Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59         X86_FEATURE_MATCH(X86_FEATURE_VMX),
60         {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75                         enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95  * If nested=1, nested virtualization is supported, i.e., guests may use
96  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97  * use VMX instructions.
98  */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 static u64 __read_mostly host_xss;
103
104 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
105 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
106 #define KVM_VM_CR0_ALWAYS_ON                                            \
107         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
108 #define KVM_CR4_GUEST_OWNED_BITS                                      \
109         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
110          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
111
112 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
113 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
114
115 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
116
117 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
118
119 /*
120  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
121  * ple_gap:    upper bound on the amount of time between two successive
122  *             executions of PAUSE in a loop. Also indicate if ple enabled.
123  *             According to test, this time is usually smaller than 128 cycles.
124  * ple_window: upper bound on the amount of time a guest is allowed to execute
125  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
126  *             less than 2^12 cycles
127  * Time is measured based on a counter that runs at the same rate as the TSC,
128  * refer SDM volume 3b section 21.6.13 & 22.1.3.
129  */
130 #define KVM_VMX_DEFAULT_PLE_GAP           128
131 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
133 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
134 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
135                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
136
137 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
138 module_param(ple_gap, int, S_IRUGO);
139
140 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
141 module_param(ple_window, int, S_IRUGO);
142
143 /* Default doubles per-vcpu window every exit. */
144 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
145 module_param(ple_window_grow, int, S_IRUGO);
146
147 /* Default resets per-vcpu window every exit to ple_window. */
148 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
149 module_param(ple_window_shrink, int, S_IRUGO);
150
151 /* Default is to compute the maximum so we can never overflow. */
152 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
153 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
154 module_param(ple_window_max, int, S_IRUGO);
155
156 extern const ulong vmx_return;
157
158 #define NR_AUTOLOAD_MSRS 8
159 #define VMCS02_POOL_SIZE 1
160
161 struct vmcs {
162         u32 revision_id;
163         u32 abort;
164         char data[0];
165 };
166
167 /*
168  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
169  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
170  * loaded on this CPU (so we can clear them if the CPU goes down).
171  */
172 struct loaded_vmcs {
173         struct vmcs *vmcs;
174         int cpu;
175         int launched;
176         struct list_head loaded_vmcss_on_cpu_link;
177 };
178
179 struct shared_msr_entry {
180         unsigned index;
181         u64 data;
182         u64 mask;
183 };
184
185 /*
186  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
187  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
188  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
189  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
190  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
191  * More than one of these structures may exist, if L1 runs multiple L2 guests.
192  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
193  * underlying hardware which will be used to run L2.
194  * This structure is packed to ensure that its layout is identical across
195  * machines (necessary for live migration).
196  * If there are changes in this struct, VMCS12_REVISION must be changed.
197  */
198 typedef u64 natural_width;
199 struct __packed vmcs12 {
200         /* According to the Intel spec, a VMCS region must start with the
201          * following two fields. Then follow implementation-specific data.
202          */
203         u32 revision_id;
204         u32 abort;
205
206         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
207         u32 padding[7]; /* room for future expansion */
208
209         u64 io_bitmap_a;
210         u64 io_bitmap_b;
211         u64 msr_bitmap;
212         u64 vm_exit_msr_store_addr;
213         u64 vm_exit_msr_load_addr;
214         u64 vm_entry_msr_load_addr;
215         u64 tsc_offset;
216         u64 virtual_apic_page_addr;
217         u64 apic_access_addr;
218         u64 ept_pointer;
219         u64 xss_exit_bitmap;
220         u64 guest_physical_address;
221         u64 vmcs_link_pointer;
222         u64 guest_ia32_debugctl;
223         u64 guest_ia32_pat;
224         u64 guest_ia32_efer;
225         u64 guest_ia32_perf_global_ctrl;
226         u64 guest_pdptr0;
227         u64 guest_pdptr1;
228         u64 guest_pdptr2;
229         u64 guest_pdptr3;
230         u64 guest_bndcfgs;
231         u64 host_ia32_pat;
232         u64 host_ia32_efer;
233         u64 host_ia32_perf_global_ctrl;
234         u64 padding64[8]; /* room for future expansion */
235         /*
236          * To allow migration of L1 (complete with its L2 guests) between
237          * machines of different natural widths (32 or 64 bit), we cannot have
238          * unsigned long fields with no explict size. We use u64 (aliased
239          * natural_width) instead. Luckily, x86 is little-endian.
240          */
241         natural_width cr0_guest_host_mask;
242         natural_width cr4_guest_host_mask;
243         natural_width cr0_read_shadow;
244         natural_width cr4_read_shadow;
245         natural_width cr3_target_value0;
246         natural_width cr3_target_value1;
247         natural_width cr3_target_value2;
248         natural_width cr3_target_value3;
249         natural_width exit_qualification;
250         natural_width guest_linear_address;
251         natural_width guest_cr0;
252         natural_width guest_cr3;
253         natural_width guest_cr4;
254         natural_width guest_es_base;
255         natural_width guest_cs_base;
256         natural_width guest_ss_base;
257         natural_width guest_ds_base;
258         natural_width guest_fs_base;
259         natural_width guest_gs_base;
260         natural_width guest_ldtr_base;
261         natural_width guest_tr_base;
262         natural_width guest_gdtr_base;
263         natural_width guest_idtr_base;
264         natural_width guest_dr7;
265         natural_width guest_rsp;
266         natural_width guest_rip;
267         natural_width guest_rflags;
268         natural_width guest_pending_dbg_exceptions;
269         natural_width guest_sysenter_esp;
270         natural_width guest_sysenter_eip;
271         natural_width host_cr0;
272         natural_width host_cr3;
273         natural_width host_cr4;
274         natural_width host_fs_base;
275         natural_width host_gs_base;
276         natural_width host_tr_base;
277         natural_width host_gdtr_base;
278         natural_width host_idtr_base;
279         natural_width host_ia32_sysenter_esp;
280         natural_width host_ia32_sysenter_eip;
281         natural_width host_rsp;
282         natural_width host_rip;
283         natural_width paddingl[8]; /* room for future expansion */
284         u32 pin_based_vm_exec_control;
285         u32 cpu_based_vm_exec_control;
286         u32 exception_bitmap;
287         u32 page_fault_error_code_mask;
288         u32 page_fault_error_code_match;
289         u32 cr3_target_count;
290         u32 vm_exit_controls;
291         u32 vm_exit_msr_store_count;
292         u32 vm_exit_msr_load_count;
293         u32 vm_entry_controls;
294         u32 vm_entry_msr_load_count;
295         u32 vm_entry_intr_info_field;
296         u32 vm_entry_exception_error_code;
297         u32 vm_entry_instruction_len;
298         u32 tpr_threshold;
299         u32 secondary_vm_exec_control;
300         u32 vm_instruction_error;
301         u32 vm_exit_reason;
302         u32 vm_exit_intr_info;
303         u32 vm_exit_intr_error_code;
304         u32 idt_vectoring_info_field;
305         u32 idt_vectoring_error_code;
306         u32 vm_exit_instruction_len;
307         u32 vmx_instruction_info;
308         u32 guest_es_limit;
309         u32 guest_cs_limit;
310         u32 guest_ss_limit;
311         u32 guest_ds_limit;
312         u32 guest_fs_limit;
313         u32 guest_gs_limit;
314         u32 guest_ldtr_limit;
315         u32 guest_tr_limit;
316         u32 guest_gdtr_limit;
317         u32 guest_idtr_limit;
318         u32 guest_es_ar_bytes;
319         u32 guest_cs_ar_bytes;
320         u32 guest_ss_ar_bytes;
321         u32 guest_ds_ar_bytes;
322         u32 guest_fs_ar_bytes;
323         u32 guest_gs_ar_bytes;
324         u32 guest_ldtr_ar_bytes;
325         u32 guest_tr_ar_bytes;
326         u32 guest_interruptibility_info;
327         u32 guest_activity_state;
328         u32 guest_sysenter_cs;
329         u32 host_ia32_sysenter_cs;
330         u32 vmx_preemption_timer_value;
331         u32 padding32[7]; /* room for future expansion */
332         u16 virtual_processor_id;
333         u16 guest_es_selector;
334         u16 guest_cs_selector;
335         u16 guest_ss_selector;
336         u16 guest_ds_selector;
337         u16 guest_fs_selector;
338         u16 guest_gs_selector;
339         u16 guest_ldtr_selector;
340         u16 guest_tr_selector;
341         u16 host_es_selector;
342         u16 host_cs_selector;
343         u16 host_ss_selector;
344         u16 host_ds_selector;
345         u16 host_fs_selector;
346         u16 host_gs_selector;
347         u16 host_tr_selector;
348 };
349
350 /*
351  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
352  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
353  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
354  */
355 #define VMCS12_REVISION 0x11e57ed0
356
357 /*
358  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
359  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
360  * current implementation, 4K are reserved to avoid future complications.
361  */
362 #define VMCS12_SIZE 0x1000
363
364 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
365 struct vmcs02_list {
366         struct list_head list;
367         gpa_t vmptr;
368         struct loaded_vmcs vmcs02;
369 };
370
371 /*
372  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
373  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
374  */
375 struct nested_vmx {
376         /* Has the level1 guest done vmxon? */
377         bool vmxon;
378         gpa_t vmxon_ptr;
379
380         /* The guest-physical address of the current VMCS L1 keeps for L2 */
381         gpa_t current_vmptr;
382         /* The host-usable pointer to the above */
383         struct page *current_vmcs12_page;
384         struct vmcs12 *current_vmcs12;
385         struct vmcs *current_shadow_vmcs;
386         /*
387          * Indicates if the shadow vmcs must be updated with the
388          * data hold by vmcs12
389          */
390         bool sync_shadow_vmcs;
391
392         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
393         struct list_head vmcs02_pool;
394         int vmcs02_num;
395         u64 vmcs01_tsc_offset;
396         /* L2 must run next, and mustn't decide to exit to L1. */
397         bool nested_run_pending;
398         /*
399          * Guest pages referred to in vmcs02 with host-physical pointers, so
400          * we must keep them pinned while L2 runs.
401          */
402         struct page *apic_access_page;
403         struct page *virtual_apic_page;
404         u64 msr_ia32_feature_control;
405
406         struct hrtimer preemption_timer;
407         bool preemption_timer_expired;
408
409         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
410         u64 vmcs01_debugctl;
411 };
412
413 #define POSTED_INTR_ON  0
414 /* Posted-Interrupt Descriptor */
415 struct pi_desc {
416         u32 pir[8];     /* Posted interrupt requested */
417         u32 control;    /* bit 0 of control is outstanding notification bit */
418         u32 rsvd[7];
419 } __aligned(64);
420
421 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
422 {
423         return test_and_set_bit(POSTED_INTR_ON,
424                         (unsigned long *)&pi_desc->control);
425 }
426
427 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
428 {
429         return test_and_clear_bit(POSTED_INTR_ON,
430                         (unsigned long *)&pi_desc->control);
431 }
432
433 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
434 {
435         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
436 }
437
438 struct vcpu_vmx {
439         struct kvm_vcpu       vcpu;
440         unsigned long         host_rsp;
441         u8                    fail;
442         bool                  nmi_known_unmasked;
443         u32                   exit_intr_info;
444         u32                   idt_vectoring_info;
445         ulong                 rflags;
446         struct shared_msr_entry *guest_msrs;
447         int                   nmsrs;
448         int                   save_nmsrs;
449         unsigned long         host_idt_base;
450 #ifdef CONFIG_X86_64
451         u64                   msr_host_kernel_gs_base;
452         u64                   msr_guest_kernel_gs_base;
453 #endif
454         u32 vm_entry_controls_shadow;
455         u32 vm_exit_controls_shadow;
456         /*
457          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
458          * non-nested (L1) guest, it always points to vmcs01. For a nested
459          * guest (L2), it points to a different VMCS.
460          */
461         struct loaded_vmcs    vmcs01;
462         struct loaded_vmcs   *loaded_vmcs;
463         bool                  __launched; /* temporary, used in vmx_vcpu_run */
464         struct msr_autoload {
465                 unsigned nr;
466                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
467                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
468         } msr_autoload;
469         struct {
470                 int           loaded;
471                 u16           fs_sel, gs_sel, ldt_sel;
472 #ifdef CONFIG_X86_64
473                 u16           ds_sel, es_sel;
474 #endif
475                 int           gs_ldt_reload_needed;
476                 int           fs_reload_needed;
477                 u64           msr_host_bndcfgs;
478                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
479         } host_state;
480         struct {
481                 int vm86_active;
482                 ulong save_rflags;
483                 struct kvm_segment segs[8];
484         } rmode;
485         struct {
486                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
487                 struct kvm_save_segment {
488                         u16 selector;
489                         unsigned long base;
490                         u32 limit;
491                         u32 ar;
492                 } seg[8];
493         } segment_cache;
494         int vpid;
495         bool emulation_required;
496
497         /* Support for vnmi-less CPUs */
498         int soft_vnmi_blocked;
499         ktime_t entry_time;
500         s64 vnmi_blocked_time;
501         u32 exit_reason;
502
503         bool rdtscp_enabled;
504
505         /* Posted interrupt descriptor */
506         struct pi_desc pi_desc;
507
508         /* Support for a guest hypervisor (nested VMX) */
509         struct nested_vmx nested;
510
511         /* Dynamic PLE window. */
512         int ple_window;
513         bool ple_window_dirty;
514 };
515
516 enum segment_cache_field {
517         SEG_FIELD_SEL = 0,
518         SEG_FIELD_BASE = 1,
519         SEG_FIELD_LIMIT = 2,
520         SEG_FIELD_AR = 3,
521
522         SEG_FIELD_NR = 4
523 };
524
525 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
526 {
527         return container_of(vcpu, struct vcpu_vmx, vcpu);
528 }
529
530 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
531 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
532 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
533                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
534
535
536 static unsigned long shadow_read_only_fields[] = {
537         /*
538          * We do NOT shadow fields that are modified when L0
539          * traps and emulates any vmx instruction (e.g. VMPTRLD,
540          * VMXON...) executed by L1.
541          * For example, VM_INSTRUCTION_ERROR is read
542          * by L1 if a vmx instruction fails (part of the error path).
543          * Note the code assumes this logic. If for some reason
544          * we start shadowing these fields then we need to
545          * force a shadow sync when L0 emulates vmx instructions
546          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
547          * by nested_vmx_failValid)
548          */
549         VM_EXIT_REASON,
550         VM_EXIT_INTR_INFO,
551         VM_EXIT_INSTRUCTION_LEN,
552         IDT_VECTORING_INFO_FIELD,
553         IDT_VECTORING_ERROR_CODE,
554         VM_EXIT_INTR_ERROR_CODE,
555         EXIT_QUALIFICATION,
556         GUEST_LINEAR_ADDRESS,
557         GUEST_PHYSICAL_ADDRESS
558 };
559 static int max_shadow_read_only_fields =
560         ARRAY_SIZE(shadow_read_only_fields);
561
562 static unsigned long shadow_read_write_fields[] = {
563         TPR_THRESHOLD,
564         GUEST_RIP,
565         GUEST_RSP,
566         GUEST_CR0,
567         GUEST_CR3,
568         GUEST_CR4,
569         GUEST_INTERRUPTIBILITY_INFO,
570         GUEST_RFLAGS,
571         GUEST_CS_SELECTOR,
572         GUEST_CS_AR_BYTES,
573         GUEST_CS_LIMIT,
574         GUEST_CS_BASE,
575         GUEST_ES_BASE,
576         GUEST_BNDCFGS,
577         CR0_GUEST_HOST_MASK,
578         CR0_READ_SHADOW,
579         CR4_READ_SHADOW,
580         TSC_OFFSET,
581         EXCEPTION_BITMAP,
582         CPU_BASED_VM_EXEC_CONTROL,
583         VM_ENTRY_EXCEPTION_ERROR_CODE,
584         VM_ENTRY_INTR_INFO_FIELD,
585         VM_ENTRY_INSTRUCTION_LEN,
586         VM_ENTRY_EXCEPTION_ERROR_CODE,
587         HOST_FS_BASE,
588         HOST_GS_BASE,
589         HOST_FS_SELECTOR,
590         HOST_GS_SELECTOR
591 };
592 static int max_shadow_read_write_fields =
593         ARRAY_SIZE(shadow_read_write_fields);
594
595 static const unsigned short vmcs_field_to_offset_table[] = {
596         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
597         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
598         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
599         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
600         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
601         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
602         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
603         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
604         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
605         FIELD(HOST_ES_SELECTOR, host_es_selector),
606         FIELD(HOST_CS_SELECTOR, host_cs_selector),
607         FIELD(HOST_SS_SELECTOR, host_ss_selector),
608         FIELD(HOST_DS_SELECTOR, host_ds_selector),
609         FIELD(HOST_FS_SELECTOR, host_fs_selector),
610         FIELD(HOST_GS_SELECTOR, host_gs_selector),
611         FIELD(HOST_TR_SELECTOR, host_tr_selector),
612         FIELD64(IO_BITMAP_A, io_bitmap_a),
613         FIELD64(IO_BITMAP_B, io_bitmap_b),
614         FIELD64(MSR_BITMAP, msr_bitmap),
615         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
616         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
617         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
618         FIELD64(TSC_OFFSET, tsc_offset),
619         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
620         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
621         FIELD64(EPT_POINTER, ept_pointer),
622         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
623         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
624         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
625         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
626         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
627         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
628         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
629         FIELD64(GUEST_PDPTR0, guest_pdptr0),
630         FIELD64(GUEST_PDPTR1, guest_pdptr1),
631         FIELD64(GUEST_PDPTR2, guest_pdptr2),
632         FIELD64(GUEST_PDPTR3, guest_pdptr3),
633         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
634         FIELD64(HOST_IA32_PAT, host_ia32_pat),
635         FIELD64(HOST_IA32_EFER, host_ia32_efer),
636         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
637         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
638         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
639         FIELD(EXCEPTION_BITMAP, exception_bitmap),
640         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
641         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
642         FIELD(CR3_TARGET_COUNT, cr3_target_count),
643         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
644         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
645         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
646         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
647         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
648         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
649         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
650         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
651         FIELD(TPR_THRESHOLD, tpr_threshold),
652         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
653         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
654         FIELD(VM_EXIT_REASON, vm_exit_reason),
655         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
656         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
657         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
658         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
659         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
660         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
661         FIELD(GUEST_ES_LIMIT, guest_es_limit),
662         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
663         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
664         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
665         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
666         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
667         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
668         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
669         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
670         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
671         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
672         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
673         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
674         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
675         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
676         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
677         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
678         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
679         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
680         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
681         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
682         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
683         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
684         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
685         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
686         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
687         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
688         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
689         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
690         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
691         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
692         FIELD(EXIT_QUALIFICATION, exit_qualification),
693         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
694         FIELD(GUEST_CR0, guest_cr0),
695         FIELD(GUEST_CR3, guest_cr3),
696         FIELD(GUEST_CR4, guest_cr4),
697         FIELD(GUEST_ES_BASE, guest_es_base),
698         FIELD(GUEST_CS_BASE, guest_cs_base),
699         FIELD(GUEST_SS_BASE, guest_ss_base),
700         FIELD(GUEST_DS_BASE, guest_ds_base),
701         FIELD(GUEST_FS_BASE, guest_fs_base),
702         FIELD(GUEST_GS_BASE, guest_gs_base),
703         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
704         FIELD(GUEST_TR_BASE, guest_tr_base),
705         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
706         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
707         FIELD(GUEST_DR7, guest_dr7),
708         FIELD(GUEST_RSP, guest_rsp),
709         FIELD(GUEST_RIP, guest_rip),
710         FIELD(GUEST_RFLAGS, guest_rflags),
711         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
712         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
713         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
714         FIELD(HOST_CR0, host_cr0),
715         FIELD(HOST_CR3, host_cr3),
716         FIELD(HOST_CR4, host_cr4),
717         FIELD(HOST_FS_BASE, host_fs_base),
718         FIELD(HOST_GS_BASE, host_gs_base),
719         FIELD(HOST_TR_BASE, host_tr_base),
720         FIELD(HOST_GDTR_BASE, host_gdtr_base),
721         FIELD(HOST_IDTR_BASE, host_idtr_base),
722         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
723         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
724         FIELD(HOST_RSP, host_rsp),
725         FIELD(HOST_RIP, host_rip),
726 };
727
728 static inline short vmcs_field_to_offset(unsigned long field)
729 {
730         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
731
732         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
733             vmcs_field_to_offset_table[field] == 0)
734                 return -ENOENT;
735
736         return vmcs_field_to_offset_table[field];
737 }
738
739 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
740 {
741         return to_vmx(vcpu)->nested.current_vmcs12;
742 }
743
744 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
745 {
746         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
747         if (is_error_page(page))
748                 return NULL;
749
750         return page;
751 }
752
753 static void nested_release_page(struct page *page)
754 {
755         kvm_release_page_dirty(page);
756 }
757
758 static void nested_release_page_clean(struct page *page)
759 {
760         kvm_release_page_clean(page);
761 }
762
763 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
764 static u64 construct_eptp(unsigned long root_hpa);
765 static void kvm_cpu_vmxon(u64 addr);
766 static void kvm_cpu_vmxoff(void);
767 static bool vmx_mpx_supported(void);
768 static bool vmx_xsaves_supported(void);
769 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
770 static void vmx_set_segment(struct kvm_vcpu *vcpu,
771                             struct kvm_segment *var, int seg);
772 static void vmx_get_segment(struct kvm_vcpu *vcpu,
773                             struct kvm_segment *var, int seg);
774 static bool guest_state_valid(struct kvm_vcpu *vcpu);
775 static u32 vmx_segment_access_rights(struct kvm_segment *var);
776 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
777 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
778 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
779 static int alloc_identity_pagetable(struct kvm *kvm);
780
781 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
782 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
783 /*
784  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
785  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
786  */
787 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
788 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
789
790 static unsigned long *vmx_io_bitmap_a;
791 static unsigned long *vmx_io_bitmap_b;
792 static unsigned long *vmx_msr_bitmap_legacy;
793 static unsigned long *vmx_msr_bitmap_longmode;
794 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
795 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
796 static unsigned long *vmx_vmread_bitmap;
797 static unsigned long *vmx_vmwrite_bitmap;
798
799 static bool cpu_has_load_ia32_efer;
800 static bool cpu_has_load_perf_global_ctrl;
801
802 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
803 static DEFINE_SPINLOCK(vmx_vpid_lock);
804
805 static struct vmcs_config {
806         int size;
807         int order;
808         u32 revision_id;
809         u32 pin_based_exec_ctrl;
810         u32 cpu_based_exec_ctrl;
811         u32 cpu_based_2nd_exec_ctrl;
812         u32 vmexit_ctrl;
813         u32 vmentry_ctrl;
814 } vmcs_config;
815
816 static struct vmx_capability {
817         u32 ept;
818         u32 vpid;
819 } vmx_capability;
820
821 #define VMX_SEGMENT_FIELD(seg)                                  \
822         [VCPU_SREG_##seg] = {                                   \
823                 .selector = GUEST_##seg##_SELECTOR,             \
824                 .base = GUEST_##seg##_BASE,                     \
825                 .limit = GUEST_##seg##_LIMIT,                   \
826                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
827         }
828
829 static const struct kvm_vmx_segment_field {
830         unsigned selector;
831         unsigned base;
832         unsigned limit;
833         unsigned ar_bytes;
834 } kvm_vmx_segment_fields[] = {
835         VMX_SEGMENT_FIELD(CS),
836         VMX_SEGMENT_FIELD(DS),
837         VMX_SEGMENT_FIELD(ES),
838         VMX_SEGMENT_FIELD(FS),
839         VMX_SEGMENT_FIELD(GS),
840         VMX_SEGMENT_FIELD(SS),
841         VMX_SEGMENT_FIELD(TR),
842         VMX_SEGMENT_FIELD(LDTR),
843 };
844
845 static u64 host_efer;
846
847 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
848
849 /*
850  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
851  * away by decrementing the array size.
852  */
853 static const u32 vmx_msr_index[] = {
854 #ifdef CONFIG_X86_64
855         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
856 #endif
857         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
858 };
859
860 static inline bool is_page_fault(u32 intr_info)
861 {
862         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
863                              INTR_INFO_VALID_MASK)) ==
864                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
865 }
866
867 static inline bool is_no_device(u32 intr_info)
868 {
869         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
870                              INTR_INFO_VALID_MASK)) ==
871                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
872 }
873
874 static inline bool is_invalid_opcode(u32 intr_info)
875 {
876         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
877                              INTR_INFO_VALID_MASK)) ==
878                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
879 }
880
881 static inline bool is_external_interrupt(u32 intr_info)
882 {
883         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
884                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
885 }
886
887 static inline bool is_machine_check(u32 intr_info)
888 {
889         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
890                              INTR_INFO_VALID_MASK)) ==
891                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
892 }
893
894 static inline bool cpu_has_vmx_msr_bitmap(void)
895 {
896         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
897 }
898
899 static inline bool cpu_has_vmx_tpr_shadow(void)
900 {
901         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
902 }
903
904 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
905 {
906         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
907 }
908
909 static inline bool cpu_has_secondary_exec_ctrls(void)
910 {
911         return vmcs_config.cpu_based_exec_ctrl &
912                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
913 }
914
915 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
916 {
917         return vmcs_config.cpu_based_2nd_exec_ctrl &
918                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
919 }
920
921 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
922 {
923         return vmcs_config.cpu_based_2nd_exec_ctrl &
924                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
925 }
926
927 static inline bool cpu_has_vmx_apic_register_virt(void)
928 {
929         return vmcs_config.cpu_based_2nd_exec_ctrl &
930                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
931 }
932
933 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
934 {
935         return vmcs_config.cpu_based_2nd_exec_ctrl &
936                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
937 }
938
939 static inline bool cpu_has_vmx_posted_intr(void)
940 {
941         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
942 }
943
944 static inline bool cpu_has_vmx_apicv(void)
945 {
946         return cpu_has_vmx_apic_register_virt() &&
947                 cpu_has_vmx_virtual_intr_delivery() &&
948                 cpu_has_vmx_posted_intr();
949 }
950
951 static inline bool cpu_has_vmx_flexpriority(void)
952 {
953         return cpu_has_vmx_tpr_shadow() &&
954                 cpu_has_vmx_virtualize_apic_accesses();
955 }
956
957 static inline bool cpu_has_vmx_ept_execute_only(void)
958 {
959         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
960 }
961
962 static inline bool cpu_has_vmx_eptp_uncacheable(void)
963 {
964         return vmx_capability.ept & VMX_EPTP_UC_BIT;
965 }
966
967 static inline bool cpu_has_vmx_eptp_writeback(void)
968 {
969         return vmx_capability.ept & VMX_EPTP_WB_BIT;
970 }
971
972 static inline bool cpu_has_vmx_ept_2m_page(void)
973 {
974         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept_1g_page(void)
978 {
979         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
980 }
981
982 static inline bool cpu_has_vmx_ept_4levels(void)
983 {
984         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
985 }
986
987 static inline bool cpu_has_vmx_ept_ad_bits(void)
988 {
989         return vmx_capability.ept & VMX_EPT_AD_BIT;
990 }
991
992 static inline bool cpu_has_vmx_invept_context(void)
993 {
994         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
995 }
996
997 static inline bool cpu_has_vmx_invept_global(void)
998 {
999         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1000 }
1001
1002 static inline bool cpu_has_vmx_invvpid_single(void)
1003 {
1004         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_invvpid_global(void)
1008 {
1009         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept(void)
1013 {
1014         return vmcs_config.cpu_based_2nd_exec_ctrl &
1015                 SECONDARY_EXEC_ENABLE_EPT;
1016 }
1017
1018 static inline bool cpu_has_vmx_unrestricted_guest(void)
1019 {
1020         return vmcs_config.cpu_based_2nd_exec_ctrl &
1021                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1022 }
1023
1024 static inline bool cpu_has_vmx_ple(void)
1025 {
1026         return vmcs_config.cpu_based_2nd_exec_ctrl &
1027                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1028 }
1029
1030 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1031 {
1032         return flexpriority_enabled && irqchip_in_kernel(kvm);
1033 }
1034
1035 static inline bool cpu_has_vmx_vpid(void)
1036 {
1037         return vmcs_config.cpu_based_2nd_exec_ctrl &
1038                 SECONDARY_EXEC_ENABLE_VPID;
1039 }
1040
1041 static inline bool cpu_has_vmx_rdtscp(void)
1042 {
1043         return vmcs_config.cpu_based_2nd_exec_ctrl &
1044                 SECONDARY_EXEC_RDTSCP;
1045 }
1046
1047 static inline bool cpu_has_vmx_invpcid(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_ENABLE_INVPCID;
1051 }
1052
1053 static inline bool cpu_has_virtual_nmis(void)
1054 {
1055         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1056 }
1057
1058 static inline bool cpu_has_vmx_wbinvd_exit(void)
1059 {
1060         return vmcs_config.cpu_based_2nd_exec_ctrl &
1061                 SECONDARY_EXEC_WBINVD_EXITING;
1062 }
1063
1064 static inline bool cpu_has_vmx_shadow_vmcs(void)
1065 {
1066         u64 vmx_msr;
1067         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1068         /* check if the cpu supports writing r/o exit information fields */
1069         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1070                 return false;
1071
1072         return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                 SECONDARY_EXEC_SHADOW_VMCS;
1074 }
1075
1076 static inline bool report_flexpriority(void)
1077 {
1078         return flexpriority_enabled;
1079 }
1080
1081 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1082 {
1083         return vmcs12->cpu_based_vm_exec_control & bit;
1084 }
1085
1086 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1087 {
1088         return (vmcs12->cpu_based_vm_exec_control &
1089                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1090                 (vmcs12->secondary_vm_exec_control & bit);
1091 }
1092
1093 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1094 {
1095         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1096 }
1097
1098 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1099 {
1100         return vmcs12->pin_based_vm_exec_control &
1101                 PIN_BASED_VMX_PREEMPTION_TIMER;
1102 }
1103
1104 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1105 {
1106         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1107 }
1108
1109 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1110 {
1111         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1112                 vmx_xsaves_supported();
1113 }
1114
1115 static inline bool is_exception(u32 intr_info)
1116 {
1117         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1118                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1119 }
1120
1121 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1122                               u32 exit_intr_info,
1123                               unsigned long exit_qualification);
1124 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1125                         struct vmcs12 *vmcs12,
1126                         u32 reason, unsigned long qualification);
1127
1128 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1129 {
1130         int i;
1131
1132         for (i = 0; i < vmx->nmsrs; ++i)
1133                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1134                         return i;
1135         return -1;
1136 }
1137
1138 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1139 {
1140     struct {
1141         u64 vpid : 16;
1142         u64 rsvd : 48;
1143         u64 gva;
1144     } operand = { vpid, 0, gva };
1145
1146     asm volatile (__ex(ASM_VMX_INVVPID)
1147                   /* CF==1 or ZF==1 --> rc = -1 */
1148                   "; ja 1f ; ud2 ; 1:"
1149                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1150 }
1151
1152 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1153 {
1154         struct {
1155                 u64 eptp, gpa;
1156         } operand = {eptp, gpa};
1157
1158         asm volatile (__ex(ASM_VMX_INVEPT)
1159                         /* CF==1 or ZF==1 --> rc = -1 */
1160                         "; ja 1f ; ud2 ; 1:\n"
1161                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1162 }
1163
1164 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1165 {
1166         int i;
1167
1168         i = __find_msr_index(vmx, msr);
1169         if (i >= 0)
1170                 return &vmx->guest_msrs[i];
1171         return NULL;
1172 }
1173
1174 static void vmcs_clear(struct vmcs *vmcs)
1175 {
1176         u64 phys_addr = __pa(vmcs);
1177         u8 error;
1178
1179         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1180                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1181                       : "cc", "memory");
1182         if (error)
1183                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1184                        vmcs, phys_addr);
1185 }
1186
1187 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1188 {
1189         vmcs_clear(loaded_vmcs->vmcs);
1190         loaded_vmcs->cpu = -1;
1191         loaded_vmcs->launched = 0;
1192 }
1193
1194 static void vmcs_load(struct vmcs *vmcs)
1195 {
1196         u64 phys_addr = __pa(vmcs);
1197         u8 error;
1198
1199         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1200                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1201                         : "cc", "memory");
1202         if (error)
1203                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1204                        vmcs, phys_addr);
1205 }
1206
1207 #ifdef CONFIG_KEXEC
1208 /*
1209  * This bitmap is used to indicate whether the vmclear
1210  * operation is enabled on all cpus. All disabled by
1211  * default.
1212  */
1213 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1214
1215 static inline void crash_enable_local_vmclear(int cpu)
1216 {
1217         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1218 }
1219
1220 static inline void crash_disable_local_vmclear(int cpu)
1221 {
1222         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1223 }
1224
1225 static inline int crash_local_vmclear_enabled(int cpu)
1226 {
1227         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1228 }
1229
1230 static void crash_vmclear_local_loaded_vmcss(void)
1231 {
1232         int cpu = raw_smp_processor_id();
1233         struct loaded_vmcs *v;
1234
1235         if (!crash_local_vmclear_enabled(cpu))
1236                 return;
1237
1238         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1239                             loaded_vmcss_on_cpu_link)
1240                 vmcs_clear(v->vmcs);
1241 }
1242 #else
1243 static inline void crash_enable_local_vmclear(int cpu) { }
1244 static inline void crash_disable_local_vmclear(int cpu) { }
1245 #endif /* CONFIG_KEXEC */
1246
1247 static void __loaded_vmcs_clear(void *arg)
1248 {
1249         struct loaded_vmcs *loaded_vmcs = arg;
1250         int cpu = raw_smp_processor_id();
1251
1252         if (loaded_vmcs->cpu != cpu)
1253                 return; /* vcpu migration can race with cpu offline */
1254         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1255                 per_cpu(current_vmcs, cpu) = NULL;
1256         crash_disable_local_vmclear(cpu);
1257         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1258
1259         /*
1260          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1261          * is before setting loaded_vmcs->vcpu to -1 which is done in
1262          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1263          * then adds the vmcs into percpu list before it is deleted.
1264          */
1265         smp_wmb();
1266
1267         loaded_vmcs_init(loaded_vmcs);
1268         crash_enable_local_vmclear(cpu);
1269 }
1270
1271 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1272 {
1273         int cpu = loaded_vmcs->cpu;
1274
1275         if (cpu != -1)
1276                 smp_call_function_single(cpu,
1277                          __loaded_vmcs_clear, loaded_vmcs, 1);
1278 }
1279
1280 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1281 {
1282         if (vmx->vpid == 0)
1283                 return;
1284
1285         if (cpu_has_vmx_invvpid_single())
1286                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1287 }
1288
1289 static inline void vpid_sync_vcpu_global(void)
1290 {
1291         if (cpu_has_vmx_invvpid_global())
1292                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1293 }
1294
1295 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1296 {
1297         if (cpu_has_vmx_invvpid_single())
1298                 vpid_sync_vcpu_single(vmx);
1299         else
1300                 vpid_sync_vcpu_global();
1301 }
1302
1303 static inline void ept_sync_global(void)
1304 {
1305         if (cpu_has_vmx_invept_global())
1306                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1307 }
1308
1309 static inline void ept_sync_context(u64 eptp)
1310 {
1311         if (enable_ept) {
1312                 if (cpu_has_vmx_invept_context())
1313                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1314                 else
1315                         ept_sync_global();
1316         }
1317 }
1318
1319 static __always_inline unsigned long vmcs_readl(unsigned long field)
1320 {
1321         unsigned long value;
1322
1323         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1324                       : "=a"(value) : "d"(field) : "cc");
1325         return value;
1326 }
1327
1328 static __always_inline u16 vmcs_read16(unsigned long field)
1329 {
1330         return vmcs_readl(field);
1331 }
1332
1333 static __always_inline u32 vmcs_read32(unsigned long field)
1334 {
1335         return vmcs_readl(field);
1336 }
1337
1338 static __always_inline u64 vmcs_read64(unsigned long field)
1339 {
1340 #ifdef CONFIG_X86_64
1341         return vmcs_readl(field);
1342 #else
1343         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1344 #endif
1345 }
1346
1347 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1348 {
1349         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1350                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1351         dump_stack();
1352 }
1353
1354 static void vmcs_writel(unsigned long field, unsigned long value)
1355 {
1356         u8 error;
1357
1358         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1359                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1360         if (unlikely(error))
1361                 vmwrite_error(field, value);
1362 }
1363
1364 static void vmcs_write16(unsigned long field, u16 value)
1365 {
1366         vmcs_writel(field, value);
1367 }
1368
1369 static void vmcs_write32(unsigned long field, u32 value)
1370 {
1371         vmcs_writel(field, value);
1372 }
1373
1374 static void vmcs_write64(unsigned long field, u64 value)
1375 {
1376         vmcs_writel(field, value);
1377 #ifndef CONFIG_X86_64
1378         asm volatile ("");
1379         vmcs_writel(field+1, value >> 32);
1380 #endif
1381 }
1382
1383 static void vmcs_clear_bits(unsigned long field, u32 mask)
1384 {
1385         vmcs_writel(field, vmcs_readl(field) & ~mask);
1386 }
1387
1388 static void vmcs_set_bits(unsigned long field, u32 mask)
1389 {
1390         vmcs_writel(field, vmcs_readl(field) | mask);
1391 }
1392
1393 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1394 {
1395         vmcs_write32(VM_ENTRY_CONTROLS, val);
1396         vmx->vm_entry_controls_shadow = val;
1397 }
1398
1399 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1400 {
1401         if (vmx->vm_entry_controls_shadow != val)
1402                 vm_entry_controls_init(vmx, val);
1403 }
1404
1405 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1406 {
1407         return vmx->vm_entry_controls_shadow;
1408 }
1409
1410
1411 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1412 {
1413         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1414 }
1415
1416 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1417 {
1418         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1419 }
1420
1421 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1422 {
1423         vmcs_write32(VM_EXIT_CONTROLS, val);
1424         vmx->vm_exit_controls_shadow = val;
1425 }
1426
1427 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1428 {
1429         if (vmx->vm_exit_controls_shadow != val)
1430                 vm_exit_controls_init(vmx, val);
1431 }
1432
1433 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1434 {
1435         return vmx->vm_exit_controls_shadow;
1436 }
1437
1438
1439 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1440 {
1441         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1442 }
1443
1444 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1445 {
1446         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1447 }
1448
1449 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1450 {
1451         vmx->segment_cache.bitmask = 0;
1452 }
1453
1454 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1455                                        unsigned field)
1456 {
1457         bool ret;
1458         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1459
1460         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1461                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1462                 vmx->segment_cache.bitmask = 0;
1463         }
1464         ret = vmx->segment_cache.bitmask & mask;
1465         vmx->segment_cache.bitmask |= mask;
1466         return ret;
1467 }
1468
1469 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1470 {
1471         u16 *p = &vmx->segment_cache.seg[seg].selector;
1472
1473         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1474                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1475         return *p;
1476 }
1477
1478 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1479 {
1480         ulong *p = &vmx->segment_cache.seg[seg].base;
1481
1482         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1483                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1484         return *p;
1485 }
1486
1487 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1488 {
1489         u32 *p = &vmx->segment_cache.seg[seg].limit;
1490
1491         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1492                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1493         return *p;
1494 }
1495
1496 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1497 {
1498         u32 *p = &vmx->segment_cache.seg[seg].ar;
1499
1500         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1501                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1502         return *p;
1503 }
1504
1505 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1506 {
1507         u32 eb;
1508
1509         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1510              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1511         if ((vcpu->guest_debug &
1512              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1513             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1514                 eb |= 1u << BP_VECTOR;
1515         if (to_vmx(vcpu)->rmode.vm86_active)
1516                 eb = ~0;
1517         if (enable_ept)
1518                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1519         if (vcpu->fpu_active)
1520                 eb &= ~(1u << NM_VECTOR);
1521
1522         /* When we are running a nested L2 guest and L1 specified for it a
1523          * certain exception bitmap, we must trap the same exceptions and pass
1524          * them to L1. When running L2, we will only handle the exceptions
1525          * specified above if L1 did not want them.
1526          */
1527         if (is_guest_mode(vcpu))
1528                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1529
1530         vmcs_write32(EXCEPTION_BITMAP, eb);
1531 }
1532
1533 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1534                 unsigned long entry, unsigned long exit)
1535 {
1536         vm_entry_controls_clearbit(vmx, entry);
1537         vm_exit_controls_clearbit(vmx, exit);
1538 }
1539
1540 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1541 {
1542         unsigned i;
1543         struct msr_autoload *m = &vmx->msr_autoload;
1544
1545         switch (msr) {
1546         case MSR_EFER:
1547                 if (cpu_has_load_ia32_efer) {
1548                         clear_atomic_switch_msr_special(vmx,
1549                                         VM_ENTRY_LOAD_IA32_EFER,
1550                                         VM_EXIT_LOAD_IA32_EFER);
1551                         return;
1552                 }
1553                 break;
1554         case MSR_CORE_PERF_GLOBAL_CTRL:
1555                 if (cpu_has_load_perf_global_ctrl) {
1556                         clear_atomic_switch_msr_special(vmx,
1557                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1558                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1559                         return;
1560                 }
1561                 break;
1562         }
1563
1564         for (i = 0; i < m->nr; ++i)
1565                 if (m->guest[i].index == msr)
1566                         break;
1567
1568         if (i == m->nr)
1569                 return;
1570         --m->nr;
1571         m->guest[i] = m->guest[m->nr];
1572         m->host[i] = m->host[m->nr];
1573         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1574         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1575 }
1576
1577 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1578                 unsigned long entry, unsigned long exit,
1579                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1580                 u64 guest_val, u64 host_val)
1581 {
1582         vmcs_write64(guest_val_vmcs, guest_val);
1583         vmcs_write64(host_val_vmcs, host_val);
1584         vm_entry_controls_setbit(vmx, entry);
1585         vm_exit_controls_setbit(vmx, exit);
1586 }
1587
1588 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1589                                   u64 guest_val, u64 host_val)
1590 {
1591         unsigned i;
1592         struct msr_autoload *m = &vmx->msr_autoload;
1593
1594         switch (msr) {
1595         case MSR_EFER:
1596                 if (cpu_has_load_ia32_efer) {
1597                         add_atomic_switch_msr_special(vmx,
1598                                         VM_ENTRY_LOAD_IA32_EFER,
1599                                         VM_EXIT_LOAD_IA32_EFER,
1600                                         GUEST_IA32_EFER,
1601                                         HOST_IA32_EFER,
1602                                         guest_val, host_val);
1603                         return;
1604                 }
1605                 break;
1606         case MSR_CORE_PERF_GLOBAL_CTRL:
1607                 if (cpu_has_load_perf_global_ctrl) {
1608                         add_atomic_switch_msr_special(vmx,
1609                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1610                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1611                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1612                                         HOST_IA32_PERF_GLOBAL_CTRL,
1613                                         guest_val, host_val);
1614                         return;
1615                 }
1616                 break;
1617         }
1618
1619         for (i = 0; i < m->nr; ++i)
1620                 if (m->guest[i].index == msr)
1621                         break;
1622
1623         if (i == NR_AUTOLOAD_MSRS) {
1624                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1625                                 "Can't add msr %x\n", msr);
1626                 return;
1627         } else if (i == m->nr) {
1628                 ++m->nr;
1629                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1630                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1631         }
1632
1633         m->guest[i].index = msr;
1634         m->guest[i].value = guest_val;
1635         m->host[i].index = msr;
1636         m->host[i].value = host_val;
1637 }
1638
1639 static void reload_tss(void)
1640 {
1641         /*
1642          * VT restores TR but not its size.  Useless.
1643          */
1644         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1645         struct desc_struct *descs;
1646
1647         descs = (void *)gdt->address;
1648         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1649         load_TR_desc();
1650 }
1651
1652 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1653 {
1654         u64 guest_efer;
1655         u64 ignore_bits;
1656
1657         guest_efer = vmx->vcpu.arch.efer;
1658
1659         /*
1660          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1661          * outside long mode
1662          */
1663         ignore_bits = EFER_NX | EFER_SCE;
1664 #ifdef CONFIG_X86_64
1665         ignore_bits |= EFER_LMA | EFER_LME;
1666         /* SCE is meaningful only in long mode on Intel */
1667         if (guest_efer & EFER_LMA)
1668                 ignore_bits &= ~(u64)EFER_SCE;
1669 #endif
1670         guest_efer &= ~ignore_bits;
1671         guest_efer |= host_efer & ignore_bits;
1672         vmx->guest_msrs[efer_offset].data = guest_efer;
1673         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1674
1675         clear_atomic_switch_msr(vmx, MSR_EFER);
1676
1677         /*
1678          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1679          * On CPUs that support "load IA32_EFER", always switch EFER
1680          * atomically, since it's faster than switching it manually.
1681          */
1682         if (cpu_has_load_ia32_efer ||
1683             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1684                 guest_efer = vmx->vcpu.arch.efer;
1685                 if (!(guest_efer & EFER_LMA))
1686                         guest_efer &= ~EFER_LME;
1687                 if (guest_efer != host_efer)
1688                         add_atomic_switch_msr(vmx, MSR_EFER,
1689                                               guest_efer, host_efer);
1690                 return false;
1691         }
1692
1693         return true;
1694 }
1695
1696 static unsigned long segment_base(u16 selector)
1697 {
1698         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1699         struct desc_struct *d;
1700         unsigned long table_base;
1701         unsigned long v;
1702
1703         if (!(selector & ~3))
1704                 return 0;
1705
1706         table_base = gdt->address;
1707
1708         if (selector & 4) {           /* from ldt */
1709                 u16 ldt_selector = kvm_read_ldt();
1710
1711                 if (!(ldt_selector & ~3))
1712                         return 0;
1713
1714                 table_base = segment_base(ldt_selector);
1715         }
1716         d = (struct desc_struct *)(table_base + (selector & ~7));
1717         v = get_desc_base(d);
1718 #ifdef CONFIG_X86_64
1719        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1720                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1721 #endif
1722         return v;
1723 }
1724
1725 static inline unsigned long kvm_read_tr_base(void)
1726 {
1727         u16 tr;
1728         asm("str %0" : "=g"(tr));
1729         return segment_base(tr);
1730 }
1731
1732 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1733 {
1734         struct vcpu_vmx *vmx = to_vmx(vcpu);
1735         int i;
1736
1737         if (vmx->host_state.loaded)
1738                 return;
1739
1740         vmx->host_state.loaded = 1;
1741         /*
1742          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1743          * allow segment selectors with cpl > 0 or ti == 1.
1744          */
1745         vmx->host_state.ldt_sel = kvm_read_ldt();
1746         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1747         savesegment(fs, vmx->host_state.fs_sel);
1748         if (!(vmx->host_state.fs_sel & 7)) {
1749                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1750                 vmx->host_state.fs_reload_needed = 0;
1751         } else {
1752                 vmcs_write16(HOST_FS_SELECTOR, 0);
1753                 vmx->host_state.fs_reload_needed = 1;
1754         }
1755         savesegment(gs, vmx->host_state.gs_sel);
1756         if (!(vmx->host_state.gs_sel & 7))
1757                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1758         else {
1759                 vmcs_write16(HOST_GS_SELECTOR, 0);
1760                 vmx->host_state.gs_ldt_reload_needed = 1;
1761         }
1762
1763 #ifdef CONFIG_X86_64
1764         savesegment(ds, vmx->host_state.ds_sel);
1765         savesegment(es, vmx->host_state.es_sel);
1766 #endif
1767
1768 #ifdef CONFIG_X86_64
1769         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1770         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1771 #else
1772         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1773         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1774 #endif
1775
1776 #ifdef CONFIG_X86_64
1777         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1778         if (is_long_mode(&vmx->vcpu))
1779                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1780 #endif
1781         if (boot_cpu_has(X86_FEATURE_MPX))
1782                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1783         for (i = 0; i < vmx->save_nmsrs; ++i)
1784                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1785                                    vmx->guest_msrs[i].data,
1786                                    vmx->guest_msrs[i].mask);
1787 }
1788
1789 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1790 {
1791         if (!vmx->host_state.loaded)
1792                 return;
1793
1794         ++vmx->vcpu.stat.host_state_reload;
1795         vmx->host_state.loaded = 0;
1796 #ifdef CONFIG_X86_64
1797         if (is_long_mode(&vmx->vcpu))
1798                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1799 #endif
1800         if (vmx->host_state.gs_ldt_reload_needed) {
1801                 kvm_load_ldt(vmx->host_state.ldt_sel);
1802 #ifdef CONFIG_X86_64
1803                 load_gs_index(vmx->host_state.gs_sel);
1804 #else
1805                 loadsegment(gs, vmx->host_state.gs_sel);
1806 #endif
1807         }
1808         if (vmx->host_state.fs_reload_needed)
1809                 loadsegment(fs, vmx->host_state.fs_sel);
1810 #ifdef CONFIG_X86_64
1811         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1812                 loadsegment(ds, vmx->host_state.ds_sel);
1813                 loadsegment(es, vmx->host_state.es_sel);
1814         }
1815 #endif
1816         reload_tss();
1817 #ifdef CONFIG_X86_64
1818         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1819 #endif
1820         if (vmx->host_state.msr_host_bndcfgs)
1821                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1822         /*
1823          * If the FPU is not active (through the host task or
1824          * the guest vcpu), then restore the cr0.TS bit.
1825          */
1826         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1827                 stts();
1828         load_gdt(this_cpu_ptr(&host_gdt));
1829 }
1830
1831 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1832 {
1833         preempt_disable();
1834         __vmx_load_host_state(vmx);
1835         preempt_enable();
1836 }
1837
1838 /*
1839  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1840  * vcpu mutex is already taken.
1841  */
1842 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1843 {
1844         struct vcpu_vmx *vmx = to_vmx(vcpu);
1845         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1846
1847         if (!vmm_exclusive)
1848                 kvm_cpu_vmxon(phys_addr);
1849         else if (vmx->loaded_vmcs->cpu != cpu)
1850                 loaded_vmcs_clear(vmx->loaded_vmcs);
1851
1852         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1853                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1854                 vmcs_load(vmx->loaded_vmcs->vmcs);
1855         }
1856
1857         if (vmx->loaded_vmcs->cpu != cpu) {
1858                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1859                 unsigned long sysenter_esp;
1860
1861                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1862                 local_irq_disable();
1863                 crash_disable_local_vmclear(cpu);
1864
1865                 /*
1866                  * Read loaded_vmcs->cpu should be before fetching
1867                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1868                  * See the comments in __loaded_vmcs_clear().
1869                  */
1870                 smp_rmb();
1871
1872                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1873                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1874                 crash_enable_local_vmclear(cpu);
1875                 local_irq_enable();
1876
1877                 /*
1878                  * Linux uses per-cpu TSS and GDT, so set these when switching
1879                  * processors.
1880                  */
1881                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1882                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1883
1884                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1885                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1886                 vmx->loaded_vmcs->cpu = cpu;
1887         }
1888 }
1889
1890 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1891 {
1892         __vmx_load_host_state(to_vmx(vcpu));
1893         if (!vmm_exclusive) {
1894                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1895                 vcpu->cpu = -1;
1896                 kvm_cpu_vmxoff();
1897         }
1898 }
1899
1900 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1901 {
1902         ulong cr0;
1903
1904         if (vcpu->fpu_active)
1905                 return;
1906         vcpu->fpu_active = 1;
1907         cr0 = vmcs_readl(GUEST_CR0);
1908         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1909         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1910         vmcs_writel(GUEST_CR0, cr0);
1911         update_exception_bitmap(vcpu);
1912         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1913         if (is_guest_mode(vcpu))
1914                 vcpu->arch.cr0_guest_owned_bits &=
1915                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1916         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1917 }
1918
1919 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1920
1921 /*
1922  * Return the cr0 value that a nested guest would read. This is a combination
1923  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1924  * its hypervisor (cr0_read_shadow).
1925  */
1926 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1927 {
1928         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1929                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1930 }
1931 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1932 {
1933         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1934                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1935 }
1936
1937 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1938 {
1939         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1940          * set this *before* calling this function.
1941          */
1942         vmx_decache_cr0_guest_bits(vcpu);
1943         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1944         update_exception_bitmap(vcpu);
1945         vcpu->arch.cr0_guest_owned_bits = 0;
1946         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1947         if (is_guest_mode(vcpu)) {
1948                 /*
1949                  * L1's specified read shadow might not contain the TS bit,
1950                  * so now that we turned on shadowing of this bit, we need to
1951                  * set this bit of the shadow. Like in nested_vmx_run we need
1952                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1953                  * up-to-date here because we just decached cr0.TS (and we'll
1954                  * only update vmcs12->guest_cr0 on nested exit).
1955                  */
1956                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1957                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1958                         (vcpu->arch.cr0 & X86_CR0_TS);
1959                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1960         } else
1961                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1962 }
1963
1964 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1965 {
1966         unsigned long rflags, save_rflags;
1967
1968         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1969                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1970                 rflags = vmcs_readl(GUEST_RFLAGS);
1971                 if (to_vmx(vcpu)->rmode.vm86_active) {
1972                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1973                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1974                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1975                 }
1976                 to_vmx(vcpu)->rflags = rflags;
1977         }
1978         return to_vmx(vcpu)->rflags;
1979 }
1980
1981 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1982 {
1983         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1984         to_vmx(vcpu)->rflags = rflags;
1985         if (to_vmx(vcpu)->rmode.vm86_active) {
1986                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1987                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1988         }
1989         vmcs_writel(GUEST_RFLAGS, rflags);
1990 }
1991
1992 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1993 {
1994         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1995         int ret = 0;
1996
1997         if (interruptibility & GUEST_INTR_STATE_STI)
1998                 ret |= KVM_X86_SHADOW_INT_STI;
1999         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2000                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2001
2002         return ret;
2003 }
2004
2005 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2006 {
2007         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2008         u32 interruptibility = interruptibility_old;
2009
2010         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2011
2012         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2013                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2014         else if (mask & KVM_X86_SHADOW_INT_STI)
2015                 interruptibility |= GUEST_INTR_STATE_STI;
2016
2017         if ((interruptibility != interruptibility_old))
2018                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2019 }
2020
2021 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2022 {
2023         unsigned long rip;
2024
2025         rip = kvm_rip_read(vcpu);
2026         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2027         kvm_rip_write(vcpu, rip);
2028
2029         /* skipping an emulated instruction also counts */
2030         vmx_set_interrupt_shadow(vcpu, 0);
2031 }
2032
2033 /*
2034  * KVM wants to inject page-faults which it got to the guest. This function
2035  * checks whether in a nested guest, we need to inject them to L1 or L2.
2036  */
2037 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2038 {
2039         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2040
2041         if (!(vmcs12->exception_bitmap & (1u << nr)))
2042                 return 0;
2043
2044         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2045                           vmcs_read32(VM_EXIT_INTR_INFO),
2046                           vmcs_readl(EXIT_QUALIFICATION));
2047         return 1;
2048 }
2049
2050 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2051                                 bool has_error_code, u32 error_code,
2052                                 bool reinject)
2053 {
2054         struct vcpu_vmx *vmx = to_vmx(vcpu);
2055         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2056
2057         if (!reinject && is_guest_mode(vcpu) &&
2058             nested_vmx_check_exception(vcpu, nr))
2059                 return;
2060
2061         if (has_error_code) {
2062                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2063                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2064         }
2065
2066         if (vmx->rmode.vm86_active) {
2067                 int inc_eip = 0;
2068                 if (kvm_exception_is_soft(nr))
2069                         inc_eip = vcpu->arch.event_exit_inst_len;
2070                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2071                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2072                 return;
2073         }
2074
2075         if (kvm_exception_is_soft(nr)) {
2076                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2077                              vmx->vcpu.arch.event_exit_inst_len);
2078                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2079         } else
2080                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2081
2082         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2083 }
2084
2085 static bool vmx_rdtscp_supported(void)
2086 {
2087         return cpu_has_vmx_rdtscp();
2088 }
2089
2090 static bool vmx_invpcid_supported(void)
2091 {
2092         return cpu_has_vmx_invpcid() && enable_ept;
2093 }
2094
2095 /*
2096  * Swap MSR entry in host/guest MSR entry array.
2097  */
2098 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2099 {
2100         struct shared_msr_entry tmp;
2101
2102         tmp = vmx->guest_msrs[to];
2103         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2104         vmx->guest_msrs[from] = tmp;
2105 }
2106
2107 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2108 {
2109         unsigned long *msr_bitmap;
2110
2111         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2112                 if (is_long_mode(vcpu))
2113                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2114                 else
2115                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2116         } else {
2117                 if (is_long_mode(vcpu))
2118                         msr_bitmap = vmx_msr_bitmap_longmode;
2119                 else
2120                         msr_bitmap = vmx_msr_bitmap_legacy;
2121         }
2122
2123         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2124 }
2125
2126 /*
2127  * Set up the vmcs to automatically save and restore system
2128  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2129  * mode, as fiddling with msrs is very expensive.
2130  */
2131 static void setup_msrs(struct vcpu_vmx *vmx)
2132 {
2133         int save_nmsrs, index;
2134
2135         save_nmsrs = 0;
2136 #ifdef CONFIG_X86_64
2137         if (is_long_mode(&vmx->vcpu)) {
2138                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2139                 if (index >= 0)
2140                         move_msr_up(vmx, index, save_nmsrs++);
2141                 index = __find_msr_index(vmx, MSR_LSTAR);
2142                 if (index >= 0)
2143                         move_msr_up(vmx, index, save_nmsrs++);
2144                 index = __find_msr_index(vmx, MSR_CSTAR);
2145                 if (index >= 0)
2146                         move_msr_up(vmx, index, save_nmsrs++);
2147                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2148                 if (index >= 0 && vmx->rdtscp_enabled)
2149                         move_msr_up(vmx, index, save_nmsrs++);
2150                 /*
2151                  * MSR_STAR is only needed on long mode guests, and only
2152                  * if efer.sce is enabled.
2153                  */
2154                 index = __find_msr_index(vmx, MSR_STAR);
2155                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2156                         move_msr_up(vmx, index, save_nmsrs++);
2157         }
2158 #endif
2159         index = __find_msr_index(vmx, MSR_EFER);
2160         if (index >= 0 && update_transition_efer(vmx, index))
2161                 move_msr_up(vmx, index, save_nmsrs++);
2162
2163         vmx->save_nmsrs = save_nmsrs;
2164
2165         if (cpu_has_vmx_msr_bitmap())
2166                 vmx_set_msr_bitmap(&vmx->vcpu);
2167 }
2168
2169 /*
2170  * reads and returns guest's timestamp counter "register"
2171  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2172  */
2173 static u64 guest_read_tsc(void)
2174 {
2175         u64 host_tsc, tsc_offset;
2176
2177         rdtscll(host_tsc);
2178         tsc_offset = vmcs_read64(TSC_OFFSET);
2179         return host_tsc + tsc_offset;
2180 }
2181
2182 /*
2183  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2184  * counter, even if a nested guest (L2) is currently running.
2185  */
2186 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2187 {
2188         u64 tsc_offset;
2189
2190         tsc_offset = is_guest_mode(vcpu) ?
2191                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2192                 vmcs_read64(TSC_OFFSET);
2193         return host_tsc + tsc_offset;
2194 }
2195
2196 /*
2197  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2198  * software catchup for faster rates on slower CPUs.
2199  */
2200 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2201 {
2202         if (!scale)
2203                 return;
2204
2205         if (user_tsc_khz > tsc_khz) {
2206                 vcpu->arch.tsc_catchup = 1;
2207                 vcpu->arch.tsc_always_catchup = 1;
2208         } else
2209                 WARN(1, "user requested TSC rate below hardware speed\n");
2210 }
2211
2212 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2213 {
2214         return vmcs_read64(TSC_OFFSET);
2215 }
2216
2217 /*
2218  * writes 'offset' into guest's timestamp counter offset register
2219  */
2220 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2221 {
2222         if (is_guest_mode(vcpu)) {
2223                 /*
2224                  * We're here if L1 chose not to trap WRMSR to TSC. According
2225                  * to the spec, this should set L1's TSC; The offset that L1
2226                  * set for L2 remains unchanged, and still needs to be added
2227                  * to the newly set TSC to get L2's TSC.
2228                  */
2229                 struct vmcs12 *vmcs12;
2230                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2231                 /* recalculate vmcs02.TSC_OFFSET: */
2232                 vmcs12 = get_vmcs12(vcpu);
2233                 vmcs_write64(TSC_OFFSET, offset +
2234                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2235                          vmcs12->tsc_offset : 0));
2236         } else {
2237                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2238                                            vmcs_read64(TSC_OFFSET), offset);
2239                 vmcs_write64(TSC_OFFSET, offset);
2240         }
2241 }
2242
2243 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2244 {
2245         u64 offset = vmcs_read64(TSC_OFFSET);
2246
2247         vmcs_write64(TSC_OFFSET, offset + adjustment);
2248         if (is_guest_mode(vcpu)) {
2249                 /* Even when running L2, the adjustment needs to apply to L1 */
2250                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2251         } else
2252                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2253                                            offset + adjustment);
2254 }
2255
2256 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2257 {
2258         return target_tsc - native_read_tsc();
2259 }
2260
2261 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2262 {
2263         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2264         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2265 }
2266
2267 /*
2268  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2269  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2270  * all guests if the "nested" module option is off, and can also be disabled
2271  * for a single guest by disabling its VMX cpuid bit.
2272  */
2273 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2274 {
2275         return nested && guest_cpuid_has_vmx(vcpu);
2276 }
2277
2278 /*
2279  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2280  * returned for the various VMX controls MSRs when nested VMX is enabled.
2281  * The same values should also be used to verify that vmcs12 control fields are
2282  * valid during nested entry from L1 to L2.
2283  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2284  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2285  * bit in the high half is on if the corresponding bit in the control field
2286  * may be on. See also vmx_control_verify().
2287  * TODO: allow these variables to be modified (downgraded) by module options
2288  * or other means.
2289  */
2290 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2291 static u32 nested_vmx_true_procbased_ctls_low;
2292 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2293 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2294 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2295 static u32 nested_vmx_true_exit_ctls_low;
2296 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2297 static u32 nested_vmx_true_entry_ctls_low;
2298 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2299 static u32 nested_vmx_ept_caps;
2300 static __init void nested_vmx_setup_ctls_msrs(void)
2301 {
2302         /*
2303          * Note that as a general rule, the high half of the MSRs (bits in
2304          * the control fields which may be 1) should be initialized by the
2305          * intersection of the underlying hardware's MSR (i.e., features which
2306          * can be supported) and the list of features we want to expose -
2307          * because they are known to be properly supported in our code.
2308          * Also, usually, the low half of the MSRs (bits which must be 1) can
2309          * be set to 0, meaning that L1 may turn off any of these bits. The
2310          * reason is that if one of these bits is necessary, it will appear
2311          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2312          * fields of vmcs01 and vmcs02, will turn these bits off - and
2313          * nested_vmx_exit_handled() will not pass related exits to L1.
2314          * These rules have exceptions below.
2315          */
2316
2317         /* pin-based controls */
2318         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2319               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2320         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2321         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2322                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2323         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2324                 PIN_BASED_VMX_PREEMPTION_TIMER;
2325
2326         /* exit controls */
2327         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2328                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2329         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2330
2331         nested_vmx_exit_ctls_high &=
2332 #ifdef CONFIG_X86_64
2333                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2334 #endif
2335                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2336         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2337                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2338                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2339
2340         if (vmx_mpx_supported())
2341                 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2342
2343         /* We support free control of debug control saving. */
2344         nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2345                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2346
2347         /* entry controls */
2348         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2349                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2350         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2351         nested_vmx_entry_ctls_high &=
2352 #ifdef CONFIG_X86_64
2353                 VM_ENTRY_IA32E_MODE |
2354 #endif
2355                 VM_ENTRY_LOAD_IA32_PAT;
2356         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2357                                        VM_ENTRY_LOAD_IA32_EFER);
2358         if (vmx_mpx_supported())
2359                 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2360
2361         /* We support free control of debug control loading. */
2362         nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2363                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2364
2365         /* cpu-based controls */
2366         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2367                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2368         nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2369         nested_vmx_procbased_ctls_high &=
2370                 CPU_BASED_VIRTUAL_INTR_PENDING |
2371                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2372                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2373                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2374                 CPU_BASED_CR3_STORE_EXITING |
2375 #ifdef CONFIG_X86_64
2376                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2377 #endif
2378                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2379                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2380                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2381                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2382                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2383         /*
2384          * We can allow some features even when not supported by the
2385          * hardware. For example, L1 can specify an MSR bitmap - and we
2386          * can use it to avoid exits to L1 - even when L0 runs L2
2387          * without MSR bitmaps.
2388          */
2389         nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2390                 CPU_BASED_USE_MSR_BITMAPS;
2391
2392         /* We support free control of CR3 access interception. */
2393         nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2394                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2395
2396         /* secondary cpu-based controls */
2397         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2398                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2399         nested_vmx_secondary_ctls_low = 0;
2400         nested_vmx_secondary_ctls_high &=
2401                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2402                 SECONDARY_EXEC_WBINVD_EXITING |
2403                 SECONDARY_EXEC_XSAVES;
2404
2405         if (enable_ept) {
2406                 /* nested EPT: emulate EPT also to L1 */
2407                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT |
2408                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2409                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2410                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2411                          VMX_EPT_INVEPT_BIT;
2412                 nested_vmx_ept_caps &= vmx_capability.ept;
2413                 /*
2414                  * For nested guests, we don't do anything specific
2415                  * for single context invalidation. Hence, only advertise
2416                  * support for global context invalidation.
2417                  */
2418                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2419         } else
2420                 nested_vmx_ept_caps = 0;
2421
2422         /* miscellaneous data */
2423         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2424         nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2425         nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2426                 VMX_MISC_ACTIVITY_HLT;
2427         nested_vmx_misc_high = 0;
2428 }
2429
2430 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2431 {
2432         /*
2433          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2434          */
2435         return ((control & high) | low) == control;
2436 }
2437
2438 static inline u64 vmx_control_msr(u32 low, u32 high)
2439 {
2440         return low | ((u64)high << 32);
2441 }
2442
2443 /* Returns 0 on success, non-0 otherwise. */
2444 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2445 {
2446         switch (msr_index) {
2447         case MSR_IA32_VMX_BASIC:
2448                 /*
2449                  * This MSR reports some information about VMX support. We
2450                  * should return information about the VMX we emulate for the
2451                  * guest, and the VMCS structure we give it - not about the
2452                  * VMX support of the underlying hardware.
2453                  */
2454                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2455                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2456                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2457                 break;
2458         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2459         case MSR_IA32_VMX_PINBASED_CTLS:
2460                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2461                                         nested_vmx_pinbased_ctls_high);
2462                 break;
2463         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2464                 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2465                                         nested_vmx_procbased_ctls_high);
2466                 break;
2467         case MSR_IA32_VMX_PROCBASED_CTLS:
2468                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2469                                         nested_vmx_procbased_ctls_high);
2470                 break;
2471         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2472                 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2473                                         nested_vmx_exit_ctls_high);
2474                 break;
2475         case MSR_IA32_VMX_EXIT_CTLS:
2476                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2477                                         nested_vmx_exit_ctls_high);
2478                 break;
2479         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2480                 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2481                                         nested_vmx_entry_ctls_high);
2482                 break;
2483         case MSR_IA32_VMX_ENTRY_CTLS:
2484                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2485                                         nested_vmx_entry_ctls_high);
2486                 break;
2487         case MSR_IA32_VMX_MISC:
2488                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2489                                          nested_vmx_misc_high);
2490                 break;
2491         /*
2492          * These MSRs specify bits which the guest must keep fixed (on or off)
2493          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2494          * We picked the standard core2 setting.
2495          */
2496 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2497 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2498         case MSR_IA32_VMX_CR0_FIXED0:
2499                 *pdata = VMXON_CR0_ALWAYSON;
2500                 break;
2501         case MSR_IA32_VMX_CR0_FIXED1:
2502                 *pdata = -1ULL;
2503                 break;
2504         case MSR_IA32_VMX_CR4_FIXED0:
2505                 *pdata = VMXON_CR4_ALWAYSON;
2506                 break;
2507         case MSR_IA32_VMX_CR4_FIXED1:
2508                 *pdata = -1ULL;
2509                 break;
2510         case MSR_IA32_VMX_VMCS_ENUM:
2511                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2512                 break;
2513         case MSR_IA32_VMX_PROCBASED_CTLS2:
2514                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2515                                         nested_vmx_secondary_ctls_high);
2516                 break;
2517         case MSR_IA32_VMX_EPT_VPID_CAP:
2518                 /* Currently, no nested vpid support */
2519                 *pdata = nested_vmx_ept_caps;
2520                 break;
2521         default:
2522                 return 1;
2523         }
2524
2525         return 0;
2526 }
2527
2528 /*
2529  * Reads an msr value (of 'msr_index') into 'pdata'.
2530  * Returns 0 on success, non-0 otherwise.
2531  * Assumes vcpu_load() was already called.
2532  */
2533 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2534 {
2535         u64 data;
2536         struct shared_msr_entry *msr;
2537
2538         if (!pdata) {
2539                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2540                 return -EINVAL;
2541         }
2542
2543         switch (msr_index) {
2544 #ifdef CONFIG_X86_64
2545         case MSR_FS_BASE:
2546                 data = vmcs_readl(GUEST_FS_BASE);
2547                 break;
2548         case MSR_GS_BASE:
2549                 data = vmcs_readl(GUEST_GS_BASE);
2550                 break;
2551         case MSR_KERNEL_GS_BASE:
2552                 vmx_load_host_state(to_vmx(vcpu));
2553                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2554                 break;
2555 #endif
2556         case MSR_EFER:
2557                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2558         case MSR_IA32_TSC:
2559                 data = guest_read_tsc();
2560                 break;
2561         case MSR_IA32_SYSENTER_CS:
2562                 data = vmcs_read32(GUEST_SYSENTER_CS);
2563                 break;
2564         case MSR_IA32_SYSENTER_EIP:
2565                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2566                 break;
2567         case MSR_IA32_SYSENTER_ESP:
2568                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2569                 break;
2570         case MSR_IA32_BNDCFGS:
2571                 if (!vmx_mpx_supported())
2572                         return 1;
2573                 data = vmcs_read64(GUEST_BNDCFGS);
2574                 break;
2575         case MSR_IA32_FEATURE_CONTROL:
2576                 if (!nested_vmx_allowed(vcpu))
2577                         return 1;
2578                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2579                 break;
2580         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2581                 if (!nested_vmx_allowed(vcpu))
2582                         return 1;
2583                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2584         case MSR_IA32_XSS:
2585                 if (!vmx_xsaves_supported())
2586                         return 1;
2587                 data = vcpu->arch.ia32_xss;
2588                 break;
2589         case MSR_TSC_AUX:
2590                 if (!to_vmx(vcpu)->rdtscp_enabled)
2591                         return 1;
2592                 /* Otherwise falls through */
2593         default:
2594                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2595                 if (msr) {
2596                         data = msr->data;
2597                         break;
2598                 }
2599                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2600         }
2601
2602         *pdata = data;
2603         return 0;
2604 }
2605
2606 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2607
2608 /*
2609  * Writes msr value into into the appropriate "register".
2610  * Returns 0 on success, non-0 otherwise.
2611  * Assumes vcpu_load() was already called.
2612  */
2613 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2614 {
2615         struct vcpu_vmx *vmx = to_vmx(vcpu);
2616         struct shared_msr_entry *msr;
2617         int ret = 0;
2618         u32 msr_index = msr_info->index;
2619         u64 data = msr_info->data;
2620
2621         switch (msr_index) {
2622         case MSR_EFER:
2623                 ret = kvm_set_msr_common(vcpu, msr_info);
2624                 break;
2625 #ifdef CONFIG_X86_64
2626         case MSR_FS_BASE:
2627                 vmx_segment_cache_clear(vmx);
2628                 vmcs_writel(GUEST_FS_BASE, data);
2629                 break;
2630         case MSR_GS_BASE:
2631                 vmx_segment_cache_clear(vmx);
2632                 vmcs_writel(GUEST_GS_BASE, data);
2633                 break;
2634         case MSR_KERNEL_GS_BASE:
2635                 vmx_load_host_state(vmx);
2636                 vmx->msr_guest_kernel_gs_base = data;
2637                 break;
2638 #endif
2639         case MSR_IA32_SYSENTER_CS:
2640                 vmcs_write32(GUEST_SYSENTER_CS, data);
2641                 break;
2642         case MSR_IA32_SYSENTER_EIP:
2643                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2644                 break;
2645         case MSR_IA32_SYSENTER_ESP:
2646                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2647                 break;
2648         case MSR_IA32_BNDCFGS:
2649                 if (!vmx_mpx_supported())
2650                         return 1;
2651                 vmcs_write64(GUEST_BNDCFGS, data);
2652                 break;
2653         case MSR_IA32_TSC:
2654                 kvm_write_tsc(vcpu, msr_info);
2655                 break;
2656         case MSR_IA32_CR_PAT:
2657                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2658                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2659                                 return 1;
2660                         vmcs_write64(GUEST_IA32_PAT, data);
2661                         vcpu->arch.pat = data;
2662                         break;
2663                 }
2664                 ret = kvm_set_msr_common(vcpu, msr_info);
2665                 break;
2666         case MSR_IA32_TSC_ADJUST:
2667                 ret = kvm_set_msr_common(vcpu, msr_info);
2668                 break;
2669         case MSR_IA32_FEATURE_CONTROL:
2670                 if (!nested_vmx_allowed(vcpu) ||
2671                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2672                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2673                         return 1;
2674                 vmx->nested.msr_ia32_feature_control = data;
2675                 if (msr_info->host_initiated && data == 0)
2676                         vmx_leave_nested(vcpu);
2677                 break;
2678         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2679                 return 1; /* they are read-only */
2680         case MSR_IA32_XSS:
2681                 if (!vmx_xsaves_supported())
2682                         return 1;
2683                 /*
2684                  * The only supported bit as of Skylake is bit 8, but
2685                  * it is not supported on KVM.
2686                  */
2687                 if (data != 0)
2688                         return 1;
2689                 vcpu->arch.ia32_xss = data;
2690                 if (vcpu->arch.ia32_xss != host_xss)
2691                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2692                                 vcpu->arch.ia32_xss, host_xss);
2693                 else
2694                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2695                 break;
2696         case MSR_TSC_AUX:
2697                 if (!vmx->rdtscp_enabled)
2698                         return 1;
2699                 /* Check reserved bit, higher 32 bits should be zero */
2700                 if ((data >> 32) != 0)
2701                         return 1;
2702                 /* Otherwise falls through */
2703         default:
2704                 msr = find_msr_entry(vmx, msr_index);
2705                 if (msr) {
2706                         u64 old_msr_data = msr->data;
2707                         msr->data = data;
2708                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2709                                 preempt_disable();
2710                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2711                                                          msr->mask);
2712                                 preempt_enable();
2713                                 if (ret)
2714                                         msr->data = old_msr_data;
2715                         }
2716                         break;
2717                 }
2718                 ret = kvm_set_msr_common(vcpu, msr_info);
2719         }
2720
2721         return ret;
2722 }
2723
2724 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2725 {
2726         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2727         switch (reg) {
2728         case VCPU_REGS_RSP:
2729                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2730                 break;
2731         case VCPU_REGS_RIP:
2732                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2733                 break;
2734         case VCPU_EXREG_PDPTR:
2735                 if (enable_ept)
2736                         ept_save_pdptrs(vcpu);
2737                 break;
2738         default:
2739                 break;
2740         }
2741 }
2742
2743 static __init int cpu_has_kvm_support(void)
2744 {
2745         return cpu_has_vmx();
2746 }
2747
2748 static __init int vmx_disabled_by_bios(void)
2749 {
2750         u64 msr;
2751
2752         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2753         if (msr & FEATURE_CONTROL_LOCKED) {
2754                 /* launched w/ TXT and VMX disabled */
2755                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2756                         && tboot_enabled())
2757                         return 1;
2758                 /* launched w/o TXT and VMX only enabled w/ TXT */
2759                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2760                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2761                         && !tboot_enabled()) {
2762                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2763                                 "activate TXT before enabling KVM\n");
2764                         return 1;
2765                 }
2766                 /* launched w/o TXT and VMX disabled */
2767                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2768                         && !tboot_enabled())
2769                         return 1;
2770         }
2771
2772         return 0;
2773 }
2774
2775 static void kvm_cpu_vmxon(u64 addr)
2776 {
2777         asm volatile (ASM_VMX_VMXON_RAX
2778                         : : "a"(&addr), "m"(addr)
2779                         : "memory", "cc");
2780 }
2781
2782 static int hardware_enable(void)
2783 {
2784         int cpu = raw_smp_processor_id();
2785         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2786         u64 old, test_bits;
2787
2788         if (read_cr4() & X86_CR4_VMXE)
2789                 return -EBUSY;
2790
2791         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2792
2793         /*
2794          * Now we can enable the vmclear operation in kdump
2795          * since the loaded_vmcss_on_cpu list on this cpu
2796          * has been initialized.
2797          *
2798          * Though the cpu is not in VMX operation now, there
2799          * is no problem to enable the vmclear operation
2800          * for the loaded_vmcss_on_cpu list is empty!
2801          */
2802         crash_enable_local_vmclear(cpu);
2803
2804         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2805
2806         test_bits = FEATURE_CONTROL_LOCKED;
2807         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2808         if (tboot_enabled())
2809                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2810
2811         if ((old & test_bits) != test_bits) {
2812                 /* enable and lock */
2813                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2814         }
2815         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2816
2817         if (vmm_exclusive) {
2818                 kvm_cpu_vmxon(phys_addr);
2819                 ept_sync_global();
2820         }
2821
2822         native_store_gdt(this_cpu_ptr(&host_gdt));
2823
2824         return 0;
2825 }
2826
2827 static void vmclear_local_loaded_vmcss(void)
2828 {
2829         int cpu = raw_smp_processor_id();
2830         struct loaded_vmcs *v, *n;
2831
2832         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2833                                  loaded_vmcss_on_cpu_link)
2834                 __loaded_vmcs_clear(v);
2835 }
2836
2837
2838 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2839  * tricks.
2840  */
2841 static void kvm_cpu_vmxoff(void)
2842 {
2843         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2844 }
2845
2846 static void hardware_disable(void)
2847 {
2848         if (vmm_exclusive) {
2849                 vmclear_local_loaded_vmcss();
2850                 kvm_cpu_vmxoff();
2851         }
2852         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2853 }
2854
2855 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2856                                       u32 msr, u32 *result)
2857 {
2858         u32 vmx_msr_low, vmx_msr_high;
2859         u32 ctl = ctl_min | ctl_opt;
2860
2861         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2862
2863         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2864         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2865
2866         /* Ensure minimum (required) set of control bits are supported. */
2867         if (ctl_min & ~ctl)
2868                 return -EIO;
2869
2870         *result = ctl;
2871         return 0;
2872 }
2873
2874 static __init bool allow_1_setting(u32 msr, u32 ctl)
2875 {
2876         u32 vmx_msr_low, vmx_msr_high;
2877
2878         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2879         return vmx_msr_high & ctl;
2880 }
2881
2882 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2883 {
2884         u32 vmx_msr_low, vmx_msr_high;
2885         u32 min, opt, min2, opt2;
2886         u32 _pin_based_exec_control = 0;
2887         u32 _cpu_based_exec_control = 0;
2888         u32 _cpu_based_2nd_exec_control = 0;
2889         u32 _vmexit_control = 0;
2890         u32 _vmentry_control = 0;
2891
2892         min = CPU_BASED_HLT_EXITING |
2893 #ifdef CONFIG_X86_64
2894               CPU_BASED_CR8_LOAD_EXITING |
2895               CPU_BASED_CR8_STORE_EXITING |
2896 #endif
2897               CPU_BASED_CR3_LOAD_EXITING |
2898               CPU_BASED_CR3_STORE_EXITING |
2899               CPU_BASED_USE_IO_BITMAPS |
2900               CPU_BASED_MOV_DR_EXITING |
2901               CPU_BASED_USE_TSC_OFFSETING |
2902               CPU_BASED_MWAIT_EXITING |
2903               CPU_BASED_MONITOR_EXITING |
2904               CPU_BASED_INVLPG_EXITING |
2905               CPU_BASED_RDPMC_EXITING;
2906
2907         opt = CPU_BASED_TPR_SHADOW |
2908               CPU_BASED_USE_MSR_BITMAPS |
2909               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2910         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2911                                 &_cpu_based_exec_control) < 0)
2912                 return -EIO;
2913 #ifdef CONFIG_X86_64
2914         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2915                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2916                                            ~CPU_BASED_CR8_STORE_EXITING;
2917 #endif
2918         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2919                 min2 = 0;
2920                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2921                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2922                         SECONDARY_EXEC_WBINVD_EXITING |
2923                         SECONDARY_EXEC_ENABLE_VPID |
2924                         SECONDARY_EXEC_ENABLE_EPT |
2925                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2926                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2927                         SECONDARY_EXEC_RDTSCP |
2928                         SECONDARY_EXEC_ENABLE_INVPCID |
2929                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2930                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2931                         SECONDARY_EXEC_SHADOW_VMCS |
2932                         SECONDARY_EXEC_XSAVES;
2933                 if (adjust_vmx_controls(min2, opt2,
2934                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2935                                         &_cpu_based_2nd_exec_control) < 0)
2936                         return -EIO;
2937         }
2938 #ifndef CONFIG_X86_64
2939         if (!(_cpu_based_2nd_exec_control &
2940                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2941                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2942 #endif
2943
2944         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2945                 _cpu_based_2nd_exec_control &= ~(
2946                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2947                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2948                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2949
2950         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2951                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2952                    enabled */
2953                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2954                                              CPU_BASED_CR3_STORE_EXITING |
2955                                              CPU_BASED_INVLPG_EXITING);
2956                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2957                       vmx_capability.ept, vmx_capability.vpid);
2958         }
2959
2960         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2961 #ifdef CONFIG_X86_64
2962         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2963 #endif
2964         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2965                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2966         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2967                                 &_vmexit_control) < 0)
2968                 return -EIO;
2969
2970         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2971         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2972         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2973                                 &_pin_based_exec_control) < 0)
2974                 return -EIO;
2975
2976         if (!(_cpu_based_2nd_exec_control &
2977                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2978                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2979                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2980
2981         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2982         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2983         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2984                                 &_vmentry_control) < 0)
2985                 return -EIO;
2986
2987         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2988
2989         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2990         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2991                 return -EIO;
2992
2993 #ifdef CONFIG_X86_64
2994         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2995         if (vmx_msr_high & (1u<<16))
2996                 return -EIO;
2997 #endif
2998
2999         /* Require Write-Back (WB) memory type for VMCS accesses. */
3000         if (((vmx_msr_high >> 18) & 15) != 6)
3001                 return -EIO;
3002
3003         vmcs_conf->size = vmx_msr_high & 0x1fff;
3004         vmcs_conf->order = get_order(vmcs_config.size);
3005         vmcs_conf->revision_id = vmx_msr_low;
3006
3007         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3008         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3009         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3010         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3011         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3012
3013         cpu_has_load_ia32_efer =
3014                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3015                                 VM_ENTRY_LOAD_IA32_EFER)
3016                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3017                                    VM_EXIT_LOAD_IA32_EFER);
3018
3019         cpu_has_load_perf_global_ctrl =
3020                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3021                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3022                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3023                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3024
3025         /*
3026          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3027          * but due to arrata below it can't be used. Workaround is to use
3028          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3029          *
3030          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3031          *
3032          * AAK155             (model 26)
3033          * AAP115             (model 30)
3034          * AAT100             (model 37)
3035          * BC86,AAY89,BD102   (model 44)
3036          * BA97               (model 46)
3037          *
3038          */
3039         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3040                 switch (boot_cpu_data.x86_model) {
3041                 case 26:
3042                 case 30:
3043                 case 37:
3044                 case 44:
3045                 case 46:
3046                         cpu_has_load_perf_global_ctrl = false;
3047                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3048                                         "does not work properly. Using workaround\n");
3049                         break;
3050                 default:
3051                         break;
3052                 }
3053         }
3054
3055         if (cpu_has_xsaves)
3056                 rdmsrl(MSR_IA32_XSS, host_xss);
3057
3058         return 0;
3059 }
3060
3061 static struct vmcs *alloc_vmcs_cpu(int cpu)
3062 {
3063         int node = cpu_to_node(cpu);
3064         struct page *pages;
3065         struct vmcs *vmcs;
3066
3067         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3068         if (!pages)
3069                 return NULL;
3070         vmcs = page_address(pages);
3071         memset(vmcs, 0, vmcs_config.size);
3072         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3073         return vmcs;
3074 }
3075
3076 static struct vmcs *alloc_vmcs(void)
3077 {
3078         return alloc_vmcs_cpu(raw_smp_processor_id());
3079 }
3080
3081 static void free_vmcs(struct vmcs *vmcs)
3082 {
3083         free_pages((unsigned long)vmcs, vmcs_config.order);
3084 }
3085
3086 /*
3087  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3088  */
3089 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3090 {
3091         if (!loaded_vmcs->vmcs)
3092                 return;
3093         loaded_vmcs_clear(loaded_vmcs);
3094         free_vmcs(loaded_vmcs->vmcs);
3095         loaded_vmcs->vmcs = NULL;
3096 }
3097
3098 static void free_kvm_area(void)
3099 {
3100         int cpu;
3101
3102         for_each_possible_cpu(cpu) {
3103                 free_vmcs(per_cpu(vmxarea, cpu));
3104                 per_cpu(vmxarea, cpu) = NULL;
3105         }
3106 }
3107
3108 static void init_vmcs_shadow_fields(void)
3109 {
3110         int i, j;
3111
3112         /* No checks for read only fields yet */
3113
3114         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3115                 switch (shadow_read_write_fields[i]) {
3116                 case GUEST_BNDCFGS:
3117                         if (!vmx_mpx_supported())
3118                                 continue;
3119                         break;
3120                 default:
3121                         break;
3122                 }
3123
3124                 if (j < i)
3125                         shadow_read_write_fields[j] =
3126                                 shadow_read_write_fields[i];
3127                 j++;
3128         }
3129         max_shadow_read_write_fields = j;
3130
3131         /* shadowed fields guest access without vmexit */
3132         for (i = 0; i < max_shadow_read_write_fields; i++) {
3133                 clear_bit(shadow_read_write_fields[i],
3134                           vmx_vmwrite_bitmap);
3135                 clear_bit(shadow_read_write_fields[i],
3136                           vmx_vmread_bitmap);
3137         }
3138         for (i = 0; i < max_shadow_read_only_fields; i++)
3139                 clear_bit(shadow_read_only_fields[i],
3140                           vmx_vmread_bitmap);
3141 }
3142
3143 static __init int alloc_kvm_area(void)
3144 {
3145         int cpu;
3146
3147         for_each_possible_cpu(cpu) {
3148                 struct vmcs *vmcs;
3149
3150                 vmcs = alloc_vmcs_cpu(cpu);
3151                 if (!vmcs) {
3152                         free_kvm_area();
3153                         return -ENOMEM;
3154                 }
3155
3156                 per_cpu(vmxarea, cpu) = vmcs;
3157         }
3158         return 0;
3159 }
3160
3161 static bool emulation_required(struct kvm_vcpu *vcpu)
3162 {
3163         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3164 }
3165
3166 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3167                 struct kvm_segment *save)
3168 {
3169         if (!emulate_invalid_guest_state) {
3170                 /*
3171                  * CS and SS RPL should be equal during guest entry according
3172                  * to VMX spec, but in reality it is not always so. Since vcpu
3173                  * is in the middle of the transition from real mode to
3174                  * protected mode it is safe to assume that RPL 0 is a good
3175                  * default value.
3176                  */
3177                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3178                         save->selector &= ~SELECTOR_RPL_MASK;
3179                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3180                 save->s = 1;
3181         }
3182         vmx_set_segment(vcpu, save, seg);
3183 }
3184
3185 static void enter_pmode(struct kvm_vcpu *vcpu)
3186 {
3187         unsigned long flags;
3188         struct vcpu_vmx *vmx = to_vmx(vcpu);
3189
3190         /*
3191          * Update real mode segment cache. It may be not up-to-date if sement
3192          * register was written while vcpu was in a guest mode.
3193          */
3194         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3195         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3196         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3197         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3198         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3199         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3200
3201         vmx->rmode.vm86_active = 0;
3202
3203         vmx_segment_cache_clear(vmx);
3204
3205         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3206
3207         flags = vmcs_readl(GUEST_RFLAGS);
3208         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3209         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3210         vmcs_writel(GUEST_RFLAGS, flags);
3211
3212         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3213                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3214
3215         update_exception_bitmap(vcpu);
3216
3217         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3218         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3219         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3220         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3221         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3222         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3223 }
3224
3225 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3226 {
3227         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3228         struct kvm_segment var = *save;
3229
3230         var.dpl = 0x3;
3231         if (seg == VCPU_SREG_CS)
3232                 var.type = 0x3;
3233
3234         if (!emulate_invalid_guest_state) {
3235                 var.selector = var.base >> 4;
3236                 var.base = var.base & 0xffff0;
3237                 var.limit = 0xffff;
3238                 var.g = 0;
3239                 var.db = 0;
3240                 var.present = 1;
3241                 var.s = 1;
3242                 var.l = 0;
3243                 var.unusable = 0;
3244                 var.type = 0x3;
3245                 var.avl = 0;
3246                 if (save->base & 0xf)
3247                         printk_once(KERN_WARNING "kvm: segment base is not "
3248                                         "paragraph aligned when entering "
3249                                         "protected mode (seg=%d)", seg);
3250         }
3251
3252         vmcs_write16(sf->selector, var.selector);
3253         vmcs_write32(sf->base, var.base);
3254         vmcs_write32(sf->limit, var.limit);
3255         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3256 }
3257
3258 static void enter_rmode(struct kvm_vcpu *vcpu)
3259 {
3260         unsigned long flags;
3261         struct vcpu_vmx *vmx = to_vmx(vcpu);
3262
3263         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3264         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3265         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3266         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3267         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3268         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3269         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3270
3271         vmx->rmode.vm86_active = 1;
3272
3273         /*
3274          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3275          * vcpu. Warn the user that an update is overdue.
3276          */
3277         if (!vcpu->kvm->arch.tss_addr)
3278                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3279                              "called before entering vcpu\n");
3280
3281         vmx_segment_cache_clear(vmx);
3282
3283         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3284         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3285         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3286
3287         flags = vmcs_readl(GUEST_RFLAGS);
3288         vmx->rmode.save_rflags = flags;
3289
3290         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3291
3292         vmcs_writel(GUEST_RFLAGS, flags);
3293         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3294         update_exception_bitmap(vcpu);
3295
3296         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3297         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3298         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3299         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3300         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3301         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3302
3303         kvm_mmu_reset_context(vcpu);
3304 }
3305
3306 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3307 {
3308         struct vcpu_vmx *vmx = to_vmx(vcpu);
3309         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3310
3311         if (!msr)
3312                 return;
3313
3314         /*
3315          * Force kernel_gs_base reloading before EFER changes, as control
3316          * of this msr depends on is_long_mode().
3317          */
3318         vmx_load_host_state(to_vmx(vcpu));
3319         vcpu->arch.efer = efer;
3320         if (efer & EFER_LMA) {
3321                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3322                 msr->data = efer;
3323         } else {
3324                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3325
3326                 msr->data = efer & ~EFER_LME;
3327         }
3328         setup_msrs(vmx);
3329 }
3330
3331 #ifdef CONFIG_X86_64
3332
3333 static void enter_lmode(struct kvm_vcpu *vcpu)
3334 {
3335         u32 guest_tr_ar;
3336
3337         vmx_segment_cache_clear(to_vmx(vcpu));
3338
3339         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3340         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3341                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3342                                      __func__);
3343                 vmcs_write32(GUEST_TR_AR_BYTES,
3344                              (guest_tr_ar & ~AR_TYPE_MASK)
3345                              | AR_TYPE_BUSY_64_TSS);
3346         }
3347         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3348 }
3349
3350 static void exit_lmode(struct kvm_vcpu *vcpu)
3351 {
3352         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3353         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3354 }
3355
3356 #endif
3357
3358 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3359 {
3360         vpid_sync_context(to_vmx(vcpu));
3361         if (enable_ept) {
3362                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3363                         return;
3364                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3365         }
3366 }
3367
3368 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3369 {
3370         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3371
3372         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3373         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3374 }
3375
3376 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3377 {
3378         if (enable_ept && is_paging(vcpu))
3379                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3380         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3381 }
3382
3383 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3384 {
3385         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3386
3387         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3388         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3389 }
3390
3391 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3392 {
3393         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3394
3395         if (!test_bit(VCPU_EXREG_PDPTR,
3396                       (unsigned long *)&vcpu->arch.regs_dirty))
3397                 return;
3398
3399         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3400                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3401                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3402                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3403                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3404         }
3405 }
3406
3407 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3408 {
3409         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3410
3411         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3412                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3413                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3414                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3415                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3416         }
3417
3418         __set_bit(VCPU_EXREG_PDPTR,
3419                   (unsigned long *)&vcpu->arch.regs_avail);
3420         __set_bit(VCPU_EXREG_PDPTR,
3421                   (unsigned long *)&vcpu->arch.regs_dirty);
3422 }
3423
3424 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3425
3426 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3427                                         unsigned long cr0,
3428                                         struct kvm_vcpu *vcpu)
3429 {
3430         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3431                 vmx_decache_cr3(vcpu);
3432         if (!(cr0 & X86_CR0_PG)) {
3433                 /* From paging/starting to nonpaging */
3434                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3435                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3436                              (CPU_BASED_CR3_LOAD_EXITING |
3437                               CPU_BASED_CR3_STORE_EXITING));
3438                 vcpu->arch.cr0 = cr0;
3439                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3440         } else if (!is_paging(vcpu)) {
3441                 /* From nonpaging to paging */
3442                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3443                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3444                              ~(CPU_BASED_CR3_LOAD_EXITING |
3445                                CPU_BASED_CR3_STORE_EXITING));
3446                 vcpu->arch.cr0 = cr0;
3447                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3448         }
3449
3450         if (!(cr0 & X86_CR0_WP))
3451                 *hw_cr0 &= ~X86_CR0_WP;
3452 }
3453
3454 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3455 {
3456         struct vcpu_vmx *vmx = to_vmx(vcpu);
3457         unsigned long hw_cr0;
3458
3459         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3460         if (enable_unrestricted_guest)
3461                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3462         else {
3463                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3464
3465                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3466                         enter_pmode(vcpu);
3467
3468                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3469                         enter_rmode(vcpu);
3470         }
3471
3472 #ifdef CONFIG_X86_64
3473         if (vcpu->arch.efer & EFER_LME) {
3474                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3475                         enter_lmode(vcpu);
3476                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3477                         exit_lmode(vcpu);
3478         }
3479 #endif
3480
3481         if (enable_ept)
3482                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3483
3484         if (!vcpu->fpu_active)
3485                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3486
3487         vmcs_writel(CR0_READ_SHADOW, cr0);
3488         vmcs_writel(GUEST_CR0, hw_cr0);
3489         vcpu->arch.cr0 = cr0;
3490
3491         /* depends on vcpu->arch.cr0 to be set to a new value */
3492         vmx->emulation_required = emulation_required(vcpu);
3493 }
3494
3495 static u64 construct_eptp(unsigned long root_hpa)
3496 {
3497         u64 eptp;
3498
3499         /* TODO write the value reading from MSR */
3500         eptp = VMX_EPT_DEFAULT_MT |
3501                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3502         if (enable_ept_ad_bits)
3503                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3504         eptp |= (root_hpa & PAGE_MASK);
3505
3506         return eptp;
3507 }
3508
3509 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3510 {
3511         unsigned long guest_cr3;
3512         u64 eptp;
3513
3514         guest_cr3 = cr3;
3515         if (enable_ept) {
3516                 eptp = construct_eptp(cr3);
3517                 vmcs_write64(EPT_POINTER, eptp);
3518                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3519                         guest_cr3 = kvm_read_cr3(vcpu);
3520                 else
3521                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3522                 ept_load_pdptrs(vcpu);
3523         }
3524
3525         vmx_flush_tlb(vcpu);
3526         vmcs_writel(GUEST_CR3, guest_cr3);
3527 }
3528
3529 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3530 {
3531         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3532                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3533
3534         if (cr4 & X86_CR4_VMXE) {
3535                 /*
3536                  * To use VMXON (and later other VMX instructions), a guest
3537                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3538                  * So basically the check on whether to allow nested VMX
3539                  * is here.
3540                  */
3541                 if (!nested_vmx_allowed(vcpu))
3542                         return 1;
3543         }
3544         if (to_vmx(vcpu)->nested.vmxon &&
3545             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3546                 return 1;
3547
3548         vcpu->arch.cr4 = cr4;
3549         if (enable_ept) {
3550                 if (!is_paging(vcpu)) {
3551                         hw_cr4 &= ~X86_CR4_PAE;
3552                         hw_cr4 |= X86_CR4_PSE;
3553                         /*
3554                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3555                          * in hardware. However KVM always uses paging mode to
3556                          * emulate guest non-paging mode with TDP.
3557                          * To emulate this behavior, SMEP/SMAP needs to be
3558                          * manually disabled when guest switches to non-paging
3559                          * mode.
3560                          */
3561                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3562                 } else if (!(cr4 & X86_CR4_PAE)) {
3563                         hw_cr4 &= ~X86_CR4_PAE;
3564                 }
3565         }
3566
3567         vmcs_writel(CR4_READ_SHADOW, cr4);
3568         vmcs_writel(GUEST_CR4, hw_cr4);
3569         return 0;
3570 }
3571
3572 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3573                             struct kvm_segment *var, int seg)
3574 {
3575         struct vcpu_vmx *vmx = to_vmx(vcpu);
3576         u32 ar;
3577
3578         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3579                 *var = vmx->rmode.segs[seg];
3580                 if (seg == VCPU_SREG_TR
3581                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3582                         return;
3583                 var->base = vmx_read_guest_seg_base(vmx, seg);
3584                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3585                 return;
3586         }
3587         var->base = vmx_read_guest_seg_base(vmx, seg);
3588         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3589         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3590         ar = vmx_read_guest_seg_ar(vmx, seg);
3591         var->unusable = (ar >> 16) & 1;
3592         var->type = ar & 15;
3593         var->s = (ar >> 4) & 1;
3594         var->dpl = (ar >> 5) & 3;
3595         /*
3596          * Some userspaces do not preserve unusable property. Since usable
3597          * segment has to be present according to VMX spec we can use present
3598          * property to amend userspace bug by making unusable segment always
3599          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3600          * segment as unusable.
3601          */
3602         var->present = !var->unusable;
3603         var->avl = (ar >> 12) & 1;
3604         var->l = (ar >> 13) & 1;
3605         var->db = (ar >> 14) & 1;
3606         var->g = (ar >> 15) & 1;
3607 }
3608
3609 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3610 {
3611         struct kvm_segment s;
3612
3613         if (to_vmx(vcpu)->rmode.vm86_active) {
3614                 vmx_get_segment(vcpu, &s, seg);
3615                 return s.base;
3616         }
3617         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3618 }
3619
3620 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3621 {
3622         struct vcpu_vmx *vmx = to_vmx(vcpu);
3623
3624         if (unlikely(vmx->rmode.vm86_active))
3625                 return 0;
3626         else {
3627                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3628                 return AR_DPL(ar);
3629         }
3630 }
3631
3632 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3633 {
3634         u32 ar;
3635
3636         if (var->unusable || !var->present)
3637                 ar = 1 << 16;
3638         else {
3639                 ar = var->type & 15;
3640                 ar |= (var->s & 1) << 4;
3641                 ar |= (var->dpl & 3) << 5;
3642                 ar |= (var->present & 1) << 7;
3643                 ar |= (var->avl & 1) << 12;
3644                 ar |= (var->l & 1) << 13;
3645                 ar |= (var->db & 1) << 14;
3646                 ar |= (var->g & 1) << 15;
3647         }
3648
3649         return ar;
3650 }
3651
3652 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3653                             struct kvm_segment *var, int seg)
3654 {
3655         struct vcpu_vmx *vmx = to_vmx(vcpu);
3656         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3657
3658         vmx_segment_cache_clear(vmx);
3659
3660         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3661                 vmx->rmode.segs[seg] = *var;
3662                 if (seg == VCPU_SREG_TR)
3663                         vmcs_write16(sf->selector, var->selector);
3664                 else if (var->s)
3665                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3666                 goto out;
3667         }
3668
3669         vmcs_writel(sf->base, var->base);
3670         vmcs_write32(sf->limit, var->limit);
3671         vmcs_write16(sf->selector, var->selector);
3672
3673         /*
3674          *   Fix the "Accessed" bit in AR field of segment registers for older
3675          * qemu binaries.
3676          *   IA32 arch specifies that at the time of processor reset the
3677          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3678          * is setting it to 0 in the userland code. This causes invalid guest
3679          * state vmexit when "unrestricted guest" mode is turned on.
3680          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3681          * tree. Newer qemu binaries with that qemu fix would not need this
3682          * kvm hack.
3683          */
3684         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3685                 var->type |= 0x1; /* Accessed */
3686
3687         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3688
3689 out:
3690         vmx->emulation_required = emulation_required(vcpu);
3691 }
3692
3693 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3694 {
3695         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3696
3697         *db = (ar >> 14) & 1;
3698         *l = (ar >> 13) & 1;
3699 }
3700
3701 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3702 {
3703         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3704         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3705 }
3706
3707 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3708 {
3709         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3710         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3711 }
3712
3713 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3714 {
3715         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3716         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3717 }
3718
3719 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3720 {
3721         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3722         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3723 }
3724
3725 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3726 {
3727         struct kvm_segment var;
3728         u32 ar;
3729
3730         vmx_get_segment(vcpu, &var, seg);
3731         var.dpl = 0x3;
3732         if (seg == VCPU_SREG_CS)
3733                 var.type = 0x3;
3734         ar = vmx_segment_access_rights(&var);
3735
3736         if (var.base != (var.selector << 4))
3737                 return false;
3738         if (var.limit != 0xffff)
3739                 return false;
3740         if (ar != 0xf3)
3741                 return false;
3742
3743         return true;
3744 }
3745
3746 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3747 {
3748         struct kvm_segment cs;
3749         unsigned int cs_rpl;
3750
3751         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3752         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3753
3754         if (cs.unusable)
3755                 return false;
3756         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3757                 return false;
3758         if (!cs.s)
3759                 return false;
3760         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3761                 if (cs.dpl > cs_rpl)
3762                         return false;
3763         } else {
3764                 if (cs.dpl != cs_rpl)
3765                         return false;
3766         }
3767         if (!cs.present)
3768                 return false;
3769
3770         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3771         return true;
3772 }
3773
3774 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3775 {
3776         struct kvm_segment ss;
3777         unsigned int ss_rpl;
3778
3779         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3780         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3781
3782         if (ss.unusable)
3783                 return true;
3784         if (ss.type != 3 && ss.type != 7)
3785                 return false;
3786         if (!ss.s)
3787                 return false;
3788         if (ss.dpl != ss_rpl) /* DPL != RPL */
3789                 return false;
3790         if (!ss.present)
3791                 return false;
3792
3793         return true;
3794 }
3795
3796 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3797 {
3798         struct kvm_segment var;
3799         unsigned int rpl;
3800
3801         vmx_get_segment(vcpu, &var, seg);
3802         rpl = var.selector & SELECTOR_RPL_MASK;
3803
3804         if (var.unusable)
3805                 return true;
3806         if (!var.s)
3807                 return false;
3808         if (!var.present)
3809                 return false;
3810         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3811                 if (var.dpl < rpl) /* DPL < RPL */
3812                         return false;
3813         }
3814
3815         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3816          * rights flags
3817          */
3818         return true;
3819 }
3820
3821 static bool tr_valid(struct kvm_vcpu *vcpu)
3822 {
3823         struct kvm_segment tr;
3824
3825         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3826
3827         if (tr.unusable)
3828                 return false;
3829         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3830                 return false;
3831         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3832                 return false;
3833         if (!tr.present)
3834                 return false;
3835
3836         return true;
3837 }
3838
3839 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3840 {
3841         struct kvm_segment ldtr;
3842
3843         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3844
3845         if (ldtr.unusable)
3846                 return true;
3847         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3848                 return false;
3849         if (ldtr.type != 2)
3850                 return false;
3851         if (!ldtr.present)
3852                 return false;
3853
3854         return true;
3855 }
3856
3857 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3858 {
3859         struct kvm_segment cs, ss;
3860
3861         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3862         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3863
3864         return ((cs.selector & SELECTOR_RPL_MASK) ==
3865                  (ss.selector & SELECTOR_RPL_MASK));
3866 }
3867
3868 /*
3869  * Check if guest state is valid. Returns true if valid, false if
3870  * not.
3871  * We assume that registers are always usable
3872  */
3873 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3874 {
3875         if (enable_unrestricted_guest)
3876                 return true;
3877
3878         /* real mode guest state checks */
3879         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3880                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3881                         return false;
3882                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3883                         return false;
3884                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3885                         return false;
3886                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3887                         return false;
3888                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3889                         return false;
3890                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3891                         return false;
3892         } else {
3893         /* protected mode guest state checks */
3894                 if (!cs_ss_rpl_check(vcpu))
3895                         return false;
3896                 if (!code_segment_valid(vcpu))
3897                         return false;
3898                 if (!stack_segment_valid(vcpu))
3899                         return false;
3900                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3901                         return false;
3902                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3903                         return false;
3904                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3905                         return false;
3906                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3907                         return false;
3908                 if (!tr_valid(vcpu))
3909                         return false;
3910                 if (!ldtr_valid(vcpu))
3911                         return false;
3912         }
3913         /* TODO:
3914          * - Add checks on RIP
3915          * - Add checks on RFLAGS
3916          */
3917
3918         return true;
3919 }
3920
3921 static int init_rmode_tss(struct kvm *kvm)
3922 {
3923         gfn_t fn;
3924         u16 data = 0;
3925         int idx, r;
3926
3927         idx = srcu_read_lock(&kvm->srcu);
3928         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3929         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3930         if (r < 0)
3931                 goto out;
3932         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3933         r = kvm_write_guest_page(kvm, fn++, &data,
3934                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3935         if (r < 0)
3936                 goto out;
3937         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3938         if (r < 0)
3939                 goto out;
3940         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3941         if (r < 0)
3942                 goto out;
3943         data = ~0;
3944         r = kvm_write_guest_page(kvm, fn, &data,
3945                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3946                                  sizeof(u8));
3947 out:
3948         srcu_read_unlock(&kvm->srcu, idx);
3949         return r;
3950 }
3951
3952 static int init_rmode_identity_map(struct kvm *kvm)
3953 {
3954         int i, idx, r = 0;
3955         pfn_t identity_map_pfn;
3956         u32 tmp;
3957
3958         if (!enable_ept)
3959                 return 0;
3960
3961         /* Protect kvm->arch.ept_identity_pagetable_done. */
3962         mutex_lock(&kvm->slots_lock);
3963
3964         if (likely(kvm->arch.ept_identity_pagetable_done))
3965                 goto out2;
3966
3967         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3968
3969         r = alloc_identity_pagetable(kvm);
3970         if (r < 0)
3971                 goto out2;
3972
3973         idx = srcu_read_lock(&kvm->srcu);
3974         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3975         if (r < 0)
3976                 goto out;
3977         /* Set up identity-mapping pagetable for EPT in real mode */
3978         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3979                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3980                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3981                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3982                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3983                 if (r < 0)
3984                         goto out;
3985         }
3986         kvm->arch.ept_identity_pagetable_done = true;
3987
3988 out:
3989         srcu_read_unlock(&kvm->srcu, idx);
3990
3991 out2:
3992         mutex_unlock(&kvm->slots_lock);
3993         return r;
3994 }
3995
3996 static void seg_setup(int seg)
3997 {
3998         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3999         unsigned int ar;
4000
4001         vmcs_write16(sf->selector, 0);
4002         vmcs_writel(sf->base, 0);
4003         vmcs_write32(sf->limit, 0xffff);
4004         ar = 0x93;
4005         if (seg == VCPU_SREG_CS)
4006                 ar |= 0x08; /* code segment */
4007
4008         vmcs_write32(sf->ar_bytes, ar);
4009 }
4010
4011 static int alloc_apic_access_page(struct kvm *kvm)
4012 {
4013         struct page *page;
4014         struct kvm_userspace_memory_region kvm_userspace_mem;
4015         int r = 0;
4016
4017         mutex_lock(&kvm->slots_lock);
4018         if (kvm->arch.apic_access_page_done)
4019                 goto out;
4020         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4021         kvm_userspace_mem.flags = 0;
4022         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4023         kvm_userspace_mem.memory_size = PAGE_SIZE;
4024         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4025         if (r)
4026                 goto out;
4027
4028         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4029         if (is_error_page(page)) {
4030                 r = -EFAULT;
4031                 goto out;
4032         }
4033
4034         /*
4035          * Do not pin the page in memory, so that memory hot-unplug
4036          * is able to migrate it.
4037          */
4038         put_page(page);
4039         kvm->arch.apic_access_page_done = true;
4040 out:
4041         mutex_unlock(&kvm->slots_lock);
4042         return r;
4043 }
4044
4045 static int alloc_identity_pagetable(struct kvm *kvm)
4046 {
4047         /* Called with kvm->slots_lock held. */
4048
4049         struct kvm_userspace_memory_region kvm_userspace_mem;
4050         int r = 0;
4051
4052         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4053
4054         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4055         kvm_userspace_mem.flags = 0;
4056         kvm_userspace_mem.guest_phys_addr =
4057                 kvm->arch.ept_identity_map_addr;
4058         kvm_userspace_mem.memory_size = PAGE_SIZE;
4059         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4060
4061         return r;
4062 }
4063
4064 static void allocate_vpid(struct vcpu_vmx *vmx)
4065 {
4066         int vpid;
4067
4068         vmx->vpid = 0;
4069         if (!enable_vpid)
4070                 return;
4071         spin_lock(&vmx_vpid_lock);
4072         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4073         if (vpid < VMX_NR_VPIDS) {
4074                 vmx->vpid = vpid;
4075                 __set_bit(vpid, vmx_vpid_bitmap);
4076         }
4077         spin_unlock(&vmx_vpid_lock);
4078 }
4079
4080 static void free_vpid(struct vcpu_vmx *vmx)
4081 {
4082         if (!enable_vpid)
4083                 return;
4084         spin_lock(&vmx_vpid_lock);
4085         if (vmx->vpid != 0)
4086                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4087         spin_unlock(&vmx_vpid_lock);
4088 }
4089
4090 #define MSR_TYPE_R      1
4091 #define MSR_TYPE_W      2
4092 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4093                                                 u32 msr, int type)
4094 {
4095         int f = sizeof(unsigned long);
4096
4097         if (!cpu_has_vmx_msr_bitmap())
4098                 return;
4099
4100         /*
4101          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4102          * have the write-low and read-high bitmap offsets the wrong way round.
4103          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4104          */
4105         if (msr <= 0x1fff) {
4106                 if (type & MSR_TYPE_R)
4107                         /* read-low */
4108                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4109
4110                 if (type & MSR_TYPE_W)
4111                         /* write-low */
4112                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4113
4114         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4115                 msr &= 0x1fff;
4116                 if (type & MSR_TYPE_R)
4117                         /* read-high */
4118                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4119
4120                 if (type & MSR_TYPE_W)
4121                         /* write-high */
4122                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4123
4124         }
4125 }
4126
4127 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4128                                                 u32 msr, int type)
4129 {
4130         int f = sizeof(unsigned long);
4131
4132         if (!cpu_has_vmx_msr_bitmap())
4133                 return;
4134
4135         /*
4136          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4137          * have the write-low and read-high bitmap offsets the wrong way round.
4138          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4139          */
4140         if (msr <= 0x1fff) {
4141                 if (type & MSR_TYPE_R)
4142                         /* read-low */
4143                         __set_bit(msr, msr_bitmap + 0x000 / f);
4144
4145                 if (type & MSR_TYPE_W)
4146                         /* write-low */
4147                         __set_bit(msr, msr_bitmap + 0x800 / f);
4148
4149         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4150                 msr &= 0x1fff;
4151                 if (type & MSR_TYPE_R)
4152                         /* read-high */
4153                         __set_bit(msr, msr_bitmap + 0x400 / f);
4154
4155                 if (type & MSR_TYPE_W)
4156                         /* write-high */
4157                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4158
4159         }
4160 }
4161
4162 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4163 {
4164         if (!longmode_only)
4165                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4166                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4167         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4168                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4169 }
4170
4171 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4172 {
4173         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4174                         msr, MSR_TYPE_R);
4175         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4176                         msr, MSR_TYPE_R);
4177 }
4178
4179 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4180 {
4181         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4182                         msr, MSR_TYPE_R);
4183         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4184                         msr, MSR_TYPE_R);
4185 }
4186
4187 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4188 {
4189         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4190                         msr, MSR_TYPE_W);
4191         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4192                         msr, MSR_TYPE_W);
4193 }
4194
4195 static int vmx_vm_has_apicv(struct kvm *kvm)
4196 {
4197         return enable_apicv && irqchip_in_kernel(kvm);
4198 }
4199
4200 /*
4201  * Send interrupt to vcpu via posted interrupt way.
4202  * 1. If target vcpu is running(non-root mode), send posted interrupt
4203  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4204  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4205  * interrupt from PIR in next vmentry.
4206  */
4207 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4208 {
4209         struct vcpu_vmx *vmx = to_vmx(vcpu);
4210         int r;
4211
4212         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4213                 return;
4214
4215         r = pi_test_and_set_on(&vmx->pi_desc);
4216         kvm_make_request(KVM_REQ_EVENT, vcpu);
4217 #ifdef CONFIG_SMP
4218         if (!r && (vcpu->mode == IN_GUEST_MODE))
4219                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4220                                 POSTED_INTR_VECTOR);
4221         else
4222 #endif
4223                 kvm_vcpu_kick(vcpu);
4224 }
4225
4226 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4227 {
4228         struct vcpu_vmx *vmx = to_vmx(vcpu);
4229
4230         if (!pi_test_and_clear_on(&vmx->pi_desc))
4231                 return;
4232
4233         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4234 }
4235
4236 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4237 {
4238         return;
4239 }
4240
4241 /*
4242  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4243  * will not change in the lifetime of the guest.
4244  * Note that host-state that does change is set elsewhere. E.g., host-state
4245  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4246  */
4247 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4248 {
4249         u32 low32, high32;
4250         unsigned long tmpl;
4251         struct desc_ptr dt;
4252         unsigned long cr4;
4253
4254         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4255         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4256
4257         /* Save the most likely value for this task's CR4 in the VMCS. */
4258         cr4 = read_cr4();
4259         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4260         vmx->host_state.vmcs_host_cr4 = cr4;
4261
4262         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4263 #ifdef CONFIG_X86_64
4264         /*
4265          * Load null selectors, so we can avoid reloading them in
4266          * __vmx_load_host_state(), in case userspace uses the null selectors
4267          * too (the expected case).
4268          */
4269         vmcs_write16(HOST_DS_SELECTOR, 0);
4270         vmcs_write16(HOST_ES_SELECTOR, 0);
4271 #else
4272         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4273         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4274 #endif
4275         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4276         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4277
4278         native_store_idt(&dt);
4279         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4280         vmx->host_idt_base = dt.address;
4281
4282         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4283
4284         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4285         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4286         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4287         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4288
4289         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4290                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4291                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4292         }
4293 }
4294
4295 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4296 {
4297         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4298         if (enable_ept)
4299                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4300         if (is_guest_mode(&vmx->vcpu))
4301                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4302                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4303         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4304 }
4305
4306 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4307 {
4308         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4309
4310         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4311                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4312         return pin_based_exec_ctrl;
4313 }
4314
4315 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4316 {
4317         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4318
4319         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4320                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4321
4322         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4323                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4324 #ifdef CONFIG_X86_64
4325                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4326                                 CPU_BASED_CR8_LOAD_EXITING;
4327 #endif
4328         }
4329         if (!enable_ept)
4330                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4331                                 CPU_BASED_CR3_LOAD_EXITING  |
4332                                 CPU_BASED_INVLPG_EXITING;
4333         return exec_control;
4334 }
4335
4336 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4337 {
4338         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4339         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4340                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4341         if (vmx->vpid == 0)
4342                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4343         if (!enable_ept) {
4344                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4345                 enable_unrestricted_guest = 0;
4346                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4347                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4348         }
4349         if (!enable_unrestricted_guest)
4350                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4351         if (!ple_gap)
4352                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4353         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4354                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4355                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4356         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4357         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4358            (handle_vmptrld).
4359            We can NOT enable shadow_vmcs here because we don't have yet
4360            a current VMCS12
4361         */
4362         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4363         return exec_control;
4364 }
4365
4366 static void ept_set_mmio_spte_mask(void)
4367 {
4368         /*
4369          * EPT Misconfigurations can be generated if the value of bits 2:0
4370          * of an EPT paging-structure entry is 110b (write/execute).
4371          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4372          * spte.
4373          */
4374         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4375 }
4376
4377 #define VMX_XSS_EXIT_BITMAP 0
4378 /*
4379  * Sets up the vmcs for emulated real mode.
4380  */
4381 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4382 {
4383 #ifdef CONFIG_X86_64
4384         unsigned long a;
4385 #endif
4386         int i;
4387
4388         /* I/O */
4389         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4390         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4391
4392         if (enable_shadow_vmcs) {
4393                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4394                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4395         }
4396         if (cpu_has_vmx_msr_bitmap())
4397                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4398
4399         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4400
4401         /* Control */
4402         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4403
4404         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4405
4406         if (cpu_has_secondary_exec_ctrls()) {
4407                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4408                                 vmx_secondary_exec_control(vmx));
4409         }
4410
4411         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4412                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4413                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4414                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4415                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4416
4417                 vmcs_write16(GUEST_INTR_STATUS, 0);
4418
4419                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4420                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4421         }
4422
4423         if (ple_gap) {
4424                 vmcs_write32(PLE_GAP, ple_gap);
4425                 vmx->ple_window = ple_window;
4426                 vmx->ple_window_dirty = true;
4427         }
4428
4429         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4430         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4431         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4432
4433         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4434         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4435         vmx_set_constant_host_state(vmx);
4436 #ifdef CONFIG_X86_64
4437         rdmsrl(MSR_FS_BASE, a);
4438         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4439         rdmsrl(MSR_GS_BASE, a);
4440         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4441 #else
4442         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4443         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4444 #endif
4445
4446         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4447         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4448         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4449         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4450         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4451
4452         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4453                 u32 msr_low, msr_high;
4454                 u64 host_pat;
4455                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4456                 host_pat = msr_low | ((u64) msr_high << 32);
4457                 /* Write the default value follow host pat */
4458                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4459                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4460                 vmx->vcpu.arch.pat = host_pat;
4461         }
4462
4463         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4464                 u32 index = vmx_msr_index[i];
4465                 u32 data_low, data_high;
4466                 int j = vmx->nmsrs;
4467
4468                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4469                         continue;
4470                 if (wrmsr_safe(index, data_low, data_high) < 0)
4471                         continue;
4472                 vmx->guest_msrs[j].index = i;
4473                 vmx->guest_msrs[j].data = 0;
4474                 vmx->guest_msrs[j].mask = -1ull;
4475                 ++vmx->nmsrs;
4476         }
4477
4478
4479         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4480
4481         /* 22.2.1, 20.8.1 */
4482         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4483
4484         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4485         set_cr4_guest_host_mask(vmx);
4486
4487         if (vmx_xsaves_supported())
4488                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4489
4490         return 0;
4491 }
4492
4493 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4494 {
4495         struct vcpu_vmx *vmx = to_vmx(vcpu);
4496         struct msr_data apic_base_msr;
4497
4498         vmx->rmode.vm86_active = 0;
4499
4500         vmx->soft_vnmi_blocked = 0;
4501
4502         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4503         kvm_set_cr8(&vmx->vcpu, 0);
4504         apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4505         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4506                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4507         apic_base_msr.host_initiated = true;
4508         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4509
4510         vmx_segment_cache_clear(vmx);
4511
4512         seg_setup(VCPU_SREG_CS);
4513         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4514         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4515
4516         seg_setup(VCPU_SREG_DS);
4517         seg_setup(VCPU_SREG_ES);
4518         seg_setup(VCPU_SREG_FS);
4519         seg_setup(VCPU_SREG_GS);
4520         seg_setup(VCPU_SREG_SS);
4521
4522         vmcs_write16(GUEST_TR_SELECTOR, 0);
4523         vmcs_writel(GUEST_TR_BASE, 0);
4524         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4525         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4526
4527         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4528         vmcs_writel(GUEST_LDTR_BASE, 0);
4529         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4530         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4531
4532         vmcs_write32(GUEST_SYSENTER_CS, 0);
4533         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4534         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4535
4536         vmcs_writel(GUEST_RFLAGS, 0x02);
4537         kvm_rip_write(vcpu, 0xfff0);
4538
4539         vmcs_writel(GUEST_GDTR_BASE, 0);
4540         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4541
4542         vmcs_writel(GUEST_IDTR_BASE, 0);
4543         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4544
4545         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4546         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4547         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4548
4549         /* Special registers */
4550         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4551
4552         setup_msrs(vmx);
4553
4554         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4555
4556         if (cpu_has_vmx_tpr_shadow()) {
4557                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4559                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4560                                      __pa(vmx->vcpu.arch.apic->regs));
4561                 vmcs_write32(TPR_THRESHOLD, 0);
4562         }
4563
4564         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4565
4566         if (vmx_vm_has_apicv(vcpu->kvm))
4567                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4568
4569         if (vmx->vpid != 0)
4570                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4571
4572         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4573         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4574         vmx_set_cr4(&vmx->vcpu, 0);
4575         vmx_set_efer(&vmx->vcpu, 0);
4576         vmx_fpu_activate(&vmx->vcpu);
4577         update_exception_bitmap(&vmx->vcpu);
4578
4579         vpid_sync_context(vmx);
4580 }
4581
4582 /*
4583  * In nested virtualization, check if L1 asked to exit on external interrupts.
4584  * For most existing hypervisors, this will always return true.
4585  */
4586 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4587 {
4588         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4589                 PIN_BASED_EXT_INTR_MASK;
4590 }
4591
4592 /*
4593  * In nested virtualization, check if L1 has set
4594  * VM_EXIT_ACK_INTR_ON_EXIT
4595  */
4596 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4597 {
4598         return get_vmcs12(vcpu)->vm_exit_controls &
4599                 VM_EXIT_ACK_INTR_ON_EXIT;
4600 }
4601
4602 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4603 {
4604         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4605                 PIN_BASED_NMI_EXITING;
4606 }
4607
4608 static void enable_irq_window(struct kvm_vcpu *vcpu)
4609 {
4610         u32 cpu_based_vm_exec_control;
4611
4612         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4613         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4614         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4615 }
4616
4617 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4618 {
4619         u32 cpu_based_vm_exec_control;
4620
4621         if (!cpu_has_virtual_nmis() ||
4622             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4623                 enable_irq_window(vcpu);
4624                 return;
4625         }
4626
4627         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4628         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4629         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4630 }
4631
4632 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4633 {
4634         struct vcpu_vmx *vmx = to_vmx(vcpu);
4635         uint32_t intr;
4636         int irq = vcpu->arch.interrupt.nr;
4637
4638         trace_kvm_inj_virq(irq);
4639
4640         ++vcpu->stat.irq_injections;
4641         if (vmx->rmode.vm86_active) {
4642                 int inc_eip = 0;
4643                 if (vcpu->arch.interrupt.soft)
4644                         inc_eip = vcpu->arch.event_exit_inst_len;
4645                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4646                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4647                 return;
4648         }
4649         intr = irq | INTR_INFO_VALID_MASK;
4650         if (vcpu->arch.interrupt.soft) {
4651                 intr |= INTR_TYPE_SOFT_INTR;
4652                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4653                              vmx->vcpu.arch.event_exit_inst_len);
4654         } else
4655                 intr |= INTR_TYPE_EXT_INTR;
4656         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4657 }
4658
4659 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4660 {
4661         struct vcpu_vmx *vmx = to_vmx(vcpu);
4662
4663         if (is_guest_mode(vcpu))
4664                 return;
4665
4666         if (!cpu_has_virtual_nmis()) {
4667                 /*
4668                  * Tracking the NMI-blocked state in software is built upon
4669                  * finding the next open IRQ window. This, in turn, depends on
4670                  * well-behaving guests: They have to keep IRQs disabled at
4671                  * least as long as the NMI handler runs. Otherwise we may
4672                  * cause NMI nesting, maybe breaking the guest. But as this is
4673                  * highly unlikely, we can live with the residual risk.
4674                  */
4675                 vmx->soft_vnmi_blocked = 1;
4676                 vmx->vnmi_blocked_time = 0;
4677         }
4678
4679         ++vcpu->stat.nmi_injections;
4680         vmx->nmi_known_unmasked = false;
4681         if (vmx->rmode.vm86_active) {
4682                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4683                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4684                 return;
4685         }
4686         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4687                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4688 }
4689
4690 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4691 {
4692         if (!cpu_has_virtual_nmis())
4693                 return to_vmx(vcpu)->soft_vnmi_blocked;
4694         if (to_vmx(vcpu)->nmi_known_unmasked)
4695                 return false;
4696         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4697 }
4698
4699 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4700 {
4701         struct vcpu_vmx *vmx = to_vmx(vcpu);
4702
4703         if (!cpu_has_virtual_nmis()) {
4704                 if (vmx->soft_vnmi_blocked != masked) {
4705                         vmx->soft_vnmi_blocked = masked;
4706                         vmx->vnmi_blocked_time = 0;
4707                 }
4708         } else {
4709                 vmx->nmi_known_unmasked = !masked;
4710                 if (masked)
4711                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4712                                       GUEST_INTR_STATE_NMI);
4713                 else
4714                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4715                                         GUEST_INTR_STATE_NMI);
4716         }
4717 }
4718
4719 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4720 {
4721         if (to_vmx(vcpu)->nested.nested_run_pending)
4722                 return 0;
4723
4724         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4725                 return 0;
4726
4727         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4728                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4729                    | GUEST_INTR_STATE_NMI));
4730 }
4731
4732 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4733 {
4734         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4735                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4736                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4737                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4738 }
4739
4740 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4741 {
4742         int ret;
4743         struct kvm_userspace_memory_region tss_mem = {
4744                 .slot = TSS_PRIVATE_MEMSLOT,
4745                 .guest_phys_addr = addr,
4746                 .memory_size = PAGE_SIZE * 3,
4747                 .flags = 0,
4748         };
4749
4750         ret = kvm_set_memory_region(kvm, &tss_mem);
4751         if (ret)
4752                 return ret;
4753         kvm->arch.tss_addr = addr;
4754         return init_rmode_tss(kvm);
4755 }
4756
4757 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4758 {
4759         switch (vec) {
4760         case BP_VECTOR:
4761                 /*
4762                  * Update instruction length as we may reinject the exception
4763                  * from user space while in guest debugging mode.
4764                  */
4765                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4766                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4767                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4768                         return false;
4769                 /* fall through */
4770         case DB_VECTOR:
4771                 if (vcpu->guest_debug &
4772                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4773                         return false;
4774                 /* fall through */
4775         case DE_VECTOR:
4776         case OF_VECTOR:
4777         case BR_VECTOR:
4778         case UD_VECTOR:
4779         case DF_VECTOR:
4780         case SS_VECTOR:
4781         case GP_VECTOR:
4782         case MF_VECTOR:
4783                 return true;
4784         break;
4785         }
4786         return false;
4787 }
4788
4789 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4790                                   int vec, u32 err_code)
4791 {
4792         /*
4793          * Instruction with address size override prefix opcode 0x67
4794          * Cause the #SS fault with 0 error code in VM86 mode.
4795          */
4796         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4797                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4798                         if (vcpu->arch.halt_request) {
4799                                 vcpu->arch.halt_request = 0;
4800                                 return kvm_emulate_halt(vcpu);
4801                         }
4802                         return 1;
4803                 }
4804                 return 0;
4805         }
4806
4807         /*
4808          * Forward all other exceptions that are valid in real mode.
4809          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4810          *        the required debugging infrastructure rework.
4811          */
4812         kvm_queue_exception(vcpu, vec);
4813         return 1;
4814 }
4815
4816 /*
4817  * Trigger machine check on the host. We assume all the MSRs are already set up
4818  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4819  * We pass a fake environment to the machine check handler because we want
4820  * the guest to be always treated like user space, no matter what context
4821  * it used internally.
4822  */
4823 static void kvm_machine_check(void)
4824 {
4825 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4826         struct pt_regs regs = {
4827                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4828                 .flags = X86_EFLAGS_IF,
4829         };
4830
4831         do_machine_check(&regs, 0);
4832 #endif
4833 }
4834
4835 static int handle_machine_check(struct kvm_vcpu *vcpu)
4836 {
4837         /* already handled by vcpu_run */
4838         return 1;
4839 }
4840
4841 static int handle_exception(struct kvm_vcpu *vcpu)
4842 {
4843         struct vcpu_vmx *vmx = to_vmx(vcpu);
4844         struct kvm_run *kvm_run = vcpu->run;
4845         u32 intr_info, ex_no, error_code;
4846         unsigned long cr2, rip, dr6;
4847         u32 vect_info;
4848         enum emulation_result er;
4849
4850         vect_info = vmx->idt_vectoring_info;
4851         intr_info = vmx->exit_intr_info;
4852
4853         if (is_machine_check(intr_info))
4854                 return handle_machine_check(vcpu);
4855
4856         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4857                 return 1;  /* already handled by vmx_vcpu_run() */
4858
4859         if (is_no_device(intr_info)) {
4860                 vmx_fpu_activate(vcpu);
4861                 return 1;
4862         }
4863
4864         if (is_invalid_opcode(intr_info)) {
4865                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4866                 if (er != EMULATE_DONE)
4867                         kvm_queue_exception(vcpu, UD_VECTOR);
4868                 return 1;
4869         }
4870
4871         error_code = 0;
4872         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4873                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4874
4875         /*
4876          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4877          * MMIO, it is better to report an internal error.
4878          * See the comments in vmx_handle_exit.
4879          */
4880         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4881             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4882                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4883                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4884                 vcpu->run->internal.ndata = 2;
4885                 vcpu->run->internal.data[0] = vect_info;
4886                 vcpu->run->internal.data[1] = intr_info;
4887                 return 0;
4888         }
4889
4890         if (is_page_fault(intr_info)) {
4891                 /* EPT won't cause page fault directly */
4892                 BUG_ON(enable_ept);
4893                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4894                 trace_kvm_page_fault(cr2, error_code);
4895
4896                 if (kvm_event_needs_reinjection(vcpu))
4897                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4898                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4899         }
4900
4901         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4902
4903         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4904                 return handle_rmode_exception(vcpu, ex_no, error_code);
4905
4906         switch (ex_no) {
4907         case DB_VECTOR:
4908                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4909                 if (!(vcpu->guest_debug &
4910                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4911                         vcpu->arch.dr6 &= ~15;
4912                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4913                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4914                                 skip_emulated_instruction(vcpu);
4915
4916                         kvm_queue_exception(vcpu, DB_VECTOR);
4917                         return 1;
4918                 }
4919                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4920                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4921                 /* fall through */
4922         case BP_VECTOR:
4923                 /*
4924                  * Update instruction length as we may reinject #BP from
4925                  * user space while in guest debugging mode. Reading it for
4926                  * #DB as well causes no harm, it is not used in that case.
4927                  */
4928                 vmx->vcpu.arch.event_exit_inst_len =
4929                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4930                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4931                 rip = kvm_rip_read(vcpu);
4932                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4933                 kvm_run->debug.arch.exception = ex_no;
4934                 break;
4935         default:
4936                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4937                 kvm_run->ex.exception = ex_no;
4938                 kvm_run->ex.error_code = error_code;
4939                 break;
4940         }
4941         return 0;
4942 }
4943
4944 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4945 {
4946         ++vcpu->stat.irq_exits;
4947         return 1;
4948 }
4949
4950 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4951 {
4952         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4953         return 0;
4954 }
4955
4956 static int handle_io(struct kvm_vcpu *vcpu)
4957 {
4958         unsigned long exit_qualification;
4959         int size, in, string;
4960         unsigned port;
4961
4962         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4963         string = (exit_qualification & 16) != 0;
4964         in = (exit_qualification & 8) != 0;
4965
4966         ++vcpu->stat.io_exits;
4967
4968         if (string || in)
4969                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4970
4971         port = exit_qualification >> 16;
4972         size = (exit_qualification & 7) + 1;
4973         skip_emulated_instruction(vcpu);
4974
4975         return kvm_fast_pio_out(vcpu, size, port);
4976 }
4977
4978 static void
4979 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4980 {
4981         /*
4982          * Patch in the VMCALL instruction:
4983          */
4984         hypercall[0] = 0x0f;
4985         hypercall[1] = 0x01;
4986         hypercall[2] = 0xc1;
4987 }
4988
4989 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4990 {
4991         unsigned long always_on = VMXON_CR0_ALWAYSON;
4992
4993         if (nested_vmx_secondary_ctls_high &
4994                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4995             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4996                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4997         return (val & always_on) == always_on;
4998 }
4999
5000 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5001 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5002 {
5003         if (is_guest_mode(vcpu)) {
5004                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5005                 unsigned long orig_val = val;
5006
5007                 /*
5008                  * We get here when L2 changed cr0 in a way that did not change
5009                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5010                  * but did change L0 shadowed bits. So we first calculate the
5011                  * effective cr0 value that L1 would like to write into the
5012                  * hardware. It consists of the L2-owned bits from the new
5013                  * value combined with the L1-owned bits from L1's guest_cr0.
5014                  */
5015                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5016                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5017
5018                 if (!nested_cr0_valid(vmcs12, val))
5019                         return 1;
5020
5021                 if (kvm_set_cr0(vcpu, val))
5022                         return 1;
5023                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5024                 return 0;
5025         } else {
5026                 if (to_vmx(vcpu)->nested.vmxon &&
5027                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5028                         return 1;
5029                 return kvm_set_cr0(vcpu, val);
5030         }
5031 }
5032
5033 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5034 {
5035         if (is_guest_mode(vcpu)) {
5036                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5037                 unsigned long orig_val = val;
5038
5039                 /* analogously to handle_set_cr0 */
5040                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5041                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5042                 if (kvm_set_cr4(vcpu, val))
5043                         return 1;
5044                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5045                 return 0;
5046         } else
5047                 return kvm_set_cr4(vcpu, val);
5048 }
5049
5050 /* called to set cr0 as approriate for clts instruction exit. */
5051 static void handle_clts(struct kvm_vcpu *vcpu)
5052 {
5053         if (is_guest_mode(vcpu)) {
5054                 /*
5055                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5056                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5057                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5058                  */
5059                 vmcs_writel(CR0_READ_SHADOW,
5060                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5061                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5062         } else
5063                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5064 }
5065
5066 static int handle_cr(struct kvm_vcpu *vcpu)
5067 {
5068         unsigned long exit_qualification, val;
5069         int cr;
5070         int reg;
5071         int err;
5072
5073         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5074         cr = exit_qualification & 15;
5075         reg = (exit_qualification >> 8) & 15;
5076         switch ((exit_qualification >> 4) & 3) {
5077         case 0: /* mov to cr */
5078                 val = kvm_register_readl(vcpu, reg);
5079                 trace_kvm_cr_write(cr, val);
5080                 switch (cr) {
5081                 case 0:
5082                         err = handle_set_cr0(vcpu, val);
5083                         kvm_complete_insn_gp(vcpu, err);
5084                         return 1;
5085                 case 3:
5086                         err = kvm_set_cr3(vcpu, val);
5087                         kvm_complete_insn_gp(vcpu, err);
5088                         return 1;
5089                 case 4:
5090                         err = handle_set_cr4(vcpu, val);
5091                         kvm_complete_insn_gp(vcpu, err);
5092                         return 1;
5093                 case 8: {
5094                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5095                                 u8 cr8 = (u8)val;
5096                                 err = kvm_set_cr8(vcpu, cr8);
5097                                 kvm_complete_insn_gp(vcpu, err);
5098                                 if (irqchip_in_kernel(vcpu->kvm))
5099                                         return 1;
5100                                 if (cr8_prev <= cr8)
5101                                         return 1;
5102                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5103                                 return 0;
5104                         }
5105                 }
5106                 break;
5107         case 2: /* clts */
5108                 handle_clts(vcpu);
5109                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5110                 skip_emulated_instruction(vcpu);
5111                 vmx_fpu_activate(vcpu);
5112                 return 1;
5113         case 1: /*mov from cr*/
5114                 switch (cr) {
5115                 case 3:
5116                         val = kvm_read_cr3(vcpu);
5117                         kvm_register_write(vcpu, reg, val);
5118                         trace_kvm_cr_read(cr, val);
5119                         skip_emulated_instruction(vcpu);
5120                         return 1;
5121                 case 8:
5122                         val = kvm_get_cr8(vcpu);
5123                         kvm_register_write(vcpu, reg, val);
5124                         trace_kvm_cr_read(cr, val);
5125                         skip_emulated_instruction(vcpu);
5126                         return 1;
5127                 }
5128                 break;
5129         case 3: /* lmsw */
5130                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5131                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5132                 kvm_lmsw(vcpu, val);
5133
5134                 skip_emulated_instruction(vcpu);
5135                 return 1;
5136         default:
5137                 break;
5138         }
5139         vcpu->run->exit_reason = 0;
5140         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5141                (int)(exit_qualification >> 4) & 3, cr);
5142         return 0;
5143 }
5144
5145 static int handle_dr(struct kvm_vcpu *vcpu)
5146 {
5147         unsigned long exit_qualification;
5148         int dr, dr7, reg;
5149
5150         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5151         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5152
5153         /* First, if DR does not exist, trigger UD */
5154         if (!kvm_require_dr(vcpu, dr))
5155                 return 1;
5156
5157         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5158         if (!kvm_require_cpl(vcpu, 0))
5159                 return 1;
5160         dr7 = vmcs_readl(GUEST_DR7);
5161         if (dr7 & DR7_GD) {
5162                 /*
5163                  * As the vm-exit takes precedence over the debug trap, we
5164                  * need to emulate the latter, either for the host or the
5165                  * guest debugging itself.
5166                  */
5167                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5168                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5169                         vcpu->run->debug.arch.dr7 = dr7;
5170                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5171                         vcpu->run->debug.arch.exception = DB_VECTOR;
5172                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5173                         return 0;
5174                 } else {
5175                         vcpu->arch.dr6 &= ~15;
5176                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5177                         kvm_queue_exception(vcpu, DB_VECTOR);
5178                         return 1;
5179                 }
5180         }
5181
5182         if (vcpu->guest_debug == 0) {
5183                 u32 cpu_based_vm_exec_control;
5184
5185                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5186                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5187                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5188
5189                 /*
5190                  * No more DR vmexits; force a reload of the debug registers
5191                  * and reenter on this instruction.  The next vmexit will
5192                  * retrieve the full state of the debug registers.
5193                  */
5194                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5195                 return 1;
5196         }
5197
5198         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5199         if (exit_qualification & TYPE_MOV_FROM_DR) {
5200                 unsigned long val;
5201
5202                 if (kvm_get_dr(vcpu, dr, &val))
5203                         return 1;
5204                 kvm_register_write(vcpu, reg, val);
5205         } else
5206                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5207                         return 1;
5208
5209         skip_emulated_instruction(vcpu);
5210         return 1;
5211 }
5212
5213 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5214 {
5215         return vcpu->arch.dr6;
5216 }
5217
5218 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5219 {
5220 }
5221
5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5223 {
5224         u32 cpu_based_vm_exec_control;
5225
5226         get_debugreg(vcpu->arch.db[0], 0);
5227         get_debugreg(vcpu->arch.db[1], 1);
5228         get_debugreg(vcpu->arch.db[2], 2);
5229         get_debugreg(vcpu->arch.db[3], 3);
5230         get_debugreg(vcpu->arch.dr6, 6);
5231         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5232
5233         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5234
5235         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5236         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5237         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5238 }
5239
5240 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5241 {
5242         vmcs_writel(GUEST_DR7, val);
5243 }
5244
5245 static int handle_cpuid(struct kvm_vcpu *vcpu)
5246 {
5247         kvm_emulate_cpuid(vcpu);
5248         return 1;
5249 }
5250
5251 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5252 {
5253         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5254         u64 data;
5255
5256         if (vmx_get_msr(vcpu, ecx, &data)) {
5257                 trace_kvm_msr_read_ex(ecx);
5258                 kvm_inject_gp(vcpu, 0);
5259                 return 1;
5260         }
5261
5262         trace_kvm_msr_read(ecx, data);
5263
5264         /* FIXME: handling of bits 32:63 of rax, rdx */
5265         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5266         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5267         skip_emulated_instruction(vcpu);
5268         return 1;
5269 }
5270
5271 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5272 {
5273         struct msr_data msr;
5274         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5275         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5276                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5277
5278         msr.data = data;
5279         msr.index = ecx;
5280         msr.host_initiated = false;
5281         if (kvm_set_msr(vcpu, &msr) != 0) {
5282                 trace_kvm_msr_write_ex(ecx, data);
5283                 kvm_inject_gp(vcpu, 0);
5284                 return 1;
5285         }
5286
5287         trace_kvm_msr_write(ecx, data);
5288         skip_emulated_instruction(vcpu);
5289         return 1;
5290 }
5291
5292 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5293 {
5294         kvm_make_request(KVM_REQ_EVENT, vcpu);
5295         return 1;
5296 }
5297
5298 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5299 {
5300         u32 cpu_based_vm_exec_control;
5301
5302         /* clear pending irq */
5303         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5304         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5305         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5306
5307         kvm_make_request(KVM_REQ_EVENT, vcpu);
5308
5309         ++vcpu->stat.irq_window_exits;
5310
5311         /*
5312          * If the user space waits to inject interrupts, exit as soon as
5313          * possible
5314          */
5315         if (!irqchip_in_kernel(vcpu->kvm) &&
5316             vcpu->run->request_interrupt_window &&
5317             !kvm_cpu_has_interrupt(vcpu)) {
5318                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5319                 return 0;
5320         }
5321         return 1;
5322 }
5323
5324 static int handle_halt(struct kvm_vcpu *vcpu)
5325 {
5326         skip_emulated_instruction(vcpu);
5327         return kvm_emulate_halt(vcpu);
5328 }
5329
5330 static int handle_vmcall(struct kvm_vcpu *vcpu)
5331 {
5332         skip_emulated_instruction(vcpu);
5333         kvm_emulate_hypercall(vcpu);
5334         return 1;
5335 }
5336
5337 static int handle_invd(struct kvm_vcpu *vcpu)
5338 {
5339         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5340 }
5341
5342 static int handle_invlpg(struct kvm_vcpu *vcpu)
5343 {
5344         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5345
5346         kvm_mmu_invlpg(vcpu, exit_qualification);
5347         skip_emulated_instruction(vcpu);
5348         return 1;
5349 }
5350
5351 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5352 {
5353         int err;
5354
5355         err = kvm_rdpmc(vcpu);
5356         kvm_complete_insn_gp(vcpu, err);
5357
5358         return 1;
5359 }
5360
5361 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5362 {
5363         skip_emulated_instruction(vcpu);
5364         kvm_emulate_wbinvd(vcpu);
5365         return 1;
5366 }
5367
5368 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5369 {
5370         u64 new_bv = kvm_read_edx_eax(vcpu);
5371         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5372
5373         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5374                 skip_emulated_instruction(vcpu);
5375         return 1;
5376 }
5377
5378 static int handle_xsaves(struct kvm_vcpu *vcpu)
5379 {
5380         skip_emulated_instruction(vcpu);
5381         WARN(1, "this should never happen\n");
5382         return 1;
5383 }
5384
5385 static int handle_xrstors(struct kvm_vcpu *vcpu)
5386 {
5387         skip_emulated_instruction(vcpu);
5388         WARN(1, "this should never happen\n");
5389         return 1;
5390 }
5391
5392 static int handle_apic_access(struct kvm_vcpu *vcpu)
5393 {
5394         if (likely(fasteoi)) {
5395                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5396                 int access_type, offset;
5397
5398                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5399                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5400                 /*
5401                  * Sane guest uses MOV to write EOI, with written value
5402                  * not cared. So make a short-circuit here by avoiding
5403                  * heavy instruction emulation.
5404                  */
5405                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5406                     (offset == APIC_EOI)) {
5407                         kvm_lapic_set_eoi(vcpu);
5408                         skip_emulated_instruction(vcpu);
5409                         return 1;
5410                 }
5411         }
5412         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5413 }
5414
5415 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5416 {
5417         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418         int vector = exit_qualification & 0xff;
5419
5420         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5421         kvm_apic_set_eoi_accelerated(vcpu, vector);
5422         return 1;
5423 }
5424
5425 static int handle_apic_write(struct kvm_vcpu *vcpu)
5426 {
5427         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5428         u32 offset = exit_qualification & 0xfff;
5429
5430         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5431         kvm_apic_write_nodecode(vcpu, offset);
5432         return 1;
5433 }
5434
5435 static int handle_task_switch(struct kvm_vcpu *vcpu)
5436 {
5437         struct vcpu_vmx *vmx = to_vmx(vcpu);
5438         unsigned long exit_qualification;
5439         bool has_error_code = false;
5440         u32 error_code = 0;
5441         u16 tss_selector;
5442         int reason, type, idt_v, idt_index;
5443
5444         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5445         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5446         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5447
5448         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5449
5450         reason = (u32)exit_qualification >> 30;
5451         if (reason == TASK_SWITCH_GATE && idt_v) {
5452                 switch (type) {
5453                 case INTR_TYPE_NMI_INTR:
5454                         vcpu->arch.nmi_injected = false;
5455                         vmx_set_nmi_mask(vcpu, true);
5456                         break;
5457                 case INTR_TYPE_EXT_INTR:
5458                 case INTR_TYPE_SOFT_INTR:
5459                         kvm_clear_interrupt_queue(vcpu);
5460                         break;
5461                 case INTR_TYPE_HARD_EXCEPTION:
5462                         if (vmx->idt_vectoring_info &
5463                             VECTORING_INFO_DELIVER_CODE_MASK) {
5464                                 has_error_code = true;
5465                                 error_code =
5466                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5467                         }
5468                         /* fall through */
5469                 case INTR_TYPE_SOFT_EXCEPTION:
5470                         kvm_clear_exception_queue(vcpu);
5471                         break;
5472                 default:
5473                         break;
5474                 }
5475         }
5476         tss_selector = exit_qualification;
5477
5478         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5479                        type != INTR_TYPE_EXT_INTR &&
5480                        type != INTR_TYPE_NMI_INTR))
5481                 skip_emulated_instruction(vcpu);
5482
5483         if (kvm_task_switch(vcpu, tss_selector,
5484                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5485                             has_error_code, error_code) == EMULATE_FAIL) {
5486                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5487                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5488                 vcpu->run->internal.ndata = 0;
5489                 return 0;
5490         }
5491
5492         /* clear all local breakpoint enable flags */
5493         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5494
5495         /*
5496          * TODO: What about debug traps on tss switch?
5497          *       Are we supposed to inject them and update dr6?
5498          */
5499
5500         return 1;
5501 }
5502
5503 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5504 {
5505         unsigned long exit_qualification;
5506         gpa_t gpa;
5507         u32 error_code;
5508         int gla_validity;
5509
5510         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5511
5512         gla_validity = (exit_qualification >> 7) & 0x3;
5513         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5514                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5515                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5516                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5517                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5518                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5519                         (long unsigned int)exit_qualification);
5520                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5521                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5522                 return 0;
5523         }
5524
5525         /*
5526          * EPT violation happened while executing iret from NMI,
5527          * "blocked by NMI" bit has to be set before next VM entry.
5528          * There are errata that may cause this bit to not be set:
5529          * AAK134, BY25.
5530          */
5531         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5532                         cpu_has_virtual_nmis() &&
5533                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5534                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5535
5536         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5537         trace_kvm_page_fault(gpa, exit_qualification);
5538
5539         /* It is a write fault? */
5540         error_code = exit_qualification & PFERR_WRITE_MASK;
5541         /* It is a fetch fault? */
5542         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5543         /* ept page table is present? */
5544         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5545
5546         vcpu->arch.exit_qualification = exit_qualification;
5547
5548         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5549 }
5550
5551 static u64 ept_rsvd_mask(u64 spte, int level)
5552 {
5553         int i;
5554         u64 mask = 0;
5555
5556         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5557                 mask |= (1ULL << i);
5558
5559         if (level == 4)
5560                 /* bits 7:3 reserved */
5561                 mask |= 0xf8;
5562         else if (spte & (1ULL << 7))
5563                 /*
5564                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5565                  * level == 1 if the hypervisor is using the ignored bit 7.
5566                  */
5567                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5568         else if (level > 1)
5569                 /* bits 6:3 reserved */
5570                 mask |= 0x78;
5571
5572         return mask;
5573 }
5574
5575 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5576                                        int level)
5577 {
5578         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5579
5580         /* 010b (write-only) */
5581         WARN_ON((spte & 0x7) == 0x2);
5582
5583         /* 110b (write/execute) */
5584         WARN_ON((spte & 0x7) == 0x6);
5585
5586         /* 100b (execute-only) and value not supported by logical processor */
5587         if (!cpu_has_vmx_ept_execute_only())
5588                 WARN_ON((spte & 0x7) == 0x4);
5589
5590         /* not 000b */
5591         if ((spte & 0x7)) {
5592                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5593
5594                 if (rsvd_bits != 0) {
5595                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5596                                          __func__, rsvd_bits);
5597                         WARN_ON(1);
5598                 }
5599
5600                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5601                 if ((rsvd_bits & 0x38) == 0) {
5602                         u64 ept_mem_type = (spte & 0x38) >> 3;
5603
5604                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5605                             ept_mem_type == 7) {
5606                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5607                                                 __func__, ept_mem_type);
5608                                 WARN_ON(1);
5609                         }
5610                 }
5611         }
5612 }
5613
5614 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5615 {
5616         u64 sptes[4];
5617         int nr_sptes, i, ret;
5618         gpa_t gpa;
5619
5620         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5621         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5622                 skip_emulated_instruction(vcpu);
5623                 return 1;
5624         }
5625
5626         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5627         if (likely(ret == RET_MMIO_PF_EMULATE))
5628                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5629                                               EMULATE_DONE;
5630
5631         if (unlikely(ret == RET_MMIO_PF_INVALID))
5632                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5633
5634         if (unlikely(ret == RET_MMIO_PF_RETRY))
5635                 return 1;
5636
5637         /* It is the real ept misconfig */
5638         printk(KERN_ERR "EPT: Misconfiguration.\n");
5639         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5640
5641         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5642
5643         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5644                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5645
5646         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5647         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5648
5649         return 0;
5650 }
5651
5652 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5653 {
5654         u32 cpu_based_vm_exec_control;
5655
5656         /* clear pending NMI */
5657         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5658         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5659         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5660         ++vcpu->stat.nmi_window_exits;
5661         kvm_make_request(KVM_REQ_EVENT, vcpu);
5662
5663         return 1;
5664 }
5665
5666 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5667 {
5668         struct vcpu_vmx *vmx = to_vmx(vcpu);
5669         enum emulation_result err = EMULATE_DONE;
5670         int ret = 1;
5671         u32 cpu_exec_ctrl;
5672         bool intr_window_requested;
5673         unsigned count = 130;
5674
5675         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5676         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5677
5678         while (vmx->emulation_required && count-- != 0) {
5679                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5680                         return handle_interrupt_window(&vmx->vcpu);
5681
5682                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5683                         return 1;
5684
5685                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5686
5687                 if (err == EMULATE_USER_EXIT) {
5688                         ++vcpu->stat.mmio_exits;
5689                         ret = 0;
5690                         goto out;
5691                 }
5692
5693                 if (err != EMULATE_DONE) {
5694                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5695                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5696                         vcpu->run->internal.ndata = 0;
5697                         return 0;
5698                 }
5699
5700                 if (vcpu->arch.halt_request) {
5701                         vcpu->arch.halt_request = 0;
5702                         ret = kvm_emulate_halt(vcpu);
5703                         goto out;
5704                 }
5705
5706                 if (signal_pending(current))
5707                         goto out;
5708                 if (need_resched())
5709                         schedule();
5710         }
5711
5712 out:
5713         return ret;
5714 }
5715
5716 static int __grow_ple_window(int val)
5717 {
5718         if (ple_window_grow < 1)
5719                 return ple_window;
5720
5721         val = min(val, ple_window_actual_max);
5722
5723         if (ple_window_grow < ple_window)
5724                 val *= ple_window_grow;
5725         else
5726                 val += ple_window_grow;
5727
5728         return val;
5729 }
5730
5731 static int __shrink_ple_window(int val, int modifier, int minimum)
5732 {
5733         if (modifier < 1)
5734                 return ple_window;
5735
5736         if (modifier < ple_window)
5737                 val /= modifier;
5738         else
5739                 val -= modifier;
5740
5741         return max(val, minimum);
5742 }
5743
5744 static void grow_ple_window(struct kvm_vcpu *vcpu)
5745 {
5746         struct vcpu_vmx *vmx = to_vmx(vcpu);
5747         int old = vmx->ple_window;
5748
5749         vmx->ple_window = __grow_ple_window(old);
5750
5751         if (vmx->ple_window != old)
5752                 vmx->ple_window_dirty = true;
5753
5754         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5755 }
5756
5757 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5758 {
5759         struct vcpu_vmx *vmx = to_vmx(vcpu);
5760         int old = vmx->ple_window;
5761
5762         vmx->ple_window = __shrink_ple_window(old,
5763                                               ple_window_shrink, ple_window);
5764
5765         if (vmx->ple_window != old)
5766                 vmx->ple_window_dirty = true;
5767
5768         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5769 }
5770
5771 /*
5772  * ple_window_actual_max is computed to be one grow_ple_window() below
5773  * ple_window_max. (See __grow_ple_window for the reason.)
5774  * This prevents overflows, because ple_window_max is int.
5775  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5776  * this process.
5777  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5778  */
5779 static void update_ple_window_actual_max(void)
5780 {
5781         ple_window_actual_max =
5782                         __shrink_ple_window(max(ple_window_max, ple_window),
5783                                             ple_window_grow, INT_MIN);
5784 }
5785
5786 static __init int hardware_setup(void)
5787 {
5788         int r = -ENOMEM, i, msr;
5789
5790         rdmsrl_safe(MSR_EFER, &host_efer);
5791
5792         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5793                 kvm_define_shared_msr(i, vmx_msr_index[i]);
5794
5795         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5796         if (!vmx_io_bitmap_a)
5797                 return r;
5798
5799         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5800         if (!vmx_io_bitmap_b)
5801                 goto out;
5802
5803         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5804         if (!vmx_msr_bitmap_legacy)
5805                 goto out1;
5806
5807         vmx_msr_bitmap_legacy_x2apic =
5808                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5809         if (!vmx_msr_bitmap_legacy_x2apic)
5810                 goto out2;
5811
5812         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5813         if (!vmx_msr_bitmap_longmode)
5814                 goto out3;
5815
5816         vmx_msr_bitmap_longmode_x2apic =
5817                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5818         if (!vmx_msr_bitmap_longmode_x2apic)
5819                 goto out4;
5820         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5821         if (!vmx_vmread_bitmap)
5822                 goto out5;
5823
5824         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5825         if (!vmx_vmwrite_bitmap)
5826                 goto out6;
5827
5828         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5829         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5830
5831         /*
5832          * Allow direct access to the PC debug port (it is often used for I/O
5833          * delays, but the vmexits simply slow things down).
5834          */
5835         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5836         clear_bit(0x80, vmx_io_bitmap_a);
5837
5838         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5839
5840         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5841         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5842
5843         if (setup_vmcs_config(&vmcs_config) < 0) {
5844                 r = -EIO;
5845                 goto out7;
5846         }
5847
5848         if (boot_cpu_has(X86_FEATURE_NX))
5849                 kvm_enable_efer_bits(EFER_NX);
5850
5851         if (!cpu_has_vmx_vpid())
5852                 enable_vpid = 0;
5853         if (!cpu_has_vmx_shadow_vmcs())
5854                 enable_shadow_vmcs = 0;
5855         if (enable_shadow_vmcs)
5856                 init_vmcs_shadow_fields();
5857
5858         if (!cpu_has_vmx_ept() ||
5859             !cpu_has_vmx_ept_4levels()) {
5860                 enable_ept = 0;
5861                 enable_unrestricted_guest = 0;
5862                 enable_ept_ad_bits = 0;
5863         }
5864
5865         if (!cpu_has_vmx_ept_ad_bits())
5866                 enable_ept_ad_bits = 0;
5867
5868         if (!cpu_has_vmx_unrestricted_guest())
5869                 enable_unrestricted_guest = 0;
5870
5871         if (!cpu_has_vmx_flexpriority()) {
5872                 flexpriority_enabled = 0;
5873
5874                 /*
5875                  * set_apic_access_page_addr() is used to reload apic access
5876                  * page upon invalidation.  No need to do anything if the
5877                  * processor does not have the APIC_ACCESS_ADDR VMCS field.
5878                  */
5879                 kvm_x86_ops->set_apic_access_page_addr = NULL;
5880         }
5881
5882         if (!cpu_has_vmx_tpr_shadow())
5883                 kvm_x86_ops->update_cr8_intercept = NULL;
5884
5885         if (enable_ept && !cpu_has_vmx_ept_2m_page())
5886                 kvm_disable_largepages();
5887
5888         if (!cpu_has_vmx_ple())
5889                 ple_gap = 0;
5890
5891         if (!cpu_has_vmx_apicv())
5892                 enable_apicv = 0;
5893
5894         if (enable_apicv)
5895                 kvm_x86_ops->update_cr8_intercept = NULL;
5896         else {
5897                 kvm_x86_ops->hwapic_irr_update = NULL;
5898                 kvm_x86_ops->deliver_posted_interrupt = NULL;
5899                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
5900         }
5901
5902         if (nested)
5903                 nested_vmx_setup_ctls_msrs();
5904
5905         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5906         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5907         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5908         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5909         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5910         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5911         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
5912
5913         memcpy(vmx_msr_bitmap_legacy_x2apic,
5914                         vmx_msr_bitmap_legacy, PAGE_SIZE);
5915         memcpy(vmx_msr_bitmap_longmode_x2apic,
5916                         vmx_msr_bitmap_longmode, PAGE_SIZE);
5917
5918         if (enable_apicv) {
5919                 for (msr = 0x800; msr <= 0x8ff; msr++)
5920                         vmx_disable_intercept_msr_read_x2apic(msr);
5921
5922                 /* According SDM, in x2apic mode, the whole id reg is used.
5923                  * But in KVM, it only use the highest eight bits. Need to
5924                  * intercept it */
5925                 vmx_enable_intercept_msr_read_x2apic(0x802);
5926                 /* TMCCT */
5927                 vmx_enable_intercept_msr_read_x2apic(0x839);
5928                 /* TPR */
5929                 vmx_disable_intercept_msr_write_x2apic(0x808);
5930                 /* EOI */
5931                 vmx_disable_intercept_msr_write_x2apic(0x80b);
5932                 /* SELF-IPI */
5933                 vmx_disable_intercept_msr_write_x2apic(0x83f);
5934         }
5935
5936         if (enable_ept) {
5937                 kvm_mmu_set_mask_ptes(0ull,
5938                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
5939                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
5940                         0ull, VMX_EPT_EXECUTABLE_MASK);
5941                 ept_set_mmio_spte_mask();
5942                 kvm_enable_tdp();
5943         } else
5944                 kvm_disable_tdp();
5945
5946         update_ple_window_actual_max();
5947
5948         return alloc_kvm_area();
5949
5950 out7:
5951         free_page((unsigned long)vmx_vmwrite_bitmap);
5952 out6:
5953         free_page((unsigned long)vmx_vmread_bitmap);
5954 out5:
5955         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5956 out4:
5957         free_page((unsigned long)vmx_msr_bitmap_longmode);
5958 out3:
5959         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5960 out2:
5961         free_page((unsigned long)vmx_msr_bitmap_legacy);
5962 out1:
5963         free_page((unsigned long)vmx_io_bitmap_b);
5964 out:
5965         free_page((unsigned long)vmx_io_bitmap_a);
5966
5967     return r;
5968 }
5969
5970 static __exit void hardware_unsetup(void)
5971 {
5972         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5973         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5974         free_page((unsigned long)vmx_msr_bitmap_legacy);
5975         free_page((unsigned long)vmx_msr_bitmap_longmode);
5976         free_page((unsigned long)vmx_io_bitmap_b);
5977         free_page((unsigned long)vmx_io_bitmap_a);
5978         free_page((unsigned long)vmx_vmwrite_bitmap);
5979         free_page((unsigned long)vmx_vmread_bitmap);
5980
5981         free_kvm_area();
5982 }
5983
5984 /*
5985  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5986  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5987  */
5988 static int handle_pause(struct kvm_vcpu *vcpu)
5989 {
5990         if (ple_gap)
5991                 grow_ple_window(vcpu);
5992
5993         skip_emulated_instruction(vcpu);
5994         kvm_vcpu_on_spin(vcpu);
5995
5996         return 1;
5997 }
5998
5999 static int handle_nop(struct kvm_vcpu *vcpu)
6000 {
6001         skip_emulated_instruction(vcpu);
6002         return 1;
6003 }
6004
6005 static int handle_mwait(struct kvm_vcpu *vcpu)
6006 {
6007         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6008         return handle_nop(vcpu);
6009 }
6010
6011 static int handle_monitor(struct kvm_vcpu *vcpu)
6012 {
6013         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6014         return handle_nop(vcpu);
6015 }
6016
6017 /*
6018  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6019  * We could reuse a single VMCS for all the L2 guests, but we also want the
6020  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6021  * allows keeping them loaded on the processor, and in the future will allow
6022  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6023  * every entry if they never change.
6024  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6025  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6026  *
6027  * The following functions allocate and free a vmcs02 in this pool.
6028  */
6029
6030 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6031 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6032 {
6033         struct vmcs02_list *item;
6034         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6035                 if (item->vmptr == vmx->nested.current_vmptr) {
6036                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6037                         return &item->vmcs02;
6038                 }
6039
6040         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6041                 /* Recycle the least recently used VMCS. */
6042                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6043                         struct vmcs02_list, list);
6044                 item->vmptr = vmx->nested.current_vmptr;
6045                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6046                 return &item->vmcs02;
6047         }
6048
6049         /* Create a new VMCS */
6050         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6051         if (!item)
6052                 return NULL;
6053         item->vmcs02.vmcs = alloc_vmcs();
6054         if (!item->vmcs02.vmcs) {
6055                 kfree(item);
6056                 return NULL;
6057         }
6058         loaded_vmcs_init(&item->vmcs02);
6059         item->vmptr = vmx->nested.current_vmptr;
6060         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6061         vmx->nested.vmcs02_num++;
6062         return &item->vmcs02;
6063 }
6064
6065 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6066 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6067 {
6068         struct vmcs02_list *item;
6069         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6070                 if (item->vmptr == vmptr) {
6071                         free_loaded_vmcs(&item->vmcs02);
6072                         list_del(&item->list);
6073                         kfree(item);
6074                         vmx->nested.vmcs02_num--;
6075                         return;
6076                 }
6077 }
6078
6079 /*
6080  * Free all VMCSs saved for this vcpu, except the one pointed by
6081  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6082  * must be &vmx->vmcs01.
6083  */
6084 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6085 {
6086         struct vmcs02_list *item, *n;
6087
6088         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6089         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6090                 /*
6091                  * Something will leak if the above WARN triggers.  Better than
6092                  * a use-after-free.
6093                  */
6094                 if (vmx->loaded_vmcs == &item->vmcs02)
6095                         continue;
6096
6097                 free_loaded_vmcs(&item->vmcs02);
6098                 list_del(&item->list);
6099                 kfree(item);
6100                 vmx->nested.vmcs02_num--;
6101         }
6102 }
6103
6104 /*
6105  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6106  * set the success or error code of an emulated VMX instruction, as specified
6107  * by Vol 2B, VMX Instruction Reference, "Conventions".
6108  */
6109 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6110 {
6111         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6112                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6113                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6114 }
6115
6116 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6117 {
6118         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6119                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6120                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6121                         | X86_EFLAGS_CF);
6122 }
6123
6124 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6125                                         u32 vm_instruction_error)
6126 {
6127         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6128                 /*
6129                  * failValid writes the error number to the current VMCS, which
6130                  * can't be done there isn't a current VMCS.
6131                  */
6132                 nested_vmx_failInvalid(vcpu);
6133                 return;
6134         }
6135         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6136                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6137                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6138                         | X86_EFLAGS_ZF);
6139         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6140         /*
6141          * We don't need to force a shadow sync because
6142          * VM_INSTRUCTION_ERROR is not shadowed
6143          */
6144 }
6145
6146 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6147 {
6148         struct vcpu_vmx *vmx =
6149                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6150
6151         vmx->nested.preemption_timer_expired = true;
6152         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6153         kvm_vcpu_kick(&vmx->vcpu);
6154
6155         return HRTIMER_NORESTART;
6156 }
6157
6158 /*
6159  * Decode the memory-address operand of a vmx instruction, as recorded on an
6160  * exit caused by such an instruction (run by a guest hypervisor).
6161  * On success, returns 0. When the operand is invalid, returns 1 and throws
6162  * #UD or #GP.
6163  */
6164 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6165                                  unsigned long exit_qualification,
6166                                  u32 vmx_instruction_info, gva_t *ret)
6167 {
6168         /*
6169          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6170          * Execution", on an exit, vmx_instruction_info holds most of the
6171          * addressing components of the operand. Only the displacement part
6172          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6173          * For how an actual address is calculated from all these components,
6174          * refer to Vol. 1, "Operand Addressing".
6175          */
6176         int  scaling = vmx_instruction_info & 3;
6177         int  addr_size = (vmx_instruction_info >> 7) & 7;
6178         bool is_reg = vmx_instruction_info & (1u << 10);
6179         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6180         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6181         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6182         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6183         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6184
6185         if (is_reg) {
6186                 kvm_queue_exception(vcpu, UD_VECTOR);
6187                 return 1;
6188         }
6189
6190         /* Addr = segment_base + offset */
6191         /* offset = base + [index * scale] + displacement */
6192         *ret = vmx_get_segment_base(vcpu, seg_reg);
6193         if (base_is_valid)
6194                 *ret += kvm_register_read(vcpu, base_reg);
6195         if (index_is_valid)
6196                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6197         *ret += exit_qualification; /* holds the displacement */
6198
6199         if (addr_size == 1) /* 32 bit */
6200                 *ret &= 0xffffffff;
6201
6202         /*
6203          * TODO: throw #GP (and return 1) in various cases that the VM*
6204          * instructions require it - e.g., offset beyond segment limit,
6205          * unusable or unreadable/unwritable segment, non-canonical 64-bit
6206          * address, and so on. Currently these are not checked.
6207          */
6208         return 0;
6209 }
6210
6211 /*
6212  * This function performs the various checks including
6213  * - if it's 4KB aligned
6214  * - No bits beyond the physical address width are set
6215  * - Returns 0 on success or else 1
6216  * (Intel SDM Section 30.3)
6217  */
6218 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6219                                   gpa_t *vmpointer)
6220 {
6221         gva_t gva;
6222         gpa_t vmptr;
6223         struct x86_exception e;
6224         struct page *page;
6225         struct vcpu_vmx *vmx = to_vmx(vcpu);
6226         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6227
6228         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6229                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6230                 return 1;
6231
6232         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6233                                 sizeof(vmptr), &e)) {
6234                 kvm_inject_page_fault(vcpu, &e);
6235                 return 1;
6236         }
6237
6238         switch (exit_reason) {
6239         case EXIT_REASON_VMON:
6240                 /*
6241                  * SDM 3: 24.11.5
6242                  * The first 4 bytes of VMXON region contain the supported
6243                  * VMCS revision identifier
6244                  *
6245                  * Note - IA32_VMX_BASIC[48] will never be 1
6246                  * for the nested case;
6247                  * which replaces physical address width with 32
6248                  *
6249                  */
6250                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6251                         nested_vmx_failInvalid(vcpu);
6252                         skip_emulated_instruction(vcpu);
6253                         return 1;
6254                 }
6255
6256                 page = nested_get_page(vcpu, vmptr);
6257                 if (page == NULL ||
6258                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6259                         nested_vmx_failInvalid(vcpu);
6260                         kunmap(page);
6261                         skip_emulated_instruction(vcpu);
6262                         return 1;
6263                 }
6264                 kunmap(page);
6265                 vmx->nested.vmxon_ptr = vmptr;
6266                 break;
6267         case EXIT_REASON_VMCLEAR:
6268                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6269                         nested_vmx_failValid(vcpu,
6270                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6271                         skip_emulated_instruction(vcpu);
6272                         return 1;
6273                 }
6274
6275                 if (vmptr == vmx->nested.vmxon_ptr) {
6276                         nested_vmx_failValid(vcpu,
6277                                              VMXERR_VMCLEAR_VMXON_POINTER);
6278                         skip_emulated_instruction(vcpu);
6279                         return 1;
6280                 }
6281                 break;
6282         case EXIT_REASON_VMPTRLD:
6283                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6284                         nested_vmx_failValid(vcpu,
6285                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6286                         skip_emulated_instruction(vcpu);
6287                         return 1;
6288                 }
6289
6290                 if (vmptr == vmx->nested.vmxon_ptr) {
6291                         nested_vmx_failValid(vcpu,
6292                                              VMXERR_VMCLEAR_VMXON_POINTER);
6293                         skip_emulated_instruction(vcpu);
6294                         return 1;
6295                 }
6296                 break;
6297         default:
6298                 return 1; /* shouldn't happen */
6299         }
6300
6301         if (vmpointer)
6302                 *vmpointer = vmptr;
6303         return 0;
6304 }
6305
6306 /*
6307  * Emulate the VMXON instruction.
6308  * Currently, we just remember that VMX is active, and do not save or even
6309  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6310  * do not currently need to store anything in that guest-allocated memory
6311  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6312  * argument is different from the VMXON pointer (which the spec says they do).
6313  */
6314 static int handle_vmon(struct kvm_vcpu *vcpu)
6315 {
6316         struct kvm_segment cs;
6317         struct vcpu_vmx *vmx = to_vmx(vcpu);
6318         struct vmcs *shadow_vmcs;
6319         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6320                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6321
6322         /* The Intel VMX Instruction Reference lists a bunch of bits that
6323          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6324          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6325          * Otherwise, we should fail with #UD. We test these now:
6326          */
6327         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6328             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6329             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6330                 kvm_queue_exception(vcpu, UD_VECTOR);
6331                 return 1;
6332         }
6333
6334         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6335         if (is_long_mode(vcpu) && !cs.l) {
6336                 kvm_queue_exception(vcpu, UD_VECTOR);
6337                 return 1;
6338         }
6339
6340         if (vmx_get_cpl(vcpu)) {
6341                 kvm_inject_gp(vcpu, 0);
6342                 return 1;
6343         }
6344
6345         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6346                 return 1;
6347
6348         if (vmx->nested.vmxon) {
6349                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6350                 skip_emulated_instruction(vcpu);
6351                 return 1;
6352         }
6353
6354         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6355                         != VMXON_NEEDED_FEATURES) {
6356                 kvm_inject_gp(vcpu, 0);
6357                 return 1;
6358         }
6359
6360         if (enable_shadow_vmcs) {
6361                 shadow_vmcs = alloc_vmcs();
6362                 if (!shadow_vmcs)
6363                         return -ENOMEM;
6364                 /* mark vmcs as shadow */
6365                 shadow_vmcs->revision_id |= (1u << 31);
6366                 /* init shadow vmcs */
6367                 vmcs_clear(shadow_vmcs);
6368                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6369         }
6370
6371         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6372         vmx->nested.vmcs02_num = 0;
6373
6374         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6375                      HRTIMER_MODE_REL);
6376         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6377
6378         vmx->nested.vmxon = true;
6379
6380         skip_emulated_instruction(vcpu);
6381         nested_vmx_succeed(vcpu);
6382         return 1;
6383 }
6384
6385 /*
6386  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6387  * for running VMX instructions (except VMXON, whose prerequisites are
6388  * slightly different). It also specifies what exception to inject otherwise.
6389  */
6390 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6391 {
6392         struct kvm_segment cs;
6393         struct vcpu_vmx *vmx = to_vmx(vcpu);
6394
6395         if (!vmx->nested.vmxon) {
6396                 kvm_queue_exception(vcpu, UD_VECTOR);
6397                 return 0;
6398         }
6399
6400         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6401         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6402             (is_long_mode(vcpu) && !cs.l)) {
6403                 kvm_queue_exception(vcpu, UD_VECTOR);
6404                 return 0;
6405         }
6406
6407         if (vmx_get_cpl(vcpu)) {
6408                 kvm_inject_gp(vcpu, 0);
6409                 return 0;
6410         }
6411
6412         return 1;
6413 }
6414
6415 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6416 {
6417         u32 exec_control;
6418         if (vmx->nested.current_vmptr == -1ull)
6419                 return;
6420
6421         /* current_vmptr and current_vmcs12 are always set/reset together */
6422         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6423                 return;
6424
6425         if (enable_shadow_vmcs) {
6426                 /* copy to memory all shadowed fields in case
6427                    they were modified */
6428                 copy_shadow_to_vmcs12(vmx);
6429                 vmx->nested.sync_shadow_vmcs = false;
6430                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6431                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6432                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6433                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6434         }
6435         kunmap(vmx->nested.current_vmcs12_page);
6436         nested_release_page(vmx->nested.current_vmcs12_page);
6437         vmx->nested.current_vmptr = -1ull;
6438         vmx->nested.current_vmcs12 = NULL;
6439 }
6440
6441 /*
6442  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6443  * just stops using VMX.
6444  */
6445 static void free_nested(struct vcpu_vmx *vmx)
6446 {
6447         if (!vmx->nested.vmxon)
6448                 return;
6449
6450         vmx->nested.vmxon = false;
6451         nested_release_vmcs12(vmx);
6452         if (enable_shadow_vmcs)
6453                 free_vmcs(vmx->nested.current_shadow_vmcs);
6454         /* Unpin physical memory we referred to in current vmcs02 */
6455         if (vmx->nested.apic_access_page) {
6456                 nested_release_page(vmx->nested.apic_access_page);
6457                 vmx->nested.apic_access_page = NULL;
6458         }
6459         if (vmx->nested.virtual_apic_page) {
6460                 nested_release_page(vmx->nested.virtual_apic_page);
6461                 vmx->nested.virtual_apic_page = NULL;
6462         }
6463
6464         nested_free_all_saved_vmcss(vmx);
6465 }
6466
6467 /* Emulate the VMXOFF instruction */
6468 static int handle_vmoff(struct kvm_vcpu *vcpu)
6469 {
6470         if (!nested_vmx_check_permission(vcpu))
6471                 return 1;
6472         free_nested(to_vmx(vcpu));
6473         skip_emulated_instruction(vcpu);
6474         nested_vmx_succeed(vcpu);
6475         return 1;
6476 }
6477
6478 /* Emulate the VMCLEAR instruction */
6479 static int handle_vmclear(struct kvm_vcpu *vcpu)
6480 {
6481         struct vcpu_vmx *vmx = to_vmx(vcpu);
6482         gpa_t vmptr;
6483         struct vmcs12 *vmcs12;
6484         struct page *page;
6485
6486         if (!nested_vmx_check_permission(vcpu))
6487                 return 1;
6488
6489         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6490                 return 1;
6491
6492         if (vmptr == vmx->nested.current_vmptr)
6493                 nested_release_vmcs12(vmx);
6494
6495         page = nested_get_page(vcpu, vmptr);
6496         if (page == NULL) {
6497                 /*
6498                  * For accurate processor emulation, VMCLEAR beyond available
6499                  * physical memory should do nothing at all. However, it is
6500                  * possible that a nested vmx bug, not a guest hypervisor bug,
6501                  * resulted in this case, so let's shut down before doing any
6502                  * more damage:
6503                  */
6504                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6505                 return 1;
6506         }
6507         vmcs12 = kmap(page);
6508         vmcs12->launch_state = 0;
6509         kunmap(page);
6510         nested_release_page(page);
6511
6512         nested_free_vmcs02(vmx, vmptr);
6513
6514         skip_emulated_instruction(vcpu);
6515         nested_vmx_succeed(vcpu);
6516         return 1;
6517 }
6518
6519 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6520
6521 /* Emulate the VMLAUNCH instruction */
6522 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6523 {
6524         return nested_vmx_run(vcpu, true);
6525 }
6526
6527 /* Emulate the VMRESUME instruction */
6528 static int handle_vmresume(struct kvm_vcpu *vcpu)
6529 {
6530
6531         return nested_vmx_run(vcpu, false);
6532 }
6533
6534 enum vmcs_field_type {
6535         VMCS_FIELD_TYPE_U16 = 0,
6536         VMCS_FIELD_TYPE_U64 = 1,
6537         VMCS_FIELD_TYPE_U32 = 2,
6538         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6539 };
6540
6541 static inline int vmcs_field_type(unsigned long field)
6542 {
6543         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6544                 return VMCS_FIELD_TYPE_U32;
6545         return (field >> 13) & 0x3 ;
6546 }
6547
6548 static inline int vmcs_field_readonly(unsigned long field)
6549 {
6550         return (((field >> 10) & 0x3) == 1);
6551 }
6552
6553 /*
6554  * Read a vmcs12 field. Since these can have varying lengths and we return
6555  * one type, we chose the biggest type (u64) and zero-extend the return value
6556  * to that size. Note that the caller, handle_vmread, might need to use only
6557  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6558  * 64-bit fields are to be returned).
6559  */
6560 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6561                                   unsigned long field, u64 *ret)
6562 {
6563         short offset = vmcs_field_to_offset(field);
6564         char *p;
6565
6566         if (offset < 0)
6567                 return offset;
6568
6569         p = ((char *)(get_vmcs12(vcpu))) + offset;
6570
6571         switch (vmcs_field_type(field)) {
6572         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6573                 *ret = *((natural_width *)p);
6574                 return 0;
6575         case VMCS_FIELD_TYPE_U16:
6576                 *ret = *((u16 *)p);
6577                 return 0;
6578         case VMCS_FIELD_TYPE_U32:
6579                 *ret = *((u32 *)p);
6580                 return 0;
6581         case VMCS_FIELD_TYPE_U64:
6582                 *ret = *((u64 *)p);
6583                 return 0;
6584         default:
6585                 WARN_ON(1);
6586                 return -ENOENT;
6587         }
6588 }
6589
6590
6591 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6592                                    unsigned long field, u64 field_value){
6593         short offset = vmcs_field_to_offset(field);
6594         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6595         if (offset < 0)
6596                 return offset;
6597
6598         switch (vmcs_field_type(field)) {
6599         case VMCS_FIELD_TYPE_U16:
6600                 *(u16 *)p = field_value;
6601                 return 0;
6602         case VMCS_FIELD_TYPE_U32:
6603                 *(u32 *)p = field_value;
6604                 return 0;
6605         case VMCS_FIELD_TYPE_U64:
6606                 *(u64 *)p = field_value;
6607                 return 0;
6608         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6609                 *(natural_width *)p = field_value;
6610                 return 0;
6611         default:
6612                 WARN_ON(1);
6613                 return -ENOENT;
6614         }
6615
6616 }
6617
6618 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6619 {
6620         int i;
6621         unsigned long field;
6622         u64 field_value;
6623         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6624         const unsigned long *fields = shadow_read_write_fields;
6625         const int num_fields = max_shadow_read_write_fields;
6626
6627         preempt_disable();
6628
6629         vmcs_load(shadow_vmcs);
6630
6631         for (i = 0; i < num_fields; i++) {
6632                 field = fields[i];
6633                 switch (vmcs_field_type(field)) {
6634                 case VMCS_FIELD_TYPE_U16:
6635                         field_value = vmcs_read16(field);
6636                         break;
6637                 case VMCS_FIELD_TYPE_U32:
6638                         field_value = vmcs_read32(field);
6639                         break;
6640                 case VMCS_FIELD_TYPE_U64:
6641                         field_value = vmcs_read64(field);
6642                         break;
6643                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6644                         field_value = vmcs_readl(field);
6645                         break;
6646                 default:
6647                         WARN_ON(1);
6648                         continue;
6649                 }
6650                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6651         }
6652
6653         vmcs_clear(shadow_vmcs);
6654         vmcs_load(vmx->loaded_vmcs->vmcs);
6655
6656         preempt_enable();
6657 }
6658
6659 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6660 {
6661         const unsigned long *fields[] = {
6662                 shadow_read_write_fields,
6663                 shadow_read_only_fields
6664         };
6665         const int max_fields[] = {
6666                 max_shadow_read_write_fields,
6667                 max_shadow_read_only_fields
6668         };
6669         int i, q;
6670         unsigned long field;
6671         u64 field_value = 0;
6672         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6673
6674         vmcs_load(shadow_vmcs);
6675
6676         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6677                 for (i = 0; i < max_fields[q]; i++) {
6678                         field = fields[q][i];
6679                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6680
6681                         switch (vmcs_field_type(field)) {
6682                         case VMCS_FIELD_TYPE_U16:
6683                                 vmcs_write16(field, (u16)field_value);
6684                                 break;
6685                         case VMCS_FIELD_TYPE_U32:
6686                                 vmcs_write32(field, (u32)field_value);
6687                                 break;
6688                         case VMCS_FIELD_TYPE_U64:
6689                                 vmcs_write64(field, (u64)field_value);
6690                                 break;
6691                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6692                                 vmcs_writel(field, (long)field_value);
6693                                 break;
6694                         default:
6695                                 WARN_ON(1);
6696                                 break;
6697                         }
6698                 }
6699         }
6700
6701         vmcs_clear(shadow_vmcs);
6702         vmcs_load(vmx->loaded_vmcs->vmcs);
6703 }
6704
6705 /*
6706  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6707  * used before) all generate the same failure when it is missing.
6708  */
6709 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6710 {
6711         struct vcpu_vmx *vmx = to_vmx(vcpu);
6712         if (vmx->nested.current_vmptr == -1ull) {
6713                 nested_vmx_failInvalid(vcpu);
6714                 skip_emulated_instruction(vcpu);
6715                 return 0;
6716         }
6717         return 1;
6718 }
6719
6720 static int handle_vmread(struct kvm_vcpu *vcpu)
6721 {
6722         unsigned long field;
6723         u64 field_value;
6724         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6725         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6726         gva_t gva = 0;
6727
6728         if (!nested_vmx_check_permission(vcpu) ||
6729             !nested_vmx_check_vmcs12(vcpu))
6730                 return 1;
6731
6732         /* Decode instruction info and find the field to read */
6733         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6734         /* Read the field, zero-extended to a u64 field_value */
6735         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6736                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6737                 skip_emulated_instruction(vcpu);
6738                 return 1;
6739         }
6740         /*
6741          * Now copy part of this value to register or memory, as requested.
6742          * Note that the number of bits actually copied is 32 or 64 depending
6743          * on the guest's mode (32 or 64 bit), not on the given field's length.
6744          */
6745         if (vmx_instruction_info & (1u << 10)) {
6746                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6747                         field_value);
6748         } else {
6749                 if (get_vmx_mem_address(vcpu, exit_qualification,
6750                                 vmx_instruction_info, &gva))
6751                         return 1;
6752                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6753                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6754                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6755         }
6756
6757         nested_vmx_succeed(vcpu);
6758         skip_emulated_instruction(vcpu);
6759         return 1;
6760 }
6761
6762
6763 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6764 {
6765         unsigned long field;
6766         gva_t gva;
6767         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6768         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6769         /* The value to write might be 32 or 64 bits, depending on L1's long
6770          * mode, and eventually we need to write that into a field of several
6771          * possible lengths. The code below first zero-extends the value to 64
6772          * bit (field_value), and then copies only the approriate number of
6773          * bits into the vmcs12 field.
6774          */
6775         u64 field_value = 0;
6776         struct x86_exception e;
6777
6778         if (!nested_vmx_check_permission(vcpu) ||
6779             !nested_vmx_check_vmcs12(vcpu))
6780                 return 1;
6781
6782         if (vmx_instruction_info & (1u << 10))
6783                 field_value = kvm_register_readl(vcpu,
6784                         (((vmx_instruction_info) >> 3) & 0xf));
6785         else {
6786                 if (get_vmx_mem_address(vcpu, exit_qualification,
6787                                 vmx_instruction_info, &gva))
6788                         return 1;
6789                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6790                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6791                         kvm_inject_page_fault(vcpu, &e);
6792                         return 1;
6793                 }
6794         }
6795
6796
6797         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6798         if (vmcs_field_readonly(field)) {
6799                 nested_vmx_failValid(vcpu,
6800                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6801                 skip_emulated_instruction(vcpu);
6802                 return 1;
6803         }
6804
6805         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
6806                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6807                 skip_emulated_instruction(vcpu);
6808                 return 1;
6809         }
6810
6811         nested_vmx_succeed(vcpu);
6812         skip_emulated_instruction(vcpu);
6813         return 1;
6814 }
6815
6816 /* Emulate the VMPTRLD instruction */
6817 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6818 {
6819         struct vcpu_vmx *vmx = to_vmx(vcpu);
6820         gpa_t vmptr;
6821         u32 exec_control;
6822
6823         if (!nested_vmx_check_permission(vcpu))
6824                 return 1;
6825
6826         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6827                 return 1;
6828
6829         if (vmx->nested.current_vmptr != vmptr) {
6830                 struct vmcs12 *new_vmcs12;
6831                 struct page *page;
6832                 page = nested_get_page(vcpu, vmptr);
6833                 if (page == NULL) {
6834                         nested_vmx_failInvalid(vcpu);
6835                         skip_emulated_instruction(vcpu);
6836                         return 1;
6837                 }
6838                 new_vmcs12 = kmap(page);
6839                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6840                         kunmap(page);
6841                         nested_release_page_clean(page);
6842                         nested_vmx_failValid(vcpu,
6843                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6844                         skip_emulated_instruction(vcpu);
6845                         return 1;
6846                 }
6847
6848                 nested_release_vmcs12(vmx);
6849                 vmx->nested.current_vmptr = vmptr;
6850                 vmx->nested.current_vmcs12 = new_vmcs12;
6851                 vmx->nested.current_vmcs12_page = page;
6852                 if (enable_shadow_vmcs) {
6853                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6854                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6855                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6856                         vmcs_write64(VMCS_LINK_POINTER,
6857                                      __pa(vmx->nested.current_shadow_vmcs));
6858                         vmx->nested.sync_shadow_vmcs = true;
6859                 }
6860         }
6861
6862         nested_vmx_succeed(vcpu);
6863         skip_emulated_instruction(vcpu);
6864         return 1;
6865 }
6866
6867 /* Emulate the VMPTRST instruction */
6868 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6869 {
6870         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6871         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6872         gva_t vmcs_gva;
6873         struct x86_exception e;
6874
6875         if (!nested_vmx_check_permission(vcpu))
6876                 return 1;
6877
6878         if (get_vmx_mem_address(vcpu, exit_qualification,
6879                         vmx_instruction_info, &vmcs_gva))
6880                 return 1;
6881         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6882         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6883                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6884                                  sizeof(u64), &e)) {
6885                 kvm_inject_page_fault(vcpu, &e);
6886                 return 1;
6887         }
6888         nested_vmx_succeed(vcpu);
6889         skip_emulated_instruction(vcpu);
6890         return 1;
6891 }
6892
6893 /* Emulate the INVEPT instruction */
6894 static int handle_invept(struct kvm_vcpu *vcpu)
6895 {
6896         u32 vmx_instruction_info, types;
6897         unsigned long type;
6898         gva_t gva;
6899         struct x86_exception e;
6900         struct {
6901                 u64 eptp, gpa;
6902         } operand;
6903
6904         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6905             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6906                 kvm_queue_exception(vcpu, UD_VECTOR);
6907                 return 1;
6908         }
6909
6910         if (!nested_vmx_check_permission(vcpu))
6911                 return 1;
6912
6913         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6914                 kvm_queue_exception(vcpu, UD_VECTOR);
6915                 return 1;
6916         }
6917
6918         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6919         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6920
6921         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6922
6923         if (!(types & (1UL << type))) {
6924                 nested_vmx_failValid(vcpu,
6925                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6926                 return 1;
6927         }
6928
6929         /* According to the Intel VMX instruction reference, the memory
6930          * operand is read even if it isn't needed (e.g., for type==global)
6931          */
6932         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6933                         vmx_instruction_info, &gva))
6934                 return 1;
6935         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6936                                 sizeof(operand), &e)) {
6937                 kvm_inject_page_fault(vcpu, &e);
6938                 return 1;
6939         }
6940
6941         switch (type) {
6942         case VMX_EPT_EXTENT_GLOBAL:
6943                 kvm_mmu_sync_roots(vcpu);
6944                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6945                 nested_vmx_succeed(vcpu);
6946                 break;
6947         default:
6948                 /* Trap single context invalidation invept calls */
6949                 BUG_ON(1);
6950                 break;
6951         }
6952
6953         skip_emulated_instruction(vcpu);
6954         return 1;
6955 }
6956
6957 static int handle_invvpid(struct kvm_vcpu *vcpu)
6958 {
6959         kvm_queue_exception(vcpu, UD_VECTOR);
6960         return 1;
6961 }
6962
6963 /*
6964  * The exit handlers return 1 if the exit was handled fully and guest execution
6965  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6966  * to be done to userspace and return 0.
6967  */
6968 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6969         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6970         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6971         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6972         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6973         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6974         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6975         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6976         [EXIT_REASON_CPUID]                   = handle_cpuid,
6977         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6978         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6979         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6980         [EXIT_REASON_HLT]                     = handle_halt,
6981         [EXIT_REASON_INVD]                    = handle_invd,
6982         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6983         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6984         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6985         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6986         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6987         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6988         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6989         [EXIT_REASON_VMREAD]                  = handle_vmread,
6990         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6991         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6992         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6993         [EXIT_REASON_VMON]                    = handle_vmon,
6994         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6995         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6996         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6997         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6998         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6999         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7000         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7001         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7002         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7003         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7004         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7005         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7006         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7007         [EXIT_REASON_INVEPT]                  = handle_invept,
7008         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7009         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7010         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7011 };
7012
7013 static const int kvm_vmx_max_exit_handlers =
7014         ARRAY_SIZE(kvm_vmx_exit_handlers);
7015
7016 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7017                                        struct vmcs12 *vmcs12)
7018 {
7019         unsigned long exit_qualification;
7020         gpa_t bitmap, last_bitmap;
7021         unsigned int port;
7022         int size;
7023         u8 b;
7024
7025         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7026                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7027
7028         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7029
7030         port = exit_qualification >> 16;
7031         size = (exit_qualification & 7) + 1;
7032
7033         last_bitmap = (gpa_t)-1;
7034         b = -1;
7035
7036         while (size > 0) {
7037                 if (port < 0x8000)
7038                         bitmap = vmcs12->io_bitmap_a;
7039                 else if (port < 0x10000)
7040                         bitmap = vmcs12->io_bitmap_b;
7041                 else
7042                         return 1;
7043                 bitmap += (port & 0x7fff) / 8;
7044
7045                 if (last_bitmap != bitmap)
7046                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7047                                 return 1;
7048                 if (b & (1 << (port & 7)))
7049                         return 1;
7050
7051                 port++;
7052                 size--;
7053                 last_bitmap = bitmap;
7054         }
7055
7056         return 0;
7057 }
7058
7059 /*
7060  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7061  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7062  * disinterest in the current event (read or write a specific MSR) by using an
7063  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7064  */
7065 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7066         struct vmcs12 *vmcs12, u32 exit_reason)
7067 {
7068         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7069         gpa_t bitmap;
7070
7071         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7072                 return 1;
7073
7074         /*
7075          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7076          * for the four combinations of read/write and low/high MSR numbers.
7077          * First we need to figure out which of the four to use:
7078          */
7079         bitmap = vmcs12->msr_bitmap;
7080         if (exit_reason == EXIT_REASON_MSR_WRITE)
7081                 bitmap += 2048;
7082         if (msr_index >= 0xc0000000) {
7083                 msr_index -= 0xc0000000;
7084                 bitmap += 1024;
7085         }
7086
7087         /* Then read the msr_index'th bit from this bitmap: */
7088         if (msr_index < 1024*8) {
7089                 unsigned char b;
7090                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7091                         return 1;
7092                 return 1 & (b >> (msr_index & 7));
7093         } else
7094                 return 1; /* let L1 handle the wrong parameter */
7095 }
7096
7097 /*
7098  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7099  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7100  * intercept (via guest_host_mask etc.) the current event.
7101  */
7102 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7103         struct vmcs12 *vmcs12)
7104 {
7105         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7106         int cr = exit_qualification & 15;
7107         int reg = (exit_qualification >> 8) & 15;
7108         unsigned long val = kvm_register_readl(vcpu, reg);
7109
7110         switch ((exit_qualification >> 4) & 3) {
7111         case 0: /* mov to cr */
7112                 switch (cr) {
7113                 case 0:
7114                         if (vmcs12->cr0_guest_host_mask &
7115                             (val ^ vmcs12->cr0_read_shadow))
7116                                 return 1;
7117                         break;
7118                 case 3:
7119                         if ((vmcs12->cr3_target_count >= 1 &&
7120                                         vmcs12->cr3_target_value0 == val) ||
7121                                 (vmcs12->cr3_target_count >= 2 &&
7122                                         vmcs12->cr3_target_value1 == val) ||
7123                                 (vmcs12->cr3_target_count >= 3 &&
7124                                         vmcs12->cr3_target_value2 == val) ||
7125                                 (vmcs12->cr3_target_count >= 4 &&
7126                                         vmcs12->cr3_target_value3 == val))
7127                                 return 0;
7128                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7129                                 return 1;
7130                         break;
7131                 case 4:
7132                         if (vmcs12->cr4_guest_host_mask &
7133                             (vmcs12->cr4_read_shadow ^ val))
7134                                 return 1;
7135                         break;
7136                 case 8:
7137                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7138                                 return 1;
7139                         break;
7140                 }
7141                 break;
7142         case 2: /* clts */
7143                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7144                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7145                         return 1;
7146                 break;
7147         case 1: /* mov from cr */
7148                 switch (cr) {
7149                 case 3:
7150                         if (vmcs12->cpu_based_vm_exec_control &
7151                             CPU_BASED_CR3_STORE_EXITING)
7152                                 return 1;
7153                         break;
7154                 case 8:
7155                         if (vmcs12->cpu_based_vm_exec_control &
7156                             CPU_BASED_CR8_STORE_EXITING)
7157                                 return 1;
7158                         break;
7159                 }
7160                 break;
7161         case 3: /* lmsw */
7162                 /*
7163                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7164                  * cr0. Other attempted changes are ignored, with no exit.
7165                  */
7166                 if (vmcs12->cr0_guest_host_mask & 0xe &
7167                     (val ^ vmcs12->cr0_read_shadow))
7168                         return 1;
7169                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7170                     !(vmcs12->cr0_read_shadow & 0x1) &&
7171                     (val & 0x1))
7172                         return 1;
7173                 break;
7174         }
7175         return 0;
7176 }
7177
7178 /*
7179  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7180  * should handle it ourselves in L0 (and then continue L2). Only call this
7181  * when in is_guest_mode (L2).
7182  */
7183 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7184 {
7185         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7186         struct vcpu_vmx *vmx = to_vmx(vcpu);
7187         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7188         u32 exit_reason = vmx->exit_reason;
7189
7190         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7191                                 vmcs_readl(EXIT_QUALIFICATION),
7192                                 vmx->idt_vectoring_info,
7193                                 intr_info,
7194                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7195                                 KVM_ISA_VMX);
7196
7197         if (vmx->nested.nested_run_pending)
7198                 return 0;
7199
7200         if (unlikely(vmx->fail)) {
7201                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7202                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7203                 return 1;
7204         }
7205
7206         switch (exit_reason) {
7207         case EXIT_REASON_EXCEPTION_NMI:
7208                 if (!is_exception(intr_info))
7209                         return 0;
7210                 else if (is_page_fault(intr_info))
7211                         return enable_ept;
7212                 else if (is_no_device(intr_info) &&
7213                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7214                         return 0;
7215                 return vmcs12->exception_bitmap &
7216                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7217         case EXIT_REASON_EXTERNAL_INTERRUPT:
7218                 return 0;
7219         case EXIT_REASON_TRIPLE_FAULT:
7220                 return 1;
7221         case EXIT_REASON_PENDING_INTERRUPT:
7222                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7223         case EXIT_REASON_NMI_WINDOW:
7224                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7225         case EXIT_REASON_TASK_SWITCH:
7226                 return 1;
7227         case EXIT_REASON_CPUID:
7228                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7229                         return 0;
7230                 return 1;
7231         case EXIT_REASON_HLT:
7232                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7233         case EXIT_REASON_INVD:
7234                 return 1;
7235         case EXIT_REASON_INVLPG:
7236                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7237         case EXIT_REASON_RDPMC:
7238                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7239         case EXIT_REASON_RDTSC:
7240                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7241         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7242         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7243         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7244         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7245         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7246         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7247                 /*
7248                  * VMX instructions trap unconditionally. This allows L1 to
7249                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7250                  */
7251                 return 1;
7252         case EXIT_REASON_CR_ACCESS:
7253                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7254         case EXIT_REASON_DR_ACCESS:
7255                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7256         case EXIT_REASON_IO_INSTRUCTION:
7257                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7258         case EXIT_REASON_MSR_READ:
7259         case EXIT_REASON_MSR_WRITE:
7260                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7261         case EXIT_REASON_INVALID_STATE:
7262                 return 1;
7263         case EXIT_REASON_MWAIT_INSTRUCTION:
7264                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7265         case EXIT_REASON_MONITOR_INSTRUCTION:
7266                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7267         case EXIT_REASON_PAUSE_INSTRUCTION:
7268                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7269                         nested_cpu_has2(vmcs12,
7270                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7271         case EXIT_REASON_MCE_DURING_VMENTRY:
7272                 return 0;
7273         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7274                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7275         case EXIT_REASON_APIC_ACCESS:
7276                 return nested_cpu_has2(vmcs12,
7277                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7278         case EXIT_REASON_EPT_VIOLATION:
7279                 /*
7280                  * L0 always deals with the EPT violation. If nested EPT is
7281                  * used, and the nested mmu code discovers that the address is
7282                  * missing in the guest EPT table (EPT12), the EPT violation
7283                  * will be injected with nested_ept_inject_page_fault()
7284                  */
7285                 return 0;
7286         case EXIT_REASON_EPT_MISCONFIG:
7287                 /*
7288                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7289                  * table (shadow on EPT) or a merged EPT table that L0 built
7290                  * (EPT on EPT). So any problems with the structure of the
7291                  * table is L0's fault.
7292                  */
7293                 return 0;
7294         case EXIT_REASON_WBINVD:
7295                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7296         case EXIT_REASON_XSETBV:
7297                 return 1;
7298         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7299                 /*
7300                  * This should never happen, since it is not possible to
7301                  * set XSS to a non-zero value---neither in L1 nor in L2.
7302                  * If if it were, XSS would have to be checked against
7303                  * the XSS exit bitmap in vmcs12.
7304                  */
7305                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7306         default:
7307                 return 1;
7308         }
7309 }
7310
7311 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7312 {
7313         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7314         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7315 }
7316
7317 /*
7318  * The guest has exited.  See if we can fix it or if we need userspace
7319  * assistance.
7320  */
7321 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7322 {
7323         struct vcpu_vmx *vmx = to_vmx(vcpu);
7324         u32 exit_reason = vmx->exit_reason;
7325         u32 vectoring_info = vmx->idt_vectoring_info;
7326
7327         /* If guest state is invalid, start emulating */
7328         if (vmx->emulation_required)
7329                 return handle_invalid_guest_state(vcpu);
7330
7331         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7332                 nested_vmx_vmexit(vcpu, exit_reason,
7333                                   vmcs_read32(VM_EXIT_INTR_INFO),
7334                                   vmcs_readl(EXIT_QUALIFICATION));
7335                 return 1;
7336         }
7337
7338         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7339                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7340                 vcpu->run->fail_entry.hardware_entry_failure_reason
7341                         = exit_reason;
7342                 return 0;
7343         }
7344
7345         if (unlikely(vmx->fail)) {
7346                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7347                 vcpu->run->fail_entry.hardware_entry_failure_reason
7348                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7349                 return 0;
7350         }
7351
7352         /*
7353          * Note:
7354          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7355          * delivery event since it indicates guest is accessing MMIO.
7356          * The vm-exit can be triggered again after return to guest that
7357          * will cause infinite loop.
7358          */
7359         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7360                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7361                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7362                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7363                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7364                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7365                 vcpu->run->internal.ndata = 2;
7366                 vcpu->run->internal.data[0] = vectoring_info;
7367                 vcpu->run->internal.data[1] = exit_reason;
7368                 return 0;
7369         }
7370
7371         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7372             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7373                                         get_vmcs12(vcpu))))) {
7374                 if (vmx_interrupt_allowed(vcpu)) {
7375                         vmx->soft_vnmi_blocked = 0;
7376                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7377                            vcpu->arch.nmi_pending) {
7378                         /*
7379                          * This CPU don't support us in finding the end of an
7380                          * NMI-blocked window if the guest runs with IRQs
7381                          * disabled. So we pull the trigger after 1 s of
7382                          * futile waiting, but inform the user about this.
7383                          */
7384                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7385                                "state on VCPU %d after 1 s timeout\n",
7386                                __func__, vcpu->vcpu_id);
7387                         vmx->soft_vnmi_blocked = 0;
7388                 }
7389         }
7390
7391         if (exit_reason < kvm_vmx_max_exit_handlers
7392             && kvm_vmx_exit_handlers[exit_reason])
7393                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7394         else {
7395                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7396                 kvm_queue_exception(vcpu, UD_VECTOR);
7397                 return 1;
7398         }
7399 }
7400
7401 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7402 {
7403         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7404
7405         if (is_guest_mode(vcpu) &&
7406                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7407                 return;
7408
7409         if (irr == -1 || tpr < irr) {
7410                 vmcs_write32(TPR_THRESHOLD, 0);
7411                 return;
7412         }
7413
7414         vmcs_write32(TPR_THRESHOLD, irr);
7415 }
7416
7417 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7418 {
7419         u32 sec_exec_control;
7420
7421         /*
7422          * There is not point to enable virtualize x2apic without enable
7423          * apicv
7424          */
7425         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7426                                 !vmx_vm_has_apicv(vcpu->kvm))
7427                 return;
7428
7429         if (!vm_need_tpr_shadow(vcpu->kvm))
7430                 return;
7431
7432         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7433
7434         if (set) {
7435                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7436                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7437         } else {
7438                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7439                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7440         }
7441         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7442
7443         vmx_set_msr_bitmap(vcpu);
7444 }
7445
7446 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7447 {
7448         struct vcpu_vmx *vmx = to_vmx(vcpu);
7449
7450         /*
7451          * Currently we do not handle the nested case where L2 has an
7452          * APIC access page of its own; that page is still pinned.
7453          * Hence, we skip the case where the VCPU is in guest mode _and_
7454          * L1 prepared an APIC access page for L2.
7455          *
7456          * For the case where L1 and L2 share the same APIC access page
7457          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7458          * in the vmcs12), this function will only update either the vmcs01
7459          * or the vmcs02.  If the former, the vmcs02 will be updated by
7460          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7461          * the next L2->L1 exit.
7462          */
7463         if (!is_guest_mode(vcpu) ||
7464             !nested_cpu_has2(vmx->nested.current_vmcs12,
7465                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7466                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7467 }
7468
7469 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7470 {
7471         u16 status;
7472         u8 old;
7473
7474         if (!vmx_vm_has_apicv(kvm))
7475                 return;
7476
7477         if (isr == -1)
7478                 isr = 0;
7479
7480         status = vmcs_read16(GUEST_INTR_STATUS);
7481         old = status >> 8;
7482         if (isr != old) {
7483                 status &= 0xff;
7484                 status |= isr << 8;
7485                 vmcs_write16(GUEST_INTR_STATUS, status);
7486         }
7487 }
7488
7489 static void vmx_set_rvi(int vector)
7490 {
7491         u16 status;
7492         u8 old;
7493
7494         if (vector == -1)
7495                 vector = 0;
7496
7497         status = vmcs_read16(GUEST_INTR_STATUS);
7498         old = (u8)status & 0xff;
7499         if ((u8)vector != old) {
7500                 status &= ~0xff;
7501                 status |= (u8)vector;
7502                 vmcs_write16(GUEST_INTR_STATUS, status);
7503         }
7504 }
7505
7506 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7507 {
7508         if (!is_guest_mode(vcpu)) {
7509                 vmx_set_rvi(max_irr);
7510                 return;
7511         }
7512
7513         if (max_irr == -1)
7514                 return;
7515
7516         /*
7517          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
7518          * handles it.
7519          */
7520         if (nested_exit_on_intr(vcpu))
7521                 return;
7522
7523         /*
7524          * Else, fall back to pre-APICv interrupt injection since L2
7525          * is run without virtual interrupt delivery.
7526          */
7527         if (!kvm_event_needs_reinjection(vcpu) &&
7528             vmx_interrupt_allowed(vcpu)) {
7529                 kvm_queue_interrupt(vcpu, max_irr, false);
7530                 vmx_inject_irq(vcpu);
7531         }
7532 }
7533
7534 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7535 {
7536         if (!vmx_vm_has_apicv(vcpu->kvm))
7537                 return;
7538
7539         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7540         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7541         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7542         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7543 }
7544
7545 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7546 {
7547         u32 exit_intr_info;
7548
7549         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7550               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7551                 return;
7552
7553         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7554         exit_intr_info = vmx->exit_intr_info;
7555
7556         /* Handle machine checks before interrupts are enabled */
7557         if (is_machine_check(exit_intr_info))
7558                 kvm_machine_check();
7559
7560         /* We need to handle NMIs before interrupts are enabled */
7561         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7562             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7563                 kvm_before_handle_nmi(&vmx->vcpu);
7564                 asm("int $2");
7565                 kvm_after_handle_nmi(&vmx->vcpu);
7566         }
7567 }
7568
7569 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7570 {
7571         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7572
7573         /*
7574          * If external interrupt exists, IF bit is set in rflags/eflags on the
7575          * interrupt stack frame, and interrupt will be enabled on a return
7576          * from interrupt handler.
7577          */
7578         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7579                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7580                 unsigned int vector;
7581                 unsigned long entry;
7582                 gate_desc *desc;
7583                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7584 #ifdef CONFIG_X86_64
7585                 unsigned long tmp;
7586 #endif
7587
7588                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7589                 desc = (gate_desc *)vmx->host_idt_base + vector;
7590                 entry = gate_offset(*desc);
7591                 asm volatile(
7592 #ifdef CONFIG_X86_64
7593                         "mov %%" _ASM_SP ", %[sp]\n\t"
7594                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7595                         "push $%c[ss]\n\t"
7596                         "push %[sp]\n\t"
7597 #endif
7598                         "pushf\n\t"
7599                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7600                         __ASM_SIZE(push) " $%c[cs]\n\t"
7601                         "call *%[entry]\n\t"
7602                         :
7603 #ifdef CONFIG_X86_64
7604                         [sp]"=&r"(tmp)
7605 #endif
7606                         :
7607                         [entry]"r"(entry),
7608                         [ss]"i"(__KERNEL_DS),
7609                         [cs]"i"(__KERNEL_CS)
7610                         );
7611         } else
7612                 local_irq_enable();
7613 }
7614
7615 static bool vmx_mpx_supported(void)
7616 {
7617         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7618                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7619 }
7620
7621 static bool vmx_xsaves_supported(void)
7622 {
7623         return vmcs_config.cpu_based_2nd_exec_ctrl &
7624                 SECONDARY_EXEC_XSAVES;
7625 }
7626
7627 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7628 {
7629         u32 exit_intr_info;
7630         bool unblock_nmi;
7631         u8 vector;
7632         bool idtv_info_valid;
7633
7634         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7635
7636         if (cpu_has_virtual_nmis()) {
7637                 if (vmx->nmi_known_unmasked)
7638                         return;
7639                 /*
7640                  * Can't use vmx->exit_intr_info since we're not sure what
7641                  * the exit reason is.
7642                  */
7643                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7644                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7645                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7646                 /*
7647                  * SDM 3: 27.7.1.2 (September 2008)
7648                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7649                  * a guest IRET fault.
7650                  * SDM 3: 23.2.2 (September 2008)
7651                  * Bit 12 is undefined in any of the following cases:
7652                  *  If the VM exit sets the valid bit in the IDT-vectoring
7653                  *   information field.
7654                  *  If the VM exit is due to a double fault.
7655                  */
7656                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7657                     vector != DF_VECTOR && !idtv_info_valid)
7658                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7659                                       GUEST_INTR_STATE_NMI);
7660                 else
7661                         vmx->nmi_known_unmasked =
7662                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7663                                   & GUEST_INTR_STATE_NMI);
7664         } else if (unlikely(vmx->soft_vnmi_blocked))
7665                 vmx->vnmi_blocked_time +=
7666                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7667 }
7668
7669 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7670                                       u32 idt_vectoring_info,
7671                                       int instr_len_field,
7672                                       int error_code_field)
7673 {
7674         u8 vector;
7675         int type;
7676         bool idtv_info_valid;
7677
7678         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7679
7680         vcpu->arch.nmi_injected = false;
7681         kvm_clear_exception_queue(vcpu);
7682         kvm_clear_interrupt_queue(vcpu);
7683
7684         if (!idtv_info_valid)
7685                 return;
7686
7687         kvm_make_request(KVM_REQ_EVENT, vcpu);
7688
7689         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7690         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7691
7692         switch (type) {
7693         case INTR_TYPE_NMI_INTR:
7694                 vcpu->arch.nmi_injected = true;
7695                 /*
7696                  * SDM 3: 27.7.1.2 (September 2008)
7697                  * Clear bit "block by NMI" before VM entry if a NMI
7698                  * delivery faulted.
7699                  */
7700                 vmx_set_nmi_mask(vcpu, false);
7701                 break;
7702         case INTR_TYPE_SOFT_EXCEPTION:
7703                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7704                 /* fall through */
7705         case INTR_TYPE_HARD_EXCEPTION:
7706                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7707                         u32 err = vmcs_read32(error_code_field);
7708                         kvm_requeue_exception_e(vcpu, vector, err);
7709                 } else
7710                         kvm_requeue_exception(vcpu, vector);
7711                 break;
7712         case INTR_TYPE_SOFT_INTR:
7713                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7714                 /* fall through */
7715         case INTR_TYPE_EXT_INTR:
7716                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7717                 break;
7718         default:
7719                 break;
7720         }
7721 }
7722
7723 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7724 {
7725         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7726                                   VM_EXIT_INSTRUCTION_LEN,
7727                                   IDT_VECTORING_ERROR_CODE);
7728 }
7729
7730 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7731 {
7732         __vmx_complete_interrupts(vcpu,
7733                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7734                                   VM_ENTRY_INSTRUCTION_LEN,
7735                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7736
7737         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7738 }
7739
7740 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7741 {
7742         int i, nr_msrs;
7743         struct perf_guest_switch_msr *msrs;
7744
7745         msrs = perf_guest_get_msrs(&nr_msrs);
7746
7747         if (!msrs)
7748                 return;
7749
7750         for (i = 0; i < nr_msrs; i++)
7751                 if (msrs[i].host == msrs[i].guest)
7752                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7753                 else
7754                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7755                                         msrs[i].host);
7756 }
7757
7758 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7759 {
7760         struct vcpu_vmx *vmx = to_vmx(vcpu);
7761         unsigned long debugctlmsr, cr4;
7762
7763         /* Record the guest's net vcpu time for enforced NMI injections. */
7764         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7765                 vmx->entry_time = ktime_get();
7766
7767         /* Don't enter VMX if guest state is invalid, let the exit handler
7768            start emulation until we arrive back to a valid state */
7769         if (vmx->emulation_required)
7770                 return;
7771
7772         if (vmx->ple_window_dirty) {
7773                 vmx->ple_window_dirty = false;
7774                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7775         }
7776
7777         if (vmx->nested.sync_shadow_vmcs) {
7778                 copy_vmcs12_to_shadow(vmx);
7779                 vmx->nested.sync_shadow_vmcs = false;
7780         }
7781
7782         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7783                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7784         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7785                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7786
7787         cr4 = read_cr4();
7788         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7789                 vmcs_writel(HOST_CR4, cr4);
7790                 vmx->host_state.vmcs_host_cr4 = cr4;
7791         }
7792
7793         /* When single-stepping over STI and MOV SS, we must clear the
7794          * corresponding interruptibility bits in the guest state. Otherwise
7795          * vmentry fails as it then expects bit 14 (BS) in pending debug
7796          * exceptions being set, but that's not correct for the guest debugging
7797          * case. */
7798         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7799                 vmx_set_interrupt_shadow(vcpu, 0);
7800
7801         atomic_switch_perf_msrs(vmx);
7802         debugctlmsr = get_debugctlmsr();
7803
7804         vmx->__launched = vmx->loaded_vmcs->launched;
7805         asm(
7806                 /* Store host registers */
7807                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7808                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7809                 "push %%" _ASM_CX " \n\t"
7810                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7811                 "je 1f \n\t"
7812                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7813                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7814                 "1: \n\t"
7815                 /* Reload cr2 if changed */
7816                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7817                 "mov %%cr2, %%" _ASM_DX " \n\t"
7818                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7819                 "je 2f \n\t"
7820                 "mov %%" _ASM_AX", %%cr2 \n\t"
7821                 "2: \n\t"
7822                 /* Check if vmlaunch of vmresume is needed */
7823                 "cmpl $0, %c[launched](%0) \n\t"
7824                 /* Load guest registers.  Don't clobber flags. */
7825                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7826                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7827                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7828                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7829                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7830                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7831 #ifdef CONFIG_X86_64
7832                 "mov %c[r8](%0),  %%r8  \n\t"
7833                 "mov %c[r9](%0),  %%r9  \n\t"
7834                 "mov %c[r10](%0), %%r10 \n\t"
7835                 "mov %c[r11](%0), %%r11 \n\t"
7836                 "mov %c[r12](%0), %%r12 \n\t"
7837                 "mov %c[r13](%0), %%r13 \n\t"
7838                 "mov %c[r14](%0), %%r14 \n\t"
7839                 "mov %c[r15](%0), %%r15 \n\t"
7840 #endif
7841                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7842
7843                 /* Enter guest mode */
7844                 "jne 1f \n\t"
7845                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7846                 "jmp 2f \n\t"
7847                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7848                 "2: "
7849                 /* Save guest registers, load host registers, keep flags */
7850                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7851                 "pop %0 \n\t"
7852                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7853                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7854                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7855                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7856                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7857                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7858                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7859 #ifdef CONFIG_X86_64
7860                 "mov %%r8,  %c[r8](%0) \n\t"
7861                 "mov %%r9,  %c[r9](%0) \n\t"
7862                 "mov %%r10, %c[r10](%0) \n\t"
7863                 "mov %%r11, %c[r11](%0) \n\t"
7864                 "mov %%r12, %c[r12](%0) \n\t"
7865                 "mov %%r13, %c[r13](%0) \n\t"
7866                 "mov %%r14, %c[r14](%0) \n\t"
7867                 "mov %%r15, %c[r15](%0) \n\t"
7868 #endif
7869                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7870                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7871
7872                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7873                 "setbe %c[fail](%0) \n\t"
7874                 ".pushsection .rodata \n\t"
7875                 ".global vmx_return \n\t"
7876                 "vmx_return: " _ASM_PTR " 2b \n\t"
7877                 ".popsection"
7878               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7879                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7880                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7881                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7882                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7883                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7884                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7885                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7886                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7887                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7888                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7889 #ifdef CONFIG_X86_64
7890                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7891                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7892                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7893                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7894                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7895                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7896                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7897                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7898 #endif
7899                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7900                 [wordsize]"i"(sizeof(ulong))
7901               : "cc", "memory"
7902 #ifdef CONFIG_X86_64
7903                 , "rax", "rbx", "rdi", "rsi"
7904                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7905 #else
7906                 , "eax", "ebx", "edi", "esi"
7907 #endif
7908               );
7909
7910         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7911         if (debugctlmsr)
7912                 update_debugctlmsr(debugctlmsr);
7913
7914 #ifndef CONFIG_X86_64
7915         /*
7916          * The sysexit path does not restore ds/es, so we must set them to
7917          * a reasonable value ourselves.
7918          *
7919          * We can't defer this to vmx_load_host_state() since that function
7920          * may be executed in interrupt context, which saves and restore segments
7921          * around it, nullifying its effect.
7922          */
7923         loadsegment(ds, __USER_DS);
7924         loadsegment(es, __USER_DS);
7925 #endif
7926
7927         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7928                                   | (1 << VCPU_EXREG_RFLAGS)
7929                                   | (1 << VCPU_EXREG_PDPTR)
7930                                   | (1 << VCPU_EXREG_SEGMENTS)
7931                                   | (1 << VCPU_EXREG_CR3));
7932         vcpu->arch.regs_dirty = 0;
7933
7934         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7935
7936         vmx->loaded_vmcs->launched = 1;
7937
7938         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7939         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7940
7941         /*
7942          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7943          * we did not inject a still-pending event to L1 now because of
7944          * nested_run_pending, we need to re-enable this bit.
7945          */
7946         if (vmx->nested.nested_run_pending)
7947                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7948
7949         vmx->nested.nested_run_pending = 0;
7950
7951         vmx_complete_atomic_exit(vmx);
7952         vmx_recover_nmi_blocking(vmx);
7953         vmx_complete_interrupts(vmx);
7954 }
7955
7956 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7957 {
7958         struct vcpu_vmx *vmx = to_vmx(vcpu);
7959         int cpu;
7960
7961         if (vmx->loaded_vmcs == &vmx->vmcs01)
7962                 return;
7963
7964         cpu = get_cpu();
7965         vmx->loaded_vmcs = &vmx->vmcs01;
7966         vmx_vcpu_put(vcpu);
7967         vmx_vcpu_load(vcpu, cpu);
7968         vcpu->cpu = cpu;
7969         put_cpu();
7970 }
7971
7972 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7973 {
7974         struct vcpu_vmx *vmx = to_vmx(vcpu);
7975
7976         free_vpid(vmx);
7977         leave_guest_mode(vcpu);
7978         vmx_load_vmcs01(vcpu);
7979         free_nested(vmx);
7980         free_loaded_vmcs(vmx->loaded_vmcs);
7981         kfree(vmx->guest_msrs);
7982         kvm_vcpu_uninit(vcpu);
7983         kmem_cache_free(kvm_vcpu_cache, vmx);
7984 }
7985
7986 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7987 {
7988         int err;
7989         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7990         int cpu;
7991
7992         if (!vmx)
7993                 return ERR_PTR(-ENOMEM);
7994
7995         allocate_vpid(vmx);
7996
7997         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7998         if (err)
7999                 goto free_vcpu;
8000
8001         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8002         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8003                      > PAGE_SIZE);
8004
8005         err = -ENOMEM;
8006         if (!vmx->guest_msrs) {
8007                 goto uninit_vcpu;
8008         }
8009
8010         vmx->loaded_vmcs = &vmx->vmcs01;
8011         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8012         if (!vmx->loaded_vmcs->vmcs)
8013                 goto free_msrs;
8014         if (!vmm_exclusive)
8015                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8016         loaded_vmcs_init(vmx->loaded_vmcs);
8017         if (!vmm_exclusive)
8018                 kvm_cpu_vmxoff();
8019
8020         cpu = get_cpu();
8021         vmx_vcpu_load(&vmx->vcpu, cpu);
8022         vmx->vcpu.cpu = cpu;
8023         err = vmx_vcpu_setup(vmx);
8024         vmx_vcpu_put(&vmx->vcpu);
8025         put_cpu();
8026         if (err)
8027                 goto free_vmcs;
8028         if (vm_need_virtualize_apic_accesses(kvm)) {
8029                 err = alloc_apic_access_page(kvm);
8030                 if (err)
8031                         goto free_vmcs;
8032         }
8033
8034         if (enable_ept) {
8035                 if (!kvm->arch.ept_identity_map_addr)
8036                         kvm->arch.ept_identity_map_addr =
8037                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8038                 err = init_rmode_identity_map(kvm);
8039                 if (err)
8040                         goto free_vmcs;
8041         }
8042
8043         vmx->nested.current_vmptr = -1ull;
8044         vmx->nested.current_vmcs12 = NULL;
8045
8046         return &vmx->vcpu;
8047
8048 free_vmcs:
8049         free_loaded_vmcs(vmx->loaded_vmcs);
8050 free_msrs:
8051         kfree(vmx->guest_msrs);
8052 uninit_vcpu:
8053         kvm_vcpu_uninit(&vmx->vcpu);
8054 free_vcpu:
8055         free_vpid(vmx);
8056         kmem_cache_free(kvm_vcpu_cache, vmx);
8057         return ERR_PTR(err);
8058 }
8059
8060 static void __init vmx_check_processor_compat(void *rtn)
8061 {
8062         struct vmcs_config vmcs_conf;
8063
8064         *(int *)rtn = 0;
8065         if (setup_vmcs_config(&vmcs_conf) < 0)
8066                 *(int *)rtn = -EIO;
8067         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8068                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8069                                 smp_processor_id());
8070                 *(int *)rtn = -EIO;
8071         }
8072 }
8073
8074 static int get_ept_level(void)
8075 {
8076         return VMX_EPT_DEFAULT_GAW + 1;
8077 }
8078
8079 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8080 {
8081         u64 ret;
8082
8083         /* For VT-d and EPT combination
8084          * 1. MMIO: always map as UC
8085          * 2. EPT with VT-d:
8086          *   a. VT-d without snooping control feature: can't guarantee the
8087          *      result, try to trust guest.
8088          *   b. VT-d with snooping control feature: snooping control feature of
8089          *      VT-d engine can guarantee the cache correctness. Just set it
8090          *      to WB to keep consistent with host. So the same as item 3.
8091          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8092          *    consistent with host MTRR
8093          */
8094         if (is_mmio)
8095                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8096         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8097                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8098                       VMX_EPT_MT_EPTE_SHIFT;
8099         else
8100                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8101                         | VMX_EPT_IPAT_BIT;
8102
8103         return ret;
8104 }
8105
8106 static int vmx_get_lpage_level(void)
8107 {
8108         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8109                 return PT_DIRECTORY_LEVEL;
8110         else
8111                 /* For shadow and EPT supported 1GB page */
8112                 return PT_PDPE_LEVEL;
8113 }
8114
8115 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8116 {
8117         struct kvm_cpuid_entry2 *best;
8118         struct vcpu_vmx *vmx = to_vmx(vcpu);
8119         u32 exec_control;
8120
8121         vmx->rdtscp_enabled = false;
8122         if (vmx_rdtscp_supported()) {
8123                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8124                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8125                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8126                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8127                                 vmx->rdtscp_enabled = true;
8128                         else {
8129                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8130                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8131                                                 exec_control);
8132                         }
8133                 }
8134         }
8135
8136         /* Exposing INVPCID only when PCID is exposed */
8137         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8138         if (vmx_invpcid_supported() &&
8139             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8140             guest_cpuid_has_pcid(vcpu)) {
8141                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8142                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8143                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8144                              exec_control);
8145         } else {
8146                 if (cpu_has_secondary_exec_ctrls()) {
8147                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8148                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8149                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8150                                      exec_control);
8151                 }
8152                 if (best)
8153                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8154         }
8155 }
8156
8157 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8158 {
8159         if (func == 1 && nested)
8160                 entry->ecx |= bit(X86_FEATURE_VMX);
8161 }
8162
8163 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8164                 struct x86_exception *fault)
8165 {
8166         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8167         u32 exit_reason;
8168
8169         if (fault->error_code & PFERR_RSVD_MASK)
8170                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8171         else
8172                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8173         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8174         vmcs12->guest_physical_address = fault->address;
8175 }
8176
8177 /* Callbacks for nested_ept_init_mmu_context: */
8178
8179 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8180 {
8181         /* return the page table to be shadowed - in our case, EPT12 */
8182         return get_vmcs12(vcpu)->ept_pointer;
8183 }
8184
8185 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8186 {
8187         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
8188                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
8189
8190         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8191         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8192         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8193
8194         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8195 }
8196
8197 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8198 {
8199         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8200 }
8201
8202 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8203                 struct x86_exception *fault)
8204 {
8205         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8206
8207         WARN_ON(!is_guest_mode(vcpu));
8208
8209         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8210         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
8211                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8212                                   vmcs_read32(VM_EXIT_INTR_INFO),
8213                                   vmcs_readl(EXIT_QUALIFICATION));
8214         else
8215                 kvm_inject_page_fault(vcpu, fault);
8216 }
8217
8218 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8219                                         struct vmcs12 *vmcs12)
8220 {
8221         struct vcpu_vmx *vmx = to_vmx(vcpu);
8222
8223         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8224                 /* TODO: Also verify bits beyond physical address width are 0 */
8225                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8226                         return false;
8227
8228                 /*
8229                  * Translate L1 physical address to host physical
8230                  * address for vmcs02. Keep the page pinned, so this
8231                  * physical address remains valid. We keep a reference
8232                  * to it so we can release it later.
8233                  */
8234                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8235                         nested_release_page(vmx->nested.apic_access_page);
8236                 vmx->nested.apic_access_page =
8237                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8238         }
8239
8240         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8241                 /* TODO: Also verify bits beyond physical address width are 0 */
8242                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8243                         return false;
8244
8245                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8246                         nested_release_page(vmx->nested.virtual_apic_page);
8247                 vmx->nested.virtual_apic_page =
8248                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8249
8250                 /*
8251                  * Failing the vm entry is _not_ what the processor does
8252                  * but it's basically the only possibility we have.
8253                  * We could still enter the guest if CR8 load exits are
8254                  * enabled, CR8 store exits are enabled, and virtualize APIC
8255                  * access is disabled; in this case the processor would never
8256                  * use the TPR shadow and we could simply clear the bit from
8257                  * the execution control.  But such a configuration is useless,
8258                  * so let's keep the code simple.
8259                  */
8260                 if (!vmx->nested.virtual_apic_page)
8261                         return false;
8262         }
8263
8264         return true;
8265 }
8266
8267 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8268 {
8269         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8270         struct vcpu_vmx *vmx = to_vmx(vcpu);
8271
8272         if (vcpu->arch.virtual_tsc_khz == 0)
8273                 return;
8274
8275         /* Make sure short timeouts reliably trigger an immediate vmexit.
8276          * hrtimer_start does not guarantee this. */
8277         if (preemption_timeout <= 1) {
8278                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8279                 return;
8280         }
8281
8282         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8283         preemption_timeout *= 1000000;
8284         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8285         hrtimer_start(&vmx->nested.preemption_timer,
8286                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8287 }
8288
8289 /*
8290  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8291  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8292  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8293  * guest in a way that will both be appropriate to L1's requests, and our
8294  * needs. In addition to modifying the active vmcs (which is vmcs02), this
8295  * function also has additional necessary side-effects, like setting various
8296  * vcpu->arch fields.
8297  */
8298 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8299 {
8300         struct vcpu_vmx *vmx = to_vmx(vcpu);
8301         u32 exec_control;
8302
8303         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8304         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8305         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8306         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8307         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8308         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8309         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8310         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8311         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8312         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8313         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8314         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8315         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8316         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8317         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8318         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8319         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8320         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8321         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8322         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8323         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8324         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8325         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8326         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8327         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8328         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8329         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8330         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8331         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8332         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8333         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8334         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8335         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8336         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8337         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8338         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8339
8340         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8341                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8342                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8343         } else {
8344                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8345                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8346         }
8347         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8348                 vmcs12->vm_entry_intr_info_field);
8349         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8350                 vmcs12->vm_entry_exception_error_code);
8351         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8352                 vmcs12->vm_entry_instruction_len);
8353         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8354                 vmcs12->guest_interruptibility_info);
8355         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8356         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8357         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8358                 vmcs12->guest_pending_dbg_exceptions);
8359         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8360         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8361
8362         if (nested_cpu_has_xsaves(vmcs12))
8363                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
8364         vmcs_write64(VMCS_LINK_POINTER, -1ull);
8365
8366         exec_control = vmcs12->pin_based_vm_exec_control;
8367         exec_control |= vmcs_config.pin_based_exec_ctrl;
8368         exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8369                           PIN_BASED_POSTED_INTR);
8370         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8371
8372         vmx->nested.preemption_timer_expired = false;
8373         if (nested_cpu_has_preemption_timer(vmcs12))
8374                 vmx_start_preemption_timer(vcpu);
8375
8376         /*
8377          * Whether page-faults are trapped is determined by a combination of
8378          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8379          * If enable_ept, L0 doesn't care about page faults and we should
8380          * set all of these to L1's desires. However, if !enable_ept, L0 does
8381          * care about (at least some) page faults, and because it is not easy
8382          * (if at all possible?) to merge L0 and L1's desires, we simply ask
8383          * to exit on each and every L2 page fault. This is done by setting
8384          * MASK=MATCH=0 and (see below) EB.PF=1.
8385          * Note that below we don't need special code to set EB.PF beyond the
8386          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8387          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8388          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8389          *
8390          * A problem with this approach (when !enable_ept) is that L1 may be
8391          * injected with more page faults than it asked for. This could have
8392          * caused problems, but in practice existing hypervisors don't care.
8393          * To fix this, we will need to emulate the PFEC checking (on the L1
8394          * page tables), using walk_addr(), when injecting PFs to L1.
8395          */
8396         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8397                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8398         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8399                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8400
8401         if (cpu_has_secondary_exec_ctrls()) {
8402                 exec_control = vmx_secondary_exec_control(vmx);
8403                 if (!vmx->rdtscp_enabled)
8404                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
8405                 /* Take the following fields only from vmcs12 */
8406                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8407                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8408                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
8409                 if (nested_cpu_has(vmcs12,
8410                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8411                         exec_control |= vmcs12->secondary_vm_exec_control;
8412
8413                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8414                         /*
8415                          * If translation failed, no matter: This feature asks
8416                          * to exit when accessing the given address, and if it
8417                          * can never be accessed, this feature won't do
8418                          * anything anyway.
8419                          */
8420                         if (!vmx->nested.apic_access_page)
8421                                 exec_control &=
8422                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8423                         else
8424                                 vmcs_write64(APIC_ACCESS_ADDR,
8425                                   page_to_phys(vmx->nested.apic_access_page));
8426                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8427                         exec_control |=
8428                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8429                         kvm_vcpu_reload_apic_access_page(vcpu);
8430                 }
8431
8432                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8433         }
8434
8435
8436         /*
8437          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8438          * Some constant fields are set here by vmx_set_constant_host_state().
8439          * Other fields are different per CPU, and will be set later when
8440          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8441          */
8442         vmx_set_constant_host_state(vmx);
8443
8444         /*
8445          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8446          * entry, but only if the current (host) sp changed from the value
8447          * we wrote last (vmx->host_rsp). This cache is no longer relevant
8448          * if we switch vmcs, and rather than hold a separate cache per vmcs,
8449          * here we just force the write to happen on entry.
8450          */
8451         vmx->host_rsp = 0;
8452
8453         exec_control = vmx_exec_control(vmx); /* L0's desires */
8454         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8455         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8456         exec_control &= ~CPU_BASED_TPR_SHADOW;
8457         exec_control |= vmcs12->cpu_based_vm_exec_control;
8458
8459         if (exec_control & CPU_BASED_TPR_SHADOW) {
8460                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8461                                 page_to_phys(vmx->nested.virtual_apic_page));
8462                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8463         }
8464
8465         /*
8466          * Merging of IO and MSR bitmaps not currently supported.
8467          * Rather, exit every time.
8468          */
8469         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8470         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8471         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8472
8473         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8474
8475         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8476          * bitwise-or of what L1 wants to trap for L2, and what we want to
8477          * trap. Note that CR0.TS also needs updating - we do this later.
8478          */
8479         update_exception_bitmap(vcpu);
8480         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8481         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8482
8483         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8484          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8485          * bits are further modified by vmx_set_efer() below.
8486          */
8487         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8488
8489         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8490          * emulated by vmx_set_efer(), below.
8491          */
8492         vm_entry_controls_init(vmx, 
8493                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8494                         ~VM_ENTRY_IA32E_MODE) |
8495                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8496
8497         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8498                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8499                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8500         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8501                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8502
8503
8504         set_cr4_guest_host_mask(vmx);
8505
8506         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8507                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8508
8509         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8510                 vmcs_write64(TSC_OFFSET,
8511                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8512         else
8513                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8514
8515         if (enable_vpid) {
8516                 /*
8517                  * Trivially support vpid by letting L2s share their parent
8518                  * L1's vpid. TODO: move to a more elaborate solution, giving
8519                  * each L2 its own vpid and exposing the vpid feature to L1.
8520                  */
8521                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8522                 vmx_flush_tlb(vcpu);
8523         }
8524
8525         if (nested_cpu_has_ept(vmcs12)) {
8526                 kvm_mmu_unload(vcpu);
8527                 nested_ept_init_mmu_context(vcpu);
8528         }
8529
8530         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8531                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8532         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8533                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8534         else
8535                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8536         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8537         vmx_set_efer(vcpu, vcpu->arch.efer);
8538
8539         /*
8540          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8541          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8542          * The CR0_READ_SHADOW is what L2 should have expected to read given
8543          * the specifications by L1; It's not enough to take
8544          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8545          * have more bits than L1 expected.
8546          */
8547         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8548         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8549
8550         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8551         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8552
8553         /* shadow page tables on either EPT or shadow page tables */
8554         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8555         kvm_mmu_reset_context(vcpu);
8556
8557         if (!enable_ept)
8558                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8559
8560         /*
8561          * L1 may access the L2's PDPTR, so save them to construct vmcs12
8562          */
8563         if (enable_ept) {
8564                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8565                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8566                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8567                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8568         }
8569
8570         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8571         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8572 }
8573
8574 /*
8575  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8576  * for running an L2 nested guest.
8577  */
8578 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8579 {
8580         struct vmcs12 *vmcs12;
8581         struct vcpu_vmx *vmx = to_vmx(vcpu);
8582         int cpu;
8583         struct loaded_vmcs *vmcs02;
8584         bool ia32e;
8585
8586         if (!nested_vmx_check_permission(vcpu) ||
8587             !nested_vmx_check_vmcs12(vcpu))
8588                 return 1;
8589
8590         skip_emulated_instruction(vcpu);
8591         vmcs12 = get_vmcs12(vcpu);
8592
8593         if (enable_shadow_vmcs)
8594                 copy_shadow_to_vmcs12(vmx);
8595
8596         /*
8597          * The nested entry process starts with enforcing various prerequisites
8598          * on vmcs12 as required by the Intel SDM, and act appropriately when
8599          * they fail: As the SDM explains, some conditions should cause the
8600          * instruction to fail, while others will cause the instruction to seem
8601          * to succeed, but return an EXIT_REASON_INVALID_STATE.
8602          * To speed up the normal (success) code path, we should avoid checking
8603          * for misconfigurations which will anyway be caught by the processor
8604          * when using the merged vmcs02.
8605          */
8606         if (vmcs12->launch_state == launch) {
8607                 nested_vmx_failValid(vcpu,
8608                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8609                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8610                 return 1;
8611         }
8612
8613         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8614             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8615                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8616                 return 1;
8617         }
8618
8619         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8620                         !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8621                 /*TODO: Also verify bits beyond physical address width are 0*/
8622                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8623                 return 1;
8624         }
8625
8626         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8627                 /*TODO: Also verify bits beyond physical address width are 0*/
8628                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8629                 return 1;
8630         }
8631
8632         if (vmcs12->vm_entry_msr_load_count > 0 ||
8633             vmcs12->vm_exit_msr_load_count > 0 ||
8634             vmcs12->vm_exit_msr_store_count > 0) {
8635                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8636                                     __func__);
8637                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8638                 return 1;
8639         }
8640
8641         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8642                                 nested_vmx_true_procbased_ctls_low,
8643                                 nested_vmx_procbased_ctls_high) ||
8644             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8645               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8646             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8647               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8648             !vmx_control_verify(vmcs12->vm_exit_controls,
8649                                 nested_vmx_true_exit_ctls_low,
8650                                 nested_vmx_exit_ctls_high) ||
8651             !vmx_control_verify(vmcs12->vm_entry_controls,
8652                                 nested_vmx_true_entry_ctls_low,
8653                                 nested_vmx_entry_ctls_high))
8654         {
8655                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8656                 return 1;
8657         }
8658
8659         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8660             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8661                 nested_vmx_failValid(vcpu,
8662                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8663                 return 1;
8664         }
8665
8666         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8667             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8668                 nested_vmx_entry_failure(vcpu, vmcs12,
8669                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8670                 return 1;
8671         }
8672         if (vmcs12->vmcs_link_pointer != -1ull) {
8673                 nested_vmx_entry_failure(vcpu, vmcs12,
8674                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8675                 return 1;
8676         }
8677
8678         /*
8679          * If the load IA32_EFER VM-entry control is 1, the following checks
8680          * are performed on the field for the IA32_EFER MSR:
8681          * - Bits reserved in the IA32_EFER MSR must be 0.
8682          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8683          *   the IA-32e mode guest VM-exit control. It must also be identical
8684          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8685          *   CR0.PG) is 1.
8686          */
8687         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8688                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8689                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8690                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8691                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8692                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8693                         nested_vmx_entry_failure(vcpu, vmcs12,
8694                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8695                         return 1;
8696                 }
8697         }
8698
8699         /*
8700          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8701          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8702          * the values of the LMA and LME bits in the field must each be that of
8703          * the host address-space size VM-exit control.
8704          */
8705         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8706                 ia32e = (vmcs12->vm_exit_controls &
8707                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8708                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8709                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8710                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8711                         nested_vmx_entry_failure(vcpu, vmcs12,
8712                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8713                         return 1;
8714                 }
8715         }
8716
8717         /*
8718          * We're finally done with prerequisite checking, and can start with
8719          * the nested entry.
8720          */
8721
8722         vmcs02 = nested_get_current_vmcs02(vmx);
8723         if (!vmcs02)
8724                 return -ENOMEM;
8725
8726         enter_guest_mode(vcpu);
8727
8728         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8729
8730         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8731                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8732
8733         cpu = get_cpu();
8734         vmx->loaded_vmcs = vmcs02;
8735         vmx_vcpu_put(vcpu);
8736         vmx_vcpu_load(vcpu, cpu);
8737         vcpu->cpu = cpu;
8738         put_cpu();
8739
8740         vmx_segment_cache_clear(vmx);
8741
8742         vmcs12->launch_state = 1;
8743
8744         prepare_vmcs02(vcpu, vmcs12);
8745
8746         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8747                 return kvm_emulate_halt(vcpu);
8748
8749         vmx->nested.nested_run_pending = 1;
8750
8751         /*
8752          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8753          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8754          * returned as far as L1 is concerned. It will only return (and set
8755          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8756          */
8757         return 1;
8758 }
8759
8760 /*
8761  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8762  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8763  * This function returns the new value we should put in vmcs12.guest_cr0.
8764  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8765  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8766  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8767  *     didn't trap the bit, because if L1 did, so would L0).
8768  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8769  *     been modified by L2, and L1 knows it. So just leave the old value of
8770  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8771  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8772  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8773  *     changed these bits, and therefore they need to be updated, but L0
8774  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8775  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8776  */
8777 static inline unsigned long
8778 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8779 {
8780         return
8781         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8782         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8783         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8784                         vcpu->arch.cr0_guest_owned_bits));
8785 }
8786
8787 static inline unsigned long
8788 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8789 {
8790         return
8791         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8792         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8793         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8794                         vcpu->arch.cr4_guest_owned_bits));
8795 }
8796
8797 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8798                                        struct vmcs12 *vmcs12)
8799 {
8800         u32 idt_vectoring;
8801         unsigned int nr;
8802
8803         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8804                 nr = vcpu->arch.exception.nr;
8805                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8806
8807                 if (kvm_exception_is_soft(nr)) {
8808                         vmcs12->vm_exit_instruction_len =
8809                                 vcpu->arch.event_exit_inst_len;
8810                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8811                 } else
8812                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8813
8814                 if (vcpu->arch.exception.has_error_code) {
8815                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8816                         vmcs12->idt_vectoring_error_code =
8817                                 vcpu->arch.exception.error_code;
8818                 }
8819
8820                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8821         } else if (vcpu->arch.nmi_injected) {
8822                 vmcs12->idt_vectoring_info_field =
8823                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8824         } else if (vcpu->arch.interrupt.pending) {
8825                 nr = vcpu->arch.interrupt.nr;
8826                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8827
8828                 if (vcpu->arch.interrupt.soft) {
8829                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8830                         vmcs12->vm_entry_instruction_len =
8831                                 vcpu->arch.event_exit_inst_len;
8832                 } else
8833                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8834
8835                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8836         }
8837 }
8838
8839 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8840 {
8841         struct vcpu_vmx *vmx = to_vmx(vcpu);
8842
8843         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8844             vmx->nested.preemption_timer_expired) {
8845                 if (vmx->nested.nested_run_pending)
8846                         return -EBUSY;
8847                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8848                 return 0;
8849         }
8850
8851         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8852                 if (vmx->nested.nested_run_pending ||
8853                     vcpu->arch.interrupt.pending)
8854                         return -EBUSY;
8855                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8856                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
8857                                   INTR_INFO_VALID_MASK, 0);
8858                 /*
8859                  * The NMI-triggered VM exit counts as injection:
8860                  * clear this one and block further NMIs.
8861                  */
8862                 vcpu->arch.nmi_pending = 0;
8863                 vmx_set_nmi_mask(vcpu, true);
8864                 return 0;
8865         }
8866
8867         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8868             nested_exit_on_intr(vcpu)) {
8869                 if (vmx->nested.nested_run_pending)
8870                         return -EBUSY;
8871                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8872         }
8873
8874         return 0;
8875 }
8876
8877 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8878 {
8879         ktime_t remaining =
8880                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8881         u64 value;
8882
8883         if (ktime_to_ns(remaining) <= 0)
8884                 return 0;
8885
8886         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8887         do_div(value, 1000000);
8888         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8889 }
8890
8891 /*
8892  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8893  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8894  * and this function updates it to reflect the changes to the guest state while
8895  * L2 was running (and perhaps made some exits which were handled directly by L0
8896  * without going back to L1), and to reflect the exit reason.
8897  * Note that we do not have to copy here all VMCS fields, just those that
8898  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8899  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8900  * which already writes to vmcs12 directly.
8901  */
8902 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8903                            u32 exit_reason, u32 exit_intr_info,
8904                            unsigned long exit_qualification)
8905 {
8906         /* update guest state fields: */
8907         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8908         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8909
8910         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8911         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8912         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8913
8914         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8915         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8916         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8917         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8918         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8919         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8920         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8921         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8922         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8923         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8924         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8925         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8926         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8927         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8928         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8929         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8930         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8931         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8932         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8933         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8934         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8935         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8936         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8937         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8938         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8939         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8940         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8941         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8942         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8943         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8944         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8945         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8946         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8947         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8948         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8949         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8950
8951         vmcs12->guest_interruptibility_info =
8952                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8953         vmcs12->guest_pending_dbg_exceptions =
8954                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8955         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8956                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8957         else
8958                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8959
8960         if (nested_cpu_has_preemption_timer(vmcs12)) {
8961                 if (vmcs12->vm_exit_controls &
8962                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8963                         vmcs12->vmx_preemption_timer_value =
8964                                 vmx_get_preemption_timer_value(vcpu);
8965                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8966         }
8967
8968         /*
8969          * In some cases (usually, nested EPT), L2 is allowed to change its
8970          * own CR3 without exiting. If it has changed it, we must keep it.
8971          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8972          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8973          *
8974          * Additionally, restore L2's PDPTR to vmcs12.
8975          */
8976         if (enable_ept) {
8977                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8978                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8979                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8980                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8981                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8982         }
8983
8984         vmcs12->vm_entry_controls =
8985                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8986                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8987
8988         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8989                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8990                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8991         }
8992
8993         /* TODO: These cannot have changed unless we have MSR bitmaps and
8994          * the relevant bit asks not to trap the change */
8995         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8996                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8997         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8998                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8999         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9000         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9001         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9002         if (vmx_mpx_supported())
9003                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9004         if (nested_cpu_has_xsaves(vmcs12))
9005                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9006
9007         /* update exit information fields: */
9008
9009         vmcs12->vm_exit_reason = exit_reason;
9010         vmcs12->exit_qualification = exit_qualification;
9011
9012         vmcs12->vm_exit_intr_info = exit_intr_info;
9013         if ((vmcs12->vm_exit_intr_info &
9014              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9015             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9016                 vmcs12->vm_exit_intr_error_code =
9017                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9018         vmcs12->idt_vectoring_info_field = 0;
9019         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9020         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9021
9022         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9023                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9024                  * instead of reading the real value. */
9025                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9026
9027                 /*
9028                  * Transfer the event that L0 or L1 may wanted to inject into
9029                  * L2 to IDT_VECTORING_INFO_FIELD.
9030                  */
9031                 vmcs12_save_pending_event(vcpu, vmcs12);
9032         }
9033
9034         /*
9035          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9036          * preserved above and would only end up incorrectly in L1.
9037          */
9038         vcpu->arch.nmi_injected = false;
9039         kvm_clear_exception_queue(vcpu);
9040         kvm_clear_interrupt_queue(vcpu);
9041 }
9042
9043 /*
9044  * A part of what we need to when the nested L2 guest exits and we want to
9045  * run its L1 parent, is to reset L1's guest state to the host state specified
9046  * in vmcs12.
9047  * This function is to be called not only on normal nested exit, but also on
9048  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9049  * Failures During or After Loading Guest State").
9050  * This function should be called when the active VMCS is L1's (vmcs01).
9051  */
9052 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9053                                    struct vmcs12 *vmcs12)
9054 {
9055         struct kvm_segment seg;
9056
9057         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9058                 vcpu->arch.efer = vmcs12->host_ia32_efer;
9059         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9060                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9061         else
9062                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9063         vmx_set_efer(vcpu, vcpu->arch.efer);
9064
9065         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9066         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
9067         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
9068         /*
9069          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9070          * actually changed, because it depends on the current state of
9071          * fpu_active (which may have changed).
9072          * Note that vmx_set_cr0 refers to efer set above.
9073          */
9074         vmx_set_cr0(vcpu, vmcs12->host_cr0);
9075         /*
9076          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9077          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9078          * but we also need to update cr0_guest_host_mask and exception_bitmap.
9079          */
9080         update_exception_bitmap(vcpu);
9081         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9082         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9083
9084         /*
9085          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9086          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9087          */
9088         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9089         kvm_set_cr4(vcpu, vmcs12->host_cr4);
9090
9091         nested_ept_uninit_mmu_context(vcpu);
9092
9093         kvm_set_cr3(vcpu, vmcs12->host_cr3);
9094         kvm_mmu_reset_context(vcpu);
9095
9096         if (!enable_ept)
9097                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9098
9099         if (enable_vpid) {
9100                 /*
9101                  * Trivially support vpid by letting L2s share their parent
9102                  * L1's vpid. TODO: move to a more elaborate solution, giving
9103                  * each L2 its own vpid and exposing the vpid feature to L1.
9104                  */
9105                 vmx_flush_tlb(vcpu);
9106         }
9107
9108
9109         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9110         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9111         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9112         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9113         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9114
9115         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
9116         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9117                 vmcs_write64(GUEST_BNDCFGS, 0);
9118
9119         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9120                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9121                 vcpu->arch.pat = vmcs12->host_ia32_pat;
9122         }
9123         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9124                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9125                         vmcs12->host_ia32_perf_global_ctrl);
9126
9127         /* Set L1 segment info according to Intel SDM
9128             27.5.2 Loading Host Segment and Descriptor-Table Registers */
9129         seg = (struct kvm_segment) {
9130                 .base = 0,
9131                 .limit = 0xFFFFFFFF,
9132                 .selector = vmcs12->host_cs_selector,
9133                 .type = 11,
9134                 .present = 1,
9135                 .s = 1,
9136                 .g = 1
9137         };
9138         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9139                 seg.l = 1;
9140         else
9141                 seg.db = 1;
9142         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9143         seg = (struct kvm_segment) {
9144                 .base = 0,
9145                 .limit = 0xFFFFFFFF,
9146                 .type = 3,
9147                 .present = 1,
9148                 .s = 1,
9149                 .db = 1,
9150                 .g = 1
9151         };
9152         seg.selector = vmcs12->host_ds_selector;
9153         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9154         seg.selector = vmcs12->host_es_selector;
9155         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9156         seg.selector = vmcs12->host_ss_selector;
9157         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9158         seg.selector = vmcs12->host_fs_selector;
9159         seg.base = vmcs12->host_fs_base;
9160         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9161         seg.selector = vmcs12->host_gs_selector;
9162         seg.base = vmcs12->host_gs_base;
9163         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9164         seg = (struct kvm_segment) {
9165                 .base = vmcs12->host_tr_base,
9166                 .limit = 0x67,
9167                 .selector = vmcs12->host_tr_selector,
9168                 .type = 11,
9169                 .present = 1
9170         };
9171         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9172
9173         kvm_set_dr(vcpu, 7, 0x400);
9174         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9175 }
9176
9177 /*
9178  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9179  * and modify vmcs12 to make it see what it would expect to see there if
9180  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9181  */
9182 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9183                               u32 exit_intr_info,
9184                               unsigned long exit_qualification)
9185 {
9186         struct vcpu_vmx *vmx = to_vmx(vcpu);
9187         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9188
9189         /* trying to cancel vmlaunch/vmresume is a bug */
9190         WARN_ON_ONCE(vmx->nested.nested_run_pending);
9191
9192         leave_guest_mode(vcpu);
9193         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9194                        exit_qualification);
9195
9196         vmx_load_vmcs01(vcpu);
9197
9198         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9199             && nested_exit_intr_ack_set(vcpu)) {
9200                 int irq = kvm_cpu_get_interrupt(vcpu);
9201                 WARN_ON(irq < 0);
9202                 vmcs12->vm_exit_intr_info = irq |
9203                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9204         }
9205
9206         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9207                                        vmcs12->exit_qualification,
9208                                        vmcs12->idt_vectoring_info_field,
9209                                        vmcs12->vm_exit_intr_info,
9210                                        vmcs12->vm_exit_intr_error_code,
9211                                        KVM_ISA_VMX);
9212
9213         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9214         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
9215         vmx_segment_cache_clear(vmx);
9216
9217         /* if no vmcs02 cache requested, remove the one we used */
9218         if (VMCS02_POOL_SIZE == 0)
9219                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
9220
9221         load_vmcs12_host_state(vcpu, vmcs12);
9222
9223         /* Update TSC_OFFSET if TSC was changed while L2 ran */
9224         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9225
9226         /* This is needed for same reason as it was needed in prepare_vmcs02 */
9227         vmx->host_rsp = 0;
9228
9229         /* Unpin physical memory we referred to in vmcs02 */
9230         if (vmx->nested.apic_access_page) {
9231                 nested_release_page(vmx->nested.apic_access_page);
9232                 vmx->nested.apic_access_page = NULL;
9233         }
9234         if (vmx->nested.virtual_apic_page) {
9235                 nested_release_page(vmx->nested.virtual_apic_page);
9236                 vmx->nested.virtual_apic_page = NULL;
9237         }
9238
9239         /*
9240          * We are now running in L2, mmu_notifier will force to reload the
9241          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9242          */
9243         kvm_vcpu_reload_apic_access_page(vcpu);
9244
9245         /*
9246          * Exiting from L2 to L1, we're now back to L1 which thinks it just
9247          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9248          * success or failure flag accordingly.
9249          */
9250         if (unlikely(vmx->fail)) {
9251                 vmx->fail = 0;
9252                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9253         } else
9254                 nested_vmx_succeed(vcpu);
9255         if (enable_shadow_vmcs)
9256                 vmx->nested.sync_shadow_vmcs = true;
9257
9258         /* in case we halted in L2 */
9259         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9260 }
9261
9262 /*
9263  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9264  */
9265 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9266 {
9267         if (is_guest_mode(vcpu))
9268                 nested_vmx_vmexit(vcpu, -1, 0, 0);
9269         free_nested(to_vmx(vcpu));
9270 }
9271
9272 /*
9273  * L1's failure to enter L2 is a subset of a normal exit, as explained in
9274  * 23.7 "VM-entry failures during or after loading guest state" (this also
9275  * lists the acceptable exit-reason and exit-qualification parameters).
9276  * It should only be called before L2 actually succeeded to run, and when
9277  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9278  */
9279 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9280                         struct vmcs12 *vmcs12,
9281                         u32 reason, unsigned long qualification)
9282 {
9283         load_vmcs12_host_state(vcpu, vmcs12);
9284         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9285         vmcs12->exit_qualification = qualification;
9286         nested_vmx_succeed(vcpu);
9287         if (enable_shadow_vmcs)
9288                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9289 }
9290
9291 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9292                                struct x86_instruction_info *info,
9293                                enum x86_intercept_stage stage)
9294 {
9295         return X86EMUL_CONTINUE;
9296 }
9297
9298 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9299 {
9300         if (ple_gap)
9301                 shrink_ple_window(vcpu);
9302 }
9303
9304 static struct kvm_x86_ops vmx_x86_ops = {
9305         .cpu_has_kvm_support = cpu_has_kvm_support,
9306         .disabled_by_bios = vmx_disabled_by_bios,
9307         .hardware_setup = hardware_setup,
9308         .hardware_unsetup = hardware_unsetup,
9309         .check_processor_compatibility = vmx_check_processor_compat,
9310         .hardware_enable = hardware_enable,
9311         .hardware_disable = hardware_disable,
9312         .cpu_has_accelerated_tpr = report_flexpriority,
9313
9314         .vcpu_create = vmx_create_vcpu,
9315         .vcpu_free = vmx_free_vcpu,
9316         .vcpu_reset = vmx_vcpu_reset,
9317
9318         .prepare_guest_switch = vmx_save_host_state,
9319         .vcpu_load = vmx_vcpu_load,
9320         .vcpu_put = vmx_vcpu_put,
9321
9322         .update_db_bp_intercept = update_exception_bitmap,
9323         .get_msr = vmx_get_msr,
9324         .set_msr = vmx_set_msr,
9325         .get_segment_base = vmx_get_segment_base,
9326         .get_segment = vmx_get_segment,
9327         .set_segment = vmx_set_segment,
9328         .get_cpl = vmx_get_cpl,
9329         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9330         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9331         .decache_cr3 = vmx_decache_cr3,
9332         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9333         .set_cr0 = vmx_set_cr0,
9334         .set_cr3 = vmx_set_cr3,
9335         .set_cr4 = vmx_set_cr4,
9336         .set_efer = vmx_set_efer,
9337         .get_idt = vmx_get_idt,
9338         .set_idt = vmx_set_idt,
9339         .get_gdt = vmx_get_gdt,
9340         .set_gdt = vmx_set_gdt,
9341         .get_dr6 = vmx_get_dr6,
9342         .set_dr6 = vmx_set_dr6,
9343         .set_dr7 = vmx_set_dr7,
9344         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9345         .cache_reg = vmx_cache_reg,
9346         .get_rflags = vmx_get_rflags,
9347         .set_rflags = vmx_set_rflags,
9348         .fpu_deactivate = vmx_fpu_deactivate,
9349
9350         .tlb_flush = vmx_flush_tlb,
9351
9352         .run = vmx_vcpu_run,
9353         .handle_exit = vmx_handle_exit,
9354         .skip_emulated_instruction = skip_emulated_instruction,
9355         .set_interrupt_shadow = vmx_set_interrupt_shadow,
9356         .get_interrupt_shadow = vmx_get_interrupt_shadow,
9357         .patch_hypercall = vmx_patch_hypercall,
9358         .set_irq = vmx_inject_irq,
9359         .set_nmi = vmx_inject_nmi,
9360         .queue_exception = vmx_queue_exception,
9361         .cancel_injection = vmx_cancel_injection,
9362         .interrupt_allowed = vmx_interrupt_allowed,
9363         .nmi_allowed = vmx_nmi_allowed,
9364         .get_nmi_mask = vmx_get_nmi_mask,
9365         .set_nmi_mask = vmx_set_nmi_mask,
9366         .enable_nmi_window = enable_nmi_window,
9367         .enable_irq_window = enable_irq_window,
9368         .update_cr8_intercept = update_cr8_intercept,
9369         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9370         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9371         .vm_has_apicv = vmx_vm_has_apicv,
9372         .load_eoi_exitmap = vmx_load_eoi_exitmap,
9373         .hwapic_irr_update = vmx_hwapic_irr_update,
9374         .hwapic_isr_update = vmx_hwapic_isr_update,
9375         .sync_pir_to_irr = vmx_sync_pir_to_irr,
9376         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9377
9378         .set_tss_addr = vmx_set_tss_addr,
9379         .get_tdp_level = get_ept_level,
9380         .get_mt_mask = vmx_get_mt_mask,
9381
9382         .get_exit_info = vmx_get_exit_info,
9383
9384         .get_lpage_level = vmx_get_lpage_level,
9385
9386         .cpuid_update = vmx_cpuid_update,
9387
9388         .rdtscp_supported = vmx_rdtscp_supported,
9389         .invpcid_supported = vmx_invpcid_supported,
9390
9391         .set_supported_cpuid = vmx_set_supported_cpuid,
9392
9393         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9394
9395         .set_tsc_khz = vmx_set_tsc_khz,
9396         .read_tsc_offset = vmx_read_tsc_offset,
9397         .write_tsc_offset = vmx_write_tsc_offset,
9398         .adjust_tsc_offset = vmx_adjust_tsc_offset,
9399         .compute_tsc_offset = vmx_compute_tsc_offset,
9400         .read_l1_tsc = vmx_read_l1_tsc,
9401
9402         .set_tdp_cr3 = vmx_set_cr3,
9403
9404         .check_intercept = vmx_check_intercept,
9405         .handle_external_intr = vmx_handle_external_intr,
9406         .mpx_supported = vmx_mpx_supported,
9407         .xsaves_supported = vmx_xsaves_supported,
9408
9409         .check_nested_events = vmx_check_nested_events,
9410
9411         .sched_in = vmx_sched_in,
9412 };
9413
9414 static int __init vmx_init(void)
9415 {
9416         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9417                      __alignof__(struct vcpu_vmx), THIS_MODULE);
9418         if (r)
9419                 return r;
9420
9421 #ifdef CONFIG_KEXEC
9422         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9423                            crash_vmclear_local_loaded_vmcss);
9424 #endif
9425
9426         return 0;
9427 }
9428
9429 static void __exit vmx_exit(void)
9430 {
9431 #ifdef CONFIG_KEXEC
9432         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9433         synchronize_rcu();
9434 #endif
9435
9436         kvm_exit();
9437 }
9438
9439 module_init(vmx_init)
9440 module_exit(vmx_exit)