmexit emulation is required before the vcpu can be executed
3875          * again.
3876          */
3877         if (unlikely(svm->nested.exit_required))
3878                 return;
3879
3880         pre_svm_run(svm);
3881
3882         sync_lapic_to_cr8(vcpu);
3883
3884         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3885
3886         clgi();
3887
3888         local_irq_enable();
3889
3890         asm volatile (
3891                 "push %%" _ASM_BP "; \n\t"
3892                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3893                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3894                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3895                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3896                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3897                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3898 #ifdef CONFIG_X86_64
3899                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3900                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3901                 "mov %c[r10](%[svm]), %%r10 \n\t"
3902                 "mov %c[r11](%[svm]), %%r11 \n\t"
3903                 "mov %c[r12](%[svm]), %%r12 \n\t"
3904                 "mov %c[r13](%[svm]), %%r13 \n\t"
3905                 "mov %c[r14](%[svm]), %%r14 \n\t"
3906                 "mov %c[r15](%[svm]), %%r15 \n\t"
3907 #endif
3908
3909                 /* Enter guest mode */
3910                 "push %%" _ASM_AX " \n\t"
3911                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3912                 __ex(SVM_VMLOAD) "\n\t"
3913                 __ex(SVM_VMRUN) "\n\t"
3914                 __ex(SVM_VMSAVE) "\n\t"
3915                 "pop %%" _ASM_AX " \n\t"
3916
3917                 /* Save guest registers, load host registers */
3918                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3919                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3920                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3921                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3922                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3923                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3924 #ifdef CONFIG_X86_64
3925                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3926                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3927                 "mov %%r10, %c[r10](%[svm]) \n\t"
3928                 "mov %%r11, %c[r11](%[svm]) \n\t"
3929                 "mov %%r12, %c[r12](%[svm]) \n\t"
3930                 "mov %%r13, %c[r13](%[svm]) \n\t"
3931                 "mov %%r14, %c[r14](%[svm]) \n\t"
3932                 "mov %%r15, %c[r15](%[svm]) \n\t"
3933 #endif
3934                 "pop %%" _ASM_BP
3935                 :
3936                 : [svm]"a"(svm),
3937                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3938                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3939                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3940                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3941                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3942                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3943                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3944 #ifdef CONFIG_X86_64
3945                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3946                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3947                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3948                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3949                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3950                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3951                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3952                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3953 #endif
3954                 : "cc", "memory"
3955 #ifdef CONFIG_X86_64
3956                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3957                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3958 #else
3959                 , "ebx", "ecx", "edx", "esi", "edi"
3960 #endif
3961                 );
3962
3963 #ifdef CONFIG_X86_64
3964         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3965 #else
3966         loadsegment(fs, svm->host.fs);
3967 #ifndef CONFIG_X86_32_LAZY_GS
3968         loadsegment(gs, svm->host.gs);
3969 #endif
3970 #endif
3971
3972         reload_tss(vcpu);
3973
3974         local_irq_disable();
3975
3976         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3977         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3978         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3979         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3980
3981         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3982
3983         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3984                 kvm_before_handle_nmi(&svm->vcpu);
3985
3986         stgi();
3987
3988         /* Any pending NMI will happen here */
3989
3990         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3991                 kvm_after_handle_nmi(&svm->vcpu);
3992
3993         sync_cr8_to_lapic(vcpu);
3994
3995         svm->next_rip = 0;
3996
3997         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3998
3999         /* if exit due to PF check for async PF */
4000         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4001                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4002
4003         if (npt_enabled) {
4004                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4005                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4006         }
4007
4008         /*
4009          * We need to handle MC intercepts here before the vcpu has a chance to
4010          * change the physical cpu
4011          */
4012         if (unlikely(svm->vmcb->control.exit_code ==
4013                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4014                 svm_handle_mce(svm);
4015
4016         mark_all_clean(svm->vmcb);
4017 }
4018
4019 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4020 {
4021         struct vcpu_svm *svm = to_svm(vcpu);
4022
4023         svm->vmcb->save.cr3 = root;
4024         mark_dirty(svm->vmcb, VMCB_CR);
4025         svm_flush_tlb(vcpu);
4026 }
4027
4028 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4029 {
4030         struct vcpu_svm *svm = to_svm(vcpu);
4031
4032         svm->vmcb->control.nested_cr3 = root;
4033         mark_dirty(svm->vmcb, VMCB_NPT);
4034
4035         /* Also sync guest cr3 here in case we live migrate */
4036         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4037         mark_dirty(svm->vmcb, VMCB_CR);
4038
4039         svm_flush_tlb(vcpu);
4040 }
4041
4042 static int is_disabled(void)
4043 {
4044         u64 vm_cr;
4045
4046         rdmsrl(MSR_VM_CR, vm_cr);
4047         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4048                 return 1;
4049
4050         return 0;
4051 }
4052
4053 static void
4054 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4055 {
4056         /*
4057          * Patch in the VMMCALL instruction:
4058          */
4059         hypercall[0] = 0x0f;
4060         hypercall[1] = 0x01;
4061         hypercall[2] = 0xd9;
4062 }
4063
4064 static void svm_check_processor_compat(void *rtn)
4065 {
4066         *(int *)rtn = 0;
4067 }
4068
4069 static bool svm_cpu_has_accelerated_tpr(void)
4070 {
4071         return false;
4072 }
4073
4074 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4075 {
4076         return 0;
4077 }
4078
4079 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4080 {
4081 }
4082
4083 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4084 {
4085         switch (func) {
4086         case 0x80000001:
4087                 if (nested)
4088                         entry->ecx |= (1 << 2); /* Set SVM bit */
4089                 break;
4090         case 0x8000000A:
4091                 entry->eax = 1; /* SVM revision 1 */
4092                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4093                                    ASID emulation to nested SVM */
4094                 entry->ecx = 0; /* Reserved */
4095                 entry->edx = 0; /* Per default do not support any
4096                                    additional features */
4097
4098                 /* Support next_rip if host supports it */
4099                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4100                         entry->edx |= SVM_FEATURE_NRIP;
4101
4102                 /* Support NPT for the guest if enabled */
4103                 if (npt_enabled)
4104                         entry->edx |= SVM_FEATURE_NPT;
4105
4106                 break;
4107         }
4108 }
4109
4110 static int svm_get_lpage_level(void)
4111 {
4112         return PT_PDPE_LEVEL;
4113 }
4114
4115 static bool svm_rdtscp_supported(void)
4116 {
4117         return false;
4118 }
4119
4120 static bool svm_invpcid_supported(void)
4121 {
4122         return false;
4123 }
4124
4125 static bool svm_mpx_supported(void)
4126 {
4127         return false;
4128 }
4129
4130 static bool svm_xsaves_supported(void)
4131 {
4132         return false;
4133 }
4134
4135 static bool svm_has_wbinvd_exit(void)
4136 {
4137         return true;
4138 }
4139
4140 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4141 {
4142         struct vcpu_svm *svm = to_svm(vcpu);
4143
4144         set_exception_intercept(svm, NM_VECTOR);
4145         update_cr0_intercept(svm);
4146 }
4147
4148 #define PRE_EX(exit)  { .exit_code = (exit), \
4149                         .stage = X86_ICPT_PRE_EXCEPT, }
4150 #define POST_EX(exit) { .exit_code = (exit), \
4151                         .stage = X86_ICPT_POST_EXCEPT, }
4152 #define POST_MEM(exit) { .exit_code = (exit), \
4153                         .stage = X86_ICPT_POST_MEMACCESS, }
4154
4155 static const struct __x86_intercept {
4156         u32 exit_code;
4157         enum x86_intercept_stage stage;
4158 } x86_intercept_map[] = {
4159         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4160         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4161         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4162         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4163         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4164         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4165         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4166         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4167         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4168         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4169         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4170         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4171         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4172         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4173         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4174         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4175         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4176         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4177         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4178         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4179         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4180         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4181         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4182         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4183         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4184         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4185         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4186         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4187         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4188         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4189         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4190         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4191         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4192         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4193         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4194         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4195         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4196         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4197         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4198         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4199         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4200         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4201         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4202         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4203         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4204         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4205 };
4206
4207 #undef PRE_EX
4208 #undef POST_EX
4209 #undef POST_MEM
4210
4211 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4212                                struct x86_instruction_info *info,
4213                                enum x86_intercept_stage stage)
4214 {
4215         struct vcpu_svm *svm = to_svm(vcpu);
4216         int vmexit, ret = X86EMUL_CONTINUE;
4217         struct __x86_intercept icpt_info;
4218         struct vmcb *vmcb = svm->vmcb;
4219
4220         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4221                 goto out;
4222
4223         icpt_info = x86_intercept_map[info->intercept];
4224
4225         if (stage != icpt_info.stage)
4226                 goto out;
4227
4228         switch (icpt_info.exit_code) {
4229         case SVM_EXIT_READ_CR0:
4230                 if (info->intercept == x86_intercept_cr_read)
4231                         icpt_info.exit_code += info->modrm_reg;
4232                 break;
4233         case SVM_EXIT_WRITE_CR0: {
4234                 unsigned long cr0, val;
4235                 u64 intercept;
4236
4237                 if (info->intercept == x86_intercept_cr_write)
4238                         icpt_info.exit_code += info->modrm_reg;
4239
4240                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4241                     info->intercept == x86_intercept_clts)
4242                         break;
4243
4244                 intercept = svm->nested.intercept;
4245
4246                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4247                         break;
4248
4249                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4250                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4251
4252                 if (info->intercept == x86_intercept_lmsw) {
4253                         cr0 &= 0xfUL;
4254                         val &= 0xfUL;
4255                         /* lmsw can't clear PE - catch this here */
4256                         if (cr0 & X86_CR0_PE)
4257                                 val |= X86_CR0_PE;
4258                 }
4259
4260                 if (cr0 ^ val)
4261                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4262
4263                 break;
4264         }
4265         case SVM_EXIT_READ_DR0:
4266         case SVM_EXIT_WRITE_DR0:
4267                 icpt_info.exit_code += info->modrm_reg;
4268                 break;
4269         case SVM_EXIT_MSR:
4270                 if (info->intercept == x86_intercept_wrmsr)
4271                         vmcb->control.exit_info_1 = 1;
4272                 else
4273                         vmcb->control.exit_info_1 = 0;
4274                 break;
4275         case SVM_EXIT_PAUSE:
4276                 /*
4277                  * We get this for NOP only, but pause
4278                  * is rep not, check this here
4279                  */
4280                 if (info->rep_prefix != REPE_PREFIX)
4281                         goto out;
4282         case SVM_EXIT_IOIO: {
4283                 u64 exit_info;
4284                 u32 bytes;
4285
4286                 if (info->intercept == x86_intercept_in ||
4287                     info->intercept == x86_intercept_ins) {
4288                         exit_info = ((info->src_val & 0xffff) << 16) |
4289                                 SVM_IOIO_TYPE_MASK;
4290                         bytes = info->dst_bytes;
4291                 } else {
4292                         exit_info = (info->dst_val & 0xffff) << 16;
4293                         bytes = info->src_bytes;
4294                 }
4295
4296                 if (info->intercept == x86_intercept_outs ||
4297                     info->intercept == x86_intercept_ins)
4298                         exit_info |= SVM_IOIO_STR_MASK;
4299
4300                 if (info->rep_prefix)
4301                         exit_info |= SVM_IOIO_REP_MASK;
4302
4303                 bytes = min(bytes, 4u);
4304
4305                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4306
4307                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4308
4309                 vmcb->control.exit_info_1 = exit_info;
4310                 vmcb->control.exit_info_2 = info->next_rip;
4311
4312                 break;
4313         }
4314         default:
4315                 break;
4316         }
4317
4318         vmcb->control.next_rip  = info->next_rip;
4319         vmcb->control.exit_code = icpt_info.exit_code;
4320         vmexit = nested_svm_exit_handled(svm);
4321
4322         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4323                                            : X86EMUL_CONTINUE;
4324
4325 out:
4326         return ret;
4327 }
4328
4329 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4330 {
4331         local_irq_enable();
4332 }
4333
4334 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4335 {
4336 }
4337
4338 static struct kvm_x86_ops svm_x86_ops = {
4339         .cpu_has_kvm_support = has_svm,
4340         .disabled_by_bios = is_disabled,
4341         .hardware_setup = svm_hardware_setup,
4342         .hardware_unsetup = svm_hardware_unsetup,
4343         .check_processor_compatibility = svm_check_processor_compat,
4344         .hardware_enable = svm_hardware_enable,
4345         .hardware_disable = svm_hardware_disable,
4346         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4347
4348         .vcpu_create = svm_create_vcpu,
4349         .vcpu_free = svm_free_vcpu,
4350         .vcpu_reset = svm_vcpu_reset,
4351
4352         .prepare_guest_switch = svm_prepare_guest_switch,
4353         .vcpu_load = svm_vcpu_load,
4354         .vcpu_put = svm_vcpu_put,
4355
4356         .update_db_bp_intercept = update_db_bp_intercept,
4357         .get_msr = svm_get_msr,
4358         .set_msr = svm_set_msr,
4359         .get_segment_base = svm_get_segment_base,
4360         .get_segment = svm_get_segment,
4361         .set_segment = svm_set_segment,
4362         .get_cpl = svm_get_cpl,
4363         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4364         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4365         .decache_cr3 = svm_decache_cr3,
4366         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4367         .set_cr0 = svm_set_cr0,
4368         .set_cr3 = svm_set_cr3,
4369         .set_cr4 = svm_set_cr4,
4370         .set_efer = svm_set_efer,
4371         .get_idt = svm_get_idt,
4372         .set_idt = svm_set_idt,
4373         .get_gdt = svm_get_gdt,
4374         .set_gdt = svm_set_gdt,
4375         .get_dr6 = svm_get_dr6,
4376         .set_dr6 = svm_set_dr6,
4377         .set_dr7 = svm_set_dr7,
4378         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4379         .cache_reg = svm_cache_reg,
4380         .get_rflags = svm_get_rflags,
4381         .set_rflags = svm_set_rflags,
4382         .fpu_deactivate = svm_fpu_deactivate,
4383
4384         .tlb_flush = svm_flush_tlb,
4385
4386         .run = svm_vcpu_run,
4387         .handle_exit = handle_exit,
4388         .skip_emulated_instruction = skip_emulated_instruction,
4389         .set_interrupt_shadow = svm_set_interrupt_shadow,
4390         .get_interrupt_shadow = svm_get_interrupt_shadow,
4391         .patch_hypercall = svm_patch_hypercall,
4392         .set_irq = svm_set_irq,
4393         .set_nmi = svm_inject_nmi,
4394         .queue_exception = svm_queue_exception,
4395         .cancel_injection = svm_cancel_injection,
4396         .interrupt_allowed = svm_interrupt_allowed,
4397         .nmi_allowed = svm_nmi_allowed,
4398         .get_nmi_mask = svm_get_nmi_mask,
4399         .set_nmi_mask = svm_set_nmi_mask,
4400         .enable_nmi_window = enable_nmi_window,
4401         .enable_irq_window = enable_irq_window,
4402         .update_cr8_intercept = update_cr8_intercept,
4403         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4404         .vm_has_apicv = svm_vm_has_apicv,
4405         .load_eoi_exitmap = svm_load_eoi_exitmap,
4406         .hwapic_isr_update = svm_hwapic_isr_update,
4407         .sync_pir_to_irr = svm_sync_pir_to_irr,
4408
4409         .set_tss_addr = svm_set_tss_addr,
4410         .get_tdp_level = get_npt_level,
4411         .get_mt_mask = svm_get_mt_mask,
4412
4413         .get_exit_info = svm_get_exit_info,
4414
4415         .get_lpage_level = svm_get_lpage_level,
4416
4417         .cpuid_update = svm_cpuid_update,
4418
4419         .rdtscp_supported = svm_rdtscp_supported,
4420         .invpcid_supported = svm_invpcid_supported,
4421         .mpx_supported = svm_mpx_supported,
4422         .xsaves_supported = svm_xsaves_supported,
4423
4424         .set_supported_cpuid = svm_set_supported_cpuid,
4425
4426         .has_wbinvd_exit = svm_has_wbinvd_exit,
4427
4428         .set_tsc_khz = svm_set_tsc_khz,
4429         .read_tsc_offset = svm_read_tsc_offset,
4430         .write_tsc_offset = svm_write_tsc_offset,
4431         .adjust_tsc_offset = svm_adjust_tsc_offset,
4432         .compute_tsc_offset = svm_compute_tsc_offset,
4433         .read_l1_tsc = svm_read_l1_tsc,
4434
4435         .set_tdp_cr3 = set_tdp_cr3,
4436
4437         .check_intercept = svm_check_intercept,
4438         .handle_external_intr = svm_handle_external_intr,
4439
4440         .sched_in = svm_sched_in,
4441 };
4442
4443 static int __init svm_init(void)
4444 {
4445         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4446                         __alignof__(struct vcpu_svm), THIS_MODULE);
4447 }
4448
4449 static void __exit svm_exit(void)
4450 {
4451         kvm_exit();
4452 }
4453
4454 module_init(svm_init)
4455 module_exit(svm_exit)