Merge tag 'ceph-for-4.9-rc1' of git://github.com/ceph/ceph-client
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG       /* Activate rbd_assert() calls */
52
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define SECTOR_SHIFT    9
60 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
61
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70         unsigned int counter;
71
72         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73         if (counter <= (unsigned int)INT_MAX)
74                 return (int)counter;
75
76         atomic_dec(v);
77
78         return -EINVAL;
79 }
80
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84         int counter;
85
86         counter = atomic_dec_return(v);
87         if (counter >= 0)
88                 return counter;
89
90         atomic_inc(v);
91
92         return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR            256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN        16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN   \
104                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME      "-"
109
110 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX    64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX  64
117
118 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
119 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING    (1<<0)
124 #define RBD_FEATURE_STRIPINGV2  (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
127                                  RBD_FEATURE_STRIPINGV2 |       \
128                                  RBD_FEATURE_EXCLUSIVE_LOCK)
129
130 /* Features supported by this (client software) implementation. */
131
132 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
133
134 /*
135  * An RBD device name will be "rbd#", where the "rbd" comes from
136  * RBD_DRV_NAME above, and # is a unique integer identifier.
137  */
138 #define DEV_NAME_LEN            32
139
140 /*
141  * block device image metadata (in-memory version)
142  */
143 struct rbd_image_header {
144         /* These six fields never change for a given rbd image */
145         char *object_prefix;
146         __u8 obj_order;
147         __u8 crypt_type;
148         __u8 comp_type;
149         u64 stripe_unit;
150         u64 stripe_count;
151         u64 features;           /* Might be changeable someday? */
152
153         /* The remaining fields need to be updated occasionally */
154         u64 image_size;
155         struct ceph_snap_context *snapc;
156         char *snap_names;       /* format 1 only */
157         u64 *snap_sizes;        /* format 1 only */
158 };
159
160 /*
161  * An rbd image specification.
162  *
163  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164  * identify an image.  Each rbd_dev structure includes a pointer to
165  * an rbd_spec structure that encapsulates this identity.
166  *
167  * Each of the id's in an rbd_spec has an associated name.  For a
168  * user-mapped image, the names are supplied and the id's associated
169  * with them are looked up.  For a layered image, a parent image is
170  * defined by the tuple, and the names are looked up.
171  *
172  * An rbd_dev structure contains a parent_spec pointer which is
173  * non-null if the image it represents is a child in a layered
174  * image.  This pointer will refer to the rbd_spec structure used
175  * by the parent rbd_dev for its own identity (i.e., the structure
176  * is shared between the parent and child).
177  *
178  * Since these structures are populated once, during the discovery
179  * phase of image construction, they are effectively immutable so
180  * we make no effort to synchronize access to them.
181  *
182  * Note that code herein does not assume the image name is known (it
183  * could be a null pointer).
184  */
185 struct rbd_spec {
186         u64             pool_id;
187         const char      *pool_name;
188
189         const char      *image_id;
190         const char      *image_name;
191
192         u64             snap_id;
193         const char      *snap_name;
194
195         struct kref     kref;
196 };
197
198 /*
199  * an instance of the client.  multiple devices may share an rbd client.
200  */
201 struct rbd_client {
202         struct ceph_client      *client;
203         struct kref             kref;
204         struct list_head        node;
205 };
206
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209
210 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
211
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214
215 enum obj_request_type {
216         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218
219 enum obj_operation_type {
220         OBJ_OP_WRITE,
221         OBJ_OP_READ,
222         OBJ_OP_DISCARD,
223 };
224
225 enum obj_req_flags {
226         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
227         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
228         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
229         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
230 };
231
232 struct rbd_obj_request {
233         const char              *object_name;
234         u64                     offset;         /* object start byte */
235         u64                     length;         /* bytes from offset */
236         unsigned long           flags;
237
238         /*
239          * An object request associated with an image will have its
240          * img_data flag set; a standalone object request will not.
241          *
242          * A standalone object request will have which == BAD_WHICH
243          * and a null obj_request pointer.
244          *
245          * An object request initiated in support of a layered image
246          * object (to check for its existence before a write) will
247          * have which == BAD_WHICH and a non-null obj_request pointer.
248          *
249          * Finally, an object request for rbd image data will have
250          * which != BAD_WHICH, and will have a non-null img_request
251          * pointer.  The value of which will be in the range
252          * 0..(img_request->obj_request_count-1).
253          */
254         union {
255                 struct rbd_obj_request  *obj_request;   /* STAT op */
256                 struct {
257                         struct rbd_img_request  *img_request;
258                         u64                     img_offset;
259                         /* links for img_request->obj_requests list */
260                         struct list_head        links;
261                 };
262         };
263         u32                     which;          /* posn image request list */
264
265         enum obj_request_type   type;
266         union {
267                 struct bio      *bio_list;
268                 struct {
269                         struct page     **pages;
270                         u32             page_count;
271                 };
272         };
273         struct page             **copyup_pages;
274         u32                     copyup_page_count;
275
276         struct ceph_osd_request *osd_req;
277
278         u64                     xferred;        /* bytes transferred */
279         int                     result;
280
281         rbd_obj_callback_t      callback;
282         struct completion       completion;
283
284         struct kref             kref;
285 };
286
287 enum img_req_flags {
288         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
289         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
290         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
291         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
292 };
293
294 struct rbd_img_request {
295         struct rbd_device       *rbd_dev;
296         u64                     offset; /* starting image byte offset */
297         u64                     length; /* byte count from offset */
298         unsigned long           flags;
299         union {
300                 u64                     snap_id;        /* for reads */
301                 struct ceph_snap_context *snapc;        /* for writes */
302         };
303         union {
304                 struct request          *rq;            /* block request */
305                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
306         };
307         struct page             **copyup_pages;
308         u32                     copyup_page_count;
309         spinlock_t              completion_lock;/* protects next_completion */
310         u32                     next_completion;
311         rbd_img_callback_t      callback;
312         u64                     xferred;/* aggregate bytes transferred */
313         int                     result; /* first nonzero obj_request result */
314
315         u32                     obj_request_count;
316         struct list_head        obj_requests;   /* rbd_obj_request structs */
317
318         struct kref             kref;
319 };
320
321 #define for_each_obj_request(ireq, oreq) \
322         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327
328 enum rbd_watch_state {
329         RBD_WATCH_STATE_UNREGISTERED,
330         RBD_WATCH_STATE_REGISTERED,
331         RBD_WATCH_STATE_ERROR,
332 };
333
334 enum rbd_lock_state {
335         RBD_LOCK_STATE_UNLOCKED,
336         RBD_LOCK_STATE_LOCKED,
337         RBD_LOCK_STATE_RELEASING,
338 };
339
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342         u64 gid;
343         u64 handle;
344 };
345
346 struct rbd_mapping {
347         u64                     size;
348         u64                     features;
349         bool                    read_only;
350 };
351
352 /*
353  * a single device
354  */
355 struct rbd_device {
356         int                     dev_id;         /* blkdev unique id */
357
358         int                     major;          /* blkdev assigned major */
359         int                     minor;
360         struct gendisk          *disk;          /* blkdev's gendisk and rq */
361
362         u32                     image_format;   /* Either 1 or 2 */
363         struct rbd_client       *rbd_client;
364
365         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366
367         spinlock_t              lock;           /* queue, flags, open_count */
368
369         struct rbd_image_header header;
370         unsigned long           flags;          /* possibly lock protected */
371         struct rbd_spec         *spec;
372         struct rbd_options      *opts;
373         char                    *config_info;   /* add{,_single_major} string */
374
375         struct ceph_object_id   header_oid;
376         struct ceph_object_locator header_oloc;
377
378         struct ceph_file_layout layout;         /* used for all rbd requests */
379
380         struct mutex            watch_mutex;
381         enum rbd_watch_state    watch_state;
382         struct ceph_osd_linger_request *watch_handle;
383         u64                     watch_cookie;
384         struct delayed_work     watch_dwork;
385
386         struct rw_semaphore     lock_rwsem;
387         enum rbd_lock_state     lock_state;
388         struct rbd_client_id    owner_cid;
389         struct work_struct      acquired_lock_work;
390         struct work_struct      released_lock_work;
391         struct delayed_work     lock_dwork;
392         struct work_struct      unlock_work;
393         wait_queue_head_t       lock_waitq;
394
395         struct workqueue_struct *task_wq;
396
397         struct rbd_spec         *parent_spec;
398         u64                     parent_overlap;
399         atomic_t                parent_ref;
400         struct rbd_device       *parent;
401
402         /* Block layer tags. */
403         struct blk_mq_tag_set   tag_set;
404
405         /* protects updating the header */
406         struct rw_semaphore     header_rwsem;
407
408         struct rbd_mapping      mapping;
409
410         struct list_head        node;
411
412         /* sysfs related */
413         struct device           dev;
414         unsigned long           open_count;     /* protected by lock */
415 };
416
417 /*
418  * Flag bits for rbd_dev->flags.  If atomicity is required,
419  * rbd_dev->lock is used to protect access.
420  *
421  * Currently, only the "removing" flag (which is coupled with the
422  * "open_count" field) requires atomic access.
423  */
424 enum rbd_dev_flags {
425         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
426         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
427 };
428
429 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
430
431 static LIST_HEAD(rbd_dev_list);    /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433
434 static LIST_HEAD(rbd_client_list);              /* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436
437 /* Slab caches for frequently-allocated structures */
438
439 static struct kmem_cache        *rbd_img_request_cache;
440 static struct kmem_cache        *rbd_obj_request_cache;
441 static struct kmem_cache        *rbd_segment_name_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449  * Default to false for now, as single-major requires >= 0.75 version of
450  * userspace rbd utility.
451  */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459                        size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461                           size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463                                     size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465                                        size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481         return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482                rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483                !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494         bool is_lock_owner;
495
496         down_read(&rbd_dev->lock_rwsem);
497         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498         up_read(&rbd_dev->lock_rwsem);
499         return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508         &bus_attr_add.attr,
509         &bus_attr_remove.attr,
510         &bus_attr_add_single_major.attr,
511         &bus_attr_remove_single_major.attr,
512         NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516                                   struct attribute *attr, int index)
517 {
518         if (!single_major &&
519             (attr == &bus_attr_add_single_major.attr ||
520              attr == &bus_attr_remove_single_major.attr))
521                 return 0;
522
523         return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527         .attrs = rbd_bus_attrs,
528         .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533         .name           = "rbd",
534         .bus_groups     = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542         .init_name =    "rbd",
543         .release =      rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549         struct va_format vaf;
550         va_list args;
551
552         va_start(args, fmt);
553         vaf.fmt = fmt;
554         vaf.va = &args;
555
556         if (!rbd_dev)
557                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558         else if (rbd_dev->disk)
559                 printk(KERN_WARNING "%s: %s: %pV\n",
560                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561         else if (rbd_dev->spec && rbd_dev->spec->image_name)
562                 printk(KERN_WARNING "%s: image %s: %pV\n",
563                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564         else if (rbd_dev->spec && rbd_dev->spec->image_id)
565                 printk(KERN_WARNING "%s: id %s: %pV\n",
566                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567         else    /* punt */
568                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569                         RBD_DRV_NAME, rbd_dev, &vaf);
570         va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr)                                                \
575                 if (unlikely(!(expr))) {                                \
576                         printk(KERN_ERR "\nAssertion failure in %s() "  \
577                                                 "at line %d:\n\n"       \
578                                         "\trbd_assert(%s);\n\n",        \
579                                         __func__, __LINE__, #expr);     \
580                         BUG();                                          \
581                 }
582 #else /* !RBD_DEBUG */
583 #  define rbd_assert(expr)      ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596                                         u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598                                 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600                 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605         bool removing = false;
606
607         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608                 return -EROFS;
609
610         spin_lock_irq(&rbd_dev->lock);
611         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612                 removing = true;
613         else
614                 rbd_dev->open_count++;
615         spin_unlock_irq(&rbd_dev->lock);
616         if (removing)
617                 return -ENOENT;
618
619         (void) get_device(&rbd_dev->dev);
620
621         return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626         struct rbd_device *rbd_dev = disk->private_data;
627         unsigned long open_count_before;
628
629         spin_lock_irq(&rbd_dev->lock);
630         open_count_before = rbd_dev->open_count--;
631         spin_unlock_irq(&rbd_dev->lock);
632         rbd_assert(open_count_before > 0);
633
634         put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639         int ret = 0;
640         int val;
641         bool ro;
642         bool ro_changed = false;
643
644         /* get_user() may sleep, so call it before taking rbd_dev->lock */
645         if (get_user(val, (int __user *)(arg)))
646                 return -EFAULT;
647
648         ro = val ? true : false;
649         /* Snapshot doesn't allow to write*/
650         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651                 return -EROFS;
652
653         spin_lock_irq(&rbd_dev->lock);
654         /* prevent others open this device */
655         if (rbd_dev->open_count > 1) {
656                 ret = -EBUSY;
657                 goto out;
658         }
659
660         if (rbd_dev->mapping.read_only != ro) {
661                 rbd_dev->mapping.read_only = ro;
662                 ro_changed = true;
663         }
664
665 out:
666         spin_unlock_irq(&rbd_dev->lock);
667         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668         if (ret == 0 && ro_changed)
669                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671         return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675                         unsigned int cmd, unsigned long arg)
676 {
677         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678         int ret = 0;
679
680         switch (cmd) {
681         case BLKROSET:
682                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683                 break;
684         default:
685                 ret = -ENOTTY;
686         }
687
688         return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693                                 unsigned int cmd, unsigned long arg)
694 {
695         return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700         .owner                  = THIS_MODULE,
701         .open                   = rbd_open,
702         .release                = rbd_release,
703         .ioctl                  = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705         .compat_ioctl           = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710  * Initialize an rbd client instance.  Success or not, this function
711  * consumes ceph_opts.  Caller holds client_mutex.
712  */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715         struct rbd_client *rbdc;
716         int ret = -ENOMEM;
717
718         dout("%s:\n", __func__);
719         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720         if (!rbdc)
721                 goto out_opt;
722
723         kref_init(&rbdc->kref);
724         INIT_LIST_HEAD(&rbdc->node);
725
726         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727         if (IS_ERR(rbdc->client))
728                 goto out_rbdc;
729         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731         ret = ceph_open_session(rbdc->client);
732         if (ret < 0)
733                 goto out_client;
734
735         spin_lock(&rbd_client_list_lock);
736         list_add_tail(&rbdc->node, &rbd_client_list);
737         spin_unlock(&rbd_client_list_lock);
738
739         dout("%s: rbdc %p\n", __func__, rbdc);
740
741         return rbdc;
742 out_client:
743         ceph_destroy_client(rbdc->client);
744 out_rbdc:
745         kfree(rbdc);
746 out_opt:
747         if (ceph_opts)
748                 ceph_destroy_options(ceph_opts);
749         dout("%s: error %d\n", __func__, ret);
750
751         return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756         kref_get(&rbdc->kref);
757
758         return rbdc;
759 }
760
761 /*
762  * Find a ceph client with specific addr and configuration.  If
763  * found, bump its reference count.
764  */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767         struct rbd_client *client_node;
768         bool found = false;
769
770         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771                 return NULL;
772
773         spin_lock(&rbd_client_list_lock);
774         list_for_each_entry(client_node, &rbd_client_list, node) {
775                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776                         __rbd_get_client(client_node);
777
778                         found = true;
779                         break;
780                 }
781         }
782         spin_unlock(&rbd_client_list_lock);
783
784         return found ? client_node : NULL;
785 }
786
787 /*
788  * (Per device) rbd map options
789  */
790 enum {
791         Opt_queue_depth,
792         Opt_last_int,
793         /* int args above */
794         Opt_last_string,
795         /* string args above */
796         Opt_read_only,
797         Opt_read_write,
798         Opt_lock_on_read,
799         Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803         {Opt_queue_depth, "queue_depth=%d"},
804         /* int args above */
805         /* string args above */
806         {Opt_read_only, "read_only"},
807         {Opt_read_only, "ro"},          /* Alternate spelling */
808         {Opt_read_write, "read_write"},
809         {Opt_read_write, "rw"},         /* Alternate spelling */
810         {Opt_lock_on_read, "lock_on_read"},
811         {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815         int     queue_depth;
816         bool    read_only;
817         bool    lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT   false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826         struct rbd_options *rbd_opts = private;
827         substring_t argstr[MAX_OPT_ARGS];
828         int token, intval, ret;
829
830         token = match_token(c, rbd_opts_tokens, argstr);
831         if (token < Opt_last_int) {
832                 ret = match_int(&argstr[0], &intval);
833                 if (ret < 0) {
834                         pr_err("bad mount option arg (not int) at '%s'\n", c);
835                         return ret;
836                 }
837                 dout("got int token %d val %d\n", token, intval);
838         } else if (token > Opt_last_int && token < Opt_last_string) {
839                 dout("got string token %d val %s\n", token, argstr[0].from);
840         } else {
841                 dout("got token %d\n", token);
842         }
843
844         switch (token) {
845         case Opt_queue_depth:
846                 if (intval < 1) {
847                         pr_err("queue_depth out of range\n");
848                         return -EINVAL;
849                 }
850                 rbd_opts->queue_depth = intval;
851                 break;
852         case Opt_read_only:
853                 rbd_opts->read_only = true;
854                 break;
855         case Opt_read_write:
856                 rbd_opts->read_only = false;
857                 break;
858         case Opt_lock_on_read:
859                 rbd_opts->lock_on_read = true;
860                 break;
861         default:
862                 /* libceph prints "bad option" msg */
863                 return -EINVAL;
864         }
865
866         return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871         switch (op_type) {
872         case OBJ_OP_READ:
873                 return "read";
874         case OBJ_OP_WRITE:
875                 return "write";
876         case OBJ_OP_DISCARD:
877                 return "discard";
878         default:
879                 return "???";
880         }
881 }
882
883 /*
884  * Get a ceph client with specific addr and configuration, if one does
885  * not exist create it.  Either way, ceph_opts is consumed by this
886  * function.
887  */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890         struct rbd_client *rbdc;
891
892         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893         rbdc = rbd_client_find(ceph_opts);
894         if (rbdc)       /* using an existing client */
895                 ceph_destroy_options(ceph_opts);
896         else
897                 rbdc = rbd_client_create(ceph_opts);
898         mutex_unlock(&client_mutex);
899
900         return rbdc;
901 }
902
903 /*
904  * Destroy ceph client
905  *
906  * Caller must hold rbd_client_list_lock.
907  */
908 static void rbd_client_release(struct kref *kref)
909 {
910         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912         dout("%s: rbdc %p\n", __func__, rbdc);
913         spin_lock(&rbd_client_list_lock);
914         list_del(&rbdc->node);
915         spin_unlock(&rbd_client_list_lock);
916
917         ceph_destroy_client(rbdc->client);
918         kfree(rbdc);
919 }
920
921 /*
922  * Drop reference to ceph client node. If it's not referenced anymore, release
923  * it.
924  */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927         if (rbdc)
928                 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933         return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938         size_t size;
939         u32 snap_count;
940
941         /* The header has to start with the magic rbd header text */
942         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943                 return false;
944
945         /* The bio layer requires at least sector-sized I/O */
946
947         if (ondisk->options.order < SECTOR_SHIFT)
948                 return false;
949
950         /* If we use u64 in a few spots we may be able to loosen this */
951
952         if (ondisk->options.order > 8 * sizeof (int) - 1)
953                 return false;
954
955         /*
956          * The size of a snapshot header has to fit in a size_t, and
957          * that limits the number of snapshots.
958          */
959         snap_count = le32_to_cpu(ondisk->snap_count);
960         size = SIZE_MAX - sizeof (struct ceph_snap_context);
961         if (snap_count > size / sizeof (__le64))
962                 return false;
963
964         /*
965          * Not only that, but the size of the entire the snapshot
966          * header must also be representable in a size_t.
967          */
968         size -= snap_count * sizeof (__le64);
969         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970                 return false;
971
972         return true;
973 }
974
975 /*
976  * Fill an rbd image header with information from the given format 1
977  * on-disk header.
978  */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980                                  struct rbd_image_header_ondisk *ondisk)
981 {
982         struct rbd_image_header *header = &rbd_dev->header;
983         bool first_time = header->object_prefix == NULL;
984         struct ceph_snap_context *snapc;
985         char *object_prefix = NULL;
986         char *snap_names = NULL;
987         u64 *snap_sizes = NULL;
988         u32 snap_count;
989         int ret = -ENOMEM;
990         u32 i;
991
992         /* Allocate this now to avoid having to handle failure below */
993
994         if (first_time) {
995                 size_t len;
996
997                 len = strnlen(ondisk->object_prefix,
998                                 sizeof (ondisk->object_prefix));
999                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
1000                 if (!object_prefix)
1001                         return -ENOMEM;
1002                 memcpy(object_prefix, ondisk->object_prefix, len);
1003                 object_prefix[len] = '\0';
1004         }
1005
1006         /* Allocate the snapshot context and fill it in */
1007
1008         snap_count = le32_to_cpu(ondisk->snap_count);
1009         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010         if (!snapc)
1011                 goto out_err;
1012         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013         if (snap_count) {
1014                 struct rbd_image_snap_ondisk *snaps;
1015                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016
1017                 /* We'll keep a copy of the snapshot names... */
1018
1019                 if (snap_names_len > (u64)SIZE_MAX)
1020                         goto out_2big;
1021                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022                 if (!snap_names)
1023                         goto out_err;
1024
1025                 /* ...as well as the array of their sizes. */
1026                 snap_sizes = kmalloc_array(snap_count,
1027                                            sizeof(*header->snap_sizes),
1028                                            GFP_KERNEL);
1029                 if (!snap_sizes)
1030                         goto out_err;
1031
1032                 /*
1033                  * Copy the names, and fill in each snapshot's id
1034                  * and size.
1035                  *
1036                  * Note that rbd_dev_v1_header_info() guarantees the
1037                  * ondisk buffer we're working with has
1038                  * snap_names_len bytes beyond the end of the
1039                  * snapshot id array, this memcpy() is safe.
1040                  */
1041                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042                 snaps = ondisk->snaps;
1043                 for (i = 0; i < snap_count; i++) {
1044                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046                 }
1047         }
1048
1049         /* We won't fail any more, fill in the header */
1050
1051         if (first_time) {
1052                 header->object_prefix = object_prefix;
1053                 header->obj_order = ondisk->options.order;
1054                 header->crypt_type = ondisk->options.crypt_type;
1055                 header->comp_type = ondisk->options.comp_type;
1056                 /* The rest aren't used for format 1 images */
1057                 header->stripe_unit = 0;
1058                 header->stripe_count = 0;
1059                 header->features = 0;
1060         } else {
1061                 ceph_put_snap_context(header->snapc);
1062                 kfree(header->snap_names);
1063                 kfree(header->snap_sizes);
1064         }
1065
1066         /* The remaining fields always get updated (when we refresh) */
1067
1068         header->image_size = le64_to_cpu(ondisk->image_size);
1069         header->snapc = snapc;
1070         header->snap_names = snap_names;
1071         header->snap_sizes = snap_sizes;
1072
1073         return 0;
1074 out_2big:
1075         ret = -EIO;
1076 out_err:
1077         kfree(snap_sizes);
1078         kfree(snap_names);
1079         ceph_put_snap_context(snapc);
1080         kfree(object_prefix);
1081
1082         return ret;
1083 }
1084
1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086 {
1087         const char *snap_name;
1088
1089         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090
1091         /* Skip over names until we find the one we are looking for */
1092
1093         snap_name = rbd_dev->header.snap_names;
1094         while (which--)
1095                 snap_name += strlen(snap_name) + 1;
1096
1097         return kstrdup(snap_name, GFP_KERNEL);
1098 }
1099
1100 /*
1101  * Snapshot id comparison function for use with qsort()/bsearch().
1102  * Note that result is for snapshots in *descending* order.
1103  */
1104 static int snapid_compare_reverse(const void *s1, const void *s2)
1105 {
1106         u64 snap_id1 = *(u64 *)s1;
1107         u64 snap_id2 = *(u64 *)s2;
1108
1109         if (snap_id1 < snap_id2)
1110                 return 1;
1111         return snap_id1 == snap_id2 ? 0 : -1;
1112 }
1113
1114 /*
1115  * Search a snapshot context to see if the given snapshot id is
1116  * present.
1117  *
1118  * Returns the position of the snapshot id in the array if it's found,
1119  * or BAD_SNAP_INDEX otherwise.
1120  *
1121  * Note: The snapshot array is in kept sorted (by the osd) in
1122  * reverse order, highest snapshot id first.
1123  */
1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125 {
1126         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127         u64 *found;
1128
1129         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130                                 sizeof (snap_id), snapid_compare_reverse);
1131
1132         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133 }
1134
1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136                                         u64 snap_id)
1137 {
1138         u32 which;
1139         const char *snap_name;
1140
1141         which = rbd_dev_snap_index(rbd_dev, snap_id);
1142         if (which == BAD_SNAP_INDEX)
1143                 return ERR_PTR(-ENOENT);
1144
1145         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147 }
1148
1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150 {
1151         if (snap_id == CEPH_NOSNAP)
1152                 return RBD_SNAP_HEAD_NAME;
1153
1154         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155         if (rbd_dev->image_format == 1)
1156                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157
1158         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159 }
1160
1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162                                 u64 *snap_size)
1163 {
1164         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165         if (snap_id == CEPH_NOSNAP) {
1166                 *snap_size = rbd_dev->header.image_size;
1167         } else if (rbd_dev->image_format == 1) {
1168                 u32 which;
1169
1170                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1171                 if (which == BAD_SNAP_INDEX)
1172                         return -ENOENT;
1173
1174                 *snap_size = rbd_dev->header.snap_sizes[which];
1175         } else {
1176                 u64 size = 0;
1177                 int ret;
1178
1179                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180                 if (ret)
1181                         return ret;
1182
1183                 *snap_size = size;
1184         }
1185         return 0;
1186 }
1187
1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189                         u64 *snap_features)
1190 {
1191         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192         if (snap_id == CEPH_NOSNAP) {
1193                 *snap_features = rbd_dev->header.features;
1194         } else if (rbd_dev->image_format == 1) {
1195                 *snap_features = 0;     /* No features for format 1 */
1196         } else {
1197                 u64 features = 0;
1198                 int ret;
1199
1200                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201                 if (ret)
1202                         return ret;
1203
1204                 *snap_features = features;
1205         }
1206         return 0;
1207 }
1208
1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210 {
1211         u64 snap_id = rbd_dev->spec->snap_id;
1212         u64 size = 0;
1213         u64 features = 0;
1214         int ret;
1215
1216         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217         if (ret)
1218                 return ret;
1219         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220         if (ret)
1221                 return ret;
1222
1223         rbd_dev->mapping.size = size;
1224         rbd_dev->mapping.features = features;
1225
1226         return 0;
1227 }
1228
1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230 {
1231         rbd_dev->mapping.size = 0;
1232         rbd_dev->mapping.features = 0;
1233 }
1234
1235 static void rbd_segment_name_free(const char *name)
1236 {
1237         /* The explicit cast here is needed to drop the const qualifier */
1238
1239         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1240 }
1241
1242 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1243 {
1244         char *name;
1245         u64 segment;
1246         int ret;
1247         char *name_format;
1248
1249         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1250         if (!name)
1251                 return NULL;
1252         segment = offset >> rbd_dev->header.obj_order;
1253         name_format = "%s.%012llx";
1254         if (rbd_dev->image_format == 2)
1255                 name_format = "%s.%016llx";
1256         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1257                         rbd_dev->header.object_prefix, segment);
1258         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1259                 pr_err("error formatting segment name for #%llu (%d)\n",
1260                         segment, ret);
1261                 rbd_segment_name_free(name);
1262                 name = NULL;
1263         }
1264
1265         return name;
1266 }
1267
1268 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1269 {
1270         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1271
1272         return offset & (segment_size - 1);
1273 }
1274
1275 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1276                                 u64 offset, u64 length)
1277 {
1278         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1279
1280         offset &= segment_size - 1;
1281
1282         rbd_assert(length <= U64_MAX - offset);
1283         if (offset + length > segment_size)
1284                 length = segment_size - offset;
1285
1286         return length;
1287 }
1288
1289 /*
1290  * returns the size of an object in the image
1291  */
1292 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1293 {
1294         return 1 << header->obj_order;
1295 }
1296
1297 /*
1298  * bio helpers
1299  */
1300
1301 static void bio_chain_put(struct bio *chain)
1302 {
1303         struct bio *tmp;
1304
1305         while (chain) {
1306                 tmp = chain;
1307                 chain = chain->bi_next;
1308                 bio_put(tmp);
1309         }
1310 }
1311
1312 /*
1313  * zeros a bio chain, starting at specific offset
1314  */
1315 static void zero_bio_chain(struct bio *chain, int start_ofs)
1316 {
1317         struct bio_vec bv;
1318         struct bvec_iter iter;
1319         unsigned long flags;
1320         void *buf;
1321         int pos = 0;
1322
1323         while (chain) {
1324                 bio_for_each_segment(bv, chain, iter) {
1325                         if (pos + bv.bv_len > start_ofs) {
1326                                 int remainder = max(start_ofs - pos, 0);
1327                                 buf = bvec_kmap_irq(&bv, &flags);
1328                                 memset(buf + remainder, 0,
1329                                        bv.bv_len - remainder);
1330                                 flush_dcache_page(bv.bv_page);
1331                                 bvec_kunmap_irq(buf, &flags);
1332                         }
1333                         pos += bv.bv_len;
1334                 }
1335
1336                 chain = chain->bi_next;
1337         }
1338 }
1339
1340 /*
1341  * similar to zero_bio_chain(), zeros data defined by a page array,
1342  * starting at the given byte offset from the start of the array and
1343  * continuing up to the given end offset.  The pages array is
1344  * assumed to be big enough to hold all bytes up to the end.
1345  */
1346 static void zero_pages(struct page **pages, u64 offset, u64 end)
1347 {
1348         struct page **page = &pages[offset >> PAGE_SHIFT];
1349
1350         rbd_assert(end > offset);
1351         rbd_assert(end - offset <= (u64)SIZE_MAX);
1352         while (offset < end) {
1353                 size_t page_offset;
1354                 size_t length;
1355                 unsigned long flags;
1356                 void *kaddr;
1357
1358                 page_offset = offset & ~PAGE_MASK;
1359                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1360                 local_irq_save(flags);
1361                 kaddr = kmap_atomic(*page);
1362                 memset(kaddr + page_offset, 0, length);
1363                 flush_dcache_page(*page);
1364                 kunmap_atomic(kaddr);
1365                 local_irq_restore(flags);
1366
1367                 offset += length;
1368                 page++;
1369         }
1370 }
1371
1372 /*
1373  * Clone a portion of a bio, starting at the given byte offset
1374  * and continuing for the number of bytes indicated.
1375  */
1376 static struct bio *bio_clone_range(struct bio *bio_src,
1377                                         unsigned int offset,
1378                                         unsigned int len,
1379                                         gfp_t gfpmask)
1380 {
1381         struct bio *bio;
1382
1383         bio = bio_clone(bio_src, gfpmask);
1384         if (!bio)
1385                 return NULL;    /* ENOMEM */
1386
1387         bio_advance(bio, offset);
1388         bio->bi_iter.bi_size = len;
1389
1390         return bio;
1391 }
1392
1393 /*
1394  * Clone a portion of a bio chain, starting at the given byte offset
1395  * into the first bio in the source chain and continuing for the
1396  * number of bytes indicated.  The result is another bio chain of
1397  * exactly the given length, or a null pointer on error.
1398  *
1399  * The bio_src and offset parameters are both in-out.  On entry they
1400  * refer to the first source bio and the offset into that bio where
1401  * the start of data to be cloned is located.
1402  *
1403  * On return, bio_src is updated to refer to the bio in the source
1404  * chain that contains first un-cloned byte, and *offset will
1405  * contain the offset of that byte within that bio.
1406  */
1407 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1408                                         unsigned int *offset,
1409                                         unsigned int len,
1410                                         gfp_t gfpmask)
1411 {
1412         struct bio *bi = *bio_src;
1413         unsigned int off = *offset;
1414         struct bio *chain = NULL;
1415         struct bio **end;
1416
1417         /* Build up a chain of clone bios up to the limit */
1418
1419         if (!bi || off >= bi->bi_iter.bi_size || !len)
1420                 return NULL;            /* Nothing to clone */
1421
1422         end = &chain;
1423         while (len) {
1424                 unsigned int bi_size;
1425                 struct bio *bio;
1426
1427                 if (!bi) {
1428                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1429                         goto out_err;   /* EINVAL; ran out of bio's */
1430                 }
1431                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1432                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1433                 if (!bio)
1434                         goto out_err;   /* ENOMEM */
1435
1436                 *end = bio;
1437                 end = &bio->bi_next;
1438
1439                 off += bi_size;
1440                 if (off == bi->bi_iter.bi_size) {
1441                         bi = bi->bi_next;
1442                         off = 0;
1443                 }
1444                 len -= bi_size;
1445         }
1446         *bio_src = bi;
1447         *offset = off;
1448
1449         return chain;
1450 out_err:
1451         bio_chain_put(chain);
1452
1453         return NULL;
1454 }
1455
1456 /*
1457  * The default/initial value for all object request flags is 0.  For
1458  * each flag, once its value is set to 1 it is never reset to 0
1459  * again.
1460  */
1461 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1462 {
1463         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1464                 struct rbd_device *rbd_dev;
1465
1466                 rbd_dev = obj_request->img_request->rbd_dev;
1467                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1468                         obj_request);
1469         }
1470 }
1471
1472 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1473 {
1474         smp_mb();
1475         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1476 }
1477
1478 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1479 {
1480         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1481                 struct rbd_device *rbd_dev = NULL;
1482
1483                 if (obj_request_img_data_test(obj_request))
1484                         rbd_dev = obj_request->img_request->rbd_dev;
1485                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1486                         obj_request);
1487         }
1488 }
1489
1490 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1491 {
1492         smp_mb();
1493         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1494 }
1495
1496 /*
1497  * This sets the KNOWN flag after (possibly) setting the EXISTS
1498  * flag.  The latter is set based on the "exists" value provided.
1499  *
1500  * Note that for our purposes once an object exists it never goes
1501  * away again.  It's possible that the response from two existence
1502  * checks are separated by the creation of the target object, and
1503  * the first ("doesn't exist") response arrives *after* the second
1504  * ("does exist").  In that case we ignore the second one.
1505  */
1506 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1507                                 bool exists)
1508 {
1509         if (exists)
1510                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1511         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1512         smp_mb();
1513 }
1514
1515 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1516 {
1517         smp_mb();
1518         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1519 }
1520
1521 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1522 {
1523         smp_mb();
1524         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1525 }
1526
1527 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1528 {
1529         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1530
1531         return obj_request->img_offset <
1532             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1533 }
1534
1535 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1536 {
1537         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1538                 atomic_read(&obj_request->kref.refcount));
1539         kref_get(&obj_request->kref);
1540 }
1541
1542 static void rbd_obj_request_destroy(struct kref *kref);
1543 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1544 {
1545         rbd_assert(obj_request != NULL);
1546         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1547                 atomic_read(&obj_request->kref.refcount));
1548         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1549 }
1550
1551 static void rbd_img_request_get(struct rbd_img_request *img_request)
1552 {
1553         dout("%s: img %p (was %d)\n", __func__, img_request,
1554              atomic_read(&img_request->kref.refcount));
1555         kref_get(&img_request->kref);
1556 }
1557
1558 static bool img_request_child_test(struct rbd_img_request *img_request);
1559 static void rbd_parent_request_destroy(struct kref *kref);
1560 static void rbd_img_request_destroy(struct kref *kref);
1561 static void rbd_img_request_put(struct rbd_img_request *img_request)
1562 {
1563         rbd_assert(img_request != NULL);
1564         dout("%s: img %p (was %d)\n", __func__, img_request,
1565                 atomic_read(&img_request->kref.refcount));
1566         if (img_request_child_test(img_request))
1567                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1568         else
1569                 kref_put(&img_request->kref, rbd_img_request_destroy);
1570 }
1571
1572 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1573                                         struct rbd_obj_request *obj_request)
1574 {
1575         rbd_assert(obj_request->img_request == NULL);
1576
1577         /* Image request now owns object's original reference */
1578         obj_request->img_request = img_request;
1579         obj_request->which = img_request->obj_request_count;
1580         rbd_assert(!obj_request_img_data_test(obj_request));
1581         obj_request_img_data_set(obj_request);
1582         rbd_assert(obj_request->which != BAD_WHICH);
1583         img_request->obj_request_count++;
1584         list_add_tail(&obj_request->links, &img_request->obj_requests);
1585         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1586                 obj_request->which);
1587 }
1588
1589 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1590                                         struct rbd_obj_request *obj_request)
1591 {
1592         rbd_assert(obj_request->which != BAD_WHICH);
1593
1594         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1595                 obj_request->which);
1596         list_del(&obj_request->links);
1597         rbd_assert(img_request->obj_request_count > 0);
1598         img_request->obj_request_count--;
1599         rbd_assert(obj_request->which == img_request->obj_request_count);
1600         obj_request->which = BAD_WHICH;
1601         rbd_assert(obj_request_img_data_test(obj_request));
1602         rbd_assert(obj_request->img_request == img_request);
1603         obj_request->img_request = NULL;
1604         obj_request->callback = NULL;
1605         rbd_obj_request_put(obj_request);
1606 }
1607
1608 static bool obj_request_type_valid(enum obj_request_type type)
1609 {
1610         switch (type) {
1611         case OBJ_REQUEST_NODATA:
1612         case OBJ_REQUEST_BIO:
1613         case OBJ_REQUEST_PAGES:
1614                 return true;
1615         default:
1616                 return false;
1617         }
1618 }
1619
1620 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1621
1622 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1623 {
1624         struct ceph_osd_request *osd_req = obj_request->osd_req;
1625
1626         dout("%s %p osd_req %p\n", __func__, obj_request, osd_req);
1627         if (obj_request_img_data_test(obj_request)) {
1628                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1629                 rbd_img_request_get(obj_request->img_request);
1630         }
1631         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1632 }
1633
1634 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1635 {
1636         dout("%s %p\n", __func__, obj_request);
1637         ceph_osdc_cancel_request(obj_request->osd_req);
1638 }
1639
1640 /*
1641  * Wait for an object request to complete.  If interrupted, cancel the
1642  * underlying osd request.
1643  *
1644  * @timeout: in jiffies, 0 means "wait forever"
1645  */
1646 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1647                                   unsigned long timeout)
1648 {
1649         long ret;
1650
1651         dout("%s %p\n", __func__, obj_request);
1652         ret = wait_for_completion_interruptible_timeout(
1653                                         &obj_request->completion,
1654                                         ceph_timeout_jiffies(timeout));
1655         if (ret <= 0) {
1656                 if (ret == 0)
1657                         ret = -ETIMEDOUT;
1658                 rbd_obj_request_end(obj_request);
1659         } else {
1660                 ret = 0;
1661         }
1662
1663         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1664         return ret;
1665 }
1666
1667 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1668 {
1669         return __rbd_obj_request_wait(obj_request, 0);
1670 }
1671
1672 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1673 {
1674
1675         dout("%s: img %p\n", __func__, img_request);
1676
1677         /*
1678          * If no error occurred, compute the aggregate transfer
1679          * count for the image request.  We could instead use
1680          * atomic64_cmpxchg() to update it as each object request
1681          * completes; not clear which way is better off hand.
1682          */
1683         if (!img_request->result) {
1684                 struct rbd_obj_request *obj_request;
1685                 u64 xferred = 0;
1686
1687                 for_each_obj_request(img_request, obj_request)
1688                         xferred += obj_request->xferred;
1689                 img_request->xferred = xferred;
1690         }
1691
1692         if (img_request->callback)
1693                 img_request->callback(img_request);
1694         else
1695                 rbd_img_request_put(img_request);
1696 }
1697
1698 /*
1699  * The default/initial value for all image request flags is 0.  Each
1700  * is conditionally set to 1 at image request initialization time
1701  * and currently never change thereafter.
1702  */
1703 static void img_request_write_set(struct rbd_img_request *img_request)
1704 {
1705         set_bit(IMG_REQ_WRITE, &img_request->flags);
1706         smp_mb();
1707 }
1708
1709 static bool img_request_write_test(struct rbd_img_request *img_request)
1710 {
1711         smp_mb();
1712         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1713 }
1714
1715 /*
1716  * Set the discard flag when the img_request is an discard request
1717  */
1718 static void img_request_discard_set(struct rbd_img_request *img_request)
1719 {
1720         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1721         smp_mb();
1722 }
1723
1724 static bool img_request_discard_test(struct rbd_img_request *img_request)
1725 {
1726         smp_mb();
1727         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1728 }
1729
1730 static void img_request_child_set(struct rbd_img_request *img_request)
1731 {
1732         set_bit(IMG_REQ_CHILD, &img_request->flags);
1733         smp_mb();
1734 }
1735
1736 static void img_request_child_clear(struct rbd_img_request *img_request)
1737 {
1738         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1739         smp_mb();
1740 }
1741
1742 static bool img_request_child_test(struct rbd_img_request *img_request)
1743 {
1744         smp_mb();
1745         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1746 }
1747
1748 static void img_request_layered_set(struct rbd_img_request *img_request)
1749 {
1750         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1751         smp_mb();
1752 }
1753
1754 static void img_request_layered_clear(struct rbd_img_request *img_request)
1755 {
1756         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1757         smp_mb();
1758 }
1759
1760 static bool img_request_layered_test(struct rbd_img_request *img_request)
1761 {
1762         smp_mb();
1763         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1764 }
1765
1766 static enum obj_operation_type
1767 rbd_img_request_op_type(struct rbd_img_request *img_request)
1768 {
1769         if (img_request_write_test(img_request))
1770                 return OBJ_OP_WRITE;
1771         else if (img_request_discard_test(img_request))
1772                 return OBJ_OP_DISCARD;
1773         else
1774                 return OBJ_OP_READ;
1775 }
1776
1777 static void
1778 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1779 {
1780         u64 xferred = obj_request->xferred;
1781         u64 length = obj_request->length;
1782
1783         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1784                 obj_request, obj_request->img_request, obj_request->result,
1785                 xferred, length);
1786         /*
1787          * ENOENT means a hole in the image.  We zero-fill the entire
1788          * length of the request.  A short read also implies zero-fill
1789          * to the end of the request.  An error requires the whole
1790          * length of the request to be reported finished with an error
1791          * to the block layer.  In each case we update the xferred
1792          * count to indicate the whole request was satisfied.
1793          */
1794         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1795         if (obj_request->result == -ENOENT) {
1796                 if (obj_request->type == OBJ_REQUEST_BIO)
1797                         zero_bio_chain(obj_request->bio_list, 0);
1798                 else
1799                         zero_pages(obj_request->pages, 0, length);
1800                 obj_request->result = 0;
1801         } else if (xferred < length && !obj_request->result) {
1802                 if (obj_request->type == OBJ_REQUEST_BIO)
1803                         zero_bio_chain(obj_request->bio_list, xferred);
1804                 else
1805                         zero_pages(obj_request->pages, xferred, length);
1806         }
1807         obj_request->xferred = length;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1812 {
1813         dout("%s: obj %p cb %p\n", __func__, obj_request,
1814                 obj_request->callback);
1815         if (obj_request->callback)
1816                 obj_request->callback(obj_request);
1817         else
1818                 complete_all(&obj_request->completion);
1819 }
1820
1821 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1822 {
1823         obj_request->result = err;
1824         obj_request->xferred = 0;
1825         /*
1826          * kludge - mirror rbd_obj_request_submit() to match a put in
1827          * rbd_img_obj_callback()
1828          */
1829         if (obj_request_img_data_test(obj_request)) {
1830                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1831                 rbd_img_request_get(obj_request->img_request);
1832         }
1833         obj_request_done_set(obj_request);
1834         rbd_obj_request_complete(obj_request);
1835 }
1836
1837 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1838 {
1839         struct rbd_img_request *img_request = NULL;
1840         struct rbd_device *rbd_dev = NULL;
1841         bool layered = false;
1842
1843         if (obj_request_img_data_test(obj_request)) {
1844                 img_request = obj_request->img_request;
1845                 layered = img_request && img_request_layered_test(img_request);
1846                 rbd_dev = img_request->rbd_dev;
1847         }
1848
1849         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1850                 obj_request, img_request, obj_request->result,
1851                 obj_request->xferred, obj_request->length);
1852         if (layered && obj_request->result == -ENOENT &&
1853                         obj_request->img_offset < rbd_dev->parent_overlap)
1854                 rbd_img_parent_read(obj_request);
1855         else if (img_request)
1856                 rbd_img_obj_request_read_callback(obj_request);
1857         else
1858                 obj_request_done_set(obj_request);
1859 }
1860
1861 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1862 {
1863         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1864                 obj_request->result, obj_request->length);
1865         /*
1866          * There is no such thing as a successful short write.  Set
1867          * it to our originally-requested length.
1868          */
1869         obj_request->xferred = obj_request->length;
1870         obj_request_done_set(obj_request);
1871 }
1872
1873 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1874 {
1875         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1876                 obj_request->result, obj_request->length);
1877         /*
1878          * There is no such thing as a successful short discard.  Set
1879          * it to our originally-requested length.
1880          */
1881         obj_request->xferred = obj_request->length;
1882         /* discarding a non-existent object is not a problem */
1883         if (obj_request->result == -ENOENT)
1884                 obj_request->result = 0;
1885         obj_request_done_set(obj_request);
1886 }
1887
1888 /*
1889  * For a simple stat call there's nothing to do.  We'll do more if
1890  * this is part of a write sequence for a layered image.
1891  */
1892 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1893 {
1894         dout("%s: obj %p\n", __func__, obj_request);
1895         obj_request_done_set(obj_request);
1896 }
1897
1898 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1899 {
1900         dout("%s: obj %p\n", __func__, obj_request);
1901
1902         if (obj_request_img_data_test(obj_request))
1903                 rbd_osd_copyup_callback(obj_request);
1904         else
1905                 obj_request_done_set(obj_request);
1906 }
1907
1908 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1909 {
1910         struct rbd_obj_request *obj_request = osd_req->r_priv;
1911         u16 opcode;
1912
1913         dout("%s: osd_req %p\n", __func__, osd_req);
1914         rbd_assert(osd_req == obj_request->osd_req);
1915         if (obj_request_img_data_test(obj_request)) {
1916                 rbd_assert(obj_request->img_request);
1917                 rbd_assert(obj_request->which != BAD_WHICH);
1918         } else {
1919                 rbd_assert(obj_request->which == BAD_WHICH);
1920         }
1921
1922         if (osd_req->r_result < 0)
1923                 obj_request->result = osd_req->r_result;
1924
1925         /*
1926          * We support a 64-bit length, but ultimately it has to be
1927          * passed to the block layer, which just supports a 32-bit
1928          * length field.
1929          */
1930         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1931         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1932
1933         opcode = osd_req->r_ops[0].op;
1934         switch (opcode) {
1935         case CEPH_OSD_OP_READ:
1936                 rbd_osd_read_callback(obj_request);
1937                 break;
1938         case CEPH_OSD_OP_SETALLOCHINT:
1939                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1940                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1941                 /* fall through */
1942         case CEPH_OSD_OP_WRITE:
1943         case CEPH_OSD_OP_WRITEFULL:
1944                 rbd_osd_write_callback(obj_request);
1945                 break;
1946         case CEPH_OSD_OP_STAT:
1947                 rbd_osd_stat_callback(obj_request);
1948                 break;
1949         case CEPH_OSD_OP_DELETE:
1950         case CEPH_OSD_OP_TRUNCATE:
1951         case CEPH_OSD_OP_ZERO:
1952                 rbd_osd_discard_callback(obj_request);
1953                 break;
1954         case CEPH_OSD_OP_CALL:
1955                 rbd_osd_call_callback(obj_request);
1956                 break;
1957         default:
1958                 rbd_warn(NULL, "%s: unsupported op %hu",
1959                         obj_request->object_name, (unsigned short) opcode);
1960                 break;
1961         }
1962
1963         if (obj_request_done_test(obj_request))
1964                 rbd_obj_request_complete(obj_request);
1965 }
1966
1967 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1968 {
1969         struct ceph_osd_request *osd_req = obj_request->osd_req;
1970
1971         rbd_assert(obj_request_img_data_test(obj_request));
1972         osd_req->r_snapid = obj_request->img_request->snap_id;
1973 }
1974
1975 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1976 {
1977         struct ceph_osd_request *osd_req = obj_request->osd_req;
1978
1979         osd_req->r_mtime = CURRENT_TIME;
1980         osd_req->r_data_offset = obj_request->offset;
1981 }
1982
1983 /*
1984  * Create an osd request.  A read request has one osd op (read).
1985  * A write request has either one (watch) or two (hint+write) osd ops.
1986  * (All rbd data writes are prefixed with an allocation hint op, but
1987  * technically osd watch is a write request, hence this distinction.)
1988  */
1989 static struct ceph_osd_request *rbd_osd_req_create(
1990                                         struct rbd_device *rbd_dev,
1991                                         enum obj_operation_type op_type,
1992                                         unsigned int num_ops,
1993                                         struct rbd_obj_request *obj_request)
1994 {
1995         struct ceph_snap_context *snapc = NULL;
1996         struct ceph_osd_client *osdc;
1997         struct ceph_osd_request *osd_req;
1998
1999         if (obj_request_img_data_test(obj_request) &&
2000                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
2001                 struct rbd_img_request *img_request = obj_request->img_request;
2002                 if (op_type == OBJ_OP_WRITE) {
2003                         rbd_assert(img_request_write_test(img_request));
2004                 } else {
2005                         rbd_assert(img_request_discard_test(img_request));
2006                 }
2007                 snapc = img_request->snapc;
2008         }
2009
2010         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
2011
2012         /* Allocate and initialize the request, for the num_ops ops */
2013
2014         osdc = &rbd_dev->rbd_client->client->osdc;
2015         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
2016                                           GFP_NOIO);
2017         if (!osd_req)
2018                 goto fail;
2019
2020         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2021                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2022         else
2023                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
2024
2025         osd_req->r_callback = rbd_osd_req_callback;
2026         osd_req->r_priv = obj_request;
2027
2028         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2029         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2030                              obj_request->object_name))
2031                 goto fail;
2032
2033         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2034                 goto fail;
2035
2036         return osd_req;
2037
2038 fail:
2039         ceph_osdc_put_request(osd_req);
2040         return NULL;
2041 }
2042
2043 /*
2044  * Create a copyup osd request based on the information in the object
2045  * request supplied.  A copyup request has two or three osd ops, a
2046  * copyup method call, potentially a hint op, and a write or truncate
2047  * or zero op.
2048  */
2049 static struct ceph_osd_request *
2050 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2051 {
2052         struct rbd_img_request *img_request;
2053         struct ceph_snap_context *snapc;
2054         struct rbd_device *rbd_dev;
2055         struct ceph_osd_client *osdc;
2056         struct ceph_osd_request *osd_req;
2057         int num_osd_ops = 3;
2058
2059         rbd_assert(obj_request_img_data_test(obj_request));
2060         img_request = obj_request->img_request;
2061         rbd_assert(img_request);
2062         rbd_assert(img_request_write_test(img_request) ||
2063                         img_request_discard_test(img_request));
2064
2065         if (img_request_discard_test(img_request))
2066                 num_osd_ops = 2;
2067
2068         /* Allocate and initialize the request, for all the ops */
2069
2070         snapc = img_request->snapc;
2071         rbd_dev = img_request->rbd_dev;
2072         osdc = &rbd_dev->rbd_client->client->osdc;
2073         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2074                                                 false, GFP_NOIO);
2075         if (!osd_req)
2076                 goto fail;
2077
2078         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2079         osd_req->r_callback = rbd_osd_req_callback;
2080         osd_req->r_priv = obj_request;
2081
2082         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2083         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2084                              obj_request->object_name))
2085                 goto fail;
2086
2087         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2088                 goto fail;
2089
2090         return osd_req;
2091
2092 fail:
2093         ceph_osdc_put_request(osd_req);
2094         return NULL;
2095 }
2096
2097
2098 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2099 {
2100         ceph_osdc_put_request(osd_req);
2101 }
2102
2103 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2104
2105 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2106                                                 u64 offset, u64 length,
2107                                                 enum obj_request_type type)
2108 {
2109         struct rbd_obj_request *obj_request;
2110         size_t size;
2111         char *name;
2112
2113         rbd_assert(obj_request_type_valid(type));
2114
2115         size = strlen(object_name) + 1;
2116         name = kmalloc(size, GFP_NOIO);
2117         if (!name)
2118                 return NULL;
2119
2120         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2121         if (!obj_request) {
2122                 kfree(name);
2123                 return NULL;
2124         }
2125
2126         obj_request->object_name = memcpy(name, object_name, size);
2127         obj_request->offset = offset;
2128         obj_request->length = length;
2129         obj_request->flags = 0;
2130         obj_request->which = BAD_WHICH;
2131         obj_request->type = type;
2132         INIT_LIST_HEAD(&obj_request->links);
2133         init_completion(&obj_request->completion);
2134         kref_init(&obj_request->kref);
2135
2136         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2137                 offset, length, (int)type, obj_request);
2138
2139         return obj_request;
2140 }
2141
2142 static void rbd_obj_request_destroy(struct kref *kref)
2143 {
2144         struct rbd_obj_request *obj_request;
2145
2146         obj_request = container_of(kref, struct rbd_obj_request, kref);
2147
2148         dout("%s: obj %p\n", __func__, obj_request);
2149
2150         rbd_assert(obj_request->img_request == NULL);
2151         rbd_assert(obj_request->which == BAD_WHICH);
2152
2153         if (obj_request->osd_req)
2154                 rbd_osd_req_destroy(obj_request->osd_req);
2155
2156         rbd_assert(obj_request_type_valid(obj_request->type));
2157         switch (obj_request->type) {
2158         case OBJ_REQUEST_NODATA:
2159                 break;          /* Nothing to do */
2160         case OBJ_REQUEST_BIO:
2161                 if (obj_request->bio_list)
2162                         bio_chain_put(obj_request->bio_list);
2163                 break;
2164         case OBJ_REQUEST_PAGES:
2165                 /* img_data requests don't own their page array */
2166                 if (obj_request->pages &&
2167                     !obj_request_img_data_test(obj_request))
2168                         ceph_release_page_vector(obj_request->pages,
2169                                                 obj_request->page_count);
2170                 break;
2171         }
2172
2173         kfree(obj_request->object_name);
2174         obj_request->object_name = NULL;
2175         kmem_cache_free(rbd_obj_request_cache, obj_request);
2176 }
2177
2178 /* It's OK to call this for a device with no parent */
2179
2180 static void rbd_spec_put(struct rbd_spec *spec);
2181 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2182 {
2183         rbd_dev_remove_parent(rbd_dev);
2184         rbd_spec_put(rbd_dev->parent_spec);
2185         rbd_dev->parent_spec = NULL;
2186         rbd_dev->parent_overlap = 0;
2187 }
2188
2189 /*
2190  * Parent image reference counting is used to determine when an
2191  * image's parent fields can be safely torn down--after there are no
2192  * more in-flight requests to the parent image.  When the last
2193  * reference is dropped, cleaning them up is safe.
2194  */
2195 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2196 {
2197         int counter;
2198
2199         if (!rbd_dev->parent_spec)
2200                 return;
2201
2202         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2203         if (counter > 0)
2204                 return;
2205
2206         /* Last reference; clean up parent data structures */
2207
2208         if (!counter)
2209                 rbd_dev_unparent(rbd_dev);
2210         else
2211                 rbd_warn(rbd_dev, "parent reference underflow");
2212 }
2213
2214 /*
2215  * If an image has a non-zero parent overlap, get a reference to its
2216  * parent.
2217  *
2218  * Returns true if the rbd device has a parent with a non-zero
2219  * overlap and a reference for it was successfully taken, or
2220  * false otherwise.
2221  */
2222 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2223 {
2224         int counter = 0;
2225
2226         if (!rbd_dev->parent_spec)
2227                 return false;
2228
2229         down_read(&rbd_dev->header_rwsem);
2230         if (rbd_dev->parent_overlap)
2231                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2232         up_read(&rbd_dev->header_rwsem);
2233
2234         if (counter < 0)
2235                 rbd_warn(rbd_dev, "parent reference overflow");
2236
2237         return counter > 0;
2238 }
2239
2240 /*
2241  * Caller is responsible for filling in the list of object requests
2242  * that comprises the image request, and the Linux request pointer
2243  * (if there is one).
2244  */
2245 static struct rbd_img_request *rbd_img_request_create(
2246                                         struct rbd_device *rbd_dev,
2247                                         u64 offset, u64 length,
2248                                         enum obj_operation_type op_type,
2249                                         struct ceph_snap_context *snapc)
2250 {
2251         struct rbd_img_request *img_request;
2252
2253         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2254         if (!img_request)
2255                 return NULL;
2256
2257         img_request->rq = NULL;
2258         img_request->rbd_dev = rbd_dev;
2259         img_request->offset = offset;
2260         img_request->length = length;
2261         img_request->flags = 0;
2262         if (op_type == OBJ_OP_DISCARD) {
2263                 img_request_discard_set(img_request);
2264                 img_request->snapc = snapc;
2265         } else if (op_type == OBJ_OP_WRITE) {
2266                 img_request_write_set(img_request);
2267                 img_request->snapc = snapc;
2268         } else {
2269                 img_request->snap_id = rbd_dev->spec->snap_id;
2270         }
2271         if (rbd_dev_parent_get(rbd_dev))
2272                 img_request_layered_set(img_request);
2273         spin_lock_init(&img_request->completion_lock);
2274         img_request->next_completion = 0;
2275         img_request->callback = NULL;
2276         img_request->result = 0;
2277         img_request->obj_request_count = 0;
2278         INIT_LIST_HEAD(&img_request->obj_requests);
2279         kref_init(&img_request->kref);
2280
2281         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2282                 obj_op_name(op_type), offset, length, img_request);
2283
2284         return img_request;
2285 }
2286
2287 static void rbd_img_request_destroy(struct kref *kref)
2288 {
2289         struct rbd_img_request *img_request;
2290         struct rbd_obj_request *obj_request;
2291         struct rbd_obj_request *next_obj_request;
2292
2293         img_request = container_of(kref, struct rbd_img_request, kref);
2294
2295         dout("%s: img %p\n", __func__, img_request);
2296
2297         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298                 rbd_img_obj_request_del(img_request, obj_request);
2299         rbd_assert(img_request->obj_request_count == 0);
2300
2301         if (img_request_layered_test(img_request)) {
2302                 img_request_layered_clear(img_request);
2303                 rbd_dev_parent_put(img_request->rbd_dev);
2304         }
2305
2306         if (img_request_write_test(img_request) ||
2307                 img_request_discard_test(img_request))
2308                 ceph_put_snap_context(img_request->snapc);
2309
2310         kmem_cache_free(rbd_img_request_cache, img_request);
2311 }
2312
2313 static struct rbd_img_request *rbd_parent_request_create(
2314                                         struct rbd_obj_request *obj_request,
2315                                         u64 img_offset, u64 length)
2316 {
2317         struct rbd_img_request *parent_request;
2318         struct rbd_device *rbd_dev;
2319
2320         rbd_assert(obj_request->img_request);
2321         rbd_dev = obj_request->img_request->rbd_dev;
2322
2323         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2324                                                 length, OBJ_OP_READ, NULL);
2325         if (!parent_request)
2326                 return NULL;
2327
2328         img_request_child_set(parent_request);
2329         rbd_obj_request_get(obj_request);
2330         parent_request->obj_request = obj_request;
2331
2332         return parent_request;
2333 }
2334
2335 static void rbd_parent_request_destroy(struct kref *kref)
2336 {
2337         struct rbd_img_request *parent_request;
2338         struct rbd_obj_request *orig_request;
2339
2340         parent_request = container_of(kref, struct rbd_img_request, kref);
2341         orig_request = parent_request->obj_request;
2342
2343         parent_request->obj_request = NULL;
2344         rbd_obj_request_put(orig_request);
2345         img_request_child_clear(parent_request);
2346
2347         rbd_img_request_destroy(kref);
2348 }
2349
2350 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2351 {
2352         struct rbd_img_request *img_request;
2353         unsigned int xferred;
2354         int result;
2355         bool more;
2356
2357         rbd_assert(obj_request_img_data_test(obj_request));
2358         img_request = obj_request->img_request;
2359
2360         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2361         xferred = (unsigned int)obj_request->xferred;
2362         result = obj_request->result;
2363         if (result) {
2364                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2365                 enum obj_operation_type op_type;
2366
2367                 if (img_request_discard_test(img_request))
2368                         op_type = OBJ_OP_DISCARD;
2369                 else if (img_request_write_test(img_request))
2370                         op_type = OBJ_OP_WRITE;
2371                 else
2372                         op_type = OBJ_OP_READ;
2373
2374                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2375                         obj_op_name(op_type), obj_request->length,
2376                         obj_request->img_offset, obj_request->offset);
2377                 rbd_warn(rbd_dev, "  result %d xferred %x",
2378                         result, xferred);
2379                 if (!img_request->result)
2380                         img_request->result = result;
2381                 /*
2382                  * Need to end I/O on the entire obj_request worth of
2383                  * bytes in case of error.
2384                  */
2385                 xferred = obj_request->length;
2386         }
2387
2388         if (img_request_child_test(img_request)) {
2389                 rbd_assert(img_request->obj_request != NULL);
2390                 more = obj_request->which < img_request->obj_request_count - 1;
2391         } else {
2392                 rbd_assert(img_request->rq != NULL);
2393
2394                 more = blk_update_request(img_request->rq, result, xferred);
2395                 if (!more)
2396                         __blk_mq_end_request(img_request->rq, result);
2397         }
2398
2399         return more;
2400 }
2401
2402 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2403 {
2404         struct rbd_img_request *img_request;
2405         u32 which = obj_request->which;
2406         bool more = true;
2407
2408         rbd_assert(obj_request_img_data_test(obj_request));
2409         img_request = obj_request->img_request;
2410
2411         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2412         rbd_assert(img_request != NULL);
2413         rbd_assert(img_request->obj_request_count > 0);
2414         rbd_assert(which != BAD_WHICH);
2415         rbd_assert(which < img_request->obj_request_count);
2416
2417         spin_lock_irq(&img_request->completion_lock);
2418         if (which != img_request->next_completion)
2419                 goto out;
2420
2421         for_each_obj_request_from(img_request, obj_request) {
2422                 rbd_assert(more);
2423                 rbd_assert(which < img_request->obj_request_count);
2424
2425                 if (!obj_request_done_test(obj_request))
2426                         break;
2427                 more = rbd_img_obj_end_request(obj_request);
2428                 which++;
2429         }
2430
2431         rbd_assert(more ^ (which == img_request->obj_request_count));
2432         img_request->next_completion = which;
2433 out:
2434         spin_unlock_irq(&img_request->completion_lock);
2435         rbd_img_request_put(img_request);
2436
2437         if (!more)
2438                 rbd_img_request_complete(img_request);
2439 }
2440
2441 /*
2442  * Add individual osd ops to the given ceph_osd_request and prepare
2443  * them for submission. num_ops is the current number of
2444  * osd operations already to the object request.
2445  */
2446 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2447                                 struct ceph_osd_request *osd_request,
2448                                 enum obj_operation_type op_type,
2449                                 unsigned int num_ops)
2450 {
2451         struct rbd_img_request *img_request = obj_request->img_request;
2452         struct rbd_device *rbd_dev = img_request->rbd_dev;
2453         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2454         u64 offset = obj_request->offset;
2455         u64 length = obj_request->length;
2456         u64 img_end;
2457         u16 opcode;
2458
2459         if (op_type == OBJ_OP_DISCARD) {
2460                 if (!offset && length == object_size &&
2461                     (!img_request_layered_test(img_request) ||
2462                      !obj_request_overlaps_parent(obj_request))) {
2463                         opcode = CEPH_OSD_OP_DELETE;
2464                 } else if ((offset + length == object_size)) {
2465                         opcode = CEPH_OSD_OP_TRUNCATE;
2466                 } else {
2467                         down_read(&rbd_dev->header_rwsem);
2468                         img_end = rbd_dev->header.image_size;
2469                         up_read(&rbd_dev->header_rwsem);
2470
2471                         if (obj_request->img_offset + length == img_end)
2472                                 opcode = CEPH_OSD_OP_TRUNCATE;
2473                         else
2474                                 opcode = CEPH_OSD_OP_ZERO;
2475                 }
2476         } else if (op_type == OBJ_OP_WRITE) {
2477                 if (!offset && length == object_size)
2478                         opcode = CEPH_OSD_OP_WRITEFULL;
2479                 else
2480                         opcode = CEPH_OSD_OP_WRITE;
2481                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2482                                         object_size, object_size);
2483                 num_ops++;
2484         } else {
2485                 opcode = CEPH_OSD_OP_READ;
2486         }
2487
2488         if (opcode == CEPH_OSD_OP_DELETE)
2489                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2490         else
2491                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2492                                        offset, length, 0, 0);
2493
2494         if (obj_request->type == OBJ_REQUEST_BIO)
2495                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2496                                         obj_request->bio_list, length);
2497         else if (obj_request->type == OBJ_REQUEST_PAGES)
2498                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2499                                         obj_request->pages, length,
2500                                         offset & ~PAGE_MASK, false, false);
2501
2502         /* Discards are also writes */
2503         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2504                 rbd_osd_req_format_write(obj_request);
2505         else
2506                 rbd_osd_req_format_read(obj_request);
2507 }
2508
2509 /*
2510  * Split up an image request into one or more object requests, each
2511  * to a different object.  The "type" parameter indicates whether
2512  * "data_desc" is the pointer to the head of a list of bio
2513  * structures, or the base of a page array.  In either case this
2514  * function assumes data_desc describes memory sufficient to hold
2515  * all data described by the image request.
2516  */
2517 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2518                                         enum obj_request_type type,
2519                                         void *data_desc)
2520 {
2521         struct rbd_device *rbd_dev = img_request->rbd_dev;
2522         struct rbd_obj_request *obj_request = NULL;
2523         struct rbd_obj_request *next_obj_request;
2524         struct bio *bio_list = NULL;
2525         unsigned int bio_offset = 0;
2526         struct page **pages = NULL;
2527         enum obj_operation_type op_type;
2528         u64 img_offset;
2529         u64 resid;
2530
2531         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2532                 (int)type, data_desc);
2533
2534         img_offset = img_request->offset;
2535         resid = img_request->length;
2536         rbd_assert(resid > 0);
2537         op_type = rbd_img_request_op_type(img_request);
2538
2539         if (type == OBJ_REQUEST_BIO) {
2540                 bio_list = data_desc;
2541                 rbd_assert(img_offset ==
2542                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2543         } else if (type == OBJ_REQUEST_PAGES) {
2544                 pages = data_desc;
2545         }
2546
2547         while (resid) {
2548                 struct ceph_osd_request *osd_req;
2549                 const char *object_name;
2550                 u64 offset;
2551                 u64 length;
2552
2553                 object_name = rbd_segment_name(rbd_dev, img_offset);
2554                 if (!object_name)
2555                         goto out_unwind;
2556                 offset = rbd_segment_offset(rbd_dev, img_offset);
2557                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2558                 obj_request = rbd_obj_request_create(object_name,
2559                                                 offset, length, type);
2560                 /* object request has its own copy of the object name */
2561                 rbd_segment_name_free(object_name);
2562                 if (!obj_request)
2563                         goto out_unwind;
2564
2565                 /*
2566                  * set obj_request->img_request before creating the
2567                  * osd_request so that it gets the right snapc
2568                  */
2569                 rbd_img_obj_request_add(img_request, obj_request);
2570
2571                 if (type == OBJ_REQUEST_BIO) {
2572                         unsigned int clone_size;
2573
2574                         rbd_assert(length <= (u64)UINT_MAX);
2575                         clone_size = (unsigned int)length;
2576                         obj_request->bio_list =
2577                                         bio_chain_clone_range(&bio_list,
2578                                                                 &bio_offset,
2579                                                                 clone_size,
2580                                                                 GFP_NOIO);
2581                         if (!obj_request->bio_list)
2582                                 goto out_unwind;
2583                 } else if (type == OBJ_REQUEST_PAGES) {
2584                         unsigned int page_count;
2585
2586                         obj_request->pages = pages;
2587                         page_count = (u32)calc_pages_for(offset, length);
2588                         obj_request->page_count = page_count;
2589                         if ((offset + length) & ~PAGE_MASK)
2590                                 page_count--;   /* more on last page */
2591                         pages += page_count;
2592                 }
2593
2594                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2595                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2596                                         obj_request);
2597                 if (!osd_req)
2598                         goto out_unwind;
2599
2600                 obj_request->osd_req = osd_req;
2601                 obj_request->callback = rbd_img_obj_callback;
2602                 obj_request->img_offset = img_offset;
2603
2604                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2605
2606                 img_offset += length;
2607                 resid -= length;
2608         }
2609
2610         return 0;
2611
2612 out_unwind:
2613         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2614                 rbd_img_obj_request_del(img_request, obj_request);
2615
2616         return -ENOMEM;
2617 }
2618
2619 static void
2620 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2621 {
2622         struct rbd_img_request *img_request;
2623         struct rbd_device *rbd_dev;
2624         struct page **pages;
2625         u32 page_count;
2626
2627         dout("%s: obj %p\n", __func__, obj_request);
2628
2629         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2630                 obj_request->type == OBJ_REQUEST_NODATA);
2631         rbd_assert(obj_request_img_data_test(obj_request));
2632         img_request = obj_request->img_request;
2633         rbd_assert(img_request);
2634
2635         rbd_dev = img_request->rbd_dev;
2636         rbd_assert(rbd_dev);
2637
2638         pages = obj_request->copyup_pages;
2639         rbd_assert(pages != NULL);
2640         obj_request->copyup_pages = NULL;
2641         page_count = obj_request->copyup_page_count;
2642         rbd_assert(page_count);
2643         obj_request->copyup_page_count = 0;
2644         ceph_release_page_vector(pages, page_count);
2645
2646         /*
2647          * We want the transfer count to reflect the size of the
2648          * original write request.  There is no such thing as a
2649          * successful short write, so if the request was successful
2650          * we can just set it to the originally-requested length.
2651          */
2652         if (!obj_request->result)
2653                 obj_request->xferred = obj_request->length;
2654
2655         obj_request_done_set(obj_request);
2656 }
2657
2658 static void
2659 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2660 {
2661         struct rbd_obj_request *orig_request;
2662         struct ceph_osd_request *osd_req;
2663         struct rbd_device *rbd_dev;
2664         struct page **pages;
2665         enum obj_operation_type op_type;
2666         u32 page_count;
2667         int img_result;
2668         u64 parent_length;
2669
2670         rbd_assert(img_request_child_test(img_request));
2671
2672         /* First get what we need from the image request */
2673
2674         pages = img_request->copyup_pages;
2675         rbd_assert(pages != NULL);
2676         img_request->copyup_pages = NULL;
2677         page_count = img_request->copyup_page_count;
2678         rbd_assert(page_count);
2679         img_request->copyup_page_count = 0;
2680
2681         orig_request = img_request->obj_request;
2682         rbd_assert(orig_request != NULL);
2683         rbd_assert(obj_request_type_valid(orig_request->type));
2684         img_result = img_request->result;
2685         parent_length = img_request->length;
2686         rbd_assert(img_result || parent_length == img_request->xferred);
2687         rbd_img_request_put(img_request);
2688
2689         rbd_assert(orig_request->img_request);
2690         rbd_dev = orig_request->img_request->rbd_dev;
2691         rbd_assert(rbd_dev);
2692
2693         /*
2694          * If the overlap has become 0 (most likely because the
2695          * image has been flattened) we need to free the pages
2696          * and re-submit the original write request.
2697          */
2698         if (!rbd_dev->parent_overlap) {
2699                 ceph_release_page_vector(pages, page_count);
2700                 rbd_obj_request_submit(orig_request);
2701                 return;
2702         }
2703
2704         if (img_result)
2705                 goto out_err;
2706
2707         /*
2708          * The original osd request is of no use to use any more.
2709          * We need a new one that can hold the three ops in a copyup
2710          * request.  Allocate the new copyup osd request for the
2711          * original request, and release the old one.
2712          */
2713         img_result = -ENOMEM;
2714         osd_req = rbd_osd_req_create_copyup(orig_request);
2715         if (!osd_req)
2716                 goto out_err;
2717         rbd_osd_req_destroy(orig_request->osd_req);
2718         orig_request->osd_req = osd_req;
2719         orig_request->copyup_pages = pages;
2720         orig_request->copyup_page_count = page_count;
2721
2722         /* Initialize the copyup op */
2723
2724         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2725         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2726                                                 false, false);
2727
2728         /* Add the other op(s) */
2729
2730         op_type = rbd_img_request_op_type(orig_request->img_request);
2731         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2732
2733         /* All set, send it off. */
2734
2735         rbd_obj_request_submit(orig_request);
2736         return;
2737
2738 out_err:
2739         ceph_release_page_vector(pages, page_count);
2740         rbd_obj_request_error(orig_request, img_result);
2741 }
2742
2743 /*
2744  * Read from the parent image the range of data that covers the
2745  * entire target of the given object request.  This is used for
2746  * satisfying a layered image write request when the target of an
2747  * object request from the image request does not exist.
2748  *
2749  * A page array big enough to hold the returned data is allocated
2750  * and supplied to rbd_img_request_fill() as the "data descriptor."
2751  * When the read completes, this page array will be transferred to
2752  * the original object request for the copyup operation.
2753  *
2754  * If an error occurs, it is recorded as the result of the original
2755  * object request in rbd_img_obj_exists_callback().
2756  */
2757 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2758 {
2759         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2760         struct rbd_img_request *parent_request = NULL;
2761         u64 img_offset;
2762         u64 length;
2763         struct page **pages = NULL;
2764         u32 page_count;
2765         int result;
2766
2767         rbd_assert(rbd_dev->parent != NULL);
2768
2769         /*
2770          * Determine the byte range covered by the object in the
2771          * child image to which the original request was to be sent.
2772          */
2773         img_offset = obj_request->img_offset - obj_request->offset;
2774         length = (u64)1 << rbd_dev->header.obj_order;
2775
2776         /*
2777          * There is no defined parent data beyond the parent
2778          * overlap, so limit what we read at that boundary if
2779          * necessary.
2780          */
2781         if (img_offset + length > rbd_dev->parent_overlap) {
2782                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2783                 length = rbd_dev->parent_overlap - img_offset;
2784         }
2785
2786         /*
2787          * Allocate a page array big enough to receive the data read
2788          * from the parent.
2789          */
2790         page_count = (u32)calc_pages_for(0, length);
2791         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2792         if (IS_ERR(pages)) {
2793                 result = PTR_ERR(pages);
2794                 pages = NULL;
2795                 goto out_err;
2796         }
2797
2798         result = -ENOMEM;
2799         parent_request = rbd_parent_request_create(obj_request,
2800                                                 img_offset, length);
2801         if (!parent_request)
2802                 goto out_err;
2803
2804         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2805         if (result)
2806                 goto out_err;
2807
2808         parent_request->copyup_pages = pages;
2809         parent_request->copyup_page_count = page_count;
2810         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2811
2812         result = rbd_img_request_submit(parent_request);
2813         if (!result)
2814                 return 0;
2815
2816         parent_request->copyup_pages = NULL;
2817         parent_request->copyup_page_count = 0;
2818         parent_request->obj_request = NULL;
2819         rbd_obj_request_put(obj_request);
2820 out_err:
2821         if (pages)
2822                 ceph_release_page_vector(pages, page_count);
2823         if (parent_request)
2824                 rbd_img_request_put(parent_request);
2825         return result;
2826 }
2827
2828 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2829 {
2830         struct rbd_obj_request *orig_request;
2831         struct rbd_device *rbd_dev;
2832         int result;
2833
2834         rbd_assert(!obj_request_img_data_test(obj_request));
2835
2836         /*
2837          * All we need from the object request is the original
2838          * request and the result of the STAT op.  Grab those, then
2839          * we're done with the request.
2840          */
2841         orig_request = obj_request->obj_request;
2842         obj_request->obj_request = NULL;
2843         rbd_obj_request_put(orig_request);
2844         rbd_assert(orig_request);
2845         rbd_assert(orig_request->img_request);
2846
2847         result = obj_request->result;
2848         obj_request->result = 0;
2849
2850         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2851                 obj_request, orig_request, result,
2852                 obj_request->xferred, obj_request->length);
2853         rbd_obj_request_put(obj_request);
2854
2855         /*
2856          * If the overlap has become 0 (most likely because the
2857          * image has been flattened) we need to re-submit the
2858          * original request.
2859          */
2860         rbd_dev = orig_request->img_request->rbd_dev;
2861         if (!rbd_dev->parent_overlap) {
2862                 rbd_obj_request_submit(orig_request);
2863                 return;
2864         }
2865
2866         /*
2867          * Our only purpose here is to determine whether the object
2868          * exists, and we don't want to treat the non-existence as
2869          * an error.  If something else comes back, transfer the
2870          * error to the original request and complete it now.
2871          */
2872         if (!result) {
2873                 obj_request_existence_set(orig_request, true);
2874         } else if (result == -ENOENT) {
2875                 obj_request_existence_set(orig_request, false);
2876         } else {
2877                 goto fail_orig_request;
2878         }
2879
2880         /*
2881          * Resubmit the original request now that we have recorded
2882          * whether the target object exists.
2883          */
2884         result = rbd_img_obj_request_submit(orig_request);
2885         if (result)
2886                 goto fail_orig_request;
2887
2888         return;
2889
2890 fail_orig_request:
2891         rbd_obj_request_error(orig_request, result);
2892 }
2893
2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895 {
2896         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2897         struct rbd_obj_request *stat_request;
2898         struct page **pages;
2899         u32 page_count;
2900         size_t size;
2901         int ret;
2902
2903         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2904                                               OBJ_REQUEST_PAGES);
2905         if (!stat_request)
2906                 return -ENOMEM;
2907
2908         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2909                                                    stat_request);
2910         if (!stat_request->osd_req) {
2911                 ret = -ENOMEM;
2912                 goto fail_stat_request;
2913         }
2914
2915         /*
2916          * The response data for a STAT call consists of:
2917          *     le64 length;
2918          *     struct {
2919          *         le32 tv_sec;
2920          *         le32 tv_nsec;
2921          *     } mtime;
2922          */
2923         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2924         page_count = (u32)calc_pages_for(0, size);
2925         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2926         if (IS_ERR(pages)) {
2927                 ret = PTR_ERR(pages);
2928                 goto fail_stat_request;
2929         }
2930
2931         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2932         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2933                                      false, false);
2934
2935         rbd_obj_request_get(obj_request);
2936         stat_request->obj_request = obj_request;
2937         stat_request->pages = pages;
2938         stat_request->page_count = page_count;
2939         stat_request->callback = rbd_img_obj_exists_callback;
2940
2941         rbd_obj_request_submit(stat_request);
2942         return 0;
2943
2944 fail_stat_request:
2945         rbd_obj_request_put(stat_request);
2946         return ret;
2947 }
2948
2949 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2950 {
2951         struct rbd_img_request *img_request = obj_request->img_request;
2952         struct rbd_device *rbd_dev = img_request->rbd_dev;
2953
2954         /* Reads */
2955         if (!img_request_write_test(img_request) &&
2956             !img_request_discard_test(img_request))
2957                 return true;
2958
2959         /* Non-layered writes */
2960         if (!img_request_layered_test(img_request))
2961                 return true;
2962
2963         /*
2964          * Layered writes outside of the parent overlap range don't
2965          * share any data with the parent.
2966          */
2967         if (!obj_request_overlaps_parent(obj_request))
2968                 return true;
2969
2970         /*
2971          * Entire-object layered writes - we will overwrite whatever
2972          * parent data there is anyway.
2973          */
2974         if (!obj_request->offset &&
2975             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2976                 return true;
2977
2978         /*
2979          * If the object is known to already exist, its parent data has
2980          * already been copied.
2981          */
2982         if (obj_request_known_test(obj_request) &&
2983             obj_request_exists_test(obj_request))
2984                 return true;
2985
2986         return false;
2987 }
2988
2989 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2990 {
2991         rbd_assert(obj_request_img_data_test(obj_request));
2992         rbd_assert(obj_request_type_valid(obj_request->type));
2993         rbd_assert(obj_request->img_request);
2994
2995         if (img_obj_request_simple(obj_request)) {
2996                 rbd_obj_request_submit(obj_request);
2997                 return 0;
2998         }
2999
3000         /*
3001          * It's a layered write.  The target object might exist but
3002          * we may not know that yet.  If we know it doesn't exist,
3003          * start by reading the data for the full target object from
3004          * the parent so we can use it for a copyup to the target.
3005          */
3006         if (obj_request_known_test(obj_request))
3007                 return rbd_img_obj_parent_read_full(obj_request);
3008
3009         /* We don't know whether the target exists.  Go find out. */
3010
3011         return rbd_img_obj_exists_submit(obj_request);
3012 }
3013
3014 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3015 {
3016         struct rbd_obj_request *obj_request;
3017         struct rbd_obj_request *next_obj_request;
3018         int ret = 0;
3019
3020         dout("%s: img %p\n", __func__, img_request);
3021
3022         rbd_img_request_get(img_request);
3023         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3024                 ret = rbd_img_obj_request_submit(obj_request);
3025                 if (ret)
3026                         goto out_put_ireq;
3027         }
3028
3029 out_put_ireq:
3030         rbd_img_request_put(img_request);
3031         return ret;
3032 }
3033
3034 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3035 {
3036         struct rbd_obj_request *obj_request;
3037         struct rbd_device *rbd_dev;
3038         u64 obj_end;
3039         u64 img_xferred;
3040         int img_result;
3041
3042         rbd_assert(img_request_child_test(img_request));
3043
3044         /* First get what we need from the image request and release it */
3045
3046         obj_request = img_request->obj_request;
3047         img_xferred = img_request->xferred;
3048         img_result = img_request->result;
3049         rbd_img_request_put(img_request);
3050
3051         /*
3052          * If the overlap has become 0 (most likely because the
3053          * image has been flattened) we need to re-submit the
3054          * original request.
3055          */
3056         rbd_assert(obj_request);
3057         rbd_assert(obj_request->img_request);
3058         rbd_dev = obj_request->img_request->rbd_dev;
3059         if (!rbd_dev->parent_overlap) {
3060                 rbd_obj_request_submit(obj_request);
3061                 return;
3062         }
3063
3064         obj_request->result = img_result;
3065         if (obj_request->result)
3066                 goto out;
3067
3068         /*
3069          * We need to zero anything beyond the parent overlap
3070          * boundary.  Since rbd_img_obj_request_read_callback()
3071          * will zero anything beyond the end of a short read, an
3072          * easy way to do this is to pretend the data from the
3073          * parent came up short--ending at the overlap boundary.
3074          */
3075         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3076         obj_end = obj_request->img_offset + obj_request->length;
3077         if (obj_end > rbd_dev->parent_overlap) {
3078                 u64 xferred = 0;
3079
3080                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3081                         xferred = rbd_dev->parent_overlap -
3082                                         obj_request->img_offset;
3083
3084                 obj_request->xferred = min(img_xferred, xferred);
3085         } else {
3086                 obj_request->xferred = img_xferred;
3087         }
3088 out:
3089         rbd_img_obj_request_read_callback(obj_request);
3090         rbd_obj_request_complete(obj_request);
3091 }
3092
3093 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3094 {
3095         struct rbd_img_request *img_request;
3096         int result;
3097
3098         rbd_assert(obj_request_img_data_test(obj_request));
3099         rbd_assert(obj_request->img_request != NULL);
3100         rbd_assert(obj_request->result == (s32) -ENOENT);
3101         rbd_assert(obj_request_type_valid(obj_request->type));
3102
3103         /* rbd_read_finish(obj_request, obj_request->length); */
3104         img_request = rbd_parent_request_create(obj_request,
3105                                                 obj_request->img_offset,
3106                                                 obj_request->length);
3107         result = -ENOMEM;
3108         if (!img_request)
3109                 goto out_err;
3110
3111         if (obj_request->type == OBJ_REQUEST_BIO)
3112                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113                                                 obj_request->bio_list);
3114         else
3115                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3116                                                 obj_request->pages);
3117         if (result)
3118                 goto out_err;
3119
3120         img_request->callback = rbd_img_parent_read_callback;
3121         result = rbd_img_request_submit(img_request);
3122         if (result)
3123                 goto out_err;
3124
3125         return;
3126 out_err:
3127         if (img_request)
3128                 rbd_img_request_put(img_request);
3129         obj_request->result = result;
3130         obj_request->xferred = 0;
3131         obj_request_done_set(obj_request);
3132 }
3133
3134 static const struct rbd_client_id rbd_empty_cid;
3135
3136 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3137                           const struct rbd_client_id *rhs)
3138 {
3139         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3140 }
3141
3142 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3143 {
3144         struct rbd_client_id cid;
3145
3146         mutex_lock(&rbd_dev->watch_mutex);
3147         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3148         cid.handle = rbd_dev->watch_cookie;
3149         mutex_unlock(&rbd_dev->watch_mutex);
3150         return cid;
3151 }
3152
3153 /*
3154  * lock_rwsem must be held for write
3155  */
3156 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3157                               const struct rbd_client_id *cid)
3158 {
3159         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3160              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3161              cid->gid, cid->handle);
3162         rbd_dev->owner_cid = *cid; /* struct */
3163 }
3164
3165 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3166 {
3167         mutex_lock(&rbd_dev->watch_mutex);
3168         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3169         mutex_unlock(&rbd_dev->watch_mutex);
3170 }
3171
3172 /*
3173  * lock_rwsem must be held for write
3174  */
3175 static int rbd_lock(struct rbd_device *rbd_dev)
3176 {
3177         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3178         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3179         char cookie[32];
3180         int ret;
3181
3182         WARN_ON(__rbd_is_lock_owner(rbd_dev));
3183
3184         format_lock_cookie(rbd_dev, cookie);
3185         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3186                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3187                             RBD_LOCK_TAG, "", 0);
3188         if (ret)
3189                 return ret;
3190
3191         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3192         rbd_set_owner_cid(rbd_dev, &cid);
3193         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3194         return 0;
3195 }
3196
3197 /*
3198  * lock_rwsem must be held for write
3199  */
3200 static int rbd_unlock(struct rbd_device *rbd_dev)
3201 {
3202         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3203         char cookie[32];
3204         int ret;
3205
3206         WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3207
3208         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3209
3210         format_lock_cookie(rbd_dev, cookie);
3211         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3212                               RBD_LOCK_NAME, cookie);
3213         if (ret && ret != -ENOENT) {
3214                 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3215                 return ret;
3216         }
3217
3218         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3219         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3220         return 0;
3221 }
3222
3223 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3224                                 enum rbd_notify_op notify_op,
3225                                 struct page ***preply_pages,
3226                                 size_t *preply_len)
3227 {
3228         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3230         int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3231         char buf[buf_size];
3232         void *p = buf;
3233
3234         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3235
3236         /* encode *LockPayload NotifyMessage (op + ClientId) */
3237         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3238         ceph_encode_32(&p, notify_op);
3239         ceph_encode_64(&p, cid.gid);
3240         ceph_encode_64(&p, cid.handle);
3241
3242         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3243                                 &rbd_dev->header_oloc, buf, buf_size,
3244                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3245 }
3246
3247 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3248                                enum rbd_notify_op notify_op)
3249 {
3250         struct page **reply_pages;
3251         size_t reply_len;
3252
3253         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3254         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3255 }
3256
3257 static void rbd_notify_acquired_lock(struct work_struct *work)
3258 {
3259         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3260                                                   acquired_lock_work);
3261
3262         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3263 }
3264
3265 static void rbd_notify_released_lock(struct work_struct *work)
3266 {
3267         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3268                                                   released_lock_work);
3269
3270         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3271 }
3272
3273 static int rbd_request_lock(struct rbd_device *rbd_dev)
3274 {
3275         struct page **reply_pages;
3276         size_t reply_len;
3277         bool lock_owner_responded = false;
3278         int ret;
3279
3280         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3281
3282         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3283                                    &reply_pages, &reply_len);
3284         if (ret && ret != -ETIMEDOUT) {
3285                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3286                 goto out;
3287         }
3288
3289         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3290                 void *p = page_address(reply_pages[0]);
3291                 void *const end = p + reply_len;
3292                 u32 n;
3293
3294                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3295                 while (n--) {
3296                         u8 struct_v;
3297                         u32 len;
3298
3299                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3300                         p += 8 + 8; /* skip gid and cookie */
3301
3302                         ceph_decode_32_safe(&p, end, len, e_inval);
3303                         if (!len)
3304                                 continue;
3305
3306                         if (lock_owner_responded) {
3307                                 rbd_warn(rbd_dev,
3308                                          "duplicate lock owners detected");
3309                                 ret = -EIO;
3310                                 goto out;
3311                         }
3312
3313                         lock_owner_responded = true;
3314                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3315                                                   &struct_v, &len);
3316                         if (ret) {
3317                                 rbd_warn(rbd_dev,
3318                                          "failed to decode ResponseMessage: %d",
3319                                          ret);
3320                                 goto e_inval;
3321                         }
3322
3323                         ret = ceph_decode_32(&p);
3324                 }
3325         }
3326
3327         if (!lock_owner_responded) {
3328                 rbd_warn(rbd_dev, "no lock owners detected");
3329                 ret = -ETIMEDOUT;
3330         }
3331
3332 out:
3333         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3334         return ret;
3335
3336 e_inval:
3337         ret = -EINVAL;
3338         goto out;
3339 }
3340
3341 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3342 {
3343         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3344
3345         cancel_delayed_work(&rbd_dev->lock_dwork);
3346         if (wake_all)
3347                 wake_up_all(&rbd_dev->lock_waitq);
3348         else
3349                 wake_up(&rbd_dev->lock_waitq);
3350 }
3351
3352 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3353                                struct ceph_locker **lockers, u32 *num_lockers)
3354 {
3355         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3356         u8 lock_type;
3357         char *lock_tag;
3358         int ret;
3359
3360         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3361
3362         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3363                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3364                                  &lock_type, &lock_tag, lockers, num_lockers);
3365         if (ret)
3366                 return ret;
3367
3368         if (*num_lockers == 0) {
3369                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3370                 goto out;
3371         }
3372
3373         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3374                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3375                          lock_tag);
3376                 ret = -EBUSY;
3377                 goto out;
3378         }
3379
3380         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3381                 rbd_warn(rbd_dev, "shared lock type detected");
3382                 ret = -EBUSY;
3383                 goto out;
3384         }
3385
3386         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3387                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3388                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3389                          (*lockers)[0].id.cookie);
3390                 ret = -EBUSY;
3391                 goto out;
3392         }
3393
3394 out:
3395         kfree(lock_tag);
3396         return ret;
3397 }
3398
3399 static int find_watcher(struct rbd_device *rbd_dev,
3400                         const struct ceph_locker *locker)
3401 {
3402         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3403         struct ceph_watch_item *watchers;
3404         u32 num_watchers;
3405         u64 cookie;
3406         int i;
3407         int ret;
3408
3409         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3410                                       &rbd_dev->header_oloc, &watchers,
3411                                       &num_watchers);
3412         if (ret)
3413                 return ret;
3414
3415         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3416         for (i = 0; i < num_watchers; i++) {
3417                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3418                             sizeof(locker->info.addr)) &&
3419                     watchers[i].cookie == cookie) {
3420                         struct rbd_client_id cid = {
3421                                 .gid = le64_to_cpu(watchers[i].name.num),
3422                                 .handle = cookie,
3423                         };
3424
3425                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3426                              rbd_dev, cid.gid, cid.handle);
3427                         rbd_set_owner_cid(rbd_dev, &cid);
3428                         ret = 1;
3429                         goto out;
3430                 }
3431         }
3432
3433         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3434         ret = 0;
3435 out:
3436         kfree(watchers);
3437         return ret;
3438 }
3439
3440 /*
3441  * lock_rwsem must be held for write
3442  */
3443 static int rbd_try_lock(struct rbd_device *rbd_dev)
3444 {
3445         struct ceph_client *client = rbd_dev->rbd_client->client;
3446         struct ceph_locker *lockers;
3447         u32 num_lockers;
3448         int ret;
3449
3450         for (;;) {
3451                 ret = rbd_lock(rbd_dev);
3452                 if (ret != -EBUSY)
3453                         return ret;
3454
3455                 /* determine if the current lock holder is still alive */
3456                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3457                 if (ret)
3458                         return ret;
3459
3460                 if (num_lockers == 0)
3461                         goto again;
3462
3463                 ret = find_watcher(rbd_dev, lockers);
3464                 if (ret) {
3465                         if (ret > 0)
3466                                 ret = 0; /* have to request lock */
3467                         goto out;
3468                 }
3469
3470                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3471                          ENTITY_NAME(lockers[0].id.name));
3472
3473                 ret = ceph_monc_blacklist_add(&client->monc,
3474                                               &lockers[0].info.addr);
3475                 if (ret) {
3476                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3477                                  ENTITY_NAME(lockers[0].id.name), ret);
3478                         goto out;
3479                 }
3480
3481                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3482                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3483                                           lockers[0].id.cookie,
3484                                           &lockers[0].id.name);
3485                 if (ret && ret != -ENOENT)
3486                         goto out;
3487
3488 again:
3489                 ceph_free_lockers(lockers, num_lockers);
3490         }
3491
3492 out:
3493         ceph_free_lockers(lockers, num_lockers);
3494         return ret;
3495 }
3496
3497 /*
3498  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3499  */
3500 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3501                                                 int *pret)
3502 {
3503         enum rbd_lock_state lock_state;
3504
3505         down_read(&rbd_dev->lock_rwsem);
3506         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3507              rbd_dev->lock_state);
3508         if (__rbd_is_lock_owner(rbd_dev)) {
3509                 lock_state = rbd_dev->lock_state;
3510                 up_read(&rbd_dev->lock_rwsem);
3511                 return lock_state;
3512         }
3513
3514         up_read(&rbd_dev->lock_rwsem);
3515         down_write(&rbd_dev->lock_rwsem);
3516         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3517              rbd_dev->lock_state);
3518         if (!__rbd_is_lock_owner(rbd_dev)) {
3519                 *pret = rbd_try_lock(rbd_dev);
3520                 if (*pret)
3521                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3522         }
3523
3524         lock_state = rbd_dev->lock_state;
3525         up_write(&rbd_dev->lock_rwsem);
3526         return lock_state;
3527 }
3528
3529 static void rbd_acquire_lock(struct work_struct *work)
3530 {
3531         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3532                                             struct rbd_device, lock_dwork);
3533         enum rbd_lock_state lock_state;
3534         int ret;
3535
3536         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3537 again:
3538         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3539         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3540                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3541                         wake_requests(rbd_dev, true);
3542                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3543                      rbd_dev, lock_state, ret);
3544                 return;
3545         }
3546
3547         ret = rbd_request_lock(rbd_dev);
3548         if (ret == -ETIMEDOUT) {
3549                 goto again; /* treat this as a dead client */
3550         } else if (ret < 0) {
3551                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3552                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3553                                  RBD_RETRY_DELAY);
3554         } else {
3555                 /*
3556                  * lock owner acked, but resend if we don't see them
3557                  * release the lock
3558                  */
3559                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3560                      rbd_dev);
3561                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3562                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3563         }
3564 }
3565
3566 /*
3567  * lock_rwsem must be held for write
3568  */
3569 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3570 {
3571         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3572              rbd_dev->lock_state);
3573         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3574                 return false;
3575
3576         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3577         downgrade_write(&rbd_dev->lock_rwsem);
3578         /*
3579          * Ensure that all in-flight IO is flushed.
3580          *
3581          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3582          * may be shared with other devices.
3583          */
3584         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3585         up_read(&rbd_dev->lock_rwsem);
3586
3587         down_write(&rbd_dev->lock_rwsem);
3588         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3589              rbd_dev->lock_state);
3590         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3591                 return false;
3592
3593         if (!rbd_unlock(rbd_dev))
3594                 /*
3595                  * Give others a chance to grab the lock - we would re-acquire
3596                  * almost immediately if we got new IO during ceph_osdc_sync()
3597                  * otherwise.  We need to ack our own notifications, so this
3598                  * lock_dwork will be requeued from rbd_wait_state_locked()
3599                  * after wake_requests() in rbd_handle_released_lock().
3600                  */
3601                 cancel_delayed_work(&rbd_dev->lock_dwork);
3602
3603         return true;
3604 }
3605
3606 static void rbd_release_lock_work(struct work_struct *work)
3607 {
3608         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3609                                                   unlock_work);
3610
3611         down_write(&rbd_dev->lock_rwsem);
3612         rbd_release_lock(rbd_dev);
3613         up_write(&rbd_dev->lock_rwsem);
3614 }
3615
3616 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3617                                      void **p)
3618 {
3619         struct rbd_client_id cid = { 0 };
3620
3621         if (struct_v >= 2) {
3622                 cid.gid = ceph_decode_64(p);
3623                 cid.handle = ceph_decode_64(p);
3624         }
3625
3626         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3627              cid.handle);
3628         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3629                 down_write(&rbd_dev->lock_rwsem);
3630                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3631                         /*
3632                          * we already know that the remote client is
3633                          * the owner
3634                          */
3635                         up_write(&rbd_dev->lock_rwsem);
3636                         return;
3637                 }
3638
3639                 rbd_set_owner_cid(rbd_dev, &cid);
3640                 downgrade_write(&rbd_dev->lock_rwsem);
3641         } else {
3642                 down_read(&rbd_dev->lock_rwsem);
3643         }
3644
3645         if (!__rbd_is_lock_owner(rbd_dev))
3646                 wake_requests(rbd_dev, false);
3647         up_read(&rbd_dev->lock_rwsem);
3648 }
3649
3650 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3651                                      void **p)
3652 {
3653         struct rbd_client_id cid = { 0 };
3654
3655         if (struct_v >= 2) {
3656                 cid.gid = ceph_decode_64(p);
3657                 cid.handle = ceph_decode_64(p);
3658         }
3659
3660         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3661              cid.handle);
3662         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3663                 down_write(&rbd_dev->lock_rwsem);
3664                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3665                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3666                              __func__, rbd_dev, cid.gid, cid.handle,
3667                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3668                         up_write(&rbd_dev->lock_rwsem);
3669                         return;
3670                 }
3671
3672                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3673                 downgrade_write(&rbd_dev->lock_rwsem);
3674         } else {
3675                 down_read(&rbd_dev->lock_rwsem);
3676         }
3677
3678         if (!__rbd_is_lock_owner(rbd_dev))
3679                 wake_requests(rbd_dev, false);
3680         up_read(&rbd_dev->lock_rwsem);
3681 }
3682
3683 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3684                                     void **p)
3685 {
3686         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3687         struct rbd_client_id cid = { 0 };
3688         bool need_to_send;
3689
3690         if (struct_v >= 2) {
3691                 cid.gid = ceph_decode_64(p);
3692                 cid.handle = ceph_decode_64(p);
3693         }
3694
3695         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3696              cid.handle);
3697         if (rbd_cid_equal(&cid, &my_cid))
3698                 return false;
3699
3700         down_read(&rbd_dev->lock_rwsem);
3701         need_to_send = __rbd_is_lock_owner(rbd_dev);
3702         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3703                 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3704                         dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3705                              rbd_dev);
3706                         queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3707                 }
3708         }
3709         up_read(&rbd_dev->lock_rwsem);
3710         return need_to_send;
3711 }
3712
3713 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3714                                      u64 notify_id, u64 cookie, s32 *result)
3715 {
3716         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717         int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3718         char buf[buf_size];
3719         int ret;
3720
3721         if (result) {
3722                 void *p = buf;
3723
3724                 /* encode ResponseMessage */
3725                 ceph_start_encoding(&p, 1, 1,
3726                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3727                 ceph_encode_32(&p, *result);
3728         } else {
3729                 buf_size = 0;
3730         }
3731
3732         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3733                                    &rbd_dev->header_oloc, notify_id, cookie,
3734                                    buf, buf_size);
3735         if (ret)
3736                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3737 }
3738
3739 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3740                                    u64 cookie)
3741 {
3742         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3744 }
3745
3746 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3747                                           u64 notify_id, u64 cookie, s32 result)
3748 {
3749         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3750         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3751 }
3752
3753 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3754                          u64 notifier_id, void *data, size_t data_len)
3755 {
3756         struct rbd_device *rbd_dev = arg;
3757         void *p = data;
3758         void *const end = p + data_len;
3759         u8 struct_v;
3760         u32 len;
3761         u32 notify_op;
3762         int ret;
3763
3764         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3765              __func__, rbd_dev, cookie, notify_id, data_len);
3766         if (data_len) {
3767                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3768                                           &struct_v, &len);
3769                 if (ret) {
3770                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3771                                  ret);
3772                         return;
3773                 }
3774
3775                 notify_op = ceph_decode_32(&p);
3776         } else {
3777                 /* legacy notification for header updates */
3778                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3779                 len = 0;
3780         }
3781
3782         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3783         switch (notify_op) {
3784         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3785                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3786                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3787                 break;
3788         case RBD_NOTIFY_OP_RELEASED_LOCK:
3789                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3790                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3791                 break;
3792         case RBD_NOTIFY_OP_REQUEST_LOCK:
3793                 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3794                         /*
3795                          * send ResponseMessage(0) back so the client
3796                          * can detect a missing owner
3797                          */
3798                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3799                                                       cookie, 0);
3800                 else
3801                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3802                 break;
3803         case RBD_NOTIFY_OP_HEADER_UPDATE:
3804                 ret = rbd_dev_refresh(rbd_dev);
3805                 if (ret)
3806                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3807
3808                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3809                 break;
3810         default:
3811                 if (rbd_is_lock_owner(rbd_dev))
3812                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3813                                                       cookie, -EOPNOTSUPP);
3814                 else
3815                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3816                 break;
3817         }
3818 }
3819
3820 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3821
3822 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3823 {
3824         struct rbd_device *rbd_dev = arg;
3825
3826         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3827
3828         down_write(&rbd_dev->lock_rwsem);
3829         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3830         up_write(&rbd_dev->lock_rwsem);
3831
3832         mutex_lock(&rbd_dev->watch_mutex);
3833         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3834                 __rbd_unregister_watch(rbd_dev);
3835                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3836
3837                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3838         }
3839         mutex_unlock(&rbd_dev->watch_mutex);
3840 }
3841
3842 /*
3843  * watch_mutex must be locked
3844  */
3845 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3846 {
3847         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848         struct ceph_osd_linger_request *handle;
3849
3850         rbd_assert(!rbd_dev->watch_handle);
3851         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3852
3853         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3854                                  &rbd_dev->header_oloc, rbd_watch_cb,
3855                                  rbd_watch_errcb, rbd_dev);
3856         if (IS_ERR(handle))
3857                 return PTR_ERR(handle);
3858
3859         rbd_dev->watch_handle = handle;
3860         return 0;
3861 }
3862
3863 /*
3864  * watch_mutex must be locked
3865  */
3866 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3867 {
3868         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3869         int ret;
3870
3871         rbd_assert(rbd_dev->watch_handle);
3872         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3873
3874         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3875         if (ret)
3876                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3877
3878         rbd_dev->watch_handle = NULL;
3879 }
3880
3881 static int rbd_register_watch(struct rbd_device *rbd_dev)
3882 {
3883         int ret;
3884
3885         mutex_lock(&rbd_dev->watch_mutex);
3886         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3887         ret = __rbd_register_watch(rbd_dev);
3888         if (ret)
3889                 goto out;
3890
3891         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3892         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3893
3894 out:
3895         mutex_unlock(&rbd_dev->watch_mutex);
3896         return ret;
3897 }
3898
3899 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3900 {
3901         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902
3903         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3904         cancel_work_sync(&rbd_dev->acquired_lock_work);
3905         cancel_work_sync(&rbd_dev->released_lock_work);
3906         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3907         cancel_work_sync(&rbd_dev->unlock_work);
3908 }
3909
3910 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3911 {
3912         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3913         cancel_tasks_sync(rbd_dev);
3914
3915         mutex_lock(&rbd_dev->watch_mutex);
3916         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3917                 __rbd_unregister_watch(rbd_dev);
3918         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3919         mutex_unlock(&rbd_dev->watch_mutex);
3920
3921         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3922 }
3923
3924 static void rbd_reregister_watch(struct work_struct *work)
3925 {
3926         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3927                                             struct rbd_device, watch_dwork);
3928         bool was_lock_owner = false;
3929         int ret;
3930
3931         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3932
3933         down_write(&rbd_dev->lock_rwsem);
3934         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3935                 was_lock_owner = rbd_release_lock(rbd_dev);
3936
3937         mutex_lock(&rbd_dev->watch_mutex);
3938         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR)
3939                 goto fail_unlock;
3940
3941         ret = __rbd_register_watch(rbd_dev);
3942         if (ret) {
3943                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3944                 if (ret != -EBLACKLISTED)
3945                         queue_delayed_work(rbd_dev->task_wq,
3946                                            &rbd_dev->watch_dwork,
3947                                            RBD_RETRY_DELAY);
3948                 goto fail_unlock;
3949         }
3950
3951         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3952         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3953         mutex_unlock(&rbd_dev->watch_mutex);
3954
3955         ret = rbd_dev_refresh(rbd_dev);
3956         if (ret)
3957                 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3958
3959         if (was_lock_owner) {
3960                 ret = rbd_try_lock(rbd_dev);
3961                 if (ret)
3962                         rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3963                                  ret);
3964         }
3965
3966         up_write(&rbd_dev->lock_rwsem);
3967         wake_requests(rbd_dev, true);
3968         return;
3969
3970 fail_unlock:
3971         mutex_unlock(&rbd_dev->watch_mutex);
3972         up_write(&rbd_dev->lock_rwsem);
3973 }
3974
3975 /*
3976  * Synchronous osd object method call.  Returns the number of bytes
3977  * returned in the outbound buffer, or a negative error code.
3978  */
3979 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3980                              const char *object_name,
3981                              const char *class_name,
3982                              const char *method_name,
3983                              const void *outbound,
3984                              size_t outbound_size,
3985                              void *inbound,
3986                              size_t inbound_size)
3987 {
3988         struct rbd_obj_request *obj_request;
3989         struct page **pages;
3990         u32 page_count;
3991         int ret;
3992
3993         /*
3994          * Method calls are ultimately read operations.  The result
3995          * should placed into the inbound buffer provided.  They
3996          * also supply outbound data--parameters for the object
3997          * method.  Currently if this is present it will be a
3998          * snapshot id.
3999          */
4000         page_count = (u32)calc_pages_for(0, inbound_size);
4001         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4002         if (IS_ERR(pages))
4003                 return PTR_ERR(pages);
4004
4005         ret = -ENOMEM;
4006         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4007                                                         OBJ_REQUEST_PAGES);
4008         if (!obj_request)
4009                 goto out;
4010
4011         obj_request->pages = pages;
4012         obj_request->page_count = page_count;
4013
4014         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4015                                                   obj_request);
4016         if (!obj_request->osd_req)
4017                 goto out;
4018
4019         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4020                                         class_name, method_name);
4021         if (outbound_size) {
4022                 struct ceph_pagelist *pagelist;
4023
4024                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4025                 if (!pagelist)
4026                         goto out;
4027
4028                 ceph_pagelist_init(pagelist);
4029                 ceph_pagelist_append(pagelist, outbound, outbound_size);
4030                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4031                                                 pagelist);
4032         }
4033         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4034                                         obj_request->pages, inbound_size,
4035                                         0, false, false);
4036
4037         rbd_obj_request_submit(obj_request);
4038         ret = rbd_obj_request_wait(obj_request);
4039         if (ret)
4040                 goto out;
4041
4042         ret = obj_request->result;
4043         if (ret < 0)
4044                 goto out;
4045
4046         rbd_assert(obj_request->xferred < (u64)INT_MAX);
4047         ret = (int)obj_request->xferred;
4048         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4049 out:
4050         if (obj_request)
4051                 rbd_obj_request_put(obj_request);
4052         else
4053                 ceph_release_page_vector(pages, page_count);
4054
4055         return ret;
4056 }
4057
4058 /*
4059  * lock_rwsem must be held for read
4060  */
4061 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4062 {
4063         DEFINE_WAIT(wait);
4064
4065         do {
4066                 /*
4067                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
4068                  * and cancel_delayed_work() in wake_requests().
4069                  */
4070                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4071                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4072                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4073                                           TASK_UNINTERRUPTIBLE);
4074                 up_read(&rbd_dev->lock_rwsem);
4075                 schedule();
4076                 down_read(&rbd_dev->lock_rwsem);
4077         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
4078         finish_wait(&rbd_dev->lock_waitq, &wait);
4079 }
4080
4081 static void rbd_queue_workfn(struct work_struct *work)
4082 {
4083         struct request *rq = blk_mq_rq_from_pdu(work);
4084         struct rbd_device *rbd_dev = rq->q->queuedata;
4085         struct rbd_img_request *img_request;
4086         struct ceph_snap_context *snapc = NULL;
4087         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4088         u64 length = blk_rq_bytes(rq);
4089         enum obj_operation_type op_type;
4090         u64 mapping_size;
4091         bool must_be_locked;
4092         int result;
4093
4094         if (rq->cmd_type != REQ_TYPE_FS) {
4095                 dout("%s: non-fs request type %d\n", __func__,
4096                         (int) rq->cmd_type);
4097                 result = -EIO;
4098                 goto err;
4099         }
4100
4101         if (req_op(rq) == REQ_OP_DISCARD)
4102                 op_type = OBJ_OP_DISCARD;
4103         else if (req_op(rq) == REQ_OP_WRITE)
4104                 op_type = OBJ_OP_WRITE;
4105         else
4106                 op_type = OBJ_OP_READ;
4107
4108         /* Ignore/skip any zero-length requests */
4109
4110         if (!length) {
4111                 dout("%s: zero-length request\n", __func__);
4112                 result = 0;
4113                 goto err_rq;
4114         }
4115
4116         /* Only reads are allowed to a read-only device */
4117
4118         if (op_type != OBJ_OP_READ) {
4119                 if (rbd_dev->mapping.read_only) {
4120                         result = -EROFS;
4121                         goto err_rq;
4122                 }
4123                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4124         }
4125
4126         /*
4127          * Quit early if the mapped snapshot no longer exists.  It's
4128          * still possible the snapshot will have disappeared by the
4129          * time our request arrives at the osd, but there's no sense in
4130          * sending it if we already know.
4131          */
4132         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4133                 dout("request for non-existent snapshot");
4134                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4135                 result = -ENXIO;
4136                 goto err_rq;
4137         }
4138
4139         if (offset && length > U64_MAX - offset + 1) {
4140                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4141                          length);
4142                 result = -EINVAL;
4143                 goto err_rq;    /* Shouldn't happen */
4144         }
4145
4146         blk_mq_start_request(rq);
4147
4148         down_read(&rbd_dev->header_rwsem);
4149         mapping_size = rbd_dev->mapping.size;
4150         if (op_type != OBJ_OP_READ) {
4151                 snapc = rbd_dev->header.snapc;
4152                 ceph_get_snap_context(snapc);
4153                 must_be_locked = rbd_is_lock_supported(rbd_dev);
4154         } else {
4155                 must_be_locked = rbd_dev->opts->lock_on_read &&
4156                                         rbd_is_lock_supported(rbd_dev);
4157         }
4158         up_read(&rbd_dev->header_rwsem);
4159
4160         if (offset + length > mapping_size) {
4161                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4162                          length, mapping_size);
4163                 result = -EIO;
4164                 goto err_rq;
4165         }
4166
4167         if (must_be_locked) {
4168                 down_read(&rbd_dev->lock_rwsem);
4169                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4170                         rbd_wait_state_locked(rbd_dev);
4171         }
4172
4173         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4174                                              snapc);
4175         if (!img_request) {
4176                 result = -ENOMEM;
4177                 goto err_unlock;
4178         }
4179         img_request->rq = rq;
4180         snapc = NULL; /* img_request consumes a ref */
4181
4182         if (op_type == OBJ_OP_DISCARD)
4183                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4184                                               NULL);
4185         else
4186                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4187                                               rq->bio);
4188         if (result)
4189                 goto err_img_request;
4190
4191         result = rbd_img_request_submit(img_request);
4192         if (result)
4193                 goto err_img_request;
4194
4195         if (must_be_locked)
4196                 up_read(&rbd_dev->lock_rwsem);
4197         return;
4198
4199 err_img_request:
4200         rbd_img_request_put(img_request);
4201 err_unlock:
4202         if (must_be_locked)
4203                 up_read(&rbd_dev->lock_rwsem);
4204 err_rq:
4205         if (result)
4206                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4207                          obj_op_name(op_type), length, offset, result);
4208         ceph_put_snap_context(snapc);
4209 err:
4210         blk_mq_end_request(rq, result);
4211 }
4212
4213 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4214                 const struct blk_mq_queue_data *bd)
4215 {
4216         struct request *rq = bd->rq;
4217         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4218
4219         queue_work(rbd_wq, work);
4220         return BLK_MQ_RQ_QUEUE_OK;
4221 }
4222
4223 static void rbd_free_disk(struct rbd_device *rbd_dev)
4224 {
4225         struct gendisk *disk = rbd_dev->disk;
4226
4227         if (!disk)
4228                 return;
4229
4230         rbd_dev->disk = NULL;
4231         if (disk->flags & GENHD_FL_UP) {
4232                 del_gendisk(disk);
4233                 if (disk->queue)
4234                         blk_cleanup_queue(disk->queue);
4235                 blk_mq_free_tag_set(&rbd_dev->tag_set);
4236         }
4237         put_disk(disk);
4238 }
4239
4240 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4241                                 const char *object_name,
4242                                 u64 offset, u64 length, void *buf)
4243
4244 {
4245         struct rbd_obj_request *obj_request;
4246         struct page **pages = NULL;
4247         u32 page_count;
4248         size_t size;
4249         int ret;
4250
4251         page_count = (u32) calc_pages_for(offset, length);
4252         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4253         if (IS_ERR(pages))
4254                 return PTR_ERR(pages);
4255
4256         ret = -ENOMEM;
4257         obj_request = rbd_obj_request_create(object_name, offset, length,
4258                                                         OBJ_REQUEST_PAGES);
4259         if (!obj_request)
4260                 goto out;
4261
4262         obj_request->pages = pages;
4263         obj_request->page_count = page_count;
4264
4265         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4266                                                   obj_request);
4267         if (!obj_request->osd_req)
4268                 goto out;
4269
4270         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4271                                         offset, length, 0, 0);
4272         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4273                                         obj_request->pages,
4274                                         obj_request->length,
4275                                         obj_request->offset & ~PAGE_MASK,
4276                                         false, false);
4277
4278         rbd_obj_request_submit(obj_request);
4279         ret = rbd_obj_request_wait(obj_request);
4280         if (ret)
4281                 goto out;
4282
4283         ret = obj_request->result;
4284         if (ret < 0)
4285                 goto out;
4286
4287         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4288         size = (size_t) obj_request->xferred;
4289         ceph_copy_from_page_vector(pages, buf, 0, size);
4290         rbd_assert(size <= (size_t)INT_MAX);
4291         ret = (int)size;
4292 out:
4293         if (obj_request)
4294                 rbd_obj_request_put(obj_request);
4295         else
4296                 ceph_release_page_vector(pages, page_count);
4297
4298         return ret;
4299 }
4300
4301 /*
4302  * Read the complete header for the given rbd device.  On successful
4303  * return, the rbd_dev->header field will contain up-to-date
4304  * information about the image.
4305  */
4306 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4307 {
4308         struct rbd_image_header_ondisk *ondisk = NULL;
4309         u32 snap_count = 0;
4310         u64 names_size = 0;
4311         u32 want_count;
4312         int ret;
4313
4314         /*
4315          * The complete header will include an array of its 64-bit
4316          * snapshot ids, followed by the names of those snapshots as
4317          * a contiguous block of NUL-terminated strings.  Note that
4318          * the number of snapshots could change by the time we read
4319          * it in, in which case we re-read it.
4320          */
4321         do {
4322                 size_t size;
4323
4324                 kfree(ondisk);
4325
4326                 size = sizeof (*ondisk);
4327                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4328                 size += names_size;
4329                 ondisk = kmalloc(size, GFP_KERNEL);
4330                 if (!ondisk)
4331                         return -ENOMEM;
4332
4333                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4334                                        0, size, ondisk);
4335                 if (ret < 0)
4336                         goto out;
4337                 if ((size_t)ret < size) {
4338                         ret = -ENXIO;
4339                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4340                                 size, ret);
4341                         goto out;
4342                 }
4343                 if (!rbd_dev_ondisk_valid(ondisk)) {
4344                         ret = -ENXIO;
4345                         rbd_warn(rbd_dev, "invalid header");
4346                         goto out;
4347                 }
4348
4349                 names_size = le64_to_cpu(ondisk->snap_names_len);
4350                 want_count = snap_count;
4351                 snap_count = le32_to_cpu(ondisk->snap_count);
4352         } while (snap_count != want_count);
4353
4354         ret = rbd_header_from_disk(rbd_dev, ondisk);
4355 out:
4356         kfree(ondisk);
4357
4358         return ret;
4359 }
4360
4361 /*
4362  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4363  * has disappeared from the (just updated) snapshot context.
4364  */
4365 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4366 {
4367         u64 snap_id;
4368
4369         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4370                 return;
4371
4372         snap_id = rbd_dev->spec->snap_id;
4373         if (snap_id == CEPH_NOSNAP)
4374                 return;
4375
4376         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4377                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4378 }
4379
4380 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4381 {
4382         sector_t size;
4383
4384         /*
4385          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4386          * try to update its size.  If REMOVING is set, updating size
4387          * is just useless work since the device can't be opened.
4388          */
4389         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4390             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4391                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4392                 dout("setting size to %llu sectors", (unsigned long long)size);
4393                 set_capacity(rbd_dev->disk, size);
4394                 revalidate_disk(rbd_dev->disk);
4395         }
4396 }
4397
4398 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4399 {
4400         u64 mapping_size;
4401         int ret;
4402
4403         down_write(&rbd_dev->header_rwsem);
4404         mapping_size = rbd_dev->mapping.size;
4405
4406         ret = rbd_dev_header_info(rbd_dev);
4407         if (ret)
4408                 goto out;
4409
4410         /*
4411          * If there is a parent, see if it has disappeared due to the
4412          * mapped image getting flattened.
4413          */
4414         if (rbd_dev->parent) {
4415                 ret = rbd_dev_v2_parent_info(rbd_dev);
4416                 if (ret)
4417                         goto out;
4418         }
4419
4420         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4421                 rbd_dev->mapping.size = rbd_dev->header.image_size;
4422         } else {
4423                 /* validate mapped snapshot's EXISTS flag */
4424                 rbd_exists_validate(rbd_dev);
4425         }
4426
4427 out:
4428         up_write(&rbd_dev->header_rwsem);
4429         if (!ret && mapping_size != rbd_dev->mapping.size)
4430                 rbd_dev_update_size(rbd_dev);
4431
4432         return ret;
4433 }
4434
4435 static int rbd_init_request(void *data, struct request *rq,
4436                 unsigned int hctx_idx, unsigned int request_idx,
4437                 unsigned int numa_node)
4438 {
4439         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4440
4441         INIT_WORK(work, rbd_queue_workfn);
4442         return 0;
4443 }
4444
4445 static struct blk_mq_ops rbd_mq_ops = {
4446         .queue_rq       = rbd_queue_rq,
4447         .init_request   = rbd_init_request,
4448 };
4449
4450 static int rbd_init_disk(struct rbd_device *rbd_dev)
4451 {
4452         struct gendisk *disk;
4453         struct request_queue *q;
4454         u64 segment_size;
4455         int err;
4456
4457         /* create gendisk info */
4458         disk = alloc_disk(single_major ?
4459                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4460                           RBD_MINORS_PER_MAJOR);
4461         if (!disk)
4462                 return -ENOMEM;
4463
4464         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4465                  rbd_dev->dev_id);
4466         disk->major = rbd_dev->major;
4467         disk->first_minor = rbd_dev->minor;
4468         if (single_major)
4469                 disk->flags |= GENHD_FL_EXT_DEVT;
4470         disk->fops = &rbd_bd_ops;
4471         disk->private_data = rbd_dev;
4472
4473         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4474         rbd_dev->tag_set.ops = &rbd_mq_ops;
4475         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4476         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4477         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4478         rbd_dev->tag_set.nr_hw_queues = 1;
4479         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4480
4481         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4482         if (err)
4483                 goto out_disk;
4484
4485         q = blk_mq_init_queue(&rbd_dev->tag_set);
4486         if (IS_ERR(q)) {
4487                 err = PTR_ERR(q);
4488                 goto out_tag_set;
4489         }
4490
4491         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4492         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4493
4494         /* set io sizes to object size */
4495         segment_size = rbd_obj_bytes(&rbd_dev->header);
4496         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4497         q->limits.max_sectors = queue_max_hw_sectors(q);
4498         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4499         blk_queue_max_segment_size(q, segment_size);
4500         blk_queue_io_min(q, segment_size);
4501         blk_queue_io_opt(q, segment_size);
4502
4503         /* enable the discard support */
4504         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4505         q->limits.discard_granularity = segment_size;
4506         q->limits.discard_alignment = segment_size;
4507         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4508         q->limits.discard_zeroes_data = 1;
4509
4510         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4511                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4512
4513         disk->queue = q;
4514
4515         q->queuedata = rbd_dev;
4516
4517         rbd_dev->disk = disk;
4518
4519         return 0;
4520 out_tag_set:
4521         blk_mq_free_tag_set(&rbd_dev->tag_set);
4522 out_disk:
4523         put_disk(disk);
4524         return err;
4525 }
4526
4527 /*
4528   sysfs
4529 */
4530
4531 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4532 {
4533         return container_of(dev, struct rbd_device, dev);
4534 }
4535
4536 static ssize_t rbd_size_show(struct device *dev,
4537                              struct device_attribute *attr, char *buf)
4538 {
4539         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4540
4541         return sprintf(buf, "%llu\n",
4542                 (unsigned long long)rbd_dev->mapping.size);
4543 }
4544
4545 /*
4546  * Note this shows the features for whatever's mapped, which is not
4547  * necessarily the base image.
4548  */
4549 static ssize_t rbd_features_show(struct device *dev,
4550                              struct device_attribute *attr, char *buf)
4551 {
4552         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4553
4554         return sprintf(buf, "0x%016llx\n",
4555                         (unsigned long long)rbd_dev->mapping.features);
4556 }
4557
4558 static ssize_t rbd_major_show(struct device *dev,
4559                               struct device_attribute *attr, char *buf)
4560 {
4561         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4562
4563         if (rbd_dev->major)
4564                 return sprintf(buf, "%d\n", rbd_dev->major);
4565
4566         return sprintf(buf, "(none)\n");
4567 }
4568
4569 static ssize_t rbd_minor_show(struct device *dev,
4570                               struct device_attribute *attr, char *buf)
4571 {
4572         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4573
4574         return sprintf(buf, "%d\n", rbd_dev->minor);
4575 }
4576
4577 static ssize_t rbd_client_addr_show(struct device *dev,
4578                                     struct device_attribute *attr, char *buf)
4579 {
4580         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4581         struct ceph_entity_addr *client_addr =
4582             ceph_client_addr(rbd_dev->rbd_client->client);
4583
4584         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4585                        le32_to_cpu(client_addr->nonce));
4586 }
4587
4588 static ssize_t rbd_client_id_show(struct device *dev,
4589                                   struct device_attribute *attr, char *buf)
4590 {
4591         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4592
4593         return sprintf(buf, "client%lld\n",
4594                        ceph_client_gid(rbd_dev->rbd_client->client));
4595 }
4596
4597 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4598                                      struct device_attribute *attr, char *buf)
4599 {
4600         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4601
4602         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4603 }
4604
4605 static ssize_t rbd_config_info_show(struct device *dev,
4606                                     struct device_attribute *attr, char *buf)
4607 {
4608         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4609
4610         return sprintf(buf, "%s\n", rbd_dev->config_info);
4611 }
4612
4613 static ssize_t rbd_pool_show(struct device *dev,
4614                              struct device_attribute *attr, char *buf)
4615 {
4616         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4617
4618         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4619 }
4620
4621 static ssize_t rbd_pool_id_show(struct device *dev,
4622                              struct device_attribute *attr, char *buf)
4623 {
4624         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4625
4626         return sprintf(buf, "%llu\n",
4627                         (unsigned long long) rbd_dev->spec->pool_id);
4628 }
4629
4630 static ssize_t rbd_name_show(struct device *dev,
4631                              struct device_attribute *attr, char *buf)
4632 {
4633         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4634
4635         if (rbd_dev->spec->image_name)
4636                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4637
4638         return sprintf(buf, "(unknown)\n");
4639 }
4640
4641 static ssize_t rbd_image_id_show(struct device *dev,
4642                              struct device_attribute *attr, char *buf)
4643 {
4644         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4645
4646         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4647 }
4648
4649 /*
4650  * Shows the name of the currently-mapped snapshot (or
4651  * RBD_SNAP_HEAD_NAME for the base image).
4652  */
4653 static ssize_t rbd_snap_show(struct device *dev,
4654                              struct device_attribute *attr,
4655                              char *buf)
4656 {
4657         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4658
4659         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4660 }
4661
4662 static ssize_t rbd_snap_id_show(struct device *dev,
4663                                 struct device_attribute *attr, char *buf)
4664 {
4665         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4666
4667         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4668 }
4669
4670 /*
4671  * For a v2 image, shows the chain of parent images, separated by empty
4672  * lines.  For v1 images or if there is no parent, shows "(no parent
4673  * image)".
4674  */
4675 static ssize_t rbd_parent_show(struct device *dev,
4676                                struct device_attribute *attr,
4677                                char *buf)
4678 {
4679         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4680         ssize_t count = 0;
4681
4682         if (!rbd_dev->parent)
4683                 return sprintf(buf, "(no parent image)\n");
4684
4685         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4686                 struct rbd_spec *spec = rbd_dev->parent_spec;
4687
4688                 count += sprintf(&buf[count], "%s"
4689                             "pool_id %llu\npool_name %s\n"
4690                             "image_id %s\nimage_name %s\n"
4691                             "snap_id %llu\nsnap_name %s\n"
4692                             "overlap %llu\n",
4693                             !count ? "" : "\n", /* first? */
4694                             spec->pool_id, spec->pool_name,
4695                             spec->image_id, spec->image_name ?: "(unknown)",
4696                             spec->snap_id, spec->snap_name,
4697                             rbd_dev->parent_overlap);
4698         }
4699
4700         return count;
4701 }
4702
4703 static ssize_t rbd_image_refresh(struct device *dev,
4704                                  struct device_attribute *attr,
4705                                  const char *buf,
4706                                  size_t size)
4707 {
4708         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4709         int ret;
4710
4711         ret = rbd_dev_refresh(rbd_dev);
4712         if (ret)
4713                 return ret;
4714
4715         return size;
4716 }
4717
4718 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4719 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4720 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4721 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4722 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4723 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4724 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4725 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4726 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4727 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4728 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4729 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4730 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4731 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4732 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4733 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4734
4735 static struct attribute *rbd_attrs[] = {
4736         &dev_attr_size.attr,
4737         &dev_attr_features.attr,
4738         &dev_attr_major.attr,
4739         &dev_attr_minor.attr,
4740         &dev_attr_client_addr.attr,
4741         &dev_attr_client_id.attr,
4742         &dev_attr_cluster_fsid.attr,
4743         &dev_attr_config_info.attr,
4744         &dev_attr_pool.attr,
4745         &dev_attr_pool_id.attr,
4746         &dev_attr_name.attr,
4747         &dev_attr_image_id.attr,
4748         &dev_attr_current_snap.attr,
4749         &dev_attr_snap_id.attr,
4750         &dev_attr_parent.attr,
4751         &dev_attr_refresh.attr,
4752         NULL
4753 };
4754
4755 static struct attribute_group rbd_attr_group = {
4756         .attrs = rbd_attrs,
4757 };
4758
4759 static const struct attribute_group *rbd_attr_groups[] = {
4760         &rbd_attr_group,
4761         NULL
4762 };
4763
4764 static void rbd_dev_release(struct device *dev);
4765
4766 static struct device_type rbd_device_type = {
4767         .name           = "rbd",
4768         .groups         = rbd_attr_groups,
4769         .release        = rbd_dev_release,
4770 };
4771
4772 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4773 {
4774         kref_get(&spec->kref);
4775
4776         return spec;
4777 }
4778
4779 static void rbd_spec_free(struct kref *kref);
4780 static void rbd_spec_put(struct rbd_spec *spec)
4781 {
4782         if (spec)
4783                 kref_put(&spec->kref, rbd_spec_free);
4784 }
4785
4786 static struct rbd_spec *rbd_spec_alloc(void)
4787 {
4788         struct rbd_spec *spec;
4789
4790         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4791         if (!spec)
4792                 return NULL;
4793
4794         spec->pool_id = CEPH_NOPOOL;
4795         spec->snap_id = CEPH_NOSNAP;
4796         kref_init(&spec->kref);
4797
4798         return spec;
4799 }
4800
4801 static void rbd_spec_free(struct kref *kref)
4802 {
4803         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4804
4805         kfree(spec->pool_name);
4806         kfree(spec->image_id);
4807         kfree(spec->image_name);
4808         kfree(spec->snap_name);
4809         kfree(spec);
4810 }
4811
4812 static void rbd_dev_free(struct rbd_device *rbd_dev)
4813 {
4814         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4815         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4816
4817         ceph_oid_destroy(&rbd_dev->header_oid);
4818         ceph_oloc_destroy(&rbd_dev->header_oloc);
4819         kfree(rbd_dev->config_info);
4820
4821         rbd_put_client(rbd_dev->rbd_client);
4822         rbd_spec_put(rbd_dev->spec);
4823         kfree(rbd_dev->opts);
4824         kfree(rbd_dev);
4825 }
4826
4827 static void rbd_dev_release(struct device *dev)
4828 {
4829         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4830         bool need_put = !!rbd_dev->opts;
4831
4832         if (need_put) {
4833                 destroy_workqueue(rbd_dev->task_wq);
4834                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4835         }
4836
4837         rbd_dev_free(rbd_dev);
4838
4839         /*
4840          * This is racy, but way better than putting module outside of
4841          * the release callback.  The race window is pretty small, so
4842          * doing something similar to dm (dm-builtin.c) is overkill.
4843          */
4844         if (need_put)
4845                 module_put(THIS_MODULE);
4846 }
4847
4848 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4849                                            struct rbd_spec *spec)
4850 {
4851         struct rbd_device *rbd_dev;
4852
4853         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4854         if (!rbd_dev)
4855                 return NULL;
4856
4857         spin_lock_init(&rbd_dev->lock);
4858         INIT_LIST_HEAD(&rbd_dev->node);
4859         init_rwsem(&rbd_dev->header_rwsem);
4860
4861         ceph_oid_init(&rbd_dev->header_oid);
4862         ceph_oloc_init(&rbd_dev->header_oloc);
4863
4864         mutex_init(&rbd_dev->watch_mutex);
4865         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4866         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4867
4868         init_rwsem(&rbd_dev->lock_rwsem);
4869         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4870         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4871         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4872         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4873         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4874         init_waitqueue_head(&rbd_dev->lock_waitq);
4875
4876         rbd_dev->dev.bus = &rbd_bus_type;
4877         rbd_dev->dev.type = &rbd_device_type;
4878         rbd_dev->dev.parent = &rbd_root_dev;
4879         device_initialize(&rbd_dev->dev);
4880
4881         rbd_dev->rbd_client = rbdc;
4882         rbd_dev->spec = spec;
4883
4884         rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4885         rbd_dev->layout.stripe_count = 1;
4886         rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4887         rbd_dev->layout.pool_id = spec->pool_id;
4888         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4889
4890         return rbd_dev;
4891 }
4892
4893 /*
4894  * Create a mapping rbd_dev.
4895  */
4896 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4897                                          struct rbd_spec *spec,
4898                                          struct rbd_options *opts)
4899 {
4900         struct rbd_device *rbd_dev;
4901
4902         rbd_dev = __rbd_dev_create(rbdc, spec);
4903         if (!rbd_dev)
4904                 return NULL;
4905
4906         rbd_dev->opts = opts;
4907
4908         /* get an id and fill in device name */
4909         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4910                                          minor_to_rbd_dev_id(1 << MINORBITS),
4911                                          GFP_KERNEL);
4912         if (rbd_dev->dev_id < 0)
4913                 goto fail_rbd_dev;
4914
4915         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4916         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4917                                                    rbd_dev->name);
4918         if (!rbd_dev->task_wq)
4919                 goto fail_dev_id;
4920
4921         /* we have a ref from do_rbd_add() */
4922         __module_get(THIS_MODULE);
4923
4924         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4925         return rbd_dev;
4926
4927 fail_dev_id:
4928         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4929 fail_rbd_dev:
4930         rbd_dev_free(rbd_dev);
4931         return NULL;
4932 }
4933
4934 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4935 {
4936         if (rbd_dev)
4937                 put_device(&rbd_dev->dev);
4938 }
4939
4940 /*
4941  * Get the size and object order for an image snapshot, or if
4942  * snap_id is CEPH_NOSNAP, gets this information for the base
4943  * image.
4944  */
4945 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4946                                 u8 *order, u64 *snap_size)
4947 {
4948         __le64 snapid = cpu_to_le64(snap_id);
4949         int ret;
4950         struct {
4951                 u8 order;
4952                 __le64 size;
4953         } __attribute__ ((packed)) size_buf = { 0 };
4954
4955         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4956                                 "rbd", "get_size",
4957                                 &snapid, sizeof (snapid),
4958                                 &size_buf, sizeof (size_buf));
4959         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4960         if (ret < 0)
4961                 return ret;
4962         if (ret < sizeof (size_buf))
4963                 return -ERANGE;
4964
4965         if (order) {
4966                 *order = size_buf.order;
4967                 dout("  order %u", (unsigned int)*order);
4968         }
4969         *snap_size = le64_to_cpu(size_buf.size);
4970
4971         dout("  snap_id 0x%016llx snap_size = %llu\n",
4972                 (unsigned long long)snap_id,
4973                 (unsigned long long)*snap_size);
4974
4975         return 0;
4976 }
4977
4978 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4979 {
4980         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4981                                         &rbd_dev->header.obj_order,
4982                                         &rbd_dev->header.image_size);
4983 }
4984
4985 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4986 {
4987         void *reply_buf;
4988         int ret;
4989         void *p;
4990
4991         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4992         if (!reply_buf)
4993                 return -ENOMEM;
4994
4995         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4996                                 "rbd", "get_object_prefix", NULL, 0,
4997                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4998         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4999         if (ret < 0)
5000                 goto out;
5001
5002         p = reply_buf;
5003         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5004                                                 p + ret, NULL, GFP_NOIO);
5005         ret = 0;
5006
5007         if (IS_ERR(rbd_dev->header.object_prefix)) {
5008                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5009                 rbd_dev->header.object_prefix = NULL;
5010         } else {
5011                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5012         }
5013 out:
5014         kfree(reply_buf);
5015
5016         return ret;
5017 }
5018
5019 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5020                 u64 *snap_features)
5021 {
5022         __le64 snapid = cpu_to_le64(snap_id);
5023         struct {
5024                 __le64 features;
5025                 __le64 incompat;
5026         } __attribute__ ((packed)) features_buf = { 0 };
5027         u64 unsup;
5028         int ret;
5029
5030         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5031                                 "rbd", "get_features",
5032                                 &snapid, sizeof (snapid),
5033                                 &features_buf, sizeof (features_buf));
5034         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5035         if (ret < 0)
5036                 return ret;
5037         if (ret < sizeof (features_buf))
5038                 return -ERANGE;
5039
5040         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5041         if (unsup) {
5042                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5043                          unsup);
5044                 return -ENXIO;
5045         }
5046
5047         *snap_features = le64_to_cpu(features_buf.features);
5048
5049         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5050                 (unsigned long long)snap_id,
5051                 (unsigned long long)*snap_features,
5052                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5053
5054         return 0;
5055 }
5056
5057 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5058 {
5059         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5060                                                 &rbd_dev->header.features);
5061 }
5062
5063 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5064 {
5065         struct rbd_spec *parent_spec;
5066         size_t size;
5067         void *reply_buf = NULL;
5068         __le64 snapid;
5069         void *p;
5070         void *end;
5071         u64 pool_id;
5072         char *image_id;
5073         u64 snap_id;
5074         u64 overlap;
5075         int ret;
5076
5077         parent_spec = rbd_spec_alloc();
5078         if (!parent_spec)
5079                 return -ENOMEM;
5080
5081         size = sizeof (__le64) +                                /* pool_id */
5082                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
5083                 sizeof (__le64) +                               /* snap_id */
5084                 sizeof (__le64);                                /* overlap */
5085         reply_buf = kmalloc(size, GFP_KERNEL);
5086         if (!reply_buf) {
5087                 ret = -ENOMEM;
5088                 goto out_err;
5089         }
5090
5091         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5092         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5093                                 "rbd", "get_parent",
5094                                 &snapid, sizeof (snapid),
5095                                 reply_buf, size);
5096         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5097         if (ret < 0)
5098                 goto out_err;
5099
5100         p = reply_buf;
5101         end = reply_buf + ret;
5102         ret = -ERANGE;
5103         ceph_decode_64_safe(&p, end, pool_id, out_err);
5104         if (pool_id == CEPH_NOPOOL) {
5105                 /*
5106                  * Either the parent never existed, or we have
5107                  * record of it but the image got flattened so it no
5108                  * longer has a parent.  When the parent of a
5109                  * layered image disappears we immediately set the
5110                  * overlap to 0.  The effect of this is that all new
5111                  * requests will be treated as if the image had no
5112                  * parent.
5113                  */
5114                 if (rbd_dev->parent_overlap) {
5115                         rbd_dev->parent_overlap = 0;
5116                         rbd_dev_parent_put(rbd_dev);
5117                         pr_info("%s: clone image has been flattened\n",
5118                                 rbd_dev->disk->disk_name);
5119                 }
5120
5121                 goto out;       /* No parent?  No problem. */
5122         }
5123
5124         /* The ceph file layout needs to fit pool id in 32 bits */
5125
5126         ret = -EIO;
5127         if (pool_id > (u64)U32_MAX) {
5128                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5129                         (unsigned long long)pool_id, U32_MAX);
5130                 goto out_err;
5131         }
5132
5133         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5134         if (IS_ERR(image_id)) {
5135                 ret = PTR_ERR(image_id);
5136                 goto out_err;
5137         }
5138         ceph_decode_64_safe(&p, end, snap_id, out_err);
5139         ceph_decode_64_safe(&p, end, overlap, out_err);
5140
5141         /*
5142          * The parent won't change (except when the clone is
5143          * flattened, already handled that).  So we only need to
5144          * record the parent spec we have not already done so.
5145          */
5146         if (!rbd_dev->parent_spec) {
5147                 parent_spec->pool_id = pool_id;
5148                 parent_spec->image_id = image_id;
5149                 parent_spec->snap_id = snap_id;
5150                 rbd_dev->parent_spec = parent_spec;
5151                 parent_spec = NULL;     /* rbd_dev now owns this */
5152         } else {
5153                 kfree(image_id);
5154         }
5155
5156         /*
5157          * We always update the parent overlap.  If it's zero we issue
5158          * a warning, as we will proceed as if there was no parent.
5159          */
5160         if (!overlap) {
5161                 if (parent_spec) {
5162                         /* refresh, careful to warn just once */
5163                         if (rbd_dev->parent_overlap)
5164                                 rbd_warn(rbd_dev,
5165                                     "clone now standalone (overlap became 0)");
5166                 } else {
5167                         /* initial probe */
5168                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5169                 }
5170         }
5171         rbd_dev->parent_overlap = overlap;
5172
5173 out:
5174         ret = 0;
5175 out_err:
5176         kfree(reply_buf);
5177         rbd_spec_put(parent_spec);
5178
5179         return ret;
5180 }
5181
5182 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5183 {
5184         struct {
5185                 __le64 stripe_unit;
5186                 __le64 stripe_count;
5187         } __attribute__ ((packed)) striping_info_buf = { 0 };
5188         size_t size = sizeof (striping_info_buf);
5189         void *p;
5190         u64 obj_size;
5191         u64 stripe_unit;
5192         u64 stripe_count;
5193         int ret;
5194
5195         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5196                                 "rbd", "get_stripe_unit_count", NULL, 0,
5197                                 (char *)&striping_info_buf, size);
5198         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5199         if (ret < 0)
5200                 return ret;
5201         if (ret < size)
5202                 return -ERANGE;
5203
5204         /*
5205          * We don't actually support the "fancy striping" feature
5206          * (STRIPINGV2) yet, but if the striping sizes are the
5207          * defaults the behavior is the same as before.  So find
5208          * out, and only fail if the image has non-default values.
5209          */
5210         ret = -EINVAL;
5211         obj_size = (u64)1 << rbd_dev->header.obj_order;
5212         p = &striping_info_buf;
5213         stripe_unit = ceph_decode_64(&p);
5214         if (stripe_unit != obj_size) {
5215                 rbd_warn(rbd_dev, "unsupported stripe unit "
5216                                 "(got %llu want %llu)",
5217                                 stripe_unit, obj_size);
5218                 return -EINVAL;
5219         }
5220         stripe_count = ceph_decode_64(&p);
5221         if (stripe_count != 1) {
5222                 rbd_warn(rbd_dev, "unsupported stripe count "
5223                                 "(got %llu want 1)", stripe_count);
5224                 return -EINVAL;
5225         }
5226         rbd_dev->header.stripe_unit = stripe_unit;
5227         rbd_dev->header.stripe_count = stripe_count;
5228
5229         return 0;
5230 }
5231
5232 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5233 {
5234         size_t image_id_size;
5235         char *image_id;
5236         void *p;
5237         void *end;
5238         size_t size;
5239         void *reply_buf = NULL;
5240         size_t len = 0;
5241         char *image_name = NULL;
5242         int ret;
5243
5244         rbd_assert(!rbd_dev->spec->image_name);
5245
5246         len = strlen(rbd_dev->spec->image_id);
5247         image_id_size = sizeof (__le32) + len;
5248         image_id = kmalloc(image_id_size, GFP_KERNEL);
5249         if (!image_id)
5250                 return NULL;
5251
5252         p = image_id;
5253         end = image_id + image_id_size;
5254         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5255
5256         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5257         reply_buf = kmalloc(size, GFP_KERNEL);
5258         if (!reply_buf)
5259                 goto out;
5260
5261         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5262                                 "rbd", "dir_get_name",
5263                                 image_id, image_id_size,
5264                                 reply_buf, size);
5265         if (ret < 0)
5266                 goto out;
5267         p = reply_buf;
5268         end = reply_buf + ret;
5269
5270         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5271         if (IS_ERR(image_name))
5272                 image_name = NULL;
5273         else
5274                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5275 out:
5276         kfree(reply_buf);
5277         kfree(image_id);
5278
5279         return image_name;
5280 }
5281
5282 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5283 {
5284         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5285         const char *snap_name;
5286         u32 which = 0;
5287
5288         /* Skip over names until we find the one we are looking for */
5289
5290         snap_name = rbd_dev->header.snap_names;
5291         while (which < snapc->num_snaps) {
5292                 if (!strcmp(name, snap_name))
5293                         return snapc->snaps[which];
5294                 snap_name += strlen(snap_name) + 1;
5295                 which++;
5296         }
5297         return CEPH_NOSNAP;
5298 }
5299
5300 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5301 {
5302         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5303         u32 which;
5304         bool found = false;
5305         u64 snap_id;
5306
5307         for (which = 0; !found && which < snapc->num_snaps; which++) {
5308                 const char *snap_name;
5309
5310                 snap_id = snapc->snaps[which];
5311                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5312                 if (IS_ERR(snap_name)) {
5313                         /* ignore no-longer existing snapshots */
5314                         if (PTR_ERR(snap_name) == -ENOENT)
5315                                 continue;
5316                         else
5317                                 break;
5318                 }
5319                 found = !strcmp(name, snap_name);
5320                 kfree(snap_name);
5321         }
5322         return found ? snap_id : CEPH_NOSNAP;
5323 }
5324
5325 /*
5326  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5327  * no snapshot by that name is found, or if an error occurs.
5328  */
5329 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5330 {
5331         if (rbd_dev->image_format == 1)
5332                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5333
5334         return rbd_v2_snap_id_by_name(rbd_dev, name);
5335 }
5336
5337 /*
5338  * An image being mapped will have everything but the snap id.
5339  */
5340 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5341 {
5342         struct rbd_spec *spec = rbd_dev->spec;
5343
5344         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5345         rbd_assert(spec->image_id && spec->image_name);
5346         rbd_assert(spec->snap_name);
5347
5348         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5349                 u64 snap_id;
5350
5351                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5352                 if (snap_id == CEPH_NOSNAP)
5353                         return -ENOENT;
5354
5355                 spec->snap_id = snap_id;
5356         } else {
5357                 spec->snap_id = CEPH_NOSNAP;
5358         }
5359
5360         return 0;
5361 }
5362
5363 /*
5364  * A parent image will have all ids but none of the names.
5365  *
5366  * All names in an rbd spec are dynamically allocated.  It's OK if we
5367  * can't figure out the name for an image id.
5368  */
5369 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5370 {
5371         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5372         struct rbd_spec *spec = rbd_dev->spec;
5373         const char *pool_name;
5374         const char *image_name;
5375         const char *snap_name;
5376         int ret;
5377
5378         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5379         rbd_assert(spec->image_id);
5380         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5381
5382         /* Get the pool name; we have to make our own copy of this */
5383
5384         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5385         if (!pool_name) {
5386                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5387                 return -EIO;
5388         }
5389         pool_name = kstrdup(pool_name, GFP_KERNEL);
5390         if (!pool_name)
5391                 return -ENOMEM;
5392
5393         /* Fetch the image name; tolerate failure here */
5394
5395         image_name = rbd_dev_image_name(rbd_dev);
5396         if (!image_name)
5397                 rbd_warn(rbd_dev, "unable to get image name");
5398
5399         /* Fetch the snapshot name */
5400
5401         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5402         if (IS_ERR(snap_name)) {
5403                 ret = PTR_ERR(snap_name);
5404                 goto out_err;
5405         }
5406
5407         spec->pool_name = pool_name;
5408         spec->image_name = image_name;
5409         spec->snap_name = snap_name;
5410
5411         return 0;
5412
5413 out_err:
5414         kfree(image_name);
5415         kfree(pool_name);
5416         return ret;
5417 }
5418
5419 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5420 {
5421         size_t size;
5422         int ret;
5423         void *reply_buf;
5424         void *p;
5425         void *end;
5426         u64 seq;
5427         u32 snap_count;
5428         struct ceph_snap_context *snapc;
5429         u32 i;
5430
5431         /*
5432          * We'll need room for the seq value (maximum snapshot id),
5433          * snapshot count, and array of that many snapshot ids.
5434          * For now we have a fixed upper limit on the number we're
5435          * prepared to receive.
5436          */
5437         size = sizeof (__le64) + sizeof (__le32) +
5438                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5439         reply_buf = kzalloc(size, GFP_KERNEL);
5440         if (!reply_buf)
5441                 return -ENOMEM;
5442
5443         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5444                                 "rbd", "get_snapcontext", NULL, 0,
5445                                 reply_buf, size);
5446         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5447         if (ret < 0)
5448                 goto out;
5449
5450         p = reply_buf;
5451         end = reply_buf + ret;
5452         ret = -ERANGE;
5453         ceph_decode_64_safe(&p, end, seq, out);
5454         ceph_decode_32_safe(&p, end, snap_count, out);
5455
5456         /*
5457          * Make sure the reported number of snapshot ids wouldn't go
5458          * beyond the end of our buffer.  But before checking that,
5459          * make sure the computed size of the snapshot context we
5460          * allocate is representable in a size_t.
5461          */
5462         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5463                                  / sizeof (u64)) {
5464                 ret = -EINVAL;
5465                 goto out;
5466         }
5467         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5468                 goto out;
5469         ret = 0;
5470
5471         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5472         if (!snapc) {
5473                 ret = -ENOMEM;
5474                 goto out;
5475         }
5476         snapc->seq = seq;
5477         for (i = 0; i < snap_count; i++)
5478                 snapc->snaps[i] = ceph_decode_64(&p);
5479
5480         ceph_put_snap_context(rbd_dev->header.snapc);
5481         rbd_dev->header.snapc = snapc;
5482
5483         dout("  snap context seq = %llu, snap_count = %u\n",
5484                 (unsigned long long)seq, (unsigned int)snap_count);
5485 out:
5486         kfree(reply_buf);
5487
5488         return ret;
5489 }
5490
5491 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5492                                         u64 snap_id)
5493 {
5494         size_t size;
5495         void *reply_buf;
5496         __le64 snapid;
5497         int ret;
5498         void *p;
5499         void *end;
5500         char *snap_name;
5501
5502         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5503         reply_buf = kmalloc(size, GFP_KERNEL);
5504         if (!reply_buf)
5505                 return ERR_PTR(-ENOMEM);
5506
5507         snapid = cpu_to_le64(snap_id);
5508         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5509                                 "rbd", "get_snapshot_name",
5510                                 &snapid, sizeof (snapid),
5511                                 reply_buf, size);
5512         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5513         if (ret < 0) {
5514                 snap_name = ERR_PTR(ret);
5515                 goto out;
5516         }
5517
5518         p = reply_buf;
5519         end = reply_buf + ret;
5520         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5521         if (IS_ERR(snap_name))
5522                 goto out;
5523
5524         dout("  snap_id 0x%016llx snap_name = %s\n",
5525                 (unsigned long long)snap_id, snap_name);
5526 out:
5527         kfree(reply_buf);
5528
5529         return snap_name;
5530 }
5531
5532 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5533 {
5534         bool first_time = rbd_dev->header.object_prefix == NULL;
5535         int ret;
5536
5537         ret = rbd_dev_v2_image_size(rbd_dev);
5538         if (ret)
5539                 return ret;
5540
5541         if (first_time) {
5542                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5543                 if (ret)
5544                         return ret;
5545         }
5546
5547         ret = rbd_dev_v2_snap_context(rbd_dev);
5548         if (ret && first_time) {
5549                 kfree(rbd_dev->header.object_prefix);
5550                 rbd_dev->header.object_prefix = NULL;
5551         }
5552
5553         return ret;
5554 }
5555
5556 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5557 {
5558         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5559
5560         if (rbd_dev->image_format == 1)
5561                 return rbd_dev_v1_header_info(rbd_dev);
5562
5563         return rbd_dev_v2_header_info(rbd_dev);
5564 }
5565
5566 /*
5567  * Skips over white space at *buf, and updates *buf to point to the
5568  * first found non-space character (if any). Returns the length of
5569  * the token (string of non-white space characters) found.  Note
5570  * that *buf must be terminated with '\0'.
5571  */
5572 static inline size_t next_token(const char **buf)
5573 {
5574         /*
5575         * These are the characters that produce nonzero for
5576         * isspace() in the "C" and "POSIX" locales.
5577         */
5578         const char *spaces = " \f\n\r\t\v";
5579
5580         *buf += strspn(*buf, spaces);   /* Find start of token */
5581
5582         return strcspn(*buf, spaces);   /* Return token length */
5583 }
5584
5585 /*
5586  * Finds the next token in *buf, dynamically allocates a buffer big
5587  * enough to hold a copy of it, and copies the token into the new
5588  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5589  * that a duplicate buffer is created even for a zero-length token.
5590  *
5591  * Returns a pointer to the newly-allocated duplicate, or a null
5592  * pointer if memory for the duplicate was not available.  If
5593  * the lenp argument is a non-null pointer, the length of the token
5594  * (not including the '\0') is returned in *lenp.
5595  *
5596  * If successful, the *buf pointer will be updated to point beyond
5597  * the end of the found token.
5598  *
5599  * Note: uses GFP_KERNEL for allocation.
5600  */
5601 static inline char *dup_token(const char **buf, size_t *lenp)
5602 {
5603         char *dup;
5604         size_t len;
5605
5606         len = next_token(buf);
5607         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5608         if (!dup)
5609                 return NULL;
5610         *(dup + len) = '\0';
5611         *buf += len;
5612
5613         if (lenp)
5614                 *lenp = len;
5615
5616         return dup;
5617 }
5618
5619 /*
5620  * Parse the options provided for an "rbd add" (i.e., rbd image
5621  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5622  * and the data written is passed here via a NUL-terminated buffer.
5623  * Returns 0 if successful or an error code otherwise.
5624  *
5625  * The information extracted from these options is recorded in
5626  * the other parameters which return dynamically-allocated
5627  * structures:
5628  *  ceph_opts
5629  *      The address of a pointer that will refer to a ceph options
5630  *      structure.  Caller must release the returned pointer using
5631  *      ceph_destroy_options() when it is no longer needed.
5632  *  rbd_opts
5633  *      Address of an rbd options pointer.  Fully initialized by
5634  *      this function; caller must release with kfree().
5635  *  spec
5636  *      Address of an rbd image specification pointer.  Fully
5637  *      initialized by this function based on parsed options.
5638  *      Caller must release with rbd_spec_put().
5639  *
5640  * The options passed take this form:
5641  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5642  * where:
5643  *  <mon_addrs>
5644  *      A comma-separated list of one or more monitor addresses.
5645  *      A monitor address is an ip address, optionally followed
5646  *      by a port number (separated by a colon).
5647  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5648  *  <options>
5649  *      A comma-separated list of ceph and/or rbd options.
5650  *  <pool_name>
5651  *      The name of the rados pool containing the rbd image.
5652  *  <image_name>
5653  *      The name of the image in that pool to map.
5654  *  <snap_id>
5655  *      An optional snapshot id.  If provided, the mapping will
5656  *      present data from the image at the time that snapshot was
5657  *      created.  The image head is used if no snapshot id is
5658  *      provided.  Snapshot mappings are always read-only.
5659  */
5660 static int rbd_add_parse_args(const char *buf,
5661                                 struct ceph_options **ceph_opts,
5662                                 struct rbd_options **opts,
5663                                 struct rbd_spec **rbd_spec)
5664 {
5665         size_t len;
5666         char *options;
5667         const char *mon_addrs;
5668         char *snap_name;
5669         size_t mon_addrs_size;
5670         struct rbd_spec *spec = NULL;
5671         struct rbd_options *rbd_opts = NULL;
5672         struct ceph_options *copts;
5673         int ret;
5674
5675         /* The first four tokens are required */
5676
5677         len = next_token(&buf);
5678         if (!len) {
5679                 rbd_warn(NULL, "no monitor address(es) provided");
5680                 return -EINVAL;
5681         }
5682         mon_addrs = buf;
5683         mon_addrs_size = len + 1;
5684         buf += len;
5685
5686         ret = -EINVAL;
5687         options = dup_token(&buf, NULL);
5688         if (!options)
5689                 return -ENOMEM;
5690         if (!*options) {
5691                 rbd_warn(NULL, "no options provided");
5692                 goto out_err;
5693         }
5694
5695         spec = rbd_spec_alloc();
5696         if (!spec)
5697                 goto out_mem;
5698
5699         spec->pool_name = dup_token(&buf, NULL);
5700         if (!spec->pool_name)
5701                 goto out_mem;
5702         if (!*spec->pool_name) {
5703                 rbd_warn(NULL, "no pool name provided");
5704                 goto out_err;
5705         }
5706
5707         spec->image_name = dup_token(&buf, NULL);
5708         if (!spec->image_name)
5709                 goto out_mem;
5710         if (!*spec->image_name) {
5711                 rbd_warn(NULL, "no image name provided");
5712                 goto out_err;
5713         }
5714
5715         /*
5716          * Snapshot name is optional; default is to use "-"
5717          * (indicating the head/no snapshot).
5718          */
5719         len = next_token(&buf);
5720         if (!len) {
5721                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5722                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5723         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5724                 ret = -ENAMETOOLONG;
5725                 goto out_err;
5726         }
5727         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5728         if (!snap_name)
5729                 goto out_mem;
5730         *(snap_name + len) = '\0';
5731         spec->snap_name = snap_name;
5732
5733         /* Initialize all rbd options to the defaults */
5734
5735         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5736         if (!rbd_opts)
5737                 goto out_mem;
5738
5739         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5740         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5741         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5742
5743         copts = ceph_parse_options(options, mon_addrs,
5744                                         mon_addrs + mon_addrs_size - 1,
5745                                         parse_rbd_opts_token, rbd_opts);
5746         if (IS_ERR(copts)) {
5747                 ret = PTR_ERR(copts);
5748                 goto out_err;
5749         }
5750         kfree(options);
5751
5752         *ceph_opts = copts;
5753         *opts = rbd_opts;
5754         *rbd_spec = spec;
5755
5756         return 0;
5757 out_mem:
5758         ret = -ENOMEM;
5759 out_err:
5760         kfree(rbd_opts);
5761         rbd_spec_put(spec);
5762         kfree(options);
5763
5764         return ret;
5765 }
5766
5767 /*
5768  * Return pool id (>= 0) or a negative error code.
5769  */
5770 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5771 {
5772         struct ceph_options *opts = rbdc->client->options;
5773         u64 newest_epoch;
5774         int tries = 0;
5775         int ret;
5776
5777 again:
5778         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5779         if (ret == -ENOENT && tries++ < 1) {
5780                 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5781                                             &newest_epoch);
5782                 if (ret < 0)
5783                         return ret;
5784
5785                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5786                         ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5787                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5788                                                      newest_epoch,
5789                                                      opts->mount_timeout);
5790                         goto again;
5791                 } else {
5792                         /* the osdmap we have is new enough */
5793                         return -ENOENT;
5794                 }
5795         }
5796
5797         return ret;
5798 }
5799
5800 /*
5801  * An rbd format 2 image has a unique identifier, distinct from the
5802  * name given to it by the user.  Internally, that identifier is
5803  * what's used to specify the names of objects related to the image.
5804  *
5805  * A special "rbd id" object is used to map an rbd image name to its
5806  * id.  If that object doesn't exist, then there is no v2 rbd image
5807  * with the supplied name.
5808  *
5809  * This function will record the given rbd_dev's image_id field if
5810  * it can be determined, and in that case will return 0.  If any
5811  * errors occur a negative errno will be returned and the rbd_dev's
5812  * image_id field will be unchanged (and should be NULL).
5813  */
5814 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5815 {
5816         int ret;
5817         size_t size;
5818         char *object_name;
5819         void *response;
5820         char *image_id;
5821
5822         /*
5823          * When probing a parent image, the image id is already
5824          * known (and the image name likely is not).  There's no
5825          * need to fetch the image id again in this case.  We
5826          * do still need to set the image format though.
5827          */
5828         if (rbd_dev->spec->image_id) {
5829                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5830
5831                 return 0;
5832         }
5833
5834         /*
5835          * First, see if the format 2 image id file exists, and if
5836          * so, get the image's persistent id from it.
5837          */
5838         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5839         object_name = kmalloc(size, GFP_NOIO);
5840         if (!object_name)
5841                 return -ENOMEM;
5842         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5843         dout("rbd id object name is %s\n", object_name);
5844
5845         /* Response will be an encoded string, which includes a length */
5846
5847         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5848         response = kzalloc(size, GFP_NOIO);
5849         if (!response) {
5850                 ret = -ENOMEM;
5851                 goto out;
5852         }
5853
5854         /* If it doesn't exist we'll assume it's a format 1 image */
5855
5856         ret = rbd_obj_method_sync(rbd_dev, object_name,
5857                                 "rbd", "get_id", NULL, 0,
5858                                 response, RBD_IMAGE_ID_LEN_MAX);
5859         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5860         if (ret == -ENOENT) {
5861                 image_id = kstrdup("", GFP_KERNEL);
5862                 ret = image_id ? 0 : -ENOMEM;
5863                 if (!ret)
5864                         rbd_dev->image_format = 1;
5865         } else if (ret >= 0) {
5866                 void *p = response;
5867
5868                 image_id = ceph_extract_encoded_string(&p, p + ret,
5869                                                 NULL, GFP_NOIO);
5870                 ret = PTR_ERR_OR_ZERO(image_id);
5871                 if (!ret)
5872                         rbd_dev->image_format = 2;
5873         }
5874
5875         if (!ret) {
5876                 rbd_dev->spec->image_id = image_id;
5877                 dout("image_id is %s\n", image_id);
5878         }
5879 out:
5880         kfree(response);
5881         kfree(object_name);
5882
5883         return ret;
5884 }
5885
5886 /*
5887  * Undo whatever state changes are made by v1 or v2 header info
5888  * call.
5889  */
5890 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5891 {
5892         struct rbd_image_header *header;
5893
5894         rbd_dev_parent_put(rbd_dev);
5895
5896         /* Free dynamic fields from the header, then zero it out */
5897
5898         header = &rbd_dev->header;
5899         ceph_put_snap_context(header->snapc);
5900         kfree(header->snap_sizes);
5901         kfree(header->snap_names);
5902         kfree(header->object_prefix);
5903         memset(header, 0, sizeof (*header));
5904 }
5905
5906 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5907 {
5908         int ret;
5909
5910         ret = rbd_dev_v2_object_prefix(rbd_dev);
5911         if (ret)
5912                 goto out_err;
5913
5914         /*
5915          * Get the and check features for the image.  Currently the
5916          * features are assumed to never change.
5917          */
5918         ret = rbd_dev_v2_features(rbd_dev);
5919         if (ret)
5920                 goto out_err;
5921
5922         /* If the image supports fancy striping, get its parameters */
5923
5924         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5925                 ret = rbd_dev_v2_striping_info(rbd_dev);
5926                 if (ret < 0)
5927                         goto out_err;
5928         }
5929         /* No support for crypto and compression type format 2 images */
5930
5931         return 0;
5932 out_err:
5933         rbd_dev->header.features = 0;
5934         kfree(rbd_dev->header.object_prefix);
5935         rbd_dev->header.object_prefix = NULL;
5936
5937         return ret;
5938 }
5939
5940 /*
5941  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5942  * rbd_dev_image_probe() recursion depth, which means it's also the
5943  * length of the already discovered part of the parent chain.
5944  */
5945 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5946 {
5947         struct rbd_device *parent = NULL;
5948         int ret;
5949
5950         if (!rbd_dev->parent_spec)
5951                 return 0;
5952
5953         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5954                 pr_info("parent chain is too long (%d)\n", depth);
5955                 ret = -EINVAL;
5956                 goto out_err;
5957         }
5958
5959         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5960         if (!parent) {
5961                 ret = -ENOMEM;
5962                 goto out_err;
5963         }
5964
5965         /*
5966          * Images related by parent/child relationships always share
5967          * rbd_client and spec/parent_spec, so bump their refcounts.
5968          */
5969         __rbd_get_client(rbd_dev->rbd_client);
5970         rbd_spec_get(rbd_dev->parent_spec);
5971
5972         ret = rbd_dev_image_probe(parent, depth);
5973         if (ret < 0)
5974                 goto out_err;
5975
5976         rbd_dev->parent = parent;
5977         atomic_set(&rbd_dev->parent_ref, 1);
5978         return 0;
5979
5980 out_err:
5981         rbd_dev_unparent(rbd_dev);
5982         rbd_dev_destroy(parent);
5983         return ret;
5984 }
5985
5986 /*
5987  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5988  * upon return.
5989  */
5990 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5991 {
5992         int ret;
5993
5994         /* Record our major and minor device numbers. */
5995
5996         if (!single_major) {
5997                 ret = register_blkdev(0, rbd_dev->name);
5998                 if (ret < 0)
5999                         goto err_out_unlock;
6000
6001                 rbd_dev->major = ret;
6002                 rbd_dev->minor = 0;
6003         } else {
6004                 rbd_dev->major = rbd_major;
6005                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6006         }
6007
6008         /* Set up the blkdev mapping. */
6009
6010         ret = rbd_init_disk(rbd_dev);
6011         if (ret)
6012                 goto err_out_blkdev;
6013
6014         ret = rbd_dev_mapping_set(rbd_dev);
6015         if (ret)
6016                 goto err_out_disk;
6017
6018         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6019         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6020
6021         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6022         ret = device_add(&rbd_dev->dev);
6023         if (ret)
6024                 goto err_out_mapping;
6025
6026         /* Everything's ready.  Announce the disk to the world. */
6027
6028         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6029         up_write(&rbd_dev->header_rwsem);
6030
6031         spin_lock(&rbd_dev_list_lock);
6032         list_add_tail(&rbd_dev->node, &rbd_dev_list);
6033         spin_unlock(&rbd_dev_list_lock);
6034
6035         add_disk(rbd_dev->disk);
6036         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6037                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6038                 rbd_dev->header.features);
6039
6040         return ret;
6041
6042 err_out_mapping:
6043         rbd_dev_mapping_clear(rbd_dev);
6044 err_out_disk:
6045         rbd_free_disk(rbd_dev);
6046 err_out_blkdev:
6047         if (!single_major)
6048                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6049 err_out_unlock:
6050         up_write(&rbd_dev->header_rwsem);
6051         return ret;
6052 }
6053
6054 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6055 {
6056         struct rbd_spec *spec = rbd_dev->spec;
6057         int ret;
6058
6059         /* Record the header object name for this rbd image. */
6060
6061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6062
6063         rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6064         if (rbd_dev->image_format == 1)
6065                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6066                                        spec->image_name, RBD_SUFFIX);
6067         else
6068                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6069                                        RBD_HEADER_PREFIX, spec->image_id);
6070
6071         return ret;
6072 }
6073
6074 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6075 {
6076         rbd_dev_unprobe(rbd_dev);
6077         rbd_dev->image_format = 0;
6078         kfree(rbd_dev->spec->image_id);
6079         rbd_dev->spec->image_id = NULL;
6080
6081         rbd_dev_destroy(rbd_dev);
6082 }
6083
6084 /*
6085  * Probe for the existence of the header object for the given rbd
6086  * device.  If this image is the one being mapped (i.e., not a
6087  * parent), initiate a watch on its header object before using that
6088  * object to get detailed information about the rbd image.
6089  */
6090 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6091 {
6092         int ret;
6093
6094         /*
6095          * Get the id from the image id object.  Unless there's an
6096          * error, rbd_dev->spec->image_id will be filled in with
6097          * a dynamically-allocated string, and rbd_dev->image_format
6098          * will be set to either 1 or 2.
6099          */
6100         ret = rbd_dev_image_id(rbd_dev);
6101         if (ret)
6102                 return ret;
6103
6104         ret = rbd_dev_header_name(rbd_dev);
6105         if (ret)
6106                 goto err_out_format;
6107
6108         if (!depth) {
6109                 ret = rbd_register_watch(rbd_dev);
6110                 if (ret) {
6111                         if (ret == -ENOENT)
6112                                 pr_info("image %s/%s does not exist\n",
6113                                         rbd_dev->spec->pool_name,
6114                                         rbd_dev->spec->image_name);
6115                         goto err_out_format;
6116                 }
6117         }
6118
6119         ret = rbd_dev_header_info(rbd_dev);
6120         if (ret)
6121                 goto err_out_watch;
6122
6123         /*
6124          * If this image is the one being mapped, we have pool name and
6125          * id, image name and id, and snap name - need to fill snap id.
6126          * Otherwise this is a parent image, identified by pool, image
6127          * and snap ids - need to fill in names for those ids.
6128          */
6129         if (!depth)
6130                 ret = rbd_spec_fill_snap_id(rbd_dev);
6131         else
6132                 ret = rbd_spec_fill_names(rbd_dev);
6133         if (ret) {
6134                 if (ret == -ENOENT)
6135                         pr_info("snap %s/%s@%s does not exist\n",
6136                                 rbd_dev->spec->pool_name,
6137                                 rbd_dev->spec->image_name,
6138                                 rbd_dev->spec->snap_name);
6139                 goto err_out_probe;
6140         }
6141
6142         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6143                 ret = rbd_dev_v2_parent_info(rbd_dev);
6144                 if (ret)
6145                         goto err_out_probe;
6146
6147                 /*
6148                  * Need to warn users if this image is the one being
6149                  * mapped and has a parent.
6150                  */
6151                 if (!depth && rbd_dev->parent_spec)
6152                         rbd_warn(rbd_dev,
6153                                  "WARNING: kernel layering is EXPERIMENTAL!");
6154         }
6155
6156         ret = rbd_dev_probe_parent(rbd_dev, depth);
6157         if (ret)
6158                 goto err_out_probe;
6159
6160         dout("discovered format %u image, header name is %s\n",
6161                 rbd_dev->image_format, rbd_dev->header_oid.name);
6162         return 0;
6163
6164 err_out_probe:
6165         rbd_dev_unprobe(rbd_dev);
6166 err_out_watch:
6167         if (!depth)
6168                 rbd_unregister_watch(rbd_dev);
6169 err_out_format:
6170         rbd_dev->image_format = 0;
6171         kfree(rbd_dev->spec->image_id);
6172         rbd_dev->spec->image_id = NULL;
6173         return ret;
6174 }
6175
6176 static ssize_t do_rbd_add(struct bus_type *bus,
6177                           const char *buf,
6178                           size_t count)
6179 {
6180         struct rbd_device *rbd_dev = NULL;
6181         struct ceph_options *ceph_opts = NULL;
6182         struct rbd_options *rbd_opts = NULL;
6183         struct rbd_spec *spec = NULL;
6184         struct rbd_client *rbdc;
6185         bool read_only;
6186         int rc;
6187
6188         if (!try_module_get(THIS_MODULE))
6189                 return -ENODEV;
6190
6191         /* parse add command */
6192         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6193         if (rc < 0)
6194                 goto out;
6195
6196         rbdc = rbd_get_client(ceph_opts);
6197         if (IS_ERR(rbdc)) {
6198                 rc = PTR_ERR(rbdc);
6199                 goto err_out_args;
6200         }
6201
6202         /* pick the pool */
6203         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6204         if (rc < 0) {
6205                 if (rc == -ENOENT)
6206                         pr_info("pool %s does not exist\n", spec->pool_name);
6207                 goto err_out_client;
6208         }
6209         spec->pool_id = (u64)rc;
6210
6211         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6212         if (!rbd_dev) {
6213                 rc = -ENOMEM;
6214                 goto err_out_client;
6215         }
6216         rbdc = NULL;            /* rbd_dev now owns this */
6217         spec = NULL;            /* rbd_dev now owns this */
6218         rbd_opts = NULL;        /* rbd_dev now owns this */
6219
6220         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6221         if (!rbd_dev->config_info) {
6222                 rc = -ENOMEM;
6223                 goto err_out_rbd_dev;
6224         }
6225
6226         down_write(&rbd_dev->header_rwsem);
6227         rc = rbd_dev_image_probe(rbd_dev, 0);
6228         if (rc < 0) {
6229                 up_write(&rbd_dev->header_rwsem);
6230                 goto err_out_rbd_dev;
6231         }
6232
6233         /* If we are mapping a snapshot it must be marked read-only */
6234
6235         read_only = rbd_dev->opts->read_only;
6236         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6237                 read_only = true;
6238         rbd_dev->mapping.read_only = read_only;
6239
6240         rc = rbd_dev_device_setup(rbd_dev);
6241         if (rc) {
6242                 /*
6243                  * rbd_unregister_watch() can't be moved into
6244                  * rbd_dev_image_release() without refactoring, see
6245                  * commit 1f3ef78861ac.
6246                  */
6247                 rbd_unregister_watch(rbd_dev);
6248                 rbd_dev_image_release(rbd_dev);
6249                 goto out;
6250         }
6251
6252         rc = count;
6253 out:
6254         module_put(THIS_MODULE);
6255         return rc;
6256
6257 err_out_rbd_dev:
6258         rbd_dev_destroy(rbd_dev);
6259 err_out_client:
6260         rbd_put_client(rbdc);
6261 err_out_args:
6262         rbd_spec_put(spec);
6263         kfree(rbd_opts);
6264         goto out;
6265 }
6266
6267 static ssize_t rbd_add(struct bus_type *bus,
6268                        const char *buf,
6269                        size_t count)
6270 {
6271         if (single_major)
6272                 return -EINVAL;
6273
6274         return do_rbd_add(bus, buf, count);
6275 }
6276
6277 static ssize_t rbd_add_single_major(struct bus_type *bus,
6278                                     const char *buf,
6279                                     size_t count)
6280 {
6281         return do_rbd_add(bus, buf, count);
6282 }
6283
6284 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6285 {
6286         rbd_free_disk(rbd_dev);
6287
6288         spin_lock(&rbd_dev_list_lock);
6289         list_del_init(&rbd_dev->node);
6290         spin_unlock(&rbd_dev_list_lock);
6291
6292         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6293         device_del(&rbd_dev->dev);
6294         rbd_dev_mapping_clear(rbd_dev);
6295         if (!single_major)
6296                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6297 }
6298
6299 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6300 {
6301         while (rbd_dev->parent) {
6302                 struct rbd_device *first = rbd_dev;
6303                 struct rbd_device *second = first->parent;
6304                 struct rbd_device *third;
6305
6306                 /*
6307                  * Follow to the parent with no grandparent and
6308                  * remove it.
6309                  */
6310                 while (second && (third = second->parent)) {
6311                         first = second;
6312                         second = third;
6313                 }
6314                 rbd_assert(second);
6315                 rbd_dev_image_release(second);
6316                 first->parent = NULL;
6317                 first->parent_overlap = 0;
6318
6319                 rbd_assert(first->parent_spec);
6320                 rbd_spec_put(first->parent_spec);
6321                 first->parent_spec = NULL;
6322         }
6323 }
6324
6325 static ssize_t do_rbd_remove(struct bus_type *bus,
6326                              const char *buf,
6327                              size_t count)
6328 {
6329         struct rbd_device *rbd_dev = NULL;
6330         struct list_head *tmp;
6331         int dev_id;
6332         char opt_buf[6];
6333         bool already = false;
6334         bool force = false;
6335         int ret;
6336
6337         dev_id = -1;
6338         opt_buf[0] = '\0';
6339         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6340         if (dev_id < 0) {
6341                 pr_err("dev_id out of range\n");
6342                 return -EINVAL;
6343         }
6344         if (opt_buf[0] != '\0') {
6345                 if (!strcmp(opt_buf, "force")) {
6346                         force = true;
6347                 } else {
6348                         pr_err("bad remove option at '%s'\n", opt_buf);
6349                         return -EINVAL;
6350                 }
6351         }
6352
6353         ret = -ENOENT;
6354         spin_lock(&rbd_dev_list_lock);
6355         list_for_each(tmp, &rbd_dev_list) {
6356                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6357                 if (rbd_dev->dev_id == dev_id) {
6358                         ret = 0;
6359                         break;
6360                 }
6361         }
6362         if (!ret) {
6363                 spin_lock_irq(&rbd_dev->lock);
6364                 if (rbd_dev->open_count && !force)
6365                         ret = -EBUSY;
6366                 else
6367                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6368                                                         &rbd_dev->flags);
6369                 spin_unlock_irq(&rbd_dev->lock);
6370         }
6371         spin_unlock(&rbd_dev_list_lock);
6372         if (ret < 0 || already)
6373                 return ret;
6374
6375         if (force) {
6376                 /*
6377                  * Prevent new IO from being queued and wait for existing
6378                  * IO to complete/fail.
6379                  */
6380                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6381                 blk_set_queue_dying(rbd_dev->disk->queue);
6382         }
6383
6384         down_write(&rbd_dev->lock_rwsem);
6385         if (__rbd_is_lock_owner(rbd_dev))
6386                 rbd_unlock(rbd_dev);
6387         up_write(&rbd_dev->lock_rwsem);
6388         rbd_unregister_watch(rbd_dev);
6389
6390         /*
6391          * Don't free anything from rbd_dev->disk until after all
6392          * notifies are completely processed. Otherwise
6393          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6394          * in a potential use after free of rbd_dev->disk or rbd_dev.
6395          */
6396         rbd_dev_device_release(rbd_dev);
6397         rbd_dev_image_release(rbd_dev);
6398
6399         return count;
6400 }
6401
6402 static ssize_t rbd_remove(struct bus_type *bus,
6403                           const char *buf,
6404                           size_t count)
6405 {
6406         if (single_major)
6407                 return -EINVAL;
6408
6409         return do_rbd_remove(bus, buf, count);
6410 }
6411
6412 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6413                                        const char *buf,
6414                                        size_t count)
6415 {
6416         return do_rbd_remove(bus, buf, count);
6417 }
6418
6419 /*
6420  * create control files in sysfs
6421  * /sys/bus/rbd/...
6422  */
6423 static int rbd_sysfs_init(void)
6424 {
6425         int ret;
6426
6427         ret = device_register(&rbd_root_dev);
6428         if (ret < 0)
6429                 return ret;
6430
6431         ret = bus_register(&rbd_bus_type);
6432         if (ret < 0)
6433                 device_unregister(&rbd_root_dev);
6434
6435         return ret;
6436 }
6437
6438 static void rbd_sysfs_cleanup(void)
6439 {
6440         bus_unregister(&rbd_bus_type);
6441         device_unregister(&rbd_root_dev);
6442 }
6443
6444 static int rbd_slab_init(void)
6445 {
6446         rbd_assert(!rbd_img_request_cache);
6447         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6448         if (!rbd_img_request_cache)
6449                 return -ENOMEM;
6450
6451         rbd_assert(!rbd_obj_request_cache);
6452         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6453         if (!rbd_obj_request_cache)
6454                 goto out_err;
6455
6456         rbd_assert(!rbd_segment_name_cache);
6457         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6458                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6459         if (rbd_segment_name_cache)
6460                 return 0;
6461 out_err:
6462         kmem_cache_destroy(rbd_obj_request_cache);
6463         rbd_obj_request_cache = NULL;
6464
6465         kmem_cache_destroy(rbd_img_request_cache);
6466         rbd_img_request_cache = NULL;
6467
6468         return -ENOMEM;
6469 }
6470
6471 static void rbd_slab_exit(void)
6472 {
6473         rbd_assert(rbd_segment_name_cache);
6474         kmem_cache_destroy(rbd_segment_name_cache);
6475         rbd_segment_name_cache = NULL;
6476
6477         rbd_assert(rbd_obj_request_cache);
6478         kmem_cache_destroy(rbd_obj_request_cache);
6479         rbd_obj_request_cache = NULL;
6480
6481         rbd_assert(rbd_img_request_cache);
6482         kmem_cache_destroy(rbd_img_request_cache);
6483         rbd_img_request_cache = NULL;
6484 }
6485
6486 static int __init rbd_init(void)
6487 {
6488         int rc;
6489
6490         if (!libceph_compatible(NULL)) {
6491                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6492                 return -EINVAL;
6493         }
6494
6495         rc = rbd_slab_init();
6496         if (rc)
6497                 return rc;
6498
6499         /*
6500          * The number of active work items is limited by the number of
6501          * rbd devices * queue depth, so leave @max_active at default.
6502          */
6503         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6504         if (!rbd_wq) {
6505                 rc = -ENOMEM;
6506                 goto err_out_slab;
6507         }
6508
6509         if (single_major) {
6510                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6511                 if (rbd_major < 0) {
6512                         rc = rbd_major;
6513                         goto err_out_wq;
6514                 }
6515         }
6516
6517         rc = rbd_sysfs_init();
6518         if (rc)
6519                 goto err_out_blkdev;
6520
6521         if (single_major)
6522                 pr_info("loaded (major %d)\n", rbd_major);
6523         else
6524                 pr_info("loaded\n");
6525
6526         return 0;
6527
6528 err_out_blkdev:
6529         if (single_major)
6530                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6531 err_out_wq:
6532         destroy_workqueue(rbd_wq);
6533 err_out_slab:
6534         rbd_slab_exit();
6535         return rc;
6536 }
6537
6538 static void __exit rbd_exit(void)
6539 {
6540         ida_destroy(&rbd_dev_id_ida);
6541         rbd_sysfs_cleanup();
6542         if (single_major)
6543                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6544         destroy_workqueue(rbd_wq);
6545         rbd_slab_exit();
6546 }
6547
6548 module_init(rbd_init);
6549 module_exit(rbd_exit);
6550
6551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6554 /* following authorship retained from original osdblk.c */
6555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6556
6557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6558 MODULE_LICENSE("GPL");