Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG       /* Activate rbd_assert() calls */
52
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define SECTOR_SHIFT    9
60 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
61
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70         unsigned int counter;
71
72         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73         if (counter <= (unsigned int)INT_MAX)
74                 return (int)counter;
75
76         atomic_dec(v);
77
78         return -EINVAL;
79 }
80
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84         int counter;
85
86         counter = atomic_dec_return(v);
87         if (counter >= 0)
88                 return counter;
89
90         atomic_inc(v);
91
92         return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR            256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN        16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN   \
104                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME      "-"
109
110 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX    64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX  64
117
118 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
119 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING    (1<<0)
124 #define RBD_FEATURE_STRIPINGV2  (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
127                                  RBD_FEATURE_STRIPINGV2 |       \
128                                  RBD_FEATURE_EXCLUSIVE_LOCK)
129
130 /* Features supported by this (client software) implementation. */
131
132 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
133
134 /*
135  * An RBD device name will be "rbd#", where the "rbd" comes from
136  * RBD_DRV_NAME above, and # is a unique integer identifier.
137  */
138 #define DEV_NAME_LEN            32
139
140 /*
141  * block device image metadata (in-memory version)
142  */
143 struct rbd_image_header {
144         /* These six fields never change for a given rbd image */
145         char *object_prefix;
146         __u8 obj_order;
147         __u8 crypt_type;
148         __u8 comp_type;
149         u64 stripe_unit;
150         u64 stripe_count;
151         u64 features;           /* Might be changeable someday? */
152
153         /* The remaining fields need to be updated occasionally */
154         u64 image_size;
155         struct ceph_snap_context *snapc;
156         char *snap_names;       /* format 1 only */
157         u64 *snap_sizes;        /* format 1 only */
158 };
159
160 /*
161  * An rbd image specification.
162  *
163  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164  * identify an image.  Each rbd_dev structure includes a pointer to
165  * an rbd_spec structure that encapsulates this identity.
166  *
167  * Each of the id's in an rbd_spec has an associated name.  For a
168  * user-mapped image, the names are supplied and the id's associated
169  * with them are looked up.  For a layered image, a parent image is
170  * defined by the tuple, and the names are looked up.
171  *
172  * An rbd_dev structure contains a parent_spec pointer which is
173  * non-null if the image it represents is a child in a layered
174  * image.  This pointer will refer to the rbd_spec structure used
175  * by the parent rbd_dev for its own identity (i.e., the structure
176  * is shared between the parent and child).
177  *
178  * Since these structures are populated once, during the discovery
179  * phase of image construction, they are effectively immutable so
180  * we make no effort to synchronize access to them.
181  *
182  * Note that code herein does not assume the image name is known (it
183  * could be a null pointer).
184  */
185 struct rbd_spec {
186         u64             pool_id;
187         const char      *pool_name;
188
189         const char      *image_id;
190         const char      *image_name;
191
192         u64             snap_id;
193         const char      *snap_name;
194
195         struct kref     kref;
196 };
197
198 /*
199  * an instance of the client.  multiple devices may share an rbd client.
200  */
201 struct rbd_client {
202         struct ceph_client      *client;
203         struct kref             kref;
204         struct list_head        node;
205 };
206
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209
210 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
211
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214
215 enum obj_request_type {
216         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218
219 enum obj_operation_type {
220         OBJ_OP_WRITE,
221         OBJ_OP_READ,
222         OBJ_OP_DISCARD,
223 };
224
225 enum obj_req_flags {
226         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
227         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
228         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
229         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
230 };
231
232 struct rbd_obj_request {
233         const char              *object_name;
234         u64                     offset;         /* object start byte */
235         u64                     length;         /* bytes from offset */
236         unsigned long           flags;
237
238         /*
239          * An object request associated with an image will have its
240          * img_data flag set; a standalone object request will not.
241          *
242          * A standalone object request will have which == BAD_WHICH
243          * and a null obj_request pointer.
244          *
245          * An object request initiated in support of a layered image
246          * object (to check for its existence before a write) will
247          * have which == BAD_WHICH and a non-null obj_request pointer.
248          *
249          * Finally, an object request for rbd image data will have
250          * which != BAD_WHICH, and will have a non-null img_request
251          * pointer.  The value of which will be in the range
252          * 0..(img_request->obj_request_count-1).
253          */
254         union {
255                 struct rbd_obj_request  *obj_request;   /* STAT op */
256                 struct {
257                         struct rbd_img_request  *img_request;
258                         u64                     img_offset;
259                         /* links for img_request->obj_requests list */
260                         struct list_head        links;
261                 };
262         };
263         u32                     which;          /* posn image request list */
264
265         enum obj_request_type   type;
266         union {
267                 struct bio      *bio_list;
268                 struct {
269                         struct page     **pages;
270                         u32             page_count;
271                 };
272         };
273         struct page             **copyup_pages;
274         u32                     copyup_page_count;
275
276         struct ceph_osd_request *osd_req;
277
278         u64                     xferred;        /* bytes transferred */
279         int                     result;
280
281         rbd_obj_callback_t      callback;
282         struct completion       completion;
283
284         struct kref             kref;
285 };
286
287 enum img_req_flags {
288         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
289         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
290         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
291         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
292 };
293
294 struct rbd_img_request {
295         struct rbd_device       *rbd_dev;
296         u64                     offset; /* starting image byte offset */
297         u64                     length; /* byte count from offset */
298         unsigned long           flags;
299         union {
300                 u64                     snap_id;        /* for reads */
301                 struct ceph_snap_context *snapc;        /* for writes */
302         };
303         union {
304                 struct request          *rq;            /* block request */
305                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
306         };
307         struct page             **copyup_pages;
308         u32                     copyup_page_count;
309         spinlock_t              completion_lock;/* protects next_completion */
310         u32                     next_completion;
311         rbd_img_callback_t      callback;
312         u64                     xferred;/* aggregate bytes transferred */
313         int                     result; /* first nonzero obj_request result */
314
315         u32                     obj_request_count;
316         struct list_head        obj_requests;   /* rbd_obj_request structs */
317
318         struct kref             kref;
319 };
320
321 #define for_each_obj_request(ireq, oreq) \
322         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327
328 enum rbd_watch_state {
329         RBD_WATCH_STATE_UNREGISTERED,
330         RBD_WATCH_STATE_REGISTERED,
331         RBD_WATCH_STATE_ERROR,
332 };
333
334 enum rbd_lock_state {
335         RBD_LOCK_STATE_UNLOCKED,
336         RBD_LOCK_STATE_LOCKED,
337         RBD_LOCK_STATE_RELEASING,
338 };
339
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342         u64 gid;
343         u64 handle;
344 };
345
346 struct rbd_mapping {
347         u64                     size;
348         u64                     features;
349         bool                    read_only;
350 };
351
352 /*
353  * a single device
354  */
355 struct rbd_device {
356         int                     dev_id;         /* blkdev unique id */
357
358         int                     major;          /* blkdev assigned major */
359         int                     minor;
360         struct gendisk          *disk;          /* blkdev's gendisk and rq */
361
362         u32                     image_format;   /* Either 1 or 2 */
363         struct rbd_client       *rbd_client;
364
365         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366
367         spinlock_t              lock;           /* queue, flags, open_count */
368
369         struct rbd_image_header header;
370         unsigned long           flags;          /* possibly lock protected */
371         struct rbd_spec         *spec;
372         struct rbd_options      *opts;
373         char                    *config_info;   /* add{,_single_major} string */
374
375         struct ceph_object_id   header_oid;
376         struct ceph_object_locator header_oloc;
377
378         struct ceph_file_layout layout;         /* used for all rbd requests */
379
380         struct mutex            watch_mutex;
381         enum rbd_watch_state    watch_state;
382         struct ceph_osd_linger_request *watch_handle;
383         u64                     watch_cookie;
384         struct delayed_work     watch_dwork;
385
386         struct rw_semaphore     lock_rwsem;
387         enum rbd_lock_state     lock_state;
388         struct rbd_client_id    owner_cid;
389         struct work_struct      acquired_lock_work;
390         struct work_struct      released_lock_work;
391         struct delayed_work     lock_dwork;
392         struct work_struct      unlock_work;
393         wait_queue_head_t       lock_waitq;
394
395         struct workqueue_struct *task_wq;
396
397         struct rbd_spec         *parent_spec;
398         u64                     parent_overlap;
399         atomic_t                parent_ref;
400         struct rbd_device       *parent;
401
402         /* Block layer tags. */
403         struct blk_mq_tag_set   tag_set;
404
405         /* protects updating the header */
406         struct rw_semaphore     header_rwsem;
407
408         struct rbd_mapping      mapping;
409
410         struct list_head        node;
411
412         /* sysfs related */
413         struct device           dev;
414         unsigned long           open_count;     /* protected by lock */
415 };
416
417 /*
418  * Flag bits for rbd_dev->flags:
419  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
420  *   by rbd_dev->lock
421  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
422  */
423 enum rbd_dev_flags {
424         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
425         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
426         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
427 };
428
429 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
430
431 static LIST_HEAD(rbd_dev_list);    /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433
434 static LIST_HEAD(rbd_client_list);              /* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436
437 /* Slab caches for frequently-allocated structures */
438
439 static struct kmem_cache        *rbd_img_request_cache;
440 static struct kmem_cache        *rbd_obj_request_cache;
441 static struct kmem_cache        *rbd_segment_name_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449  * Default to false for now, as single-major requires >= 0.75 version of
450  * userspace rbd utility.
451  */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459                        size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461                           size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463                                     size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465                                        size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481         return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482                rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483                !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494         bool is_lock_owner;
495
496         down_read(&rbd_dev->lock_rwsem);
497         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498         up_read(&rbd_dev->lock_rwsem);
499         return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508         &bus_attr_add.attr,
509         &bus_attr_remove.attr,
510         &bus_attr_add_single_major.attr,
511         &bus_attr_remove_single_major.attr,
512         NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516                                   struct attribute *attr, int index)
517 {
518         if (!single_major &&
519             (attr == &bus_attr_add_single_major.attr ||
520              attr == &bus_attr_remove_single_major.attr))
521                 return 0;
522
523         return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527         .attrs = rbd_bus_attrs,
528         .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533         .name           = "rbd",
534         .bus_groups     = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542         .init_name =    "rbd",
543         .release =      rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549         struct va_format vaf;
550         va_list args;
551
552         va_start(args, fmt);
553         vaf.fmt = fmt;
554         vaf.va = &args;
555
556         if (!rbd_dev)
557                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558         else if (rbd_dev->disk)
559                 printk(KERN_WARNING "%s: %s: %pV\n",
560                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561         else if (rbd_dev->spec && rbd_dev->spec->image_name)
562                 printk(KERN_WARNING "%s: image %s: %pV\n",
563                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564         else if (rbd_dev->spec && rbd_dev->spec->image_id)
565                 printk(KERN_WARNING "%s: id %s: %pV\n",
566                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567         else    /* punt */
568                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569                         RBD_DRV_NAME, rbd_dev, &vaf);
570         va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr)                                                \
575                 if (unlikely(!(expr))) {                                \
576                         printk(KERN_ERR "\nAssertion failure in %s() "  \
577                                                 "at line %d:\n\n"       \
578                                         "\trbd_assert(%s);\n\n",        \
579                                         __func__, __LINE__, #expr);     \
580                         BUG();                                          \
581                 }
582 #else /* !RBD_DEBUG */
583 #  define rbd_assert(expr)      ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596                                         u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598                                 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600                 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605         bool removing = false;
606
607         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608                 return -EROFS;
609
610         spin_lock_irq(&rbd_dev->lock);
611         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612                 removing = true;
613         else
614                 rbd_dev->open_count++;
615         spin_unlock_irq(&rbd_dev->lock);
616         if (removing)
617                 return -ENOENT;
618
619         (void) get_device(&rbd_dev->dev);
620
621         return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626         struct rbd_device *rbd_dev = disk->private_data;
627         unsigned long open_count_before;
628
629         spin_lock_irq(&rbd_dev->lock);
630         open_count_before = rbd_dev->open_count--;
631         spin_unlock_irq(&rbd_dev->lock);
632         rbd_assert(open_count_before > 0);
633
634         put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639         int ret = 0;
640         int val;
641         bool ro;
642         bool ro_changed = false;
643
644         /* get_user() may sleep, so call it before taking rbd_dev->lock */
645         if (get_user(val, (int __user *)(arg)))
646                 return -EFAULT;
647
648         ro = val ? true : false;
649         /* Snapshot doesn't allow to write*/
650         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651                 return -EROFS;
652
653         spin_lock_irq(&rbd_dev->lock);
654         /* prevent others open this device */
655         if (rbd_dev->open_count > 1) {
656                 ret = -EBUSY;
657                 goto out;
658         }
659
660         if (rbd_dev->mapping.read_only != ro) {
661                 rbd_dev->mapping.read_only = ro;
662                 ro_changed = true;
663         }
664
665 out:
666         spin_unlock_irq(&rbd_dev->lock);
667         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668         if (ret == 0 && ro_changed)
669                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671         return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675                         unsigned int cmd, unsigned long arg)
676 {
677         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678         int ret = 0;
679
680         switch (cmd) {
681         case BLKROSET:
682                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683                 break;
684         default:
685                 ret = -ENOTTY;
686         }
687
688         return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693                                 unsigned int cmd, unsigned long arg)
694 {
695         return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700         .owner                  = THIS_MODULE,
701         .open                   = rbd_open,
702         .release                = rbd_release,
703         .ioctl                  = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705         .compat_ioctl           = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710  * Initialize an rbd client instance.  Success or not, this function
711  * consumes ceph_opts.  Caller holds client_mutex.
712  */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715         struct rbd_client *rbdc;
716         int ret = -ENOMEM;
717
718         dout("%s:\n", __func__);
719         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720         if (!rbdc)
721                 goto out_opt;
722
723         kref_init(&rbdc->kref);
724         INIT_LIST_HEAD(&rbdc->node);
725
726         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727         if (IS_ERR(rbdc->client))
728                 goto out_rbdc;
729         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731         ret = ceph_open_session(rbdc->client);
732         if (ret < 0)
733                 goto out_client;
734
735         spin_lock(&rbd_client_list_lock);
736         list_add_tail(&rbdc->node, &rbd_client_list);
737         spin_unlock(&rbd_client_list_lock);
738
739         dout("%s: rbdc %p\n", __func__, rbdc);
740
741         return rbdc;
742 out_client:
743         ceph_destroy_client(rbdc->client);
744 out_rbdc:
745         kfree(rbdc);
746 out_opt:
747         if (ceph_opts)
748                 ceph_destroy_options(ceph_opts);
749         dout("%s: error %d\n", __func__, ret);
750
751         return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756         kref_get(&rbdc->kref);
757
758         return rbdc;
759 }
760
761 /*
762  * Find a ceph client with specific addr and configuration.  If
763  * found, bump its reference count.
764  */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767         struct rbd_client *client_node;
768         bool found = false;
769
770         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771                 return NULL;
772
773         spin_lock(&rbd_client_list_lock);
774         list_for_each_entry(client_node, &rbd_client_list, node) {
775                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776                         __rbd_get_client(client_node);
777
778                         found = true;
779                         break;
780                 }
781         }
782         spin_unlock(&rbd_client_list_lock);
783
784         return found ? client_node : NULL;
785 }
786
787 /*
788  * (Per device) rbd map options
789  */
790 enum {
791         Opt_queue_depth,
792         Opt_last_int,
793         /* int args above */
794         Opt_last_string,
795         /* string args above */
796         Opt_read_only,
797         Opt_read_write,
798         Opt_lock_on_read,
799         Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803         {Opt_queue_depth, "queue_depth=%d"},
804         /* int args above */
805         /* string args above */
806         {Opt_read_only, "read_only"},
807         {Opt_read_only, "ro"},          /* Alternate spelling */
808         {Opt_read_write, "read_write"},
809         {Opt_read_write, "rw"},         /* Alternate spelling */
810         {Opt_lock_on_read, "lock_on_read"},
811         {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815         int     queue_depth;
816         bool    read_only;
817         bool    lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT   false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826         struct rbd_options *rbd_opts = private;
827         substring_t argstr[MAX_OPT_ARGS];
828         int token, intval, ret;
829
830         token = match_token(c, rbd_opts_tokens, argstr);
831         if (token < Opt_last_int) {
832                 ret = match_int(&argstr[0], &intval);
833                 if (ret < 0) {
834                         pr_err("bad mount option arg (not int) at '%s'\n", c);
835                         return ret;
836                 }
837                 dout("got int token %d val %d\n", token, intval);
838         } else if (token > Opt_last_int && token < Opt_last_string) {
839                 dout("got string token %d val %s\n", token, argstr[0].from);
840         } else {
841                 dout("got token %d\n", token);
842         }
843
844         switch (token) {
845         case Opt_queue_depth:
846                 if (intval < 1) {
847                         pr_err("queue_depth out of range\n");
848                         return -EINVAL;
849                 }
850                 rbd_opts->queue_depth = intval;
851                 break;
852         case Opt_read_only:
853                 rbd_opts->read_only = true;
854                 break;
855         case Opt_read_write:
856                 rbd_opts->read_only = false;
857                 break;
858         case Opt_lock_on_read:
859                 rbd_opts->lock_on_read = true;
860                 break;
861         default:
862                 /* libceph prints "bad option" msg */
863                 return -EINVAL;
864         }
865
866         return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871         switch (op_type) {
872         case OBJ_OP_READ:
873                 return "read";
874         case OBJ_OP_WRITE:
875                 return "write";
876         case OBJ_OP_DISCARD:
877                 return "discard";
878         default:
879                 return "???";
880         }
881 }
882
883 /*
884  * Get a ceph client with specific addr and configuration, if one does
885  * not exist create it.  Either way, ceph_opts is consumed by this
886  * function.
887  */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890         struct rbd_client *rbdc;
891
892         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893         rbdc = rbd_client_find(ceph_opts);
894         if (rbdc)       /* using an existing client */
895                 ceph_destroy_options(ceph_opts);
896         else
897                 rbdc = rbd_client_create(ceph_opts);
898         mutex_unlock(&client_mutex);
899
900         return rbdc;
901 }
902
903 /*
904  * Destroy ceph client
905  *
906  * Caller must hold rbd_client_list_lock.
907  */
908 static void rbd_client_release(struct kref *kref)
909 {
910         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912         dout("%s: rbdc %p\n", __func__, rbdc);
913         spin_lock(&rbd_client_list_lock);
914         list_del(&rbdc->node);
915         spin_unlock(&rbd_client_list_lock);
916
917         ceph_destroy_client(rbdc->client);
918         kfree(rbdc);
919 }
920
921 /*
922  * Drop reference to ceph client node. If it's not referenced anymore, release
923  * it.
924  */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927         if (rbdc)
928                 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933         return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938         size_t size;
939         u32 snap_count;
940
941         /* The header has to start with the magic rbd header text */
942         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943                 return false;
944
945         /* The bio layer requires at least sector-sized I/O */
946
947         if (ondisk->options.order < SECTOR_SHIFT)
948                 return false;
949
950         /* If we use u64 in a few spots we may be able to loosen this */
951
952         if (ondisk->options.order > 8 * sizeof (int) - 1)
953                 return false;
954
955         /*
956          * The size of a snapshot header has to fit in a size_t, and
957          * that limits the number of snapshots.
958          */
959         snap_count = le32_to_cpu(ondisk->snap_count);
960         size = SIZE_MAX - sizeof (struct ceph_snap_context);
961         if (snap_count > size / sizeof (__le64))
962                 return false;
963
964         /*
965          * Not only that, but the size of the entire the snapshot
966          * header must also be representable in a size_t.
967          */
968         size -= snap_count * sizeof (__le64);
969         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970                 return false;
971
972         return true;
973 }
974
975 /*
976  * Fill an rbd image header with information from the given format 1
977  * on-disk header.
978  */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980                                  struct rbd_image_header_ondisk *ondisk)
981 {
982         struct rbd_image_header *header = &rbd_dev->header;
983         bool first_time = header->object_prefix == NULL;
984         struct ceph_snap_context *snapc;
985         char *object_prefix = NULL;
986         char *snap_names = NULL;
987         u64 *snap_sizes = NULL;
988         u32 snap_count;
989         int ret = -ENOMEM;
990         u32 i;
991
992         /* Allocate this now to avoid having to handle failure below */
993
994         if (first_time) {
995                 size_t len;
996
997                 len = strnlen(ondisk->object_prefix,
998                                 sizeof (ondisk->object_prefix));
999                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
1000                 if (!object_prefix)
1001                         return -ENOMEM;
1002                 memcpy(object_prefix, ondisk->object_prefix, len);
1003                 object_prefix[len] = '\0';
1004         }
1005
1006         /* Allocate the snapshot context and fill it in */
1007
1008         snap_count = le32_to_cpu(ondisk->snap_count);
1009         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010         if (!snapc)
1011                 goto out_err;
1012         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013         if (snap_count) {
1014                 struct rbd_image_snap_ondisk *snaps;
1015                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016
1017                 /* We'll keep a copy of the snapshot names... */
1018
1019                 if (snap_names_len > (u64)SIZE_MAX)
1020                         goto out_2big;
1021                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022                 if (!snap_names)
1023                         goto out_err;
1024
1025                 /* ...as well as the array of their sizes. */
1026                 snap_sizes = kmalloc_array(snap_count,
1027                                            sizeof(*header->snap_sizes),
1028                                            GFP_KERNEL);
1029                 if (!snap_sizes)
1030                         goto out_err;
1031
1032                 /*
1033                  * Copy the names, and fill in each snapshot's id
1034                  * and size.
1035                  *
1036                  * Note that rbd_dev_v1_header_info() guarantees the
1037                  * ondisk buffer we're working with has
1038                  * snap_names_len bytes beyond the end of the
1039                  * snapshot id array, this memcpy() is safe.
1040                  */
1041                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042                 snaps = ondisk->snaps;
1043                 for (i = 0; i < snap_count; i++) {
1044                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046                 }
1047         }
1048
1049         /* We won't fail any more, fill in the header */
1050
1051         if (first_time) {
1052                 header->object_prefix = object_prefix;
1053                 header->obj_order = ondisk->options.order;
1054                 header->crypt_type = ondisk->options.crypt_type;
1055                 header->comp_type = ondisk->options.comp_type;
1056                 /* The rest aren't used for format 1 images */
1057                 header->stripe_unit = 0;
1058                 header->stripe_count = 0;
1059                 header->features = 0;
1060         } else {
1061                 ceph_put_snap_context(header->snapc);
1062                 kfree(header->snap_names);
1063                 kfree(header->snap_sizes);
1064         }
1065
1066         /* The remaining fields always get updated (when we refresh) */
1067
1068         header->image_size = le64_to_cpu(ondisk->image_size);
1069         header->snapc = snapc;
1070         header->snap_names = snap_names;
1071         header->snap_sizes = snap_sizes;
1072
1073         return 0;
1074 out_2big:
1075         ret = -EIO;
1076 out_err:
1077         kfree(snap_sizes);
1078         kfree(snap_names);
1079         ceph_put_snap_context(snapc);
1080         kfree(object_prefix);
1081
1082         return ret;
1083 }
1084
1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086 {
1087         const char *snap_name;
1088
1089         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090
1091         /* Skip over names until we find the one we are looking for */
1092
1093         snap_name = rbd_dev->header.snap_names;
1094         while (which--)
1095                 snap_name += strlen(snap_name) + 1;
1096
1097         return kstrdup(snap_name, GFP_KERNEL);
1098 }
1099
1100 /*
1101  * Snapshot id comparison function for use with qsort()/bsearch().
1102  * Note that result is for snapshots in *descending* order.
1103  */
1104 static int snapid_compare_reverse(const void *s1, const void *s2)
1105 {
1106         u64 snap_id1 = *(u64 *)s1;
1107         u64 snap_id2 = *(u64 *)s2;
1108
1109         if (snap_id1 < snap_id2)
1110                 return 1;
1111         return snap_id1 == snap_id2 ? 0 : -1;
1112 }
1113
1114 /*
1115  * Search a snapshot context to see if the given snapshot id is
1116  * present.
1117  *
1118  * Returns the position of the snapshot id in the array if it's found,
1119  * or BAD_SNAP_INDEX otherwise.
1120  *
1121  * Note: The snapshot array is in kept sorted (by the osd) in
1122  * reverse order, highest snapshot id first.
1123  */
1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125 {
1126         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127         u64 *found;
1128
1129         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130                                 sizeof (snap_id), snapid_compare_reverse);
1131
1132         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133 }
1134
1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136                                         u64 snap_id)
1137 {
1138         u32 which;
1139         const char *snap_name;
1140
1141         which = rbd_dev_snap_index(rbd_dev, snap_id);
1142         if (which == BAD_SNAP_INDEX)
1143                 return ERR_PTR(-ENOENT);
1144
1145         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147 }
1148
1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150 {
1151         if (snap_id == CEPH_NOSNAP)
1152                 return RBD_SNAP_HEAD_NAME;
1153
1154         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155         if (rbd_dev->image_format == 1)
1156                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157
1158         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159 }
1160
1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162                                 u64 *snap_size)
1163 {
1164         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165         if (snap_id == CEPH_NOSNAP) {
1166                 *snap_size = rbd_dev->header.image_size;
1167         } else if (rbd_dev->image_format == 1) {
1168                 u32 which;
1169
1170                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1171                 if (which == BAD_SNAP_INDEX)
1172                         return -ENOENT;
1173
1174                 *snap_size = rbd_dev->header.snap_sizes[which];
1175         } else {
1176                 u64 size = 0;
1177                 int ret;
1178
1179                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180                 if (ret)
1181                         return ret;
1182
1183                 *snap_size = size;
1184         }
1185         return 0;
1186 }
1187
1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189                         u64 *snap_features)
1190 {
1191         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192         if (snap_id == CEPH_NOSNAP) {
1193                 *snap_features = rbd_dev->header.features;
1194         } else if (rbd_dev->image_format == 1) {
1195                 *snap_features = 0;     /* No features for format 1 */
1196         } else {
1197                 u64 features = 0;
1198                 int ret;
1199
1200                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201                 if (ret)
1202                         return ret;
1203
1204                 *snap_features = features;
1205         }
1206         return 0;
1207 }
1208
1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210 {
1211         u64 snap_id = rbd_dev->spec->snap_id;
1212         u64 size = 0;
1213         u64 features = 0;
1214         int ret;
1215
1216         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217         if (ret)
1218                 return ret;
1219         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220         if (ret)
1221                 return ret;
1222
1223         rbd_dev->mapping.size = size;
1224         rbd_dev->mapping.features = features;
1225
1226         return 0;
1227 }
1228
1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230 {
1231         rbd_dev->mapping.size = 0;
1232         rbd_dev->mapping.features = 0;
1233 }
1234
1235 static void rbd_segment_name_free(const char *name)
1236 {
1237         /* The explicit cast here is needed to drop the const qualifier */
1238
1239         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1240 }
1241
1242 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1243 {
1244         char *name;
1245         u64 segment;
1246         int ret;
1247         char *name_format;
1248
1249         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1250         if (!name)
1251                 return NULL;
1252         segment = offset >> rbd_dev->header.obj_order;
1253         name_format = "%s.%012llx";
1254         if (rbd_dev->image_format == 2)
1255                 name_format = "%s.%016llx";
1256         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1257                         rbd_dev->header.object_prefix, segment);
1258         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1259                 pr_err("error formatting segment name for #%llu (%d)\n",
1260                         segment, ret);
1261                 rbd_segment_name_free(name);
1262                 name = NULL;
1263         }
1264
1265         return name;
1266 }
1267
1268 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1269 {
1270         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1271
1272         return offset & (segment_size - 1);
1273 }
1274
1275 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1276                                 u64 offset, u64 length)
1277 {
1278         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1279
1280         offset &= segment_size - 1;
1281
1282         rbd_assert(length <= U64_MAX - offset);
1283         if (offset + length > segment_size)
1284                 length = segment_size - offset;
1285
1286         return length;
1287 }
1288
1289 /*
1290  * returns the size of an object in the image
1291  */
1292 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1293 {
1294         return 1 << header->obj_order;
1295 }
1296
1297 /*
1298  * bio helpers
1299  */
1300
1301 static void bio_chain_put(struct bio *chain)
1302 {
1303         struct bio *tmp;
1304
1305         while (chain) {
1306                 tmp = chain;
1307                 chain = chain->bi_next;
1308                 bio_put(tmp);
1309         }
1310 }
1311
1312 /*
1313  * zeros a bio chain, starting at specific offset
1314  */
1315 static void zero_bio_chain(struct bio *chain, int start_ofs)
1316 {
1317         struct bio_vec bv;
1318         struct bvec_iter iter;
1319         unsigned long flags;
1320         void *buf;
1321         int pos = 0;
1322
1323         while (chain) {
1324                 bio_for_each_segment(bv, chain, iter) {
1325                         if (pos + bv.bv_len > start_ofs) {
1326                                 int remainder = max(start_ofs - pos, 0);
1327                                 buf = bvec_kmap_irq(&bv, &flags);
1328                                 memset(buf + remainder, 0,
1329                                        bv.bv_len - remainder);
1330                                 flush_dcache_page(bv.bv_page);
1331                                 bvec_kunmap_irq(buf, &flags);
1332                         }
1333                         pos += bv.bv_len;
1334                 }
1335
1336                 chain = chain->bi_next;
1337         }
1338 }
1339
1340 /*
1341  * similar to zero_bio_chain(), zeros data defined by a page array,
1342  * starting at the given byte offset from the start of the array and
1343  * continuing up to the given end offset.  The pages array is
1344  * assumed to be big enough to hold all bytes up to the end.
1345  */
1346 static void zero_pages(struct page **pages, u64 offset, u64 end)
1347 {
1348         struct page **page = &pages[offset >> PAGE_SHIFT];
1349
1350         rbd_assert(end > offset);
1351         rbd_assert(end - offset <= (u64)SIZE_MAX);
1352         while (offset < end) {
1353                 size_t page_offset;
1354                 size_t length;
1355                 unsigned long flags;
1356                 void *kaddr;
1357
1358                 page_offset = offset & ~PAGE_MASK;
1359                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1360                 local_irq_save(flags);
1361                 kaddr = kmap_atomic(*page);
1362                 memset(kaddr + page_offset, 0, length);
1363                 flush_dcache_page(*page);
1364                 kunmap_atomic(kaddr);
1365                 local_irq_restore(flags);
1366
1367                 offset += length;
1368                 page++;
1369         }
1370 }
1371
1372 /*
1373  * Clone a portion of a bio, starting at the given byte offset
1374  * and continuing for the number of bytes indicated.
1375  */
1376 static struct bio *bio_clone_range(struct bio *bio_src,
1377                                         unsigned int offset,
1378                                         unsigned int len,
1379                                         gfp_t gfpmask)
1380 {
1381         struct bio *bio;
1382
1383         bio = bio_clone(bio_src, gfpmask);
1384         if (!bio)
1385                 return NULL;    /* ENOMEM */
1386
1387         bio_advance(bio, offset);
1388         bio->bi_iter.bi_size = len;
1389
1390         return bio;
1391 }
1392
1393 /*
1394  * Clone a portion of a bio chain, starting at the given byte offset
1395  * into the first bio in the source chain and continuing for the
1396  * number of bytes indicated.  The result is another bio chain of
1397  * exactly the given length, or a null pointer on error.
1398  *
1399  * The bio_src and offset parameters are both in-out.  On entry they
1400  * refer to the first source bio and the offset into that bio where
1401  * the start of data to be cloned is located.
1402  *
1403  * On return, bio_src is updated to refer to the bio in the source
1404  * chain that contains first un-cloned byte, and *offset will
1405  * contain the offset of that byte within that bio.
1406  */
1407 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1408                                         unsigned int *offset,
1409                                         unsigned int len,
1410                                         gfp_t gfpmask)
1411 {
1412         struct bio *bi = *bio_src;
1413         unsigned int off = *offset;
1414         struct bio *chain = NULL;
1415         struct bio **end;
1416
1417         /* Build up a chain of clone bios up to the limit */
1418
1419         if (!bi || off >= bi->bi_iter.bi_size || !len)
1420                 return NULL;            /* Nothing to clone */
1421
1422         end = &chain;
1423         while (len) {
1424                 unsigned int bi_size;
1425                 struct bio *bio;
1426
1427                 if (!bi) {
1428                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1429                         goto out_err;   /* EINVAL; ran out of bio's */
1430                 }
1431                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1432                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1433                 if (!bio)
1434                         goto out_err;   /* ENOMEM */
1435
1436                 *end = bio;
1437                 end = &bio->bi_next;
1438
1439                 off += bi_size;
1440                 if (off == bi->bi_iter.bi_size) {
1441                         bi = bi->bi_next;
1442                         off = 0;
1443                 }
1444                 len -= bi_size;
1445         }
1446         *bio_src = bi;
1447         *offset = off;
1448
1449         return chain;
1450 out_err:
1451         bio_chain_put(chain);
1452
1453         return NULL;
1454 }
1455
1456 /*
1457  * The default/initial value for all object request flags is 0.  For
1458  * each flag, once its value is set to 1 it is never reset to 0
1459  * again.
1460  */
1461 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1462 {
1463         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1464                 struct rbd_device *rbd_dev;
1465
1466                 rbd_dev = obj_request->img_request->rbd_dev;
1467                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1468                         obj_request);
1469         }
1470 }
1471
1472 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1473 {
1474         smp_mb();
1475         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1476 }
1477
1478 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1479 {
1480         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1481                 struct rbd_device *rbd_dev = NULL;
1482
1483                 if (obj_request_img_data_test(obj_request))
1484                         rbd_dev = obj_request->img_request->rbd_dev;
1485                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1486                         obj_request);
1487         }
1488 }
1489
1490 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1491 {
1492         smp_mb();
1493         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1494 }
1495
1496 /*
1497  * This sets the KNOWN flag after (possibly) setting the EXISTS
1498  * flag.  The latter is set based on the "exists" value provided.
1499  *
1500  * Note that for our purposes once an object exists it never goes
1501  * away again.  It's possible that the response from two existence
1502  * checks are separated by the creation of the target object, and
1503  * the first ("doesn't exist") response arrives *after* the second
1504  * ("does exist").  In that case we ignore the second one.
1505  */
1506 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1507                                 bool exists)
1508 {
1509         if (exists)
1510                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1511         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1512         smp_mb();
1513 }
1514
1515 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1516 {
1517         smp_mb();
1518         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1519 }
1520
1521 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1522 {
1523         smp_mb();
1524         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1525 }
1526
1527 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1528 {
1529         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1530
1531         return obj_request->img_offset <
1532             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1533 }
1534
1535 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1536 {
1537         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1538                 atomic_read(&obj_request->kref.refcount));
1539         kref_get(&obj_request->kref);
1540 }
1541
1542 static void rbd_obj_request_destroy(struct kref *kref);
1543 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1544 {
1545         rbd_assert(obj_request != NULL);
1546         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1547                 atomic_read(&obj_request->kref.refcount));
1548         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1549 }
1550
1551 static void rbd_img_request_get(struct rbd_img_request *img_request)
1552 {
1553         dout("%s: img %p (was %d)\n", __func__, img_request,
1554              atomic_read(&img_request->kref.refcount));
1555         kref_get(&img_request->kref);
1556 }
1557
1558 static bool img_request_child_test(struct rbd_img_request *img_request);
1559 static void rbd_parent_request_destroy(struct kref *kref);
1560 static void rbd_img_request_destroy(struct kref *kref);
1561 static void rbd_img_request_put(struct rbd_img_request *img_request)
1562 {
1563         rbd_assert(img_request != NULL);
1564         dout("%s: img %p (was %d)\n", __func__, img_request,
1565                 atomic_read(&img_request->kref.refcount));
1566         if (img_request_child_test(img_request))
1567                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1568         else
1569                 kref_put(&img_request->kref, rbd_img_request_destroy);
1570 }
1571
1572 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1573                                         struct rbd_obj_request *obj_request)
1574 {
1575         rbd_assert(obj_request->img_request == NULL);
1576
1577         /* Image request now owns object's original reference */
1578         obj_request->img_request = img_request;
1579         obj_request->which = img_request->obj_request_count;
1580         rbd_assert(!obj_request_img_data_test(obj_request));
1581         obj_request_img_data_set(obj_request);
1582         rbd_assert(obj_request->which != BAD_WHICH);
1583         img_request->obj_request_count++;
1584         list_add_tail(&obj_request->links, &img_request->obj_requests);
1585         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1586                 obj_request->which);
1587 }
1588
1589 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1590                                         struct rbd_obj_request *obj_request)
1591 {
1592         rbd_assert(obj_request->which != BAD_WHICH);
1593
1594         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1595                 obj_request->which);
1596         list_del(&obj_request->links);
1597         rbd_assert(img_request->obj_request_count > 0);
1598         img_request->obj_request_count--;
1599         rbd_assert(obj_request->which == img_request->obj_request_count);
1600         obj_request->which = BAD_WHICH;
1601         rbd_assert(obj_request_img_data_test(obj_request));
1602         rbd_assert(obj_request->img_request == img_request);
1603         obj_request->img_request = NULL;
1604         obj_request->callback = NULL;
1605         rbd_obj_request_put(obj_request);
1606 }
1607
1608 static bool obj_request_type_valid(enum obj_request_type type)
1609 {
1610         switch (type) {
1611         case OBJ_REQUEST_NODATA:
1612         case OBJ_REQUEST_BIO:
1613         case OBJ_REQUEST_PAGES:
1614                 return true;
1615         default:
1616                 return false;
1617         }
1618 }
1619
1620 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1621
1622 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1623 {
1624         struct ceph_osd_request *osd_req = obj_request->osd_req;
1625
1626         dout("%s %p osd_req %p\n", __func__, obj_request, osd_req);
1627         if (obj_request_img_data_test(obj_request)) {
1628                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1629                 rbd_img_request_get(obj_request->img_request);
1630         }
1631         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1632 }
1633
1634 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1635 {
1636         dout("%s %p\n", __func__, obj_request);
1637         ceph_osdc_cancel_request(obj_request->osd_req);
1638 }
1639
1640 /*
1641  * Wait for an object request to complete.  If interrupted, cancel the
1642  * underlying osd request.
1643  *
1644  * @timeout: in jiffies, 0 means "wait forever"
1645  */
1646 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1647                                   unsigned long timeout)
1648 {
1649         long ret;
1650
1651         dout("%s %p\n", __func__, obj_request);
1652         ret = wait_for_completion_interruptible_timeout(
1653                                         &obj_request->completion,
1654                                         ceph_timeout_jiffies(timeout));
1655         if (ret <= 0) {
1656                 if (ret == 0)
1657                         ret = -ETIMEDOUT;
1658                 rbd_obj_request_end(obj_request);
1659         } else {
1660                 ret = 0;
1661         }
1662
1663         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1664         return ret;
1665 }
1666
1667 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1668 {
1669         return __rbd_obj_request_wait(obj_request, 0);
1670 }
1671
1672 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1673 {
1674
1675         dout("%s: img %p\n", __func__, img_request);
1676
1677         /*
1678          * If no error occurred, compute the aggregate transfer
1679          * count for the image request.  We could instead use
1680          * atomic64_cmpxchg() to update it as each object request
1681          * completes; not clear which way is better off hand.
1682          */
1683         if (!img_request->result) {
1684                 struct rbd_obj_request *obj_request;
1685                 u64 xferred = 0;
1686
1687                 for_each_obj_request(img_request, obj_request)
1688                         xferred += obj_request->xferred;
1689                 img_request->xferred = xferred;
1690         }
1691
1692         if (img_request->callback)
1693                 img_request->callback(img_request);
1694         else
1695                 rbd_img_request_put(img_request);
1696 }
1697
1698 /*
1699  * The default/initial value for all image request flags is 0.  Each
1700  * is conditionally set to 1 at image request initialization time
1701  * and currently never change thereafter.
1702  */
1703 static void img_request_write_set(struct rbd_img_request *img_request)
1704 {
1705         set_bit(IMG_REQ_WRITE, &img_request->flags);
1706         smp_mb();
1707 }
1708
1709 static bool img_request_write_test(struct rbd_img_request *img_request)
1710 {
1711         smp_mb();
1712         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1713 }
1714
1715 /*
1716  * Set the discard flag when the img_request is an discard request
1717  */
1718 static void img_request_discard_set(struct rbd_img_request *img_request)
1719 {
1720         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1721         smp_mb();
1722 }
1723
1724 static bool img_request_discard_test(struct rbd_img_request *img_request)
1725 {
1726         smp_mb();
1727         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1728 }
1729
1730 static void img_request_child_set(struct rbd_img_request *img_request)
1731 {
1732         set_bit(IMG_REQ_CHILD, &img_request->flags);
1733         smp_mb();
1734 }
1735
1736 static void img_request_child_clear(struct rbd_img_request *img_request)
1737 {
1738         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1739         smp_mb();
1740 }
1741
1742 static bool img_request_child_test(struct rbd_img_request *img_request)
1743 {
1744         smp_mb();
1745         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1746 }
1747
1748 static void img_request_layered_set(struct rbd_img_request *img_request)
1749 {
1750         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1751         smp_mb();
1752 }
1753
1754 static void img_request_layered_clear(struct rbd_img_request *img_request)
1755 {
1756         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1757         smp_mb();
1758 }
1759
1760 static bool img_request_layered_test(struct rbd_img_request *img_request)
1761 {
1762         smp_mb();
1763         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1764 }
1765
1766 static enum obj_operation_type
1767 rbd_img_request_op_type(struct rbd_img_request *img_request)
1768 {
1769         if (img_request_write_test(img_request))
1770                 return OBJ_OP_WRITE;
1771         else if (img_request_discard_test(img_request))
1772                 return OBJ_OP_DISCARD;
1773         else
1774                 return OBJ_OP_READ;
1775 }
1776
1777 static void
1778 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1779 {
1780         u64 xferred = obj_request->xferred;
1781         u64 length = obj_request->length;
1782
1783         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1784                 obj_request, obj_request->img_request, obj_request->result,
1785                 xferred, length);
1786         /*
1787          * ENOENT means a hole in the image.  We zero-fill the entire
1788          * length of the request.  A short read also implies zero-fill
1789          * to the end of the request.  An error requires the whole
1790          * length of the request to be reported finished with an error
1791          * to the block layer.  In each case we update the xferred
1792          * count to indicate the whole request was satisfied.
1793          */
1794         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1795         if (obj_request->result == -ENOENT) {
1796                 if (obj_request->type == OBJ_REQUEST_BIO)
1797                         zero_bio_chain(obj_request->bio_list, 0);
1798                 else
1799                         zero_pages(obj_request->pages, 0, length);
1800                 obj_request->result = 0;
1801         } else if (xferred < length && !obj_request->result) {
1802                 if (obj_request->type == OBJ_REQUEST_BIO)
1803                         zero_bio_chain(obj_request->bio_list, xferred);
1804                 else
1805                         zero_pages(obj_request->pages, xferred, length);
1806         }
1807         obj_request->xferred = length;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1812 {
1813         dout("%s: obj %p cb %p\n", __func__, obj_request,
1814                 obj_request->callback);
1815         if (obj_request->callback)
1816                 obj_request->callback(obj_request);
1817         else
1818                 complete_all(&obj_request->completion);
1819 }
1820
1821 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1822 {
1823         obj_request->result = err;
1824         obj_request->xferred = 0;
1825         /*
1826          * kludge - mirror rbd_obj_request_submit() to match a put in
1827          * rbd_img_obj_callback()
1828          */
1829         if (obj_request_img_data_test(obj_request)) {
1830                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1831                 rbd_img_request_get(obj_request->img_request);
1832         }
1833         obj_request_done_set(obj_request);
1834         rbd_obj_request_complete(obj_request);
1835 }
1836
1837 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1838 {
1839         struct rbd_img_request *img_request = NULL;
1840         struct rbd_device *rbd_dev = NULL;
1841         bool layered = false;
1842
1843         if (obj_request_img_data_test(obj_request)) {
1844                 img_request = obj_request->img_request;
1845                 layered = img_request && img_request_layered_test(img_request);
1846                 rbd_dev = img_request->rbd_dev;
1847         }
1848
1849         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1850                 obj_request, img_request, obj_request->result,
1851                 obj_request->xferred, obj_request->length);
1852         if (layered && obj_request->result == -ENOENT &&
1853                         obj_request->img_offset < rbd_dev->parent_overlap)
1854                 rbd_img_parent_read(obj_request);
1855         else if (img_request)
1856                 rbd_img_obj_request_read_callback(obj_request);
1857         else
1858                 obj_request_done_set(obj_request);
1859 }
1860
1861 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1862 {
1863         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1864                 obj_request->result, obj_request->length);
1865         /*
1866          * There is no such thing as a successful short write.  Set
1867          * it to our originally-requested length.
1868          */
1869         obj_request->xferred = obj_request->length;
1870         obj_request_done_set(obj_request);
1871 }
1872
1873 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1874 {
1875         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1876                 obj_request->result, obj_request->length);
1877         /*
1878          * There is no such thing as a successful short discard.  Set
1879          * it to our originally-requested length.
1880          */
1881         obj_request->xferred = obj_request->length;
1882         /* discarding a non-existent object is not a problem */
1883         if (obj_request->result == -ENOENT)
1884                 obj_request->result = 0;
1885         obj_request_done_set(obj_request);
1886 }
1887
1888 /*
1889  * For a simple stat call there's nothing to do.  We'll do more if
1890  * this is part of a write sequence for a layered image.
1891  */
1892 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1893 {
1894         dout("%s: obj %p\n", __func__, obj_request);
1895         obj_request_done_set(obj_request);
1896 }
1897
1898 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1899 {
1900         dout("%s: obj %p\n", __func__, obj_request);
1901
1902         if (obj_request_img_data_test(obj_request))
1903                 rbd_osd_copyup_callback(obj_request);
1904         else
1905                 obj_request_done_set(obj_request);
1906 }
1907
1908 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1909 {
1910         struct rbd_obj_request *obj_request = osd_req->r_priv;
1911         u16 opcode;
1912
1913         dout("%s: osd_req %p\n", __func__, osd_req);
1914         rbd_assert(osd_req == obj_request->osd_req);
1915         if (obj_request_img_data_test(obj_request)) {
1916                 rbd_assert(obj_request->img_request);
1917                 rbd_assert(obj_request->which != BAD_WHICH);
1918         } else {
1919                 rbd_assert(obj_request->which == BAD_WHICH);
1920         }
1921
1922         if (osd_req->r_result < 0)
1923                 obj_request->result = osd_req->r_result;
1924
1925         /*
1926          * We support a 64-bit length, but ultimately it has to be
1927          * passed to the block layer, which just supports a 32-bit
1928          * length field.
1929          */
1930         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1931         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1932
1933         opcode = osd_req->r_ops[0].op;
1934         switch (opcode) {
1935         case CEPH_OSD_OP_READ:
1936                 rbd_osd_read_callback(obj_request);
1937                 break;
1938         case CEPH_OSD_OP_SETALLOCHINT:
1939                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1940                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1941                 /* fall through */
1942         case CEPH_OSD_OP_WRITE:
1943         case CEPH_OSD_OP_WRITEFULL:
1944                 rbd_osd_write_callback(obj_request);
1945                 break;
1946         case CEPH_OSD_OP_STAT:
1947                 rbd_osd_stat_callback(obj_request);
1948                 break;
1949         case CEPH_OSD_OP_DELETE:
1950         case CEPH_OSD_OP_TRUNCATE:
1951         case CEPH_OSD_OP_ZERO:
1952                 rbd_osd_discard_callback(obj_request);
1953                 break;
1954         case CEPH_OSD_OP_CALL:
1955                 rbd_osd_call_callback(obj_request);
1956                 break;
1957         default:
1958                 rbd_warn(NULL, "%s: unsupported op %hu",
1959                         obj_request->object_name, (unsigned short) opcode);
1960                 break;
1961         }
1962
1963         if (obj_request_done_test(obj_request))
1964                 rbd_obj_request_complete(obj_request);
1965 }
1966
1967 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1968 {
1969         struct ceph_osd_request *osd_req = obj_request->osd_req;
1970
1971         rbd_assert(obj_request_img_data_test(obj_request));
1972         osd_req->r_snapid = obj_request->img_request->snap_id;
1973 }
1974
1975 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1976 {
1977         struct ceph_osd_request *osd_req = obj_request->osd_req;
1978
1979         osd_req->r_mtime = CURRENT_TIME;
1980         osd_req->r_data_offset = obj_request->offset;
1981 }
1982
1983 /*
1984  * Create an osd request.  A read request has one osd op (read).
1985  * A write request has either one (watch) or two (hint+write) osd ops.
1986  * (All rbd data writes are prefixed with an allocation hint op, but
1987  * technically osd watch is a write request, hence this distinction.)
1988  */
1989 static struct ceph_osd_request *rbd_osd_req_create(
1990                                         struct rbd_device *rbd_dev,
1991                                         enum obj_operation_type op_type,
1992                                         unsigned int num_ops,
1993                                         struct rbd_obj_request *obj_request)
1994 {
1995         struct ceph_snap_context *snapc = NULL;
1996         struct ceph_osd_client *osdc;
1997         struct ceph_osd_request *osd_req;
1998
1999         if (obj_request_img_data_test(obj_request) &&
2000                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
2001                 struct rbd_img_request *img_request = obj_request->img_request;
2002                 if (op_type == OBJ_OP_WRITE) {
2003                         rbd_assert(img_request_write_test(img_request));
2004                 } else {
2005                         rbd_assert(img_request_discard_test(img_request));
2006                 }
2007                 snapc = img_request->snapc;
2008         }
2009
2010         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
2011
2012         /* Allocate and initialize the request, for the num_ops ops */
2013
2014         osdc = &rbd_dev->rbd_client->client->osdc;
2015         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
2016                                           GFP_NOIO);
2017         if (!osd_req)
2018                 goto fail;
2019
2020         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2021                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2022         else
2023                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
2024
2025         osd_req->r_callback = rbd_osd_req_callback;
2026         osd_req->r_priv = obj_request;
2027
2028         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2029         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2030                              obj_request->object_name))
2031                 goto fail;
2032
2033         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2034                 goto fail;
2035
2036         return osd_req;
2037
2038 fail:
2039         ceph_osdc_put_request(osd_req);
2040         return NULL;
2041 }
2042
2043 /*
2044  * Create a copyup osd request based on the information in the object
2045  * request supplied.  A copyup request has two or three osd ops, a
2046  * copyup method call, potentially a hint op, and a write or truncate
2047  * or zero op.
2048  */
2049 static struct ceph_osd_request *
2050 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2051 {
2052         struct rbd_img_request *img_request;
2053         struct ceph_snap_context *snapc;
2054         struct rbd_device *rbd_dev;
2055         struct ceph_osd_client *osdc;
2056         struct ceph_osd_request *osd_req;
2057         int num_osd_ops = 3;
2058
2059         rbd_assert(obj_request_img_data_test(obj_request));
2060         img_request = obj_request->img_request;
2061         rbd_assert(img_request);
2062         rbd_assert(img_request_write_test(img_request) ||
2063                         img_request_discard_test(img_request));
2064
2065         if (img_request_discard_test(img_request))
2066                 num_osd_ops = 2;
2067
2068         /* Allocate and initialize the request, for all the ops */
2069
2070         snapc = img_request->snapc;
2071         rbd_dev = img_request->rbd_dev;
2072         osdc = &rbd_dev->rbd_client->client->osdc;
2073         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2074                                                 false, GFP_NOIO);
2075         if (!osd_req)
2076                 goto fail;
2077
2078         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2079         osd_req->r_callback = rbd_osd_req_callback;
2080         osd_req->r_priv = obj_request;
2081
2082         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2083         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2084                              obj_request->object_name))
2085                 goto fail;
2086
2087         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2088                 goto fail;
2089
2090         return osd_req;
2091
2092 fail:
2093         ceph_osdc_put_request(osd_req);
2094         return NULL;
2095 }
2096
2097
2098 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2099 {
2100         ceph_osdc_put_request(osd_req);
2101 }
2102
2103 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2104
2105 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2106                                                 u64 offset, u64 length,
2107                                                 enum obj_request_type type)
2108 {
2109         struct rbd_obj_request *obj_request;
2110         size_t size;
2111         char *name;
2112
2113         rbd_assert(obj_request_type_valid(type));
2114
2115         size = strlen(object_name) + 1;
2116         name = kmalloc(size, GFP_NOIO);
2117         if (!name)
2118                 return NULL;
2119
2120         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2121         if (!obj_request) {
2122                 kfree(name);
2123                 return NULL;
2124         }
2125
2126         obj_request->object_name = memcpy(name, object_name, size);
2127         obj_request->offset = offset;
2128         obj_request->length = length;
2129         obj_request->flags = 0;
2130         obj_request->which = BAD_WHICH;
2131         obj_request->type = type;
2132         INIT_LIST_HEAD(&obj_request->links);
2133         init_completion(&obj_request->completion);
2134         kref_init(&obj_request->kref);
2135
2136         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2137                 offset, length, (int)type, obj_request);
2138
2139         return obj_request;
2140 }
2141
2142 static void rbd_obj_request_destroy(struct kref *kref)
2143 {
2144         struct rbd_obj_request *obj_request;
2145
2146         obj_request = container_of(kref, struct rbd_obj_request, kref);
2147
2148         dout("%s: obj %p\n", __func__, obj_request);
2149
2150         rbd_assert(obj_request->img_request == NULL);
2151         rbd_assert(obj_request->which == BAD_WHICH);
2152
2153         if (obj_request->osd_req)
2154                 rbd_osd_req_destroy(obj_request->osd_req);
2155
2156         rbd_assert(obj_request_type_valid(obj_request->type));
2157         switch (obj_request->type) {
2158         case OBJ_REQUEST_NODATA:
2159                 break;          /* Nothing to do */
2160         case OBJ_REQUEST_BIO:
2161                 if (obj_request->bio_list)
2162                         bio_chain_put(obj_request->bio_list);
2163                 break;
2164         case OBJ_REQUEST_PAGES:
2165                 /* img_data requests don't own their page array */
2166                 if (obj_request->pages &&
2167                     !obj_request_img_data_test(obj_request))
2168                         ceph_release_page_vector(obj_request->pages,
2169                                                 obj_request->page_count);
2170                 break;
2171         }
2172
2173         kfree(obj_request->object_name);
2174         obj_request->object_name = NULL;
2175         kmem_cache_free(rbd_obj_request_cache, obj_request);
2176 }
2177
2178 /* It's OK to call this for a device with no parent */
2179
2180 static void rbd_spec_put(struct rbd_spec *spec);
2181 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2182 {
2183         rbd_dev_remove_parent(rbd_dev);
2184         rbd_spec_put(rbd_dev->parent_spec);
2185         rbd_dev->parent_spec = NULL;
2186         rbd_dev->parent_overlap = 0;
2187 }
2188
2189 /*
2190  * Parent image reference counting is used to determine when an
2191  * image's parent fields can be safely torn down--after there are no
2192  * more in-flight requests to the parent image.  When the last
2193  * reference is dropped, cleaning them up is safe.
2194  */
2195 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2196 {
2197         int counter;
2198
2199         if (!rbd_dev->parent_spec)
2200                 return;
2201
2202         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2203         if (counter > 0)
2204                 return;
2205
2206         /* Last reference; clean up parent data structures */
2207
2208         if (!counter)
2209                 rbd_dev_unparent(rbd_dev);
2210         else
2211                 rbd_warn(rbd_dev, "parent reference underflow");
2212 }
2213
2214 /*
2215  * If an image has a non-zero parent overlap, get a reference to its
2216  * parent.
2217  *
2218  * Returns true if the rbd device has a parent with a non-zero
2219  * overlap and a reference for it was successfully taken, or
2220  * false otherwise.
2221  */
2222 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2223 {
2224         int counter = 0;
2225
2226         if (!rbd_dev->parent_spec)
2227                 return false;
2228
2229         down_read(&rbd_dev->header_rwsem);
2230         if (rbd_dev->parent_overlap)
2231                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2232         up_read(&rbd_dev->header_rwsem);
2233
2234         if (counter < 0)
2235                 rbd_warn(rbd_dev, "parent reference overflow");
2236
2237         return counter > 0;
2238 }
2239
2240 /*
2241  * Caller is responsible for filling in the list of object requests
2242  * that comprises the image request, and the Linux request pointer
2243  * (if there is one).
2244  */
2245 static struct rbd_img_request *rbd_img_request_create(
2246                                         struct rbd_device *rbd_dev,
2247                                         u64 offset, u64 length,
2248                                         enum obj_operation_type op_type,
2249                                         struct ceph_snap_context *snapc)
2250 {
2251         struct rbd_img_request *img_request;
2252
2253         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2254         if (!img_request)
2255                 return NULL;
2256
2257         img_request->rq = NULL;
2258         img_request->rbd_dev = rbd_dev;
2259         img_request->offset = offset;
2260         img_request->length = length;
2261         img_request->flags = 0;
2262         if (op_type == OBJ_OP_DISCARD) {
2263                 img_request_discard_set(img_request);
2264                 img_request->snapc = snapc;
2265         } else if (op_type == OBJ_OP_WRITE) {
2266                 img_request_write_set(img_request);
2267                 img_request->snapc = snapc;
2268         } else {
2269                 img_request->snap_id = rbd_dev->spec->snap_id;
2270         }
2271         if (rbd_dev_parent_get(rbd_dev))
2272                 img_request_layered_set(img_request);
2273         spin_lock_init(&img_request->completion_lock);
2274         img_request->next_completion = 0;
2275         img_request->callback = NULL;
2276         img_request->result = 0;
2277         img_request->obj_request_count = 0;
2278         INIT_LIST_HEAD(&img_request->obj_requests);
2279         kref_init(&img_request->kref);
2280
2281         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2282                 obj_op_name(op_type), offset, length, img_request);
2283
2284         return img_request;
2285 }
2286
2287 static void rbd_img_request_destroy(struct kref *kref)
2288 {
2289         struct rbd_img_request *img_request;
2290         struct rbd_obj_request *obj_request;
2291         struct rbd_obj_request *next_obj_request;
2292
2293         img_request = container_of(kref, struct rbd_img_request, kref);
2294
2295         dout("%s: img %p\n", __func__, img_request);
2296
2297         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298                 rbd_img_obj_request_del(img_request, obj_request);
2299         rbd_assert(img_request->obj_request_count == 0);
2300
2301         if (img_request_layered_test(img_request)) {
2302                 img_request_layered_clear(img_request);
2303                 rbd_dev_parent_put(img_request->rbd_dev);
2304         }
2305
2306         if (img_request_write_test(img_request) ||
2307                 img_request_discard_test(img_request))
2308                 ceph_put_snap_context(img_request->snapc);
2309
2310         kmem_cache_free(rbd_img_request_cache, img_request);
2311 }
2312
2313 static struct rbd_img_request *rbd_parent_request_create(
2314                                         struct rbd_obj_request *obj_request,
2315                                         u64 img_offset, u64 length)
2316 {
2317         struct rbd_img_request *parent_request;
2318         struct rbd_device *rbd_dev;
2319
2320         rbd_assert(obj_request->img_request);
2321         rbd_dev = obj_request->img_request->rbd_dev;
2322
2323         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2324                                                 length, OBJ_OP_READ, NULL);
2325         if (!parent_request)
2326                 return NULL;
2327
2328         img_request_child_set(parent_request);
2329         rbd_obj_request_get(obj_request);
2330         parent_request->obj_request = obj_request;
2331
2332         return parent_request;
2333 }
2334
2335 static void rbd_parent_request_destroy(struct kref *kref)
2336 {
2337         struct rbd_img_request *parent_request;
2338         struct rbd_obj_request *orig_request;
2339
2340         parent_request = container_of(kref, struct rbd_img_request, kref);
2341         orig_request = parent_request->obj_request;
2342
2343         parent_request->obj_request = NULL;
2344         rbd_obj_request_put(orig_request);
2345         img_request_child_clear(parent_request);
2346
2347         rbd_img_request_destroy(kref);
2348 }
2349
2350 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2351 {
2352         struct rbd_img_request *img_request;
2353         unsigned int xferred;
2354         int result;
2355         bool more;
2356
2357         rbd_assert(obj_request_img_data_test(obj_request));
2358         img_request = obj_request->img_request;
2359
2360         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2361         xferred = (unsigned int)obj_request->xferred;
2362         result = obj_request->result;
2363         if (result) {
2364                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2365                 enum obj_operation_type op_type;
2366
2367                 if (img_request_discard_test(img_request))
2368                         op_type = OBJ_OP_DISCARD;
2369                 else if (img_request_write_test(img_request))
2370                         op_type = OBJ_OP_WRITE;
2371                 else
2372                         op_type = OBJ_OP_READ;
2373
2374                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2375                         obj_op_name(op_type), obj_request->length,
2376                         obj_request->img_offset, obj_request->offset);
2377                 rbd_warn(rbd_dev, "  result %d xferred %x",
2378                         result, xferred);
2379                 if (!img_request->result)
2380                         img_request->result = result;
2381                 /*
2382                  * Need to end I/O on the entire obj_request worth of
2383                  * bytes in case of error.
2384                  */
2385                 xferred = obj_request->length;
2386         }
2387
2388         if (img_request_child_test(img_request)) {
2389                 rbd_assert(img_request->obj_request != NULL);
2390                 more = obj_request->which < img_request->obj_request_count - 1;
2391         } else {
2392                 rbd_assert(img_request->rq != NULL);
2393
2394                 more = blk_update_request(img_request->rq, result, xferred);
2395                 if (!more)
2396                         __blk_mq_end_request(img_request->rq, result);
2397         }
2398
2399         return more;
2400 }
2401
2402 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2403 {
2404         struct rbd_img_request *img_request;
2405         u32 which = obj_request->which;
2406         bool more = true;
2407
2408         rbd_assert(obj_request_img_data_test(obj_request));
2409         img_request = obj_request->img_request;
2410
2411         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2412         rbd_assert(img_request != NULL);
2413         rbd_assert(img_request->obj_request_count > 0);
2414         rbd_assert(which != BAD_WHICH);
2415         rbd_assert(which < img_request->obj_request_count);
2416
2417         spin_lock_irq(&img_request->completion_lock);
2418         if (which != img_request->next_completion)
2419                 goto out;
2420
2421         for_each_obj_request_from(img_request, obj_request) {
2422                 rbd_assert(more);
2423                 rbd_assert(which < img_request->obj_request_count);
2424
2425                 if (!obj_request_done_test(obj_request))
2426                         break;
2427                 more = rbd_img_obj_end_request(obj_request);
2428                 which++;
2429         }
2430
2431         rbd_assert(more ^ (which == img_request->obj_request_count));
2432         img_request->next_completion = which;
2433 out:
2434         spin_unlock_irq(&img_request->completion_lock);
2435         rbd_img_request_put(img_request);
2436
2437         if (!more)
2438                 rbd_img_request_complete(img_request);
2439 }
2440
2441 /*
2442  * Add individual osd ops to the given ceph_osd_request and prepare
2443  * them for submission. num_ops is the current number of
2444  * osd operations already to the object request.
2445  */
2446 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2447                                 struct ceph_osd_request *osd_request,
2448                                 enum obj_operation_type op_type,
2449                                 unsigned int num_ops)
2450 {
2451         struct rbd_img_request *img_request = obj_request->img_request;
2452         struct rbd_device *rbd_dev = img_request->rbd_dev;
2453         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2454         u64 offset = obj_request->offset;
2455         u64 length = obj_request->length;
2456         u64 img_end;
2457         u16 opcode;
2458
2459         if (op_type == OBJ_OP_DISCARD) {
2460                 if (!offset && length == object_size &&
2461                     (!img_request_layered_test(img_request) ||
2462                      !obj_request_overlaps_parent(obj_request))) {
2463                         opcode = CEPH_OSD_OP_DELETE;
2464                 } else if ((offset + length == object_size)) {
2465                         opcode = CEPH_OSD_OP_TRUNCATE;
2466                 } else {
2467                         down_read(&rbd_dev->header_rwsem);
2468                         img_end = rbd_dev->header.image_size;
2469                         up_read(&rbd_dev->header_rwsem);
2470
2471                         if (obj_request->img_offset + length == img_end)
2472                                 opcode = CEPH_OSD_OP_TRUNCATE;
2473                         else
2474                                 opcode = CEPH_OSD_OP_ZERO;
2475                 }
2476         } else if (op_type == OBJ_OP_WRITE) {
2477                 if (!offset && length == object_size)
2478                         opcode = CEPH_OSD_OP_WRITEFULL;
2479                 else
2480                         opcode = CEPH_OSD_OP_WRITE;
2481                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2482                                         object_size, object_size);
2483                 num_ops++;
2484         } else {
2485                 opcode = CEPH_OSD_OP_READ;
2486         }
2487
2488         if (opcode == CEPH_OSD_OP_DELETE)
2489                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2490         else
2491                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2492                                        offset, length, 0, 0);
2493
2494         if (obj_request->type == OBJ_REQUEST_BIO)
2495                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2496                                         obj_request->bio_list, length);
2497         else if (obj_request->type == OBJ_REQUEST_PAGES)
2498                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2499                                         obj_request->pages, length,
2500                                         offset & ~PAGE_MASK, false, false);
2501
2502         /* Discards are also writes */
2503         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2504                 rbd_osd_req_format_write(obj_request);
2505         else
2506                 rbd_osd_req_format_read(obj_request);
2507 }
2508
2509 /*
2510  * Split up an image request into one or more object requests, each
2511  * to a different object.  The "type" parameter indicates whether
2512  * "data_desc" is the pointer to the head of a list of bio
2513  * structures, or the base of a page array.  In either case this
2514  * function assumes data_desc describes memory sufficient to hold
2515  * all data described by the image request.
2516  */
2517 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2518                                         enum obj_request_type type,
2519                                         void *data_desc)
2520 {
2521         struct rbd_device *rbd_dev = img_request->rbd_dev;
2522         struct rbd_obj_request *obj_request = NULL;
2523         struct rbd_obj_request *next_obj_request;
2524         struct bio *bio_list = NULL;
2525         unsigned int bio_offset = 0;
2526         struct page **pages = NULL;
2527         enum obj_operation_type op_type;
2528         u64 img_offset;
2529         u64 resid;
2530
2531         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2532                 (int)type, data_desc);
2533
2534         img_offset = img_request->offset;
2535         resid = img_request->length;
2536         rbd_assert(resid > 0);
2537         op_type = rbd_img_request_op_type(img_request);
2538
2539         if (type == OBJ_REQUEST_BIO) {
2540                 bio_list = data_desc;
2541                 rbd_assert(img_offset ==
2542                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2543         } else if (type == OBJ_REQUEST_PAGES) {
2544                 pages = data_desc;
2545         }
2546
2547         while (resid) {
2548                 struct ceph_osd_request *osd_req;
2549                 const char *object_name;
2550                 u64 offset;
2551                 u64 length;
2552
2553                 object_name = rbd_segment_name(rbd_dev, img_offset);
2554                 if (!object_name)
2555                         goto out_unwind;
2556                 offset = rbd_segment_offset(rbd_dev, img_offset);
2557                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2558                 obj_request = rbd_obj_request_create(object_name,
2559                                                 offset, length, type);
2560                 /* object request has its own copy of the object name */
2561                 rbd_segment_name_free(object_name);
2562                 if (!obj_request)
2563                         goto out_unwind;
2564
2565                 /*
2566                  * set obj_request->img_request before creating the
2567                  * osd_request so that it gets the right snapc
2568                  */
2569                 rbd_img_obj_request_add(img_request, obj_request);
2570
2571                 if (type == OBJ_REQUEST_BIO) {
2572                         unsigned int clone_size;
2573
2574                         rbd_assert(length <= (u64)UINT_MAX);
2575                         clone_size = (unsigned int)length;
2576                         obj_request->bio_list =
2577                                         bio_chain_clone_range(&bio_list,
2578                                                                 &bio_offset,
2579                                                                 clone_size,
2580                                                                 GFP_NOIO);
2581                         if (!obj_request->bio_list)
2582                                 goto out_unwind;
2583                 } else if (type == OBJ_REQUEST_PAGES) {
2584                         unsigned int page_count;
2585
2586                         obj_request->pages = pages;
2587                         page_count = (u32)calc_pages_for(offset, length);
2588                         obj_request->page_count = page_count;
2589                         if ((offset + length) & ~PAGE_MASK)
2590                                 page_count--;   /* more on last page */
2591                         pages += page_count;
2592                 }
2593
2594                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2595                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2596                                         obj_request);
2597                 if (!osd_req)
2598                         goto out_unwind;
2599
2600                 obj_request->osd_req = osd_req;
2601                 obj_request->callback = rbd_img_obj_callback;
2602                 obj_request->img_offset = img_offset;
2603
2604                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2605
2606                 img_offset += length;
2607                 resid -= length;
2608         }
2609
2610         return 0;
2611
2612 out_unwind:
2613         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2614                 rbd_img_obj_request_del(img_request, obj_request);
2615
2616         return -ENOMEM;
2617 }
2618
2619 static void
2620 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2621 {
2622         struct rbd_img_request *img_request;
2623         struct rbd_device *rbd_dev;
2624         struct page **pages;
2625         u32 page_count;
2626
2627         dout("%s: obj %p\n", __func__, obj_request);
2628
2629         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2630                 obj_request->type == OBJ_REQUEST_NODATA);
2631         rbd_assert(obj_request_img_data_test(obj_request));
2632         img_request = obj_request->img_request;
2633         rbd_assert(img_request);
2634
2635         rbd_dev = img_request->rbd_dev;
2636         rbd_assert(rbd_dev);
2637
2638         pages = obj_request->copyup_pages;
2639         rbd_assert(pages != NULL);
2640         obj_request->copyup_pages = NULL;
2641         page_count = obj_request->copyup_page_count;
2642         rbd_assert(page_count);
2643         obj_request->copyup_page_count = 0;
2644         ceph_release_page_vector(pages, page_count);
2645
2646         /*
2647          * We want the transfer count to reflect the size of the
2648          * original write request.  There is no such thing as a
2649          * successful short write, so if the request was successful
2650          * we can just set it to the originally-requested length.
2651          */
2652         if (!obj_request->result)
2653                 obj_request->xferred = obj_request->length;
2654
2655         obj_request_done_set(obj_request);
2656 }
2657
2658 static void
2659 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2660 {
2661         struct rbd_obj_request *orig_request;
2662         struct ceph_osd_request *osd_req;
2663         struct rbd_device *rbd_dev;
2664         struct page **pages;
2665         enum obj_operation_type op_type;
2666         u32 page_count;
2667         int img_result;
2668         u64 parent_length;
2669
2670         rbd_assert(img_request_child_test(img_request));
2671
2672         /* First get what we need from the image request */
2673
2674         pages = img_request->copyup_pages;
2675         rbd_assert(pages != NULL);
2676         img_request->copyup_pages = NULL;
2677         page_count = img_request->copyup_page_count;
2678         rbd_assert(page_count);
2679         img_request->copyup_page_count = 0;
2680
2681         orig_request = img_request->obj_request;
2682         rbd_assert(orig_request != NULL);
2683         rbd_assert(obj_request_type_valid(orig_request->type));
2684         img_result = img_request->result;
2685         parent_length = img_request->length;
2686         rbd_assert(img_result || parent_length == img_request->xferred);
2687         rbd_img_request_put(img_request);
2688
2689         rbd_assert(orig_request->img_request);
2690         rbd_dev = orig_request->img_request->rbd_dev;
2691         rbd_assert(rbd_dev);
2692
2693         /*
2694          * If the overlap has become 0 (most likely because the
2695          * image has been flattened) we need to free the pages
2696          * and re-submit the original write request.
2697          */
2698         if (!rbd_dev->parent_overlap) {
2699                 ceph_release_page_vector(pages, page_count);
2700                 rbd_obj_request_submit(orig_request);
2701                 return;
2702         }
2703
2704         if (img_result)
2705                 goto out_err;
2706
2707         /*
2708          * The original osd request is of no use to use any more.
2709          * We need a new one that can hold the three ops in a copyup
2710          * request.  Allocate the new copyup osd request for the
2711          * original request, and release the old one.
2712          */
2713         img_result = -ENOMEM;
2714         osd_req = rbd_osd_req_create_copyup(orig_request);
2715         if (!osd_req)
2716                 goto out_err;
2717         rbd_osd_req_destroy(orig_request->osd_req);
2718         orig_request->osd_req = osd_req;
2719         orig_request->copyup_pages = pages;
2720         orig_request->copyup_page_count = page_count;
2721
2722         /* Initialize the copyup op */
2723
2724         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2725         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2726                                                 false, false);
2727
2728         /* Add the other op(s) */
2729
2730         op_type = rbd_img_request_op_type(orig_request->img_request);
2731         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2732
2733         /* All set, send it off. */
2734
2735         rbd_obj_request_submit(orig_request);
2736         return;
2737
2738 out_err:
2739         ceph_release_page_vector(pages, page_count);
2740         rbd_obj_request_error(orig_request, img_result);
2741 }
2742
2743 /*
2744  * Read from the parent image the range of data that covers the
2745  * entire target of the given object request.  This is used for
2746  * satisfying a layered image write request when the target of an
2747  * object request from the image request does not exist.
2748  *
2749  * A page array big enough to hold the returned data is allocated
2750  * and supplied to rbd_img_request_fill() as the "data descriptor."
2751  * When the read completes, this page array will be transferred to
2752  * the original object request for the copyup operation.
2753  *
2754  * If an error occurs, it is recorded as the result of the original
2755  * object request in rbd_img_obj_exists_callback().
2756  */
2757 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2758 {
2759         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2760         struct rbd_img_request *parent_request = NULL;
2761         u64 img_offset;
2762         u64 length;
2763         struct page **pages = NULL;
2764         u32 page_count;
2765         int result;
2766
2767         rbd_assert(rbd_dev->parent != NULL);
2768
2769         /*
2770          * Determine the byte range covered by the object in the
2771          * child image to which the original request was to be sent.
2772          */
2773         img_offset = obj_request->img_offset - obj_request->offset;
2774         length = (u64)1 << rbd_dev->header.obj_order;
2775
2776         /*
2777          * There is no defined parent data beyond the parent
2778          * overlap, so limit what we read at that boundary if
2779          * necessary.
2780          */
2781         if (img_offset + length > rbd_dev->parent_overlap) {
2782                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2783                 length = rbd_dev->parent_overlap - img_offset;
2784         }
2785
2786         /*
2787          * Allocate a page array big enough to receive the data read
2788          * from the parent.
2789          */
2790         page_count = (u32)calc_pages_for(0, length);
2791         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2792         if (IS_ERR(pages)) {
2793                 result = PTR_ERR(pages);
2794                 pages = NULL;
2795                 goto out_err;
2796         }
2797
2798         result = -ENOMEM;
2799         parent_request = rbd_parent_request_create(obj_request,
2800                                                 img_offset, length);
2801         if (!parent_request)
2802                 goto out_err;
2803
2804         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2805         if (result)
2806                 goto out_err;
2807
2808         parent_request->copyup_pages = pages;
2809         parent_request->copyup_page_count = page_count;
2810         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2811
2812         result = rbd_img_request_submit(parent_request);
2813         if (!result)
2814                 return 0;
2815
2816         parent_request->copyup_pages = NULL;
2817         parent_request->copyup_page_count = 0;
2818         parent_request->obj_request = NULL;
2819         rbd_obj_request_put(obj_request);
2820 out_err:
2821         if (pages)
2822                 ceph_release_page_vector(pages, page_count);
2823         if (parent_request)
2824                 rbd_img_request_put(parent_request);
2825         return result;
2826 }
2827
2828 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2829 {
2830         struct rbd_obj_request *orig_request;
2831         struct rbd_device *rbd_dev;
2832         int result;
2833
2834         rbd_assert(!obj_request_img_data_test(obj_request));
2835
2836         /*
2837          * All we need from the object request is the original
2838          * request and the result of the STAT op.  Grab those, then
2839          * we're done with the request.
2840          */
2841         orig_request = obj_request->obj_request;
2842         obj_request->obj_request = NULL;
2843         rbd_obj_request_put(orig_request);
2844         rbd_assert(orig_request);
2845         rbd_assert(orig_request->img_request);
2846
2847         result = obj_request->result;
2848         obj_request->result = 0;
2849
2850         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2851                 obj_request, orig_request, result,
2852                 obj_request->xferred, obj_request->length);
2853         rbd_obj_request_put(obj_request);
2854
2855         /*
2856          * If the overlap has become 0 (most likely because the
2857          * image has been flattened) we need to re-submit the
2858          * original request.
2859          */
2860         rbd_dev = orig_request->img_request->rbd_dev;
2861         if (!rbd_dev->parent_overlap) {
2862                 rbd_obj_request_submit(orig_request);
2863                 return;
2864         }
2865
2866         /*
2867          * Our only purpose here is to determine whether the object
2868          * exists, and we don't want to treat the non-existence as
2869          * an error.  If something else comes back, transfer the
2870          * error to the original request and complete it now.
2871          */
2872         if (!result) {
2873                 obj_request_existence_set(orig_request, true);
2874         } else if (result == -ENOENT) {
2875                 obj_request_existence_set(orig_request, false);
2876         } else {
2877                 goto fail_orig_request;
2878         }
2879
2880         /*
2881          * Resubmit the original request now that we have recorded
2882          * whether the target object exists.
2883          */
2884         result = rbd_img_obj_request_submit(orig_request);
2885         if (result)
2886                 goto fail_orig_request;
2887
2888         return;
2889
2890 fail_orig_request:
2891         rbd_obj_request_error(orig_request, result);
2892 }
2893
2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895 {
2896         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2897         struct rbd_obj_request *stat_request;
2898         struct page **pages;
2899         u32 page_count;
2900         size_t size;
2901         int ret;
2902
2903         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2904                                               OBJ_REQUEST_PAGES);
2905         if (!stat_request)
2906                 return -ENOMEM;
2907
2908         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2909                                                    stat_request);
2910         if (!stat_request->osd_req) {
2911                 ret = -ENOMEM;
2912                 goto fail_stat_request;
2913         }
2914
2915         /*
2916          * The response data for a STAT call consists of:
2917          *     le64 length;
2918          *     struct {
2919          *         le32 tv_sec;
2920          *         le32 tv_nsec;
2921          *     } mtime;
2922          */
2923         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2924         page_count = (u32)calc_pages_for(0, size);
2925         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2926         if (IS_ERR(pages)) {
2927                 ret = PTR_ERR(pages);
2928                 goto fail_stat_request;
2929         }
2930
2931         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2932         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2933                                      false, false);
2934
2935         rbd_obj_request_get(obj_request);
2936         stat_request->obj_request = obj_request;
2937         stat_request->pages = pages;
2938         stat_request->page_count = page_count;
2939         stat_request->callback = rbd_img_obj_exists_callback;
2940
2941         rbd_obj_request_submit(stat_request);
2942         return 0;
2943
2944 fail_stat_request:
2945         rbd_obj_request_put(stat_request);
2946         return ret;
2947 }
2948
2949 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2950 {
2951         struct rbd_img_request *img_request = obj_request->img_request;
2952         struct rbd_device *rbd_dev = img_request->rbd_dev;
2953
2954         /* Reads */
2955         if (!img_request_write_test(img_request) &&
2956             !img_request_discard_test(img_request))
2957                 return true;
2958
2959         /* Non-layered writes */
2960         if (!img_request_layered_test(img_request))
2961                 return true;
2962
2963         /*
2964          * Layered writes outside of the parent overlap range don't
2965          * share any data with the parent.
2966          */
2967         if (!obj_request_overlaps_parent(obj_request))
2968                 return true;
2969
2970         /*
2971          * Entire-object layered writes - we will overwrite whatever
2972          * parent data there is anyway.
2973          */
2974         if (!obj_request->offset &&
2975             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2976                 return true;
2977
2978         /*
2979          * If the object is known to already exist, its parent data has
2980          * already been copied.
2981          */
2982         if (obj_request_known_test(obj_request) &&
2983             obj_request_exists_test(obj_request))
2984                 return true;
2985
2986         return false;
2987 }
2988
2989 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2990 {
2991         rbd_assert(obj_request_img_data_test(obj_request));
2992         rbd_assert(obj_request_type_valid(obj_request->type));
2993         rbd_assert(obj_request->img_request);
2994
2995         if (img_obj_request_simple(obj_request)) {
2996                 rbd_obj_request_submit(obj_request);
2997                 return 0;
2998         }
2999
3000         /*
3001          * It's a layered write.  The target object might exist but
3002          * we may not know that yet.  If we know it doesn't exist,
3003          * start by reading the data for the full target object from
3004          * the parent so we can use it for a copyup to the target.
3005          */
3006         if (obj_request_known_test(obj_request))
3007                 return rbd_img_obj_parent_read_full(obj_request);
3008
3009         /* We don't know whether the target exists.  Go find out. */
3010
3011         return rbd_img_obj_exists_submit(obj_request);
3012 }
3013
3014 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3015 {
3016         struct rbd_obj_request *obj_request;
3017         struct rbd_obj_request *next_obj_request;
3018         int ret = 0;
3019
3020         dout("%s: img %p\n", __func__, img_request);
3021
3022         rbd_img_request_get(img_request);
3023         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3024                 ret = rbd_img_obj_request_submit(obj_request);
3025                 if (ret)
3026                         goto out_put_ireq;
3027         }
3028
3029 out_put_ireq:
3030         rbd_img_request_put(img_request);
3031         return ret;
3032 }
3033
3034 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3035 {
3036         struct rbd_obj_request *obj_request;
3037         struct rbd_device *rbd_dev;
3038         u64 obj_end;
3039         u64 img_xferred;
3040         int img_result;
3041
3042         rbd_assert(img_request_child_test(img_request));
3043
3044         /* First get what we need from the image request and release it */
3045
3046         obj_request = img_request->obj_request;
3047         img_xferred = img_request->xferred;
3048         img_result = img_request->result;
3049         rbd_img_request_put(img_request);
3050
3051         /*
3052          * If the overlap has become 0 (most likely because the
3053          * image has been flattened) we need to re-submit the
3054          * original request.
3055          */
3056         rbd_assert(obj_request);
3057         rbd_assert(obj_request->img_request);
3058         rbd_dev = obj_request->img_request->rbd_dev;
3059         if (!rbd_dev->parent_overlap) {
3060                 rbd_obj_request_submit(obj_request);
3061                 return;
3062         }
3063
3064         obj_request->result = img_result;
3065         if (obj_request->result)
3066                 goto out;
3067
3068         /*
3069          * We need to zero anything beyond the parent overlap
3070          * boundary.  Since rbd_img_obj_request_read_callback()
3071          * will zero anything beyond the end of a short read, an
3072          * easy way to do this is to pretend the data from the
3073          * parent came up short--ending at the overlap boundary.
3074          */
3075         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3076         obj_end = obj_request->img_offset + obj_request->length;
3077         if (obj_end > rbd_dev->parent_overlap) {
3078                 u64 xferred = 0;
3079
3080                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3081                         xferred = rbd_dev->parent_overlap -
3082                                         obj_request->img_offset;
3083
3084                 obj_request->xferred = min(img_xferred, xferred);
3085         } else {
3086                 obj_request->xferred = img_xferred;
3087         }
3088 out:
3089         rbd_img_obj_request_read_callback(obj_request);
3090         rbd_obj_request_complete(obj_request);
3091 }
3092
3093 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3094 {
3095         struct rbd_img_request *img_request;
3096         int result;
3097
3098         rbd_assert(obj_request_img_data_test(obj_request));
3099         rbd_assert(obj_request->img_request != NULL);
3100         rbd_assert(obj_request->result == (s32) -ENOENT);
3101         rbd_assert(obj_request_type_valid(obj_request->type));
3102
3103         /* rbd_read_finish(obj_request, obj_request->length); */
3104         img_request = rbd_parent_request_create(obj_request,
3105                                                 obj_request->img_offset,
3106                                                 obj_request->length);
3107         result = -ENOMEM;
3108         if (!img_request)
3109                 goto out_err;
3110
3111         if (obj_request->type == OBJ_REQUEST_BIO)
3112                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113                                                 obj_request->bio_list);
3114         else
3115                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3116                                                 obj_request->pages);
3117         if (result)
3118                 goto out_err;
3119
3120         img_request->callback = rbd_img_parent_read_callback;
3121         result = rbd_img_request_submit(img_request);
3122         if (result)
3123                 goto out_err;
3124
3125         return;
3126 out_err:
3127         if (img_request)
3128                 rbd_img_request_put(img_request);
3129         obj_request->result = result;
3130         obj_request->xferred = 0;
3131         obj_request_done_set(obj_request);
3132 }
3133
3134 static const struct rbd_client_id rbd_empty_cid;
3135
3136 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3137                           const struct rbd_client_id *rhs)
3138 {
3139         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3140 }
3141
3142 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3143 {
3144         struct rbd_client_id cid;
3145
3146         mutex_lock(&rbd_dev->watch_mutex);
3147         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3148         cid.handle = rbd_dev->watch_cookie;
3149         mutex_unlock(&rbd_dev->watch_mutex);
3150         return cid;
3151 }
3152
3153 /*
3154  * lock_rwsem must be held for write
3155  */
3156 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3157                               const struct rbd_client_id *cid)
3158 {
3159         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3160              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3161              cid->gid, cid->handle);
3162         rbd_dev->owner_cid = *cid; /* struct */
3163 }
3164
3165 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3166 {
3167         mutex_lock(&rbd_dev->watch_mutex);
3168         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3169         mutex_unlock(&rbd_dev->watch_mutex);
3170 }
3171
3172 /*
3173  * lock_rwsem must be held for write
3174  */
3175 static int rbd_lock(struct rbd_device *rbd_dev)
3176 {
3177         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3178         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3179         char cookie[32];
3180         int ret;
3181
3182         WARN_ON(__rbd_is_lock_owner(rbd_dev));
3183
3184         format_lock_cookie(rbd_dev, cookie);
3185         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3186                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3187                             RBD_LOCK_TAG, "", 0);
3188         if (ret)
3189                 return ret;
3190
3191         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3192         rbd_set_owner_cid(rbd_dev, &cid);
3193         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3194         return 0;
3195 }
3196
3197 /*
3198  * lock_rwsem must be held for write
3199  */
3200 static int rbd_unlock(struct rbd_device *rbd_dev)
3201 {
3202         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3203         char cookie[32];
3204         int ret;
3205
3206         WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3207
3208         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3209
3210         format_lock_cookie(rbd_dev, cookie);
3211         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3212                               RBD_LOCK_NAME, cookie);
3213         if (ret && ret != -ENOENT) {
3214                 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3215                 return ret;
3216         }
3217
3218         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3219         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3220         return 0;
3221 }
3222
3223 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3224                                 enum rbd_notify_op notify_op,
3225                                 struct page ***preply_pages,
3226                                 size_t *preply_len)
3227 {
3228         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3230         int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3231         char buf[buf_size];
3232         void *p = buf;
3233
3234         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3235
3236         /* encode *LockPayload NotifyMessage (op + ClientId) */
3237         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3238         ceph_encode_32(&p, notify_op);
3239         ceph_encode_64(&p, cid.gid);
3240         ceph_encode_64(&p, cid.handle);
3241
3242         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3243                                 &rbd_dev->header_oloc, buf, buf_size,
3244                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3245 }
3246
3247 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3248                                enum rbd_notify_op notify_op)
3249 {
3250         struct page **reply_pages;
3251         size_t reply_len;
3252
3253         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3254         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3255 }
3256
3257 static void rbd_notify_acquired_lock(struct work_struct *work)
3258 {
3259         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3260                                                   acquired_lock_work);
3261
3262         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3263 }
3264
3265 static void rbd_notify_released_lock(struct work_struct *work)
3266 {
3267         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3268                                                   released_lock_work);
3269
3270         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3271 }
3272
3273 static int rbd_request_lock(struct rbd_device *rbd_dev)
3274 {
3275         struct page **reply_pages;
3276         size_t reply_len;
3277         bool lock_owner_responded = false;
3278         int ret;
3279
3280         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3281
3282         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3283                                    &reply_pages, &reply_len);
3284         if (ret && ret != -ETIMEDOUT) {
3285                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3286                 goto out;
3287         }
3288
3289         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3290                 void *p = page_address(reply_pages[0]);
3291                 void *const end = p + reply_len;
3292                 u32 n;
3293
3294                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3295                 while (n--) {
3296                         u8 struct_v;
3297                         u32 len;
3298
3299                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3300                         p += 8 + 8; /* skip gid and cookie */
3301
3302                         ceph_decode_32_safe(&p, end, len, e_inval);
3303                         if (!len)
3304                                 continue;
3305
3306                         if (lock_owner_responded) {
3307                                 rbd_warn(rbd_dev,
3308                                          "duplicate lock owners detected");
3309                                 ret = -EIO;
3310                                 goto out;
3311                         }
3312
3313                         lock_owner_responded = true;
3314                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3315                                                   &struct_v, &len);
3316                         if (ret) {
3317                                 rbd_warn(rbd_dev,
3318                                          "failed to decode ResponseMessage: %d",
3319                                          ret);
3320                                 goto e_inval;
3321                         }
3322
3323                         ret = ceph_decode_32(&p);
3324                 }
3325         }
3326
3327         if (!lock_owner_responded) {
3328                 rbd_warn(rbd_dev, "no lock owners detected");
3329                 ret = -ETIMEDOUT;
3330         }
3331
3332 out:
3333         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3334         return ret;
3335
3336 e_inval:
3337         ret = -EINVAL;
3338         goto out;
3339 }
3340
3341 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3342 {
3343         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3344
3345         cancel_delayed_work(&rbd_dev->lock_dwork);
3346         if (wake_all)
3347                 wake_up_all(&rbd_dev->lock_waitq);
3348         else
3349                 wake_up(&rbd_dev->lock_waitq);
3350 }
3351
3352 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3353                                struct ceph_locker **lockers, u32 *num_lockers)
3354 {
3355         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3356         u8 lock_type;
3357         char *lock_tag;
3358         int ret;
3359
3360         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3361
3362         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3363                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3364                                  &lock_type, &lock_tag, lockers, num_lockers);
3365         if (ret)
3366                 return ret;
3367
3368         if (*num_lockers == 0) {
3369                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3370                 goto out;
3371         }
3372
3373         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3374                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3375                          lock_tag);
3376                 ret = -EBUSY;
3377                 goto out;
3378         }
3379
3380         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3381                 rbd_warn(rbd_dev, "shared lock type detected");
3382                 ret = -EBUSY;
3383                 goto out;
3384         }
3385
3386         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3387                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3388                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3389                          (*lockers)[0].id.cookie);
3390                 ret = -EBUSY;
3391                 goto out;
3392         }
3393
3394 out:
3395         kfree(lock_tag);
3396         return ret;
3397 }
3398
3399 static int find_watcher(struct rbd_device *rbd_dev,
3400                         const struct ceph_locker *locker)
3401 {
3402         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3403         struct ceph_watch_item *watchers;
3404         u32 num_watchers;
3405         u64 cookie;
3406         int i;
3407         int ret;
3408
3409         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3410                                       &rbd_dev->header_oloc, &watchers,
3411                                       &num_watchers);
3412         if (ret)
3413                 return ret;
3414
3415         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3416         for (i = 0; i < num_watchers; i++) {
3417                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3418                             sizeof(locker->info.addr)) &&
3419                     watchers[i].cookie == cookie) {
3420                         struct rbd_client_id cid = {
3421                                 .gid = le64_to_cpu(watchers[i].name.num),
3422                                 .handle = cookie,
3423                         };
3424
3425                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3426                              rbd_dev, cid.gid, cid.handle);
3427                         rbd_set_owner_cid(rbd_dev, &cid);
3428                         ret = 1;
3429                         goto out;
3430                 }
3431         }
3432
3433         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3434         ret = 0;
3435 out:
3436         kfree(watchers);
3437         return ret;
3438 }
3439
3440 /*
3441  * lock_rwsem must be held for write
3442  */
3443 static int rbd_try_lock(struct rbd_device *rbd_dev)
3444 {
3445         struct ceph_client *client = rbd_dev->rbd_client->client;
3446         struct ceph_locker *lockers;
3447         u32 num_lockers;
3448         int ret;
3449
3450         for (;;) {
3451                 ret = rbd_lock(rbd_dev);
3452                 if (ret != -EBUSY)
3453                         return ret;
3454
3455                 /* determine if the current lock holder is still alive */
3456                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3457                 if (ret)
3458                         return ret;
3459
3460                 if (num_lockers == 0)
3461                         goto again;
3462
3463                 ret = find_watcher(rbd_dev, lockers);
3464                 if (ret) {
3465                         if (ret > 0)
3466                                 ret = 0; /* have to request lock */
3467                         goto out;
3468                 }
3469
3470                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3471                          ENTITY_NAME(lockers[0].id.name));
3472
3473                 ret = ceph_monc_blacklist_add(&client->monc,
3474                                               &lockers[0].info.addr);
3475                 if (ret) {
3476                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3477                                  ENTITY_NAME(lockers[0].id.name), ret);
3478                         goto out;
3479                 }
3480
3481                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3482                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3483                                           lockers[0].id.cookie,
3484                                           &lockers[0].id.name);
3485                 if (ret && ret != -ENOENT)
3486                         goto out;
3487
3488 again:
3489                 ceph_free_lockers(lockers, num_lockers);
3490         }
3491
3492 out:
3493         ceph_free_lockers(lockers, num_lockers);
3494         return ret;
3495 }
3496
3497 /*
3498  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3499  */
3500 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3501                                                 int *pret)
3502 {
3503         enum rbd_lock_state lock_state;
3504
3505         down_read(&rbd_dev->lock_rwsem);
3506         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3507              rbd_dev->lock_state);
3508         if (__rbd_is_lock_owner(rbd_dev)) {
3509                 lock_state = rbd_dev->lock_state;
3510                 up_read(&rbd_dev->lock_rwsem);
3511                 return lock_state;
3512         }
3513
3514         up_read(&rbd_dev->lock_rwsem);
3515         down_write(&rbd_dev->lock_rwsem);
3516         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3517              rbd_dev->lock_state);
3518         if (!__rbd_is_lock_owner(rbd_dev)) {
3519                 *pret = rbd_try_lock(rbd_dev);
3520                 if (*pret)
3521                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3522         }
3523
3524         lock_state = rbd_dev->lock_state;
3525         up_write(&rbd_dev->lock_rwsem);
3526         return lock_state;
3527 }
3528
3529 static void rbd_acquire_lock(struct work_struct *work)
3530 {
3531         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3532                                             struct rbd_device, lock_dwork);
3533         enum rbd_lock_state lock_state;
3534         int ret;
3535
3536         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3537 again:
3538         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3539         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3540                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3541                         wake_requests(rbd_dev, true);
3542                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3543                      rbd_dev, lock_state, ret);
3544                 return;
3545         }
3546
3547         ret = rbd_request_lock(rbd_dev);
3548         if (ret == -ETIMEDOUT) {
3549                 goto again; /* treat this as a dead client */
3550         } else if (ret < 0) {
3551                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3552                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3553                                  RBD_RETRY_DELAY);
3554         } else {
3555                 /*
3556                  * lock owner acked, but resend if we don't see them
3557                  * release the lock
3558                  */
3559                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3560                      rbd_dev);
3561                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3562                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3563         }
3564 }
3565
3566 /*
3567  * lock_rwsem must be held for write
3568  */
3569 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3570 {
3571         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3572              rbd_dev->lock_state);
3573         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3574                 return false;
3575
3576         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3577         downgrade_write(&rbd_dev->lock_rwsem);
3578         /*
3579          * Ensure that all in-flight IO is flushed.
3580          *
3581          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3582          * may be shared with other devices.
3583          */
3584         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3585         up_read(&rbd_dev->lock_rwsem);
3586
3587         down_write(&rbd_dev->lock_rwsem);
3588         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3589              rbd_dev->lock_state);
3590         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3591                 return false;
3592
3593         if (!rbd_unlock(rbd_dev))
3594                 /*
3595                  * Give others a chance to grab the lock - we would re-acquire
3596                  * almost immediately if we got new IO during ceph_osdc_sync()
3597                  * otherwise.  We need to ack our own notifications, so this
3598                  * lock_dwork will be requeued from rbd_wait_state_locked()
3599                  * after wake_requests() in rbd_handle_released_lock().
3600                  */
3601                 cancel_delayed_work(&rbd_dev->lock_dwork);
3602
3603         return true;
3604 }
3605
3606 static void rbd_release_lock_work(struct work_struct *work)
3607 {
3608         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3609                                                   unlock_work);
3610
3611         down_write(&rbd_dev->lock_rwsem);
3612         rbd_release_lock(rbd_dev);
3613         up_write(&rbd_dev->lock_rwsem);
3614 }
3615
3616 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3617                                      void **p)
3618 {
3619         struct rbd_client_id cid = { 0 };
3620
3621         if (struct_v >= 2) {
3622                 cid.gid = ceph_decode_64(p);
3623                 cid.handle = ceph_decode_64(p);
3624         }
3625
3626         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3627              cid.handle);
3628         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3629                 down_write(&rbd_dev->lock_rwsem);
3630                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3631                         /*
3632                          * we already know that the remote client is
3633                          * the owner
3634                          */
3635                         up_write(&rbd_dev->lock_rwsem);
3636                         return;
3637                 }
3638
3639                 rbd_set_owner_cid(rbd_dev, &cid);
3640                 downgrade_write(&rbd_dev->lock_rwsem);
3641         } else {
3642                 down_read(&rbd_dev->lock_rwsem);
3643         }
3644
3645         if (!__rbd_is_lock_owner(rbd_dev))
3646                 wake_requests(rbd_dev, false);
3647         up_read(&rbd_dev->lock_rwsem);
3648 }
3649
3650 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3651                                      void **p)
3652 {
3653         struct rbd_client_id cid = { 0 };
3654
3655         if (struct_v >= 2) {
3656                 cid.gid = ceph_decode_64(p);
3657                 cid.handle = ceph_decode_64(p);
3658         }
3659
3660         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3661              cid.handle);
3662         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3663                 down_write(&rbd_dev->lock_rwsem);
3664                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3665                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3666                              __func__, rbd_dev, cid.gid, cid.handle,
3667                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3668                         up_write(&rbd_dev->lock_rwsem);
3669                         return;
3670                 }
3671
3672                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3673                 downgrade_write(&rbd_dev->lock_rwsem);
3674         } else {
3675                 down_read(&rbd_dev->lock_rwsem);
3676         }
3677
3678         if (!__rbd_is_lock_owner(rbd_dev))
3679                 wake_requests(rbd_dev, false);
3680         up_read(&rbd_dev->lock_rwsem);
3681 }
3682
3683 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3684                                     void **p)
3685 {
3686         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3687         struct rbd_client_id cid = { 0 };
3688         bool need_to_send;
3689
3690         if (struct_v >= 2) {
3691                 cid.gid = ceph_decode_64(p);
3692                 cid.handle = ceph_decode_64(p);
3693         }
3694
3695         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3696              cid.handle);
3697         if (rbd_cid_equal(&cid, &my_cid))
3698                 return false;
3699
3700         down_read(&rbd_dev->lock_rwsem);
3701         need_to_send = __rbd_is_lock_owner(rbd_dev);
3702         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3703                 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3704                         dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3705                              rbd_dev);
3706                         queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3707                 }
3708         }
3709         up_read(&rbd_dev->lock_rwsem);
3710         return need_to_send;
3711 }
3712
3713 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3714                                      u64 notify_id, u64 cookie, s32 *result)
3715 {
3716         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717         int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3718         char buf[buf_size];
3719         int ret;
3720
3721         if (result) {
3722                 void *p = buf;
3723
3724                 /* encode ResponseMessage */
3725                 ceph_start_encoding(&p, 1, 1,
3726                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3727                 ceph_encode_32(&p, *result);
3728         } else {
3729                 buf_size = 0;
3730         }
3731
3732         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3733                                    &rbd_dev->header_oloc, notify_id, cookie,
3734                                    buf, buf_size);
3735         if (ret)
3736                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3737 }
3738
3739 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3740                                    u64 cookie)
3741 {
3742         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3744 }
3745
3746 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3747                                           u64 notify_id, u64 cookie, s32 result)
3748 {
3749         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3750         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3751 }
3752
3753 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3754                          u64 notifier_id, void *data, size_t data_len)
3755 {
3756         struct rbd_device *rbd_dev = arg;
3757         void *p = data;
3758         void *const end = p + data_len;
3759         u8 struct_v;
3760         u32 len;
3761         u32 notify_op;
3762         int ret;
3763
3764         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3765              __func__, rbd_dev, cookie, notify_id, data_len);
3766         if (data_len) {
3767                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3768                                           &struct_v, &len);
3769                 if (ret) {
3770                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3771                                  ret);
3772                         return;
3773                 }
3774
3775                 notify_op = ceph_decode_32(&p);
3776         } else {
3777                 /* legacy notification for header updates */
3778                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3779                 len = 0;
3780         }
3781
3782         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3783         switch (notify_op) {
3784         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3785                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3786                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3787                 break;
3788         case RBD_NOTIFY_OP_RELEASED_LOCK:
3789                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3790                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3791                 break;
3792         case RBD_NOTIFY_OP_REQUEST_LOCK:
3793                 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3794                         /*
3795                          * send ResponseMessage(0) back so the client
3796                          * can detect a missing owner
3797                          */
3798                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3799                                                       cookie, 0);
3800                 else
3801                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3802                 break;
3803         case RBD_NOTIFY_OP_HEADER_UPDATE:
3804                 ret = rbd_dev_refresh(rbd_dev);
3805                 if (ret)
3806                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3807
3808                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3809                 break;
3810         default:
3811                 if (rbd_is_lock_owner(rbd_dev))
3812                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3813                                                       cookie, -EOPNOTSUPP);
3814                 else
3815                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3816                 break;
3817         }
3818 }
3819
3820 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3821
3822 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3823 {
3824         struct rbd_device *rbd_dev = arg;
3825
3826         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3827
3828         down_write(&rbd_dev->lock_rwsem);
3829         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3830         up_write(&rbd_dev->lock_rwsem);
3831
3832         mutex_lock(&rbd_dev->watch_mutex);
3833         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3834                 __rbd_unregister_watch(rbd_dev);
3835                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3836
3837                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3838         }
3839         mutex_unlock(&rbd_dev->watch_mutex);
3840 }
3841
3842 /*
3843  * watch_mutex must be locked
3844  */
3845 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3846 {
3847         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848         struct ceph_osd_linger_request *handle;
3849
3850         rbd_assert(!rbd_dev->watch_handle);
3851         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3852
3853         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3854                                  &rbd_dev->header_oloc, rbd_watch_cb,
3855                                  rbd_watch_errcb, rbd_dev);
3856         if (IS_ERR(handle))
3857                 return PTR_ERR(handle);
3858
3859         rbd_dev->watch_handle = handle;
3860         return 0;
3861 }
3862
3863 /*
3864  * watch_mutex must be locked
3865  */
3866 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3867 {
3868         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3869         int ret;
3870
3871         rbd_assert(rbd_dev->watch_handle);
3872         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3873
3874         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3875         if (ret)
3876                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3877
3878         rbd_dev->watch_handle = NULL;
3879 }
3880
3881 static int rbd_register_watch(struct rbd_device *rbd_dev)
3882 {
3883         int ret;
3884
3885         mutex_lock(&rbd_dev->watch_mutex);
3886         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3887         ret = __rbd_register_watch(rbd_dev);
3888         if (ret)
3889                 goto out;
3890
3891         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3892         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3893
3894 out:
3895         mutex_unlock(&rbd_dev->watch_mutex);
3896         return ret;
3897 }
3898
3899 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3900 {
3901         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902
3903         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3904         cancel_work_sync(&rbd_dev->acquired_lock_work);
3905         cancel_work_sync(&rbd_dev->released_lock_work);
3906         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3907         cancel_work_sync(&rbd_dev->unlock_work);
3908 }
3909
3910 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3911 {
3912         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3913         cancel_tasks_sync(rbd_dev);
3914
3915         mutex_lock(&rbd_dev->watch_mutex);
3916         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3917                 __rbd_unregister_watch(rbd_dev);
3918         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3919         mutex_unlock(&rbd_dev->watch_mutex);
3920
3921         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3922 }
3923
3924 static void rbd_reregister_watch(struct work_struct *work)
3925 {
3926         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3927                                             struct rbd_device, watch_dwork);
3928         bool was_lock_owner = false;
3929         bool need_to_wake = false;
3930         int ret;
3931
3932         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3933
3934         down_write(&rbd_dev->lock_rwsem);
3935         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3936                 was_lock_owner = rbd_release_lock(rbd_dev);
3937
3938         mutex_lock(&rbd_dev->watch_mutex);
3939         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3940                 mutex_unlock(&rbd_dev->watch_mutex);
3941                 goto out;
3942         }
3943
3944         ret = __rbd_register_watch(rbd_dev);
3945         if (ret) {
3946                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3947                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3948                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3949                         need_to_wake = true;
3950                 } else {
3951                         queue_delayed_work(rbd_dev->task_wq,
3952                                            &rbd_dev->watch_dwork,
3953                                            RBD_RETRY_DELAY);
3954                 }
3955                 mutex_unlock(&rbd_dev->watch_mutex);
3956                 goto out;
3957         }
3958
3959         need_to_wake = true;
3960         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3961         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3962         mutex_unlock(&rbd_dev->watch_mutex);
3963
3964         ret = rbd_dev_refresh(rbd_dev);
3965         if (ret)
3966                 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3967
3968         if (was_lock_owner) {
3969                 ret = rbd_try_lock(rbd_dev);
3970                 if (ret)
3971                         rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3972                                  ret);
3973         }
3974
3975 out:
3976         up_write(&rbd_dev->lock_rwsem);
3977         if (need_to_wake)
3978                 wake_requests(rbd_dev, true);
3979 }
3980
3981 /*
3982  * Synchronous osd object method call.  Returns the number of bytes
3983  * returned in the outbound buffer, or a negative error code.
3984  */
3985 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3986                              const char *object_name,
3987                              const char *class_name,
3988                              const char *method_name,
3989                              const void *outbound,
3990                              size_t outbound_size,
3991                              void *inbound,
3992                              size_t inbound_size)
3993 {
3994         struct rbd_obj_request *obj_request;
3995         struct page **pages;
3996         u32 page_count;
3997         int ret;
3998
3999         /*
4000          * Method calls are ultimately read operations.  The result
4001          * should placed into the inbound buffer provided.  They
4002          * also supply outbound data--parameters for the object
4003          * method.  Currently if this is present it will be a
4004          * snapshot id.
4005          */
4006         page_count = (u32)calc_pages_for(0, inbound_size);
4007         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4008         if (IS_ERR(pages))
4009                 return PTR_ERR(pages);
4010
4011         ret = -ENOMEM;
4012         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4013                                                         OBJ_REQUEST_PAGES);
4014         if (!obj_request)
4015                 goto out;
4016
4017         obj_request->pages = pages;
4018         obj_request->page_count = page_count;
4019
4020         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4021                                                   obj_request);
4022         if (!obj_request->osd_req)
4023                 goto out;
4024
4025         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4026                                         class_name, method_name);
4027         if (outbound_size) {
4028                 struct ceph_pagelist *pagelist;
4029
4030                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4031                 if (!pagelist)
4032                         goto out;
4033
4034                 ceph_pagelist_init(pagelist);
4035                 ceph_pagelist_append(pagelist, outbound, outbound_size);
4036                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4037                                                 pagelist);
4038         }
4039         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4040                                         obj_request->pages, inbound_size,
4041                                         0, false, false);
4042
4043         rbd_obj_request_submit(obj_request);
4044         ret = rbd_obj_request_wait(obj_request);
4045         if (ret)
4046                 goto out;
4047
4048         ret = obj_request->result;
4049         if (ret < 0)
4050                 goto out;
4051
4052         rbd_assert(obj_request->xferred < (u64)INT_MAX);
4053         ret = (int)obj_request->xferred;
4054         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4055 out:
4056         if (obj_request)
4057                 rbd_obj_request_put(obj_request);
4058         else
4059                 ceph_release_page_vector(pages, page_count);
4060
4061         return ret;
4062 }
4063
4064 /*
4065  * lock_rwsem must be held for read
4066  */
4067 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4068 {
4069         DEFINE_WAIT(wait);
4070
4071         do {
4072                 /*
4073                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
4074                  * and cancel_delayed_work() in wake_requests().
4075                  */
4076                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4077                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4078                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4079                                           TASK_UNINTERRUPTIBLE);
4080                 up_read(&rbd_dev->lock_rwsem);
4081                 schedule();
4082                 down_read(&rbd_dev->lock_rwsem);
4083         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4084                  !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4085
4086         finish_wait(&rbd_dev->lock_waitq, &wait);
4087 }
4088
4089 static void rbd_queue_workfn(struct work_struct *work)
4090 {
4091         struct request *rq = blk_mq_rq_from_pdu(work);
4092         struct rbd_device *rbd_dev = rq->q->queuedata;
4093         struct rbd_img_request *img_request;
4094         struct ceph_snap_context *snapc = NULL;
4095         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4096         u64 length = blk_rq_bytes(rq);
4097         enum obj_operation_type op_type;
4098         u64 mapping_size;
4099         bool must_be_locked;
4100         int result;
4101
4102         if (rq->cmd_type != REQ_TYPE_FS) {
4103                 dout("%s: non-fs request type %d\n", __func__,
4104                         (int) rq->cmd_type);
4105                 result = -EIO;
4106                 goto err;
4107         }
4108
4109         if (req_op(rq) == REQ_OP_DISCARD)
4110                 op_type = OBJ_OP_DISCARD;
4111         else if (req_op(rq) == REQ_OP_WRITE)
4112                 op_type = OBJ_OP_WRITE;
4113         else
4114                 op_type = OBJ_OP_READ;
4115
4116         /* Ignore/skip any zero-length requests */
4117
4118         if (!length) {
4119                 dout("%s: zero-length request\n", __func__);
4120                 result = 0;
4121                 goto err_rq;
4122         }
4123
4124         /* Only reads are allowed to a read-only device */
4125
4126         if (op_type != OBJ_OP_READ) {
4127                 if (rbd_dev->mapping.read_only) {
4128                         result = -EROFS;
4129                         goto err_rq;
4130                 }
4131                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4132         }
4133
4134         /*
4135          * Quit early if the mapped snapshot no longer exists.  It's
4136          * still possible the snapshot will have disappeared by the
4137          * time our request arrives at the osd, but there's no sense in
4138          * sending it if we already know.
4139          */
4140         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4141                 dout("request for non-existent snapshot");
4142                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4143                 result = -ENXIO;
4144                 goto err_rq;
4145         }
4146
4147         if (offset && length > U64_MAX - offset + 1) {
4148                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4149                          length);
4150                 result = -EINVAL;
4151                 goto err_rq;    /* Shouldn't happen */
4152         }
4153
4154         blk_mq_start_request(rq);
4155
4156         down_read(&rbd_dev->header_rwsem);
4157         mapping_size = rbd_dev->mapping.size;
4158         if (op_type != OBJ_OP_READ) {
4159                 snapc = rbd_dev->header.snapc;
4160                 ceph_get_snap_context(snapc);
4161                 must_be_locked = rbd_is_lock_supported(rbd_dev);
4162         } else {
4163                 must_be_locked = rbd_dev->opts->lock_on_read &&
4164                                         rbd_is_lock_supported(rbd_dev);
4165         }
4166         up_read(&rbd_dev->header_rwsem);
4167
4168         if (offset + length > mapping_size) {
4169                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4170                          length, mapping_size);
4171                 result = -EIO;
4172                 goto err_rq;
4173         }
4174
4175         if (must_be_locked) {
4176                 down_read(&rbd_dev->lock_rwsem);
4177                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4178                     !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4179                         rbd_wait_state_locked(rbd_dev);
4180
4181                 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4182                         !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4183                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4184                         result = -EBLACKLISTED;
4185                         goto err_unlock;
4186                 }
4187         }
4188
4189         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4190                                              snapc);
4191         if (!img_request) {
4192                 result = -ENOMEM;
4193                 goto err_unlock;
4194         }
4195         img_request->rq = rq;
4196         snapc = NULL; /* img_request consumes a ref */
4197
4198         if (op_type == OBJ_OP_DISCARD)
4199                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4200                                               NULL);
4201         else
4202                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4203                                               rq->bio);
4204         if (result)
4205                 goto err_img_request;
4206
4207         result = rbd_img_request_submit(img_request);
4208         if (result)
4209                 goto err_img_request;
4210
4211         if (must_be_locked)
4212                 up_read(&rbd_dev->lock_rwsem);
4213         return;
4214
4215 err_img_request:
4216         rbd_img_request_put(img_request);
4217 err_unlock:
4218         if (must_be_locked)
4219                 up_read(&rbd_dev->lock_rwsem);
4220 err_rq:
4221         if (result)
4222                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4223                          obj_op_name(op_type), length, offset, result);
4224         ceph_put_snap_context(snapc);
4225 err:
4226         blk_mq_end_request(rq, result);
4227 }
4228
4229 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4230                 const struct blk_mq_queue_data *bd)
4231 {
4232         struct request *rq = bd->rq;
4233         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4234
4235         queue_work(rbd_wq, work);
4236         return BLK_MQ_RQ_QUEUE_OK;
4237 }
4238
4239 static void rbd_free_disk(struct rbd_device *rbd_dev)
4240 {
4241         struct gendisk *disk = rbd_dev->disk;
4242
4243         if (!disk)
4244                 return;
4245
4246         rbd_dev->disk = NULL;
4247         if (disk->flags & GENHD_FL_UP) {
4248                 del_gendisk(disk);
4249                 if (disk->queue)
4250                         blk_cleanup_queue(disk->queue);
4251                 blk_mq_free_tag_set(&rbd_dev->tag_set);
4252         }
4253         put_disk(disk);
4254 }
4255
4256 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4257                                 const char *object_name,
4258                                 u64 offset, u64 length, void *buf)
4259
4260 {
4261         struct rbd_obj_request *obj_request;
4262         struct page **pages = NULL;
4263         u32 page_count;
4264         size_t size;
4265         int ret;
4266
4267         page_count = (u32) calc_pages_for(offset, length);
4268         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4269         if (IS_ERR(pages))
4270                 return PTR_ERR(pages);
4271
4272         ret = -ENOMEM;
4273         obj_request = rbd_obj_request_create(object_name, offset, length,
4274                                                         OBJ_REQUEST_PAGES);
4275         if (!obj_request)
4276                 goto out;
4277
4278         obj_request->pages = pages;
4279         obj_request->page_count = page_count;
4280
4281         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4282                                                   obj_request);
4283         if (!obj_request->osd_req)
4284                 goto out;
4285
4286         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4287                                         offset, length, 0, 0);
4288         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4289                                         obj_request->pages,
4290                                         obj_request->length,
4291                                         obj_request->offset & ~PAGE_MASK,
4292                                         false, false);
4293
4294         rbd_obj_request_submit(obj_request);
4295         ret = rbd_obj_request_wait(obj_request);
4296         if (ret)
4297                 goto out;
4298
4299         ret = obj_request->result;
4300         if (ret < 0)
4301                 goto out;
4302
4303         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4304         size = (size_t) obj_request->xferred;
4305         ceph_copy_from_page_vector(pages, buf, 0, size);
4306         rbd_assert(size <= (size_t)INT_MAX);
4307         ret = (int)size;
4308 out:
4309         if (obj_request)
4310                 rbd_obj_request_put(obj_request);
4311         else
4312                 ceph_release_page_vector(pages, page_count);
4313
4314         return ret;
4315 }
4316
4317 /*
4318  * Read the complete header for the given rbd device.  On successful
4319  * return, the rbd_dev->header field will contain up-to-date
4320  * information about the image.
4321  */
4322 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4323 {
4324         struct rbd_image_header_ondisk *ondisk = NULL;
4325         u32 snap_count = 0;
4326         u64 names_size = 0;
4327         u32 want_count;
4328         int ret;
4329
4330         /*
4331          * The complete header will include an array of its 64-bit
4332          * snapshot ids, followed by the names of those snapshots as
4333          * a contiguous block of NUL-terminated strings.  Note that
4334          * the number of snapshots could change by the time we read
4335          * it in, in which case we re-read it.
4336          */
4337         do {
4338                 size_t size;
4339
4340                 kfree(ondisk);
4341
4342                 size = sizeof (*ondisk);
4343                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4344                 size += names_size;
4345                 ondisk = kmalloc(size, GFP_KERNEL);
4346                 if (!ondisk)
4347                         return -ENOMEM;
4348
4349                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4350                                        0, size, ondisk);
4351                 if (ret < 0)
4352                         goto out;
4353                 if ((size_t)ret < size) {
4354                         ret = -ENXIO;
4355                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4356                                 size, ret);
4357                         goto out;
4358                 }
4359                 if (!rbd_dev_ondisk_valid(ondisk)) {
4360                         ret = -ENXIO;
4361                         rbd_warn(rbd_dev, "invalid header");
4362                         goto out;
4363                 }
4364
4365                 names_size = le64_to_cpu(ondisk->snap_names_len);
4366                 want_count = snap_count;
4367                 snap_count = le32_to_cpu(ondisk->snap_count);
4368         } while (snap_count != want_count);
4369
4370         ret = rbd_header_from_disk(rbd_dev, ondisk);
4371 out:
4372         kfree(ondisk);
4373
4374         return ret;
4375 }
4376
4377 /*
4378  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4379  * has disappeared from the (just updated) snapshot context.
4380  */
4381 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4382 {
4383         u64 snap_id;
4384
4385         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4386                 return;
4387
4388         snap_id = rbd_dev->spec->snap_id;
4389         if (snap_id == CEPH_NOSNAP)
4390                 return;
4391
4392         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4393                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4394 }
4395
4396 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4397 {
4398         sector_t size;
4399
4400         /*
4401          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4402          * try to update its size.  If REMOVING is set, updating size
4403          * is just useless work since the device can't be opened.
4404          */
4405         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4406             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4407                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4408                 dout("setting size to %llu sectors", (unsigned long long)size);
4409                 set_capacity(rbd_dev->disk, size);
4410                 revalidate_disk(rbd_dev->disk);
4411         }
4412 }
4413
4414 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4415 {
4416         u64 mapping_size;
4417         int ret;
4418
4419         down_write(&rbd_dev->header_rwsem);
4420         mapping_size = rbd_dev->mapping.size;
4421
4422         ret = rbd_dev_header_info(rbd_dev);
4423         if (ret)
4424                 goto out;
4425
4426         /*
4427          * If there is a parent, see if it has disappeared due to the
4428          * mapped image getting flattened.
4429          */
4430         if (rbd_dev->parent) {
4431                 ret = rbd_dev_v2_parent_info(rbd_dev);
4432                 if (ret)
4433                         goto out;
4434         }
4435
4436         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4437                 rbd_dev->mapping.size = rbd_dev->header.image_size;
4438         } else {
4439                 /* validate mapped snapshot's EXISTS flag */
4440                 rbd_exists_validate(rbd_dev);
4441         }
4442
4443 out:
4444         up_write(&rbd_dev->header_rwsem);
4445         if (!ret && mapping_size != rbd_dev->mapping.size)
4446                 rbd_dev_update_size(rbd_dev);
4447
4448         return ret;
4449 }
4450
4451 static int rbd_init_request(void *data, struct request *rq,
4452                 unsigned int hctx_idx, unsigned int request_idx,
4453                 unsigned int numa_node)
4454 {
4455         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4456
4457         INIT_WORK(work, rbd_queue_workfn);
4458         return 0;
4459 }
4460
4461 static struct blk_mq_ops rbd_mq_ops = {
4462         .queue_rq       = rbd_queue_rq,
4463         .init_request   = rbd_init_request,
4464 };
4465
4466 static int rbd_init_disk(struct rbd_device *rbd_dev)
4467 {
4468         struct gendisk *disk;
4469         struct request_queue *q;
4470         u64 segment_size;
4471         int err;
4472
4473         /* create gendisk info */
4474         disk = alloc_disk(single_major ?
4475                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4476                           RBD_MINORS_PER_MAJOR);
4477         if (!disk)
4478                 return -ENOMEM;
4479
4480         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4481                  rbd_dev->dev_id);
4482         disk->major = rbd_dev->major;
4483         disk->first_minor = rbd_dev->minor;
4484         if (single_major)
4485                 disk->flags |= GENHD_FL_EXT_DEVT;
4486         disk->fops = &rbd_bd_ops;
4487         disk->private_data = rbd_dev;
4488
4489         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4490         rbd_dev->tag_set.ops = &rbd_mq_ops;
4491         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4492         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4493         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4494         rbd_dev->tag_set.nr_hw_queues = 1;
4495         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4496
4497         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4498         if (err)
4499                 goto out_disk;
4500
4501         q = blk_mq_init_queue(&rbd_dev->tag_set);
4502         if (IS_ERR(q)) {
4503                 err = PTR_ERR(q);
4504                 goto out_tag_set;
4505         }
4506
4507         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4508         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4509
4510         /* set io sizes to object size */
4511         segment_size = rbd_obj_bytes(&rbd_dev->header);
4512         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4513         q->limits.max_sectors = queue_max_hw_sectors(q);
4514         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4515         blk_queue_max_segment_size(q, segment_size);
4516         blk_queue_io_min(q, segment_size);
4517         blk_queue_io_opt(q, segment_size);
4518
4519         /* enable the discard support */
4520         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4521         q->limits.discard_granularity = segment_size;
4522         q->limits.discard_alignment = segment_size;
4523         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4524         q->limits.discard_zeroes_data = 1;
4525
4526         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4527                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4528
4529         disk->queue = q;
4530
4531         q->queuedata = rbd_dev;
4532
4533         rbd_dev->disk = disk;
4534
4535         return 0;
4536 out_tag_set:
4537         blk_mq_free_tag_set(&rbd_dev->tag_set);
4538 out_disk:
4539         put_disk(disk);
4540         return err;
4541 }
4542
4543 /*
4544   sysfs
4545 */
4546
4547 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4548 {
4549         return container_of(dev, struct rbd_device, dev);
4550 }
4551
4552 static ssize_t rbd_size_show(struct device *dev,
4553                              struct device_attribute *attr, char *buf)
4554 {
4555         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4556
4557         return sprintf(buf, "%llu\n",
4558                 (unsigned long long)rbd_dev->mapping.size);
4559 }
4560
4561 /*
4562  * Note this shows the features for whatever's mapped, which is not
4563  * necessarily the base image.
4564  */
4565 static ssize_t rbd_features_show(struct device *dev,
4566                              struct device_attribute *attr, char *buf)
4567 {
4568         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4569
4570         return sprintf(buf, "0x%016llx\n",
4571                         (unsigned long long)rbd_dev->mapping.features);
4572 }
4573
4574 static ssize_t rbd_major_show(struct device *dev,
4575                               struct device_attribute *attr, char *buf)
4576 {
4577         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4578
4579         if (rbd_dev->major)
4580                 return sprintf(buf, "%d\n", rbd_dev->major);
4581
4582         return sprintf(buf, "(none)\n");
4583 }
4584
4585 static ssize_t rbd_minor_show(struct device *dev,
4586                               struct device_attribute *attr, char *buf)
4587 {
4588         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4589
4590         return sprintf(buf, "%d\n", rbd_dev->minor);
4591 }
4592
4593 static ssize_t rbd_client_addr_show(struct device *dev,
4594                                     struct device_attribute *attr, char *buf)
4595 {
4596         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4597         struct ceph_entity_addr *client_addr =
4598             ceph_client_addr(rbd_dev->rbd_client->client);
4599
4600         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4601                        le32_to_cpu(client_addr->nonce));
4602 }
4603
4604 static ssize_t rbd_client_id_show(struct device *dev,
4605                                   struct device_attribute *attr, char *buf)
4606 {
4607         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4608
4609         return sprintf(buf, "client%lld\n",
4610                        ceph_client_gid(rbd_dev->rbd_client->client));
4611 }
4612
4613 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4614                                      struct device_attribute *attr, char *buf)
4615 {
4616         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4617
4618         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4619 }
4620
4621 static ssize_t rbd_config_info_show(struct device *dev,
4622                                     struct device_attribute *attr, char *buf)
4623 {
4624         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4625
4626         return sprintf(buf, "%s\n", rbd_dev->config_info);
4627 }
4628
4629 static ssize_t rbd_pool_show(struct device *dev,
4630                              struct device_attribute *attr, char *buf)
4631 {
4632         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4633
4634         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4635 }
4636
4637 static ssize_t rbd_pool_id_show(struct device *dev,
4638                              struct device_attribute *attr, char *buf)
4639 {
4640         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4641
4642         return sprintf(buf, "%llu\n",
4643                         (unsigned long long) rbd_dev->spec->pool_id);
4644 }
4645
4646 static ssize_t rbd_name_show(struct device *dev,
4647                              struct device_attribute *attr, char *buf)
4648 {
4649         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4650
4651         if (rbd_dev->spec->image_name)
4652                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4653
4654         return sprintf(buf, "(unknown)\n");
4655 }
4656
4657 static ssize_t rbd_image_id_show(struct device *dev,
4658                              struct device_attribute *attr, char *buf)
4659 {
4660         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4661
4662         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4663 }
4664
4665 /*
4666  * Shows the name of the currently-mapped snapshot (or
4667  * RBD_SNAP_HEAD_NAME for the base image).
4668  */
4669 static ssize_t rbd_snap_show(struct device *dev,
4670                              struct device_attribute *attr,
4671                              char *buf)
4672 {
4673         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4674
4675         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4676 }
4677
4678 static ssize_t rbd_snap_id_show(struct device *dev,
4679                                 struct device_attribute *attr, char *buf)
4680 {
4681         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4682
4683         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4684 }
4685
4686 /*
4687  * For a v2 image, shows the chain of parent images, separated by empty
4688  * lines.  For v1 images or if there is no parent, shows "(no parent
4689  * image)".
4690  */
4691 static ssize_t rbd_parent_show(struct device *dev,
4692                                struct device_attribute *attr,
4693                                char *buf)
4694 {
4695         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4696         ssize_t count = 0;
4697
4698         if (!rbd_dev->parent)
4699                 return sprintf(buf, "(no parent image)\n");
4700
4701         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4702                 struct rbd_spec *spec = rbd_dev->parent_spec;
4703
4704                 count += sprintf(&buf[count], "%s"
4705                             "pool_id %llu\npool_name %s\n"
4706                             "image_id %s\nimage_name %s\n"
4707                             "snap_id %llu\nsnap_name %s\n"
4708                             "overlap %llu\n",
4709                             !count ? "" : "\n", /* first? */
4710                             spec->pool_id, spec->pool_name,
4711                             spec->image_id, spec->image_name ?: "(unknown)",
4712                             spec->snap_id, spec->snap_name,
4713                             rbd_dev->parent_overlap);
4714         }
4715
4716         return count;
4717 }
4718
4719 static ssize_t rbd_image_refresh(struct device *dev,
4720                                  struct device_attribute *attr,
4721                                  const char *buf,
4722                                  size_t size)
4723 {
4724         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4725         int ret;
4726
4727         ret = rbd_dev_refresh(rbd_dev);
4728         if (ret)
4729                 return ret;
4730
4731         return size;
4732 }
4733
4734 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4735 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4736 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4737 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4738 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4739 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4740 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4741 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4742 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4743 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4744 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4745 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4746 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4747 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4748 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4749 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4750
4751 static struct attribute *rbd_attrs[] = {
4752         &dev_attr_size.attr,
4753         &dev_attr_features.attr,
4754         &dev_attr_major.attr,
4755         &dev_attr_minor.attr,
4756         &dev_attr_client_addr.attr,
4757         &dev_attr_client_id.attr,
4758         &dev_attr_cluster_fsid.attr,
4759         &dev_attr_config_info.attr,
4760         &dev_attr_pool.attr,
4761         &dev_attr_pool_id.attr,
4762         &dev_attr_name.attr,
4763         &dev_attr_image_id.attr,
4764         &dev_attr_current_snap.attr,
4765         &dev_attr_snap_id.attr,
4766         &dev_attr_parent.attr,
4767         &dev_attr_refresh.attr,
4768         NULL
4769 };
4770
4771 static struct attribute_group rbd_attr_group = {
4772         .attrs = rbd_attrs,
4773 };
4774
4775 static const struct attribute_group *rbd_attr_groups[] = {
4776         &rbd_attr_group,
4777         NULL
4778 };
4779
4780 static void rbd_dev_release(struct device *dev);
4781
4782 static struct device_type rbd_device_type = {
4783         .name           = "rbd",
4784         .groups         = rbd_attr_groups,
4785         .release        = rbd_dev_release,
4786 };
4787
4788 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4789 {
4790         kref_get(&spec->kref);
4791
4792         return spec;
4793 }
4794
4795 static void rbd_spec_free(struct kref *kref);
4796 static void rbd_spec_put(struct rbd_spec *spec)
4797 {
4798         if (spec)
4799                 kref_put(&spec->kref, rbd_spec_free);
4800 }
4801
4802 static struct rbd_spec *rbd_spec_alloc(void)
4803 {
4804         struct rbd_spec *spec;
4805
4806         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4807         if (!spec)
4808                 return NULL;
4809
4810         spec->pool_id = CEPH_NOPOOL;
4811         spec->snap_id = CEPH_NOSNAP;
4812         kref_init(&spec->kref);
4813
4814         return spec;
4815 }
4816
4817 static void rbd_spec_free(struct kref *kref)
4818 {
4819         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4820
4821         kfree(spec->pool_name);
4822         kfree(spec->image_id);
4823         kfree(spec->image_name);
4824         kfree(spec->snap_name);
4825         kfree(spec);
4826 }
4827
4828 static void rbd_dev_free(struct rbd_device *rbd_dev)
4829 {
4830         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4831         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4832
4833         ceph_oid_destroy(&rbd_dev->header_oid);
4834         ceph_oloc_destroy(&rbd_dev->header_oloc);
4835         kfree(rbd_dev->config_info);
4836
4837         rbd_put_client(rbd_dev->rbd_client);
4838         rbd_spec_put(rbd_dev->spec);
4839         kfree(rbd_dev->opts);
4840         kfree(rbd_dev);
4841 }
4842
4843 static void rbd_dev_release(struct device *dev)
4844 {
4845         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4846         bool need_put = !!rbd_dev->opts;
4847
4848         if (need_put) {
4849                 destroy_workqueue(rbd_dev->task_wq);
4850                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4851         }
4852
4853         rbd_dev_free(rbd_dev);
4854
4855         /*
4856          * This is racy, but way better than putting module outside of
4857          * the release callback.  The race window is pretty small, so
4858          * doing something similar to dm (dm-builtin.c) is overkill.
4859          */
4860         if (need_put)
4861                 module_put(THIS_MODULE);
4862 }
4863
4864 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4865                                            struct rbd_spec *spec)
4866 {
4867         struct rbd_device *rbd_dev;
4868
4869         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4870         if (!rbd_dev)
4871                 return NULL;
4872
4873         spin_lock_init(&rbd_dev->lock);
4874         INIT_LIST_HEAD(&rbd_dev->node);
4875         init_rwsem(&rbd_dev->header_rwsem);
4876
4877         ceph_oid_init(&rbd_dev->header_oid);
4878         ceph_oloc_init(&rbd_dev->header_oloc);
4879
4880         mutex_init(&rbd_dev->watch_mutex);
4881         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4882         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4883
4884         init_rwsem(&rbd_dev->lock_rwsem);
4885         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4886         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4887         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4888         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4889         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4890         init_waitqueue_head(&rbd_dev->lock_waitq);
4891
4892         rbd_dev->dev.bus = &rbd_bus_type;
4893         rbd_dev->dev.type = &rbd_device_type;
4894         rbd_dev->dev.parent = &rbd_root_dev;
4895         device_initialize(&rbd_dev->dev);
4896
4897         rbd_dev->rbd_client = rbdc;
4898         rbd_dev->spec = spec;
4899
4900         rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4901         rbd_dev->layout.stripe_count = 1;
4902         rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4903         rbd_dev->layout.pool_id = spec->pool_id;
4904         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4905
4906         return rbd_dev;
4907 }
4908
4909 /*
4910  * Create a mapping rbd_dev.
4911  */
4912 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4913                                          struct rbd_spec *spec,
4914                                          struct rbd_options *opts)
4915 {
4916         struct rbd_device *rbd_dev;
4917
4918         rbd_dev = __rbd_dev_create(rbdc, spec);
4919         if (!rbd_dev)
4920                 return NULL;
4921
4922         rbd_dev->opts = opts;
4923
4924         /* get an id and fill in device name */
4925         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4926                                          minor_to_rbd_dev_id(1 << MINORBITS),
4927                                          GFP_KERNEL);
4928         if (rbd_dev->dev_id < 0)
4929                 goto fail_rbd_dev;
4930
4931         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4932         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4933                                                    rbd_dev->name);
4934         if (!rbd_dev->task_wq)
4935                 goto fail_dev_id;
4936
4937         /* we have a ref from do_rbd_add() */
4938         __module_get(THIS_MODULE);
4939
4940         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4941         return rbd_dev;
4942
4943 fail_dev_id:
4944         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4945 fail_rbd_dev:
4946         rbd_dev_free(rbd_dev);
4947         return NULL;
4948 }
4949
4950 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4951 {
4952         if (rbd_dev)
4953                 put_device(&rbd_dev->dev);
4954 }
4955
4956 /*
4957  * Get the size and object order for an image snapshot, or if
4958  * snap_id is CEPH_NOSNAP, gets this information for the base
4959  * image.
4960  */
4961 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4962                                 u8 *order, u64 *snap_size)
4963 {
4964         __le64 snapid = cpu_to_le64(snap_id);
4965         int ret;
4966         struct {
4967                 u8 order;
4968                 __le64 size;
4969         } __attribute__ ((packed)) size_buf = { 0 };
4970
4971         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4972                                 "rbd", "get_size",
4973                                 &snapid, sizeof (snapid),
4974                                 &size_buf, sizeof (size_buf));
4975         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4976         if (ret < 0)
4977                 return ret;
4978         if (ret < sizeof (size_buf))
4979                 return -ERANGE;
4980
4981         if (order) {
4982                 *order = size_buf.order;
4983                 dout("  order %u", (unsigned int)*order);
4984         }
4985         *snap_size = le64_to_cpu(size_buf.size);
4986
4987         dout("  snap_id 0x%016llx snap_size = %llu\n",
4988                 (unsigned long long)snap_id,
4989                 (unsigned long long)*snap_size);
4990
4991         return 0;
4992 }
4993
4994 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4995 {
4996         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4997                                         &rbd_dev->header.obj_order,
4998                                         &rbd_dev->header.image_size);
4999 }
5000
5001 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5002 {
5003         void *reply_buf;
5004         int ret;
5005         void *p;
5006
5007         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5008         if (!reply_buf)
5009                 return -ENOMEM;
5010
5011         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5012                                 "rbd", "get_object_prefix", NULL, 0,
5013                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5014         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5015         if (ret < 0)
5016                 goto out;
5017
5018         p = reply_buf;
5019         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5020                                                 p + ret, NULL, GFP_NOIO);
5021         ret = 0;
5022
5023         if (IS_ERR(rbd_dev->header.object_prefix)) {
5024                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5025                 rbd_dev->header.object_prefix = NULL;
5026         } else {
5027                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5028         }
5029 out:
5030         kfree(reply_buf);
5031
5032         return ret;
5033 }
5034
5035 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5036                 u64 *snap_features)
5037 {
5038         __le64 snapid = cpu_to_le64(snap_id);
5039         struct {
5040                 __le64 features;
5041                 __le64 incompat;
5042         } __attribute__ ((packed)) features_buf = { 0 };
5043         u64 unsup;
5044         int ret;
5045
5046         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5047                                 "rbd", "get_features",
5048                                 &snapid, sizeof (snapid),
5049                                 &features_buf, sizeof (features_buf));
5050         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5051         if (ret < 0)
5052                 return ret;
5053         if (ret < sizeof (features_buf))
5054                 return -ERANGE;
5055
5056         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5057         if (unsup) {
5058                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5059                          unsup);
5060                 return -ENXIO;
5061         }
5062
5063         *snap_features = le64_to_cpu(features_buf.features);
5064
5065         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5066                 (unsigned long long)snap_id,
5067                 (unsigned long long)*snap_features,
5068                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5069
5070         return 0;
5071 }
5072
5073 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5074 {
5075         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5076                                                 &rbd_dev->header.features);
5077 }
5078
5079 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5080 {
5081         struct rbd_spec *parent_spec;
5082         size_t size;
5083         void *reply_buf = NULL;
5084         __le64 snapid;
5085         void *p;
5086         void *end;
5087         u64 pool_id;
5088         char *image_id;
5089         u64 snap_id;
5090         u64 overlap;
5091         int ret;
5092
5093         parent_spec = rbd_spec_alloc();
5094         if (!parent_spec)
5095                 return -ENOMEM;
5096
5097         size = sizeof (__le64) +                                /* pool_id */
5098                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
5099                 sizeof (__le64) +                               /* snap_id */
5100                 sizeof (__le64);                                /* overlap */
5101         reply_buf = kmalloc(size, GFP_KERNEL);
5102         if (!reply_buf) {
5103                 ret = -ENOMEM;
5104                 goto out_err;
5105         }
5106
5107         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5108         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5109                                 "rbd", "get_parent",
5110                                 &snapid, sizeof (snapid),
5111                                 reply_buf, size);
5112         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5113         if (ret < 0)
5114                 goto out_err;
5115
5116         p = reply_buf;
5117         end = reply_buf + ret;
5118         ret = -ERANGE;
5119         ceph_decode_64_safe(&p, end, pool_id, out_err);
5120         if (pool_id == CEPH_NOPOOL) {
5121                 /*
5122                  * Either the parent never existed, or we have
5123                  * record of it but the image got flattened so it no
5124                  * longer has a parent.  When the parent of a
5125                  * layered image disappears we immediately set the
5126                  * overlap to 0.  The effect of this is that all new
5127                  * requests will be treated as if the image had no
5128                  * parent.
5129                  */
5130                 if (rbd_dev->parent_overlap) {
5131                         rbd_dev->parent_overlap = 0;
5132                         rbd_dev_parent_put(rbd_dev);
5133                         pr_info("%s: clone image has been flattened\n",
5134                                 rbd_dev->disk->disk_name);
5135                 }
5136
5137                 goto out;       /* No parent?  No problem. */
5138         }
5139
5140         /* The ceph file layout needs to fit pool id in 32 bits */
5141
5142         ret = -EIO;
5143         if (pool_id > (u64)U32_MAX) {
5144                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5145                         (unsigned long long)pool_id, U32_MAX);
5146                 goto out_err;
5147         }
5148
5149         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5150         if (IS_ERR(image_id)) {
5151                 ret = PTR_ERR(image_id);
5152                 goto out_err;
5153         }
5154         ceph_decode_64_safe(&p, end, snap_id, out_err);
5155         ceph_decode_64_safe(&p, end, overlap, out_err);
5156
5157         /*
5158          * The parent won't change (except when the clone is
5159          * flattened, already handled that).  So we only need to
5160          * record the parent spec we have not already done so.
5161          */
5162         if (!rbd_dev->parent_spec) {
5163                 parent_spec->pool_id = pool_id;
5164                 parent_spec->image_id = image_id;
5165                 parent_spec->snap_id = snap_id;
5166                 rbd_dev->parent_spec = parent_spec;
5167                 parent_spec = NULL;     /* rbd_dev now owns this */
5168         } else {
5169                 kfree(image_id);
5170         }
5171
5172         /*
5173          * We always update the parent overlap.  If it's zero we issue
5174          * a warning, as we will proceed as if there was no parent.
5175          */
5176         if (!overlap) {
5177                 if (parent_spec) {
5178                         /* refresh, careful to warn just once */
5179                         if (rbd_dev->parent_overlap)
5180                                 rbd_warn(rbd_dev,
5181                                     "clone now standalone (overlap became 0)");
5182                 } else {
5183                         /* initial probe */
5184                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5185                 }
5186         }
5187         rbd_dev->parent_overlap = overlap;
5188
5189 out:
5190         ret = 0;
5191 out_err:
5192         kfree(reply_buf);
5193         rbd_spec_put(parent_spec);
5194
5195         return ret;
5196 }
5197
5198 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5199 {
5200         struct {
5201                 __le64 stripe_unit;
5202                 __le64 stripe_count;
5203         } __attribute__ ((packed)) striping_info_buf = { 0 };
5204         size_t size = sizeof (striping_info_buf);
5205         void *p;
5206         u64 obj_size;
5207         u64 stripe_unit;
5208         u64 stripe_count;
5209         int ret;
5210
5211         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5212                                 "rbd", "get_stripe_unit_count", NULL, 0,
5213                                 (char *)&striping_info_buf, size);
5214         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5215         if (ret < 0)
5216                 return ret;
5217         if (ret < size)
5218                 return -ERANGE;
5219
5220         /*
5221          * We don't actually support the "fancy striping" feature
5222          * (STRIPINGV2) yet, but if the striping sizes are the
5223          * defaults the behavior is the same as before.  So find
5224          * out, and only fail if the image has non-default values.
5225          */
5226         ret = -EINVAL;
5227         obj_size = (u64)1 << rbd_dev->header.obj_order;
5228         p = &striping_info_buf;
5229         stripe_unit = ceph_decode_64(&p);
5230         if (stripe_unit != obj_size) {
5231                 rbd_warn(rbd_dev, "unsupported stripe unit "
5232                                 "(got %llu want %llu)",
5233                                 stripe_unit, obj_size);
5234                 return -EINVAL;
5235         }
5236         stripe_count = ceph_decode_64(&p);
5237         if (stripe_count != 1) {
5238                 rbd_warn(rbd_dev, "unsupported stripe count "
5239                                 "(got %llu want 1)", stripe_count);
5240                 return -EINVAL;
5241         }
5242         rbd_dev->header.stripe_unit = stripe_unit;
5243         rbd_dev->header.stripe_count = stripe_count;
5244
5245         return 0;
5246 }
5247
5248 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5249 {
5250         size_t image_id_size;
5251         char *image_id;
5252         void *p;
5253         void *end;
5254         size_t size;
5255         void *reply_buf = NULL;
5256         size_t len = 0;
5257         char *image_name = NULL;
5258         int ret;
5259
5260         rbd_assert(!rbd_dev->spec->image_name);
5261
5262         len = strlen(rbd_dev->spec->image_id);
5263         image_id_size = sizeof (__le32) + len;
5264         image_id = kmalloc(image_id_size, GFP_KERNEL);
5265         if (!image_id)
5266                 return NULL;
5267
5268         p = image_id;
5269         end = image_id + image_id_size;
5270         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5271
5272         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5273         reply_buf = kmalloc(size, GFP_KERNEL);
5274         if (!reply_buf)
5275                 goto out;
5276
5277         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5278                                 "rbd", "dir_get_name",
5279                                 image_id, image_id_size,
5280                                 reply_buf, size);
5281         if (ret < 0)
5282                 goto out;
5283         p = reply_buf;
5284         end = reply_buf + ret;
5285
5286         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5287         if (IS_ERR(image_name))
5288                 image_name = NULL;
5289         else
5290                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5291 out:
5292         kfree(reply_buf);
5293         kfree(image_id);
5294
5295         return image_name;
5296 }
5297
5298 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5299 {
5300         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5301         const char *snap_name;
5302         u32 which = 0;
5303
5304         /* Skip over names until we find the one we are looking for */
5305
5306         snap_name = rbd_dev->header.snap_names;
5307         while (which < snapc->num_snaps) {
5308                 if (!strcmp(name, snap_name))
5309                         return snapc->snaps[which];
5310                 snap_name += strlen(snap_name) + 1;
5311                 which++;
5312         }
5313         return CEPH_NOSNAP;
5314 }
5315
5316 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5317 {
5318         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5319         u32 which;
5320         bool found = false;
5321         u64 snap_id;
5322
5323         for (which = 0; !found && which < snapc->num_snaps; which++) {
5324                 const char *snap_name;
5325
5326                 snap_id = snapc->snaps[which];
5327                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5328                 if (IS_ERR(snap_name)) {
5329                         /* ignore no-longer existing snapshots */
5330                         if (PTR_ERR(snap_name) == -ENOENT)
5331                                 continue;
5332                         else
5333                                 break;
5334                 }
5335                 found = !strcmp(name, snap_name);
5336                 kfree(snap_name);
5337         }
5338         return found ? snap_id : CEPH_NOSNAP;
5339 }
5340
5341 /*
5342  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5343  * no snapshot by that name is found, or if an error occurs.
5344  */
5345 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5346 {
5347         if (rbd_dev->image_format == 1)
5348                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5349
5350         return rbd_v2_snap_id_by_name(rbd_dev, name);
5351 }
5352
5353 /*
5354  * An image being mapped will have everything but the snap id.
5355  */
5356 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5357 {
5358         struct rbd_spec *spec = rbd_dev->spec;
5359
5360         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5361         rbd_assert(spec->image_id && spec->image_name);
5362         rbd_assert(spec->snap_name);
5363
5364         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5365                 u64 snap_id;
5366
5367                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5368                 if (snap_id == CEPH_NOSNAP)
5369                         return -ENOENT;
5370
5371                 spec->snap_id = snap_id;
5372         } else {
5373                 spec->snap_id = CEPH_NOSNAP;
5374         }
5375
5376         return 0;
5377 }
5378
5379 /*
5380  * A parent image will have all ids but none of the names.
5381  *
5382  * All names in an rbd spec are dynamically allocated.  It's OK if we
5383  * can't figure out the name for an image id.
5384  */
5385 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5386 {
5387         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5388         struct rbd_spec *spec = rbd_dev->spec;
5389         const char *pool_name;
5390         const char *image_name;
5391         const char *snap_name;
5392         int ret;
5393
5394         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5395         rbd_assert(spec->image_id);
5396         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5397
5398         /* Get the pool name; we have to make our own copy of this */
5399
5400         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5401         if (!pool_name) {
5402                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5403                 return -EIO;
5404         }
5405         pool_name = kstrdup(pool_name, GFP_KERNEL);
5406         if (!pool_name)
5407                 return -ENOMEM;
5408
5409         /* Fetch the image name; tolerate failure here */
5410
5411         image_name = rbd_dev_image_name(rbd_dev);
5412         if (!image_name)
5413                 rbd_warn(rbd_dev, "unable to get image name");
5414
5415         /* Fetch the snapshot name */
5416
5417         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5418         if (IS_ERR(snap_name)) {
5419                 ret = PTR_ERR(snap_name);
5420                 goto out_err;
5421         }
5422
5423         spec->pool_name = pool_name;
5424         spec->image_name = image_name;
5425         spec->snap_name = snap_name;
5426
5427         return 0;
5428
5429 out_err:
5430         kfree(image_name);
5431         kfree(pool_name);
5432         return ret;
5433 }
5434
5435 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5436 {
5437         size_t size;
5438         int ret;
5439         void *reply_buf;
5440         void *p;
5441         void *end;
5442         u64 seq;
5443         u32 snap_count;
5444         struct ceph_snap_context *snapc;
5445         u32 i;
5446
5447         /*
5448          * We'll need room for the seq value (maximum snapshot id),
5449          * snapshot count, and array of that many snapshot ids.
5450          * For now we have a fixed upper limit on the number we're
5451          * prepared to receive.
5452          */
5453         size = sizeof (__le64) + sizeof (__le32) +
5454                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5455         reply_buf = kzalloc(size, GFP_KERNEL);
5456         if (!reply_buf)
5457                 return -ENOMEM;
5458
5459         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5460                                 "rbd", "get_snapcontext", NULL, 0,
5461                                 reply_buf, size);
5462         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5463         if (ret < 0)
5464                 goto out;
5465
5466         p = reply_buf;
5467         end = reply_buf + ret;
5468         ret = -ERANGE;
5469         ceph_decode_64_safe(&p, end, seq, out);
5470         ceph_decode_32_safe(&p, end, snap_count, out);
5471
5472         /*
5473          * Make sure the reported number of snapshot ids wouldn't go
5474          * beyond the end of our buffer.  But before checking that,
5475          * make sure the computed size of the snapshot context we
5476          * allocate is representable in a size_t.
5477          */
5478         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5479                                  / sizeof (u64)) {
5480                 ret = -EINVAL;
5481                 goto out;
5482         }
5483         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5484                 goto out;
5485         ret = 0;
5486
5487         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5488         if (!snapc) {
5489                 ret = -ENOMEM;
5490                 goto out;
5491         }
5492         snapc->seq = seq;
5493         for (i = 0; i < snap_count; i++)
5494                 snapc->snaps[i] = ceph_decode_64(&p);
5495
5496         ceph_put_snap_context(rbd_dev->header.snapc);
5497         rbd_dev->header.snapc = snapc;
5498
5499         dout("  snap context seq = %llu, snap_count = %u\n",
5500                 (unsigned long long)seq, (unsigned int)snap_count);
5501 out:
5502         kfree(reply_buf);
5503
5504         return ret;
5505 }
5506
5507 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5508                                         u64 snap_id)
5509 {
5510         size_t size;
5511         void *reply_buf;
5512         __le64 snapid;
5513         int ret;
5514         void *p;
5515         void *end;
5516         char *snap_name;
5517
5518         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5519         reply_buf = kmalloc(size, GFP_KERNEL);
5520         if (!reply_buf)
5521                 return ERR_PTR(-ENOMEM);
5522
5523         snapid = cpu_to_le64(snap_id);
5524         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5525                                 "rbd", "get_snapshot_name",
5526                                 &snapid, sizeof (snapid),
5527                                 reply_buf, size);
5528         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5529         if (ret < 0) {
5530                 snap_name = ERR_PTR(ret);
5531                 goto out;
5532         }
5533
5534         p = reply_buf;
5535         end = reply_buf + ret;
5536         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5537         if (IS_ERR(snap_name))
5538                 goto out;
5539
5540         dout("  snap_id 0x%016llx snap_name = %s\n",
5541                 (unsigned long long)snap_id, snap_name);
5542 out:
5543         kfree(reply_buf);
5544
5545         return snap_name;
5546 }
5547
5548 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5549 {
5550         bool first_time = rbd_dev->header.object_prefix == NULL;
5551         int ret;
5552
5553         ret = rbd_dev_v2_image_size(rbd_dev);
5554         if (ret)
5555                 return ret;
5556
5557         if (first_time) {
5558                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5559                 if (ret)
5560                         return ret;
5561         }
5562
5563         ret = rbd_dev_v2_snap_context(rbd_dev);
5564         if (ret && first_time) {
5565                 kfree(rbd_dev->header.object_prefix);
5566                 rbd_dev->header.object_prefix = NULL;
5567         }
5568
5569         return ret;
5570 }
5571
5572 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5573 {
5574         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5575
5576         if (rbd_dev->image_format == 1)
5577                 return rbd_dev_v1_header_info(rbd_dev);
5578
5579         return rbd_dev_v2_header_info(rbd_dev);
5580 }
5581
5582 /*
5583  * Skips over white space at *buf, and updates *buf to point to the
5584  * first found non-space character (if any). Returns the length of
5585  * the token (string of non-white space characters) found.  Note
5586  * that *buf must be terminated with '\0'.
5587  */
5588 static inline size_t next_token(const char **buf)
5589 {
5590         /*
5591         * These are the characters that produce nonzero for
5592         * isspace() in the "C" and "POSIX" locales.
5593         */
5594         const char *spaces = " \f\n\r\t\v";
5595
5596         *buf += strspn(*buf, spaces);   /* Find start of token */
5597
5598         return strcspn(*buf, spaces);   /* Return token length */
5599 }
5600
5601 /*
5602  * Finds the next token in *buf, dynamically allocates a buffer big
5603  * enough to hold a copy of it, and copies the token into the new
5604  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5605  * that a duplicate buffer is created even for a zero-length token.
5606  *
5607  * Returns a pointer to the newly-allocated duplicate, or a null
5608  * pointer if memory for the duplicate was not available.  If
5609  * the lenp argument is a non-null pointer, the length of the token
5610  * (not including the '\0') is returned in *lenp.
5611  *
5612  * If successful, the *buf pointer will be updated to point beyond
5613  * the end of the found token.
5614  *
5615  * Note: uses GFP_KERNEL for allocation.
5616  */
5617 static inline char *dup_token(const char **buf, size_t *lenp)
5618 {
5619         char *dup;
5620         size_t len;
5621
5622         len = next_token(buf);
5623         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5624         if (!dup)
5625                 return NULL;
5626         *(dup + len) = '\0';
5627         *buf += len;
5628
5629         if (lenp)
5630                 *lenp = len;
5631
5632         return dup;
5633 }
5634
5635 /*
5636  * Parse the options provided for an "rbd add" (i.e., rbd image
5637  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5638  * and the data written is passed here via a NUL-terminated buffer.
5639  * Returns 0 if successful or an error code otherwise.
5640  *
5641  * The information extracted from these options is recorded in
5642  * the other parameters which return dynamically-allocated
5643  * structures:
5644  *  ceph_opts
5645  *      The address of a pointer that will refer to a ceph options
5646  *      structure.  Caller must release the returned pointer using
5647  *      ceph_destroy_options() when it is no longer needed.
5648  *  rbd_opts
5649  *      Address of an rbd options pointer.  Fully initialized by
5650  *      this function; caller must release with kfree().
5651  *  spec
5652  *      Address of an rbd image specification pointer.  Fully
5653  *      initialized by this function based on parsed options.
5654  *      Caller must release with rbd_spec_put().
5655  *
5656  * The options passed take this form:
5657  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5658  * where:
5659  *  <mon_addrs>
5660  *      A comma-separated list of one or more monitor addresses.
5661  *      A monitor address is an ip address, optionally followed
5662  *      by a port number (separated by a colon).
5663  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5664  *  <options>
5665  *      A comma-separated list of ceph and/or rbd options.
5666  *  <pool_name>
5667  *      The name of the rados pool containing the rbd image.
5668  *  <image_name>
5669  *      The name of the image in that pool to map.
5670  *  <snap_id>
5671  *      An optional snapshot id.  If provided, the mapping will
5672  *      present data from the image at the time that snapshot was
5673  *      created.  The image head is used if no snapshot id is
5674  *      provided.  Snapshot mappings are always read-only.
5675  */
5676 static int rbd_add_parse_args(const char *buf,
5677                                 struct ceph_options **ceph_opts,
5678                                 struct rbd_options **opts,
5679                                 struct rbd_spec **rbd_spec)
5680 {
5681         size_t len;
5682         char *options;
5683         const char *mon_addrs;
5684         char *snap_name;
5685         size_t mon_addrs_size;
5686         struct rbd_spec *spec = NULL;
5687         struct rbd_options *rbd_opts = NULL;
5688         struct ceph_options *copts;
5689         int ret;
5690
5691         /* The first four tokens are required */
5692
5693         len = next_token(&buf);
5694         if (!len) {
5695                 rbd_warn(NULL, "no monitor address(es) provided");
5696                 return -EINVAL;
5697         }
5698         mon_addrs = buf;
5699         mon_addrs_size = len + 1;
5700         buf += len;
5701
5702         ret = -EINVAL;
5703         options = dup_token(&buf, NULL);
5704         if (!options)
5705                 return -ENOMEM;
5706         if (!*options) {
5707                 rbd_warn(NULL, "no options provided");
5708                 goto out_err;
5709         }
5710
5711         spec = rbd_spec_alloc();
5712         if (!spec)
5713                 goto out_mem;
5714
5715         spec->pool_name = dup_token(&buf, NULL);
5716         if (!spec->pool_name)
5717                 goto out_mem;
5718         if (!*spec->pool_name) {
5719                 rbd_warn(NULL, "no pool name provided");
5720                 goto out_err;
5721         }
5722
5723         spec->image_name = dup_token(&buf, NULL);
5724         if (!spec->image_name)
5725                 goto out_mem;
5726         if (!*spec->image_name) {
5727                 rbd_warn(NULL, "no image name provided");
5728                 goto out_err;
5729         }
5730
5731         /*
5732          * Snapshot name is optional; default is to use "-"
5733          * (indicating the head/no snapshot).
5734          */
5735         len = next_token(&buf);
5736         if (!len) {
5737                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5738                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5739         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5740                 ret = -ENAMETOOLONG;
5741                 goto out_err;
5742         }
5743         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5744         if (!snap_name)
5745                 goto out_mem;
5746         *(snap_name + len) = '\0';
5747         spec->snap_name = snap_name;
5748
5749         /* Initialize all rbd options to the defaults */
5750
5751         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5752         if (!rbd_opts)
5753                 goto out_mem;
5754
5755         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5756         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5757         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5758
5759         copts = ceph_parse_options(options, mon_addrs,
5760                                         mon_addrs + mon_addrs_size - 1,
5761                                         parse_rbd_opts_token, rbd_opts);
5762         if (IS_ERR(copts)) {
5763                 ret = PTR_ERR(copts);
5764                 goto out_err;
5765         }
5766         kfree(options);
5767
5768         *ceph_opts = copts;
5769         *opts = rbd_opts;
5770         *rbd_spec = spec;
5771
5772         return 0;
5773 out_mem:
5774         ret = -ENOMEM;
5775 out_err:
5776         kfree(rbd_opts);
5777         rbd_spec_put(spec);
5778         kfree(options);
5779
5780         return ret;
5781 }
5782
5783 /*
5784  * Return pool id (>= 0) or a negative error code.
5785  */
5786 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5787 {
5788         struct ceph_options *opts = rbdc->client->options;
5789         u64 newest_epoch;
5790         int tries = 0;
5791         int ret;
5792
5793 again:
5794         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5795         if (ret == -ENOENT && tries++ < 1) {
5796                 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5797                                             &newest_epoch);
5798                 if (ret < 0)
5799                         return ret;
5800
5801                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5802                         ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5803                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5804                                                      newest_epoch,
5805                                                      opts->mount_timeout);
5806                         goto again;
5807                 } else {
5808                         /* the osdmap we have is new enough */
5809                         return -ENOENT;
5810                 }
5811         }
5812
5813         return ret;
5814 }
5815
5816 /*
5817  * An rbd format 2 image has a unique identifier, distinct from the
5818  * name given to it by the user.  Internally, that identifier is
5819  * what's used to specify the names of objects related to the image.
5820  *
5821  * A special "rbd id" object is used to map an rbd image name to its
5822  * id.  If that object doesn't exist, then there is no v2 rbd image
5823  * with the supplied name.
5824  *
5825  * This function will record the given rbd_dev's image_id field if
5826  * it can be determined, and in that case will return 0.  If any
5827  * errors occur a negative errno will be returned and the rbd_dev's
5828  * image_id field will be unchanged (and should be NULL).
5829  */
5830 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5831 {
5832         int ret;
5833         size_t size;
5834         char *object_name;
5835         void *response;
5836         char *image_id;
5837
5838         /*
5839          * When probing a parent image, the image id is already
5840          * known (and the image name likely is not).  There's no
5841          * need to fetch the image id again in this case.  We
5842          * do still need to set the image format though.
5843          */
5844         if (rbd_dev->spec->image_id) {
5845                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5846
5847                 return 0;
5848         }
5849
5850         /*
5851          * First, see if the format 2 image id file exists, and if
5852          * so, get the image's persistent id from it.
5853          */
5854         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5855         object_name = kmalloc(size, GFP_NOIO);
5856         if (!object_name)
5857                 return -ENOMEM;
5858         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5859         dout("rbd id object name is %s\n", object_name);
5860
5861         /* Response will be an encoded string, which includes a length */
5862
5863         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5864         response = kzalloc(size, GFP_NOIO);
5865         if (!response) {
5866                 ret = -ENOMEM;
5867                 goto out;
5868         }
5869
5870         /* If it doesn't exist we'll assume it's a format 1 image */
5871
5872         ret = rbd_obj_method_sync(rbd_dev, object_name,
5873                                 "rbd", "get_id", NULL, 0,
5874                                 response, RBD_IMAGE_ID_LEN_MAX);
5875         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5876         if (ret == -ENOENT) {
5877                 image_id = kstrdup("", GFP_KERNEL);
5878                 ret = image_id ? 0 : -ENOMEM;
5879                 if (!ret)
5880                         rbd_dev->image_format = 1;
5881         } else if (ret >= 0) {
5882                 void *p = response;
5883
5884                 image_id = ceph_extract_encoded_string(&p, p + ret,
5885                                                 NULL, GFP_NOIO);
5886                 ret = PTR_ERR_OR_ZERO(image_id);
5887                 if (!ret)
5888                         rbd_dev->image_format = 2;
5889         }
5890
5891         if (!ret) {
5892                 rbd_dev->spec->image_id = image_id;
5893                 dout("image_id is %s\n", image_id);
5894         }
5895 out:
5896         kfree(response);
5897         kfree(object_name);
5898
5899         return ret;
5900 }
5901
5902 /*
5903  * Undo whatever state changes are made by v1 or v2 header info
5904  * call.
5905  */
5906 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5907 {
5908         struct rbd_image_header *header;
5909
5910         rbd_dev_parent_put(rbd_dev);
5911
5912         /* Free dynamic fields from the header, then zero it out */
5913
5914         header = &rbd_dev->header;
5915         ceph_put_snap_context(header->snapc);
5916         kfree(header->snap_sizes);
5917         kfree(header->snap_names);
5918         kfree(header->object_prefix);
5919         memset(header, 0, sizeof (*header));
5920 }
5921
5922 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5923 {
5924         int ret;
5925
5926         ret = rbd_dev_v2_object_prefix(rbd_dev);
5927         if (ret)
5928                 goto out_err;
5929
5930         /*
5931          * Get the and check features for the image.  Currently the
5932          * features are assumed to never change.
5933          */
5934         ret = rbd_dev_v2_features(rbd_dev);
5935         if (ret)
5936                 goto out_err;
5937
5938         /* If the image supports fancy striping, get its parameters */
5939
5940         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5941                 ret = rbd_dev_v2_striping_info(rbd_dev);
5942                 if (ret < 0)
5943                         goto out_err;
5944         }
5945         /* No support for crypto and compression type format 2 images */
5946
5947         return 0;
5948 out_err:
5949         rbd_dev->header.features = 0;
5950         kfree(rbd_dev->header.object_prefix);
5951         rbd_dev->header.object_prefix = NULL;
5952
5953         return ret;
5954 }
5955
5956 /*
5957  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5958  * rbd_dev_image_probe() recursion depth, which means it's also the
5959  * length of the already discovered part of the parent chain.
5960  */
5961 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5962 {
5963         struct rbd_device *parent = NULL;
5964         int ret;
5965
5966         if (!rbd_dev->parent_spec)
5967                 return 0;
5968
5969         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5970                 pr_info("parent chain is too long (%d)\n", depth);
5971                 ret = -EINVAL;
5972                 goto out_err;
5973         }
5974
5975         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5976         if (!parent) {
5977                 ret = -ENOMEM;
5978                 goto out_err;
5979         }
5980
5981         /*
5982          * Images related by parent/child relationships always share
5983          * rbd_client and spec/parent_spec, so bump their refcounts.
5984          */
5985         __rbd_get_client(rbd_dev->rbd_client);
5986         rbd_spec_get(rbd_dev->parent_spec);
5987
5988         ret = rbd_dev_image_probe(parent, depth);
5989         if (ret < 0)
5990                 goto out_err;
5991
5992         rbd_dev->parent = parent;
5993         atomic_set(&rbd_dev->parent_ref, 1);
5994         return 0;
5995
5996 out_err:
5997         rbd_dev_unparent(rbd_dev);
5998         rbd_dev_destroy(parent);
5999         return ret;
6000 }
6001
6002 /*
6003  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6004  * upon return.
6005  */
6006 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6007 {
6008         int ret;
6009
6010         /* Record our major and minor device numbers. */
6011
6012         if (!single_major) {
6013                 ret = register_blkdev(0, rbd_dev->name);
6014                 if (ret < 0)
6015                         goto err_out_unlock;
6016
6017                 rbd_dev->major = ret;
6018                 rbd_dev->minor = 0;
6019         } else {
6020                 rbd_dev->major = rbd_major;
6021                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6022         }
6023
6024         /* Set up the blkdev mapping. */
6025
6026         ret = rbd_init_disk(rbd_dev);
6027         if (ret)
6028                 goto err_out_blkdev;
6029
6030         ret = rbd_dev_mapping_set(rbd_dev);
6031         if (ret)
6032                 goto err_out_disk;
6033
6034         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6035         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6036
6037         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6038         ret = device_add(&rbd_dev->dev);
6039         if (ret)
6040                 goto err_out_mapping;
6041
6042         /* Everything's ready.  Announce the disk to the world. */
6043
6044         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6045         up_write(&rbd_dev->header_rwsem);
6046
6047         spin_lock(&rbd_dev_list_lock);
6048         list_add_tail(&rbd_dev->node, &rbd_dev_list);
6049         spin_unlock(&rbd_dev_list_lock);
6050
6051         add_disk(rbd_dev->disk);
6052         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6053                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6054                 rbd_dev->header.features);
6055
6056         return ret;
6057
6058 err_out_mapping:
6059         rbd_dev_mapping_clear(rbd_dev);
6060 err_out_disk:
6061         rbd_free_disk(rbd_dev);
6062 err_out_blkdev:
6063         if (!single_major)
6064                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6065 err_out_unlock:
6066         up_write(&rbd_dev->header_rwsem);
6067         return ret;
6068 }
6069
6070 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6071 {
6072         struct rbd_spec *spec = rbd_dev->spec;
6073         int ret;
6074
6075         /* Record the header object name for this rbd image. */
6076
6077         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6078
6079         rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6080         if (rbd_dev->image_format == 1)
6081                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6082                                        spec->image_name, RBD_SUFFIX);
6083         else
6084                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6085                                        RBD_HEADER_PREFIX, spec->image_id);
6086
6087         return ret;
6088 }
6089
6090 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6091 {
6092         rbd_dev_unprobe(rbd_dev);
6093         rbd_dev->image_format = 0;
6094         kfree(rbd_dev->spec->image_id);
6095         rbd_dev->spec->image_id = NULL;
6096
6097         rbd_dev_destroy(rbd_dev);
6098 }
6099
6100 /*
6101  * Probe for the existence of the header object for the given rbd
6102  * device.  If this image is the one being mapped (i.e., not a
6103  * parent), initiate a watch on its header object before using that
6104  * object to get detailed information about the rbd image.
6105  */
6106 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6107 {
6108         int ret;
6109
6110         /*
6111          * Get the id from the image id object.  Unless there's an
6112          * error, rbd_dev->spec->image_id will be filled in with
6113          * a dynamically-allocated string, and rbd_dev->image_format
6114          * will be set to either 1 or 2.
6115          */
6116         ret = rbd_dev_image_id(rbd_dev);
6117         if (ret)
6118                 return ret;
6119
6120         ret = rbd_dev_header_name(rbd_dev);
6121         if (ret)
6122                 goto err_out_format;
6123
6124         if (!depth) {
6125                 ret = rbd_register_watch(rbd_dev);
6126                 if (ret) {
6127                         if (ret == -ENOENT)
6128                                 pr_info("image %s/%s does not exist\n",
6129                                         rbd_dev->spec->pool_name,
6130                                         rbd_dev->spec->image_name);
6131                         goto err_out_format;
6132                 }
6133         }
6134
6135         ret = rbd_dev_header_info(rbd_dev);
6136         if (ret)
6137                 goto err_out_watch;
6138
6139         /*
6140          * If this image is the one being mapped, we have pool name and
6141          * id, image name and id, and snap name - need to fill snap id.
6142          * Otherwise this is a parent image, identified by pool, image
6143          * and snap ids - need to fill in names for those ids.
6144          */
6145         if (!depth)
6146                 ret = rbd_spec_fill_snap_id(rbd_dev);
6147         else
6148                 ret = rbd_spec_fill_names(rbd_dev);
6149         if (ret) {
6150                 if (ret == -ENOENT)
6151                         pr_info("snap %s/%s@%s does not exist\n",
6152                                 rbd_dev->spec->pool_name,
6153                                 rbd_dev->spec->image_name,
6154                                 rbd_dev->spec->snap_name);
6155                 goto err_out_probe;
6156         }
6157
6158         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6159                 ret = rbd_dev_v2_parent_info(rbd_dev);
6160                 if (ret)
6161                         goto err_out_probe;
6162
6163                 /*
6164                  * Need to warn users if this image is the one being
6165                  * mapped and has a parent.
6166                  */
6167                 if (!depth && rbd_dev->parent_spec)
6168                         rbd_warn(rbd_dev,
6169                                  "WARNING: kernel layering is EXPERIMENTAL!");
6170         }
6171
6172         ret = rbd_dev_probe_parent(rbd_dev, depth);
6173         if (ret)
6174                 goto err_out_probe;
6175
6176         dout("discovered format %u image, header name is %s\n",
6177                 rbd_dev->image_format, rbd_dev->header_oid.name);
6178         return 0;
6179
6180 err_out_probe:
6181         rbd_dev_unprobe(rbd_dev);
6182 err_out_watch:
6183         if (!depth)
6184                 rbd_unregister_watch(rbd_dev);
6185 err_out_format:
6186         rbd_dev->image_format = 0;
6187         kfree(rbd_dev->spec->image_id);
6188         rbd_dev->spec->image_id = NULL;
6189         return ret;
6190 }
6191
6192 static ssize_t do_rbd_add(struct bus_type *bus,
6193                           const char *buf,
6194                           size_t count)
6195 {
6196         struct rbd_device *rbd_dev = NULL;
6197         struct ceph_options *ceph_opts = NULL;
6198         struct rbd_options *rbd_opts = NULL;
6199         struct rbd_spec *spec = NULL;
6200         struct rbd_client *rbdc;
6201         bool read_only;
6202         int rc;
6203
6204         if (!try_module_get(THIS_MODULE))
6205                 return -ENODEV;
6206
6207         /* parse add command */
6208         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6209         if (rc < 0)
6210                 goto out;
6211
6212         rbdc = rbd_get_client(ceph_opts);
6213         if (IS_ERR(rbdc)) {
6214                 rc = PTR_ERR(rbdc);
6215                 goto err_out_args;
6216         }
6217
6218         /* pick the pool */
6219         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6220         if (rc < 0) {
6221                 if (rc == -ENOENT)
6222                         pr_info("pool %s does not exist\n", spec->pool_name);
6223                 goto err_out_client;
6224         }
6225         spec->pool_id = (u64)rc;
6226
6227         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6228         if (!rbd_dev) {
6229                 rc = -ENOMEM;
6230                 goto err_out_client;
6231         }
6232         rbdc = NULL;            /* rbd_dev now owns this */
6233         spec = NULL;            /* rbd_dev now owns this */
6234         rbd_opts = NULL;        /* rbd_dev now owns this */
6235
6236         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6237         if (!rbd_dev->config_info) {
6238                 rc = -ENOMEM;
6239                 goto err_out_rbd_dev;
6240         }
6241
6242         down_write(&rbd_dev->header_rwsem);
6243         rc = rbd_dev_image_probe(rbd_dev, 0);
6244         if (rc < 0) {
6245                 up_write(&rbd_dev->header_rwsem);
6246                 goto err_out_rbd_dev;
6247         }
6248
6249         /* If we are mapping a snapshot it must be marked read-only */
6250
6251         read_only = rbd_dev->opts->read_only;
6252         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6253                 read_only = true;
6254         rbd_dev->mapping.read_only = read_only;
6255
6256         rc = rbd_dev_device_setup(rbd_dev);
6257         if (rc) {
6258                 /*
6259                  * rbd_unregister_watch() can't be moved into
6260                  * rbd_dev_image_release() without refactoring, see
6261                  * commit 1f3ef78861ac.
6262                  */
6263                 rbd_unregister_watch(rbd_dev);
6264                 rbd_dev_image_release(rbd_dev);
6265                 goto out;
6266         }
6267
6268         rc = count;
6269 out:
6270         module_put(THIS_MODULE);
6271         return rc;
6272
6273 err_out_rbd_dev:
6274         rbd_dev_destroy(rbd_dev);
6275 err_out_client:
6276         rbd_put_client(rbdc);
6277 err_out_args:
6278         rbd_spec_put(spec);
6279         kfree(rbd_opts);
6280         goto out;
6281 }
6282
6283 static ssize_t rbd_add(struct bus_type *bus,
6284                        const char *buf,
6285                        size_t count)
6286 {
6287         if (single_major)
6288                 return -EINVAL;
6289
6290         return do_rbd_add(bus, buf, count);
6291 }
6292
6293 static ssize_t rbd_add_single_major(struct bus_type *bus,
6294                                     const char *buf,
6295                                     size_t count)
6296 {
6297         return do_rbd_add(bus, buf, count);
6298 }
6299
6300 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6301 {
6302         rbd_free_disk(rbd_dev);
6303
6304         spin_lock(&rbd_dev_list_lock);
6305         list_del_init(&rbd_dev->node);
6306         spin_unlock(&rbd_dev_list_lock);
6307
6308         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6309         device_del(&rbd_dev->dev);
6310         rbd_dev_mapping_clear(rbd_dev);
6311         if (!single_major)
6312                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6313 }
6314
6315 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6316 {
6317         while (rbd_dev->parent) {
6318                 struct rbd_device *first = rbd_dev;
6319                 struct rbd_device *second = first->parent;
6320                 struct rbd_device *third;
6321
6322                 /*
6323                  * Follow to the parent with no grandparent and
6324                  * remove it.
6325                  */
6326                 while (second && (third = second->parent)) {
6327                         first = second;
6328                         second = third;
6329                 }
6330                 rbd_assert(second);
6331                 rbd_dev_image_release(second);
6332                 first->parent = NULL;
6333                 first->parent_overlap = 0;
6334
6335                 rbd_assert(first->parent_spec);
6336                 rbd_spec_put(first->parent_spec);
6337                 first->parent_spec = NULL;
6338         }
6339 }
6340
6341 static ssize_t do_rbd_remove(struct bus_type *bus,
6342                              const char *buf,
6343                              size_t count)
6344 {
6345         struct rbd_device *rbd_dev = NULL;
6346         struct list_head *tmp;
6347         int dev_id;
6348         char opt_buf[6];
6349         bool already = false;
6350         bool force = false;
6351         int ret;
6352
6353         dev_id = -1;
6354         opt_buf[0] = '\0';
6355         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6356         if (dev_id < 0) {
6357                 pr_err("dev_id out of range\n");
6358                 return -EINVAL;
6359         }
6360         if (opt_buf[0] != '\0') {
6361                 if (!strcmp(opt_buf, "force")) {
6362                         force = true;
6363                 } else {
6364                         pr_err("bad remove option at '%s'\n", opt_buf);
6365                         return -EINVAL;
6366                 }
6367         }
6368
6369         ret = -ENOENT;
6370         spin_lock(&rbd_dev_list_lock);
6371         list_for_each(tmp, &rbd_dev_list) {
6372                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6373                 if (rbd_dev->dev_id == dev_id) {
6374                         ret = 0;
6375                         break;
6376                 }
6377         }
6378         if (!ret) {
6379                 spin_lock_irq(&rbd_dev->lock);
6380                 if (rbd_dev->open_count && !force)
6381                         ret = -EBUSY;
6382                 else
6383                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6384                                                         &rbd_dev->flags);
6385                 spin_unlock_irq(&rbd_dev->lock);
6386         }
6387         spin_unlock(&rbd_dev_list_lock);
6388         if (ret < 0 || already)
6389                 return ret;
6390
6391         if (force) {
6392                 /*
6393                  * Prevent new IO from being queued and wait for existing
6394                  * IO to complete/fail.
6395                  */
6396                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6397                 blk_set_queue_dying(rbd_dev->disk->queue);
6398         }
6399
6400         down_write(&rbd_dev->lock_rwsem);
6401         if (__rbd_is_lock_owner(rbd_dev))
6402                 rbd_unlock(rbd_dev);
6403         up_write(&rbd_dev->lock_rwsem);
6404         rbd_unregister_watch(rbd_dev);
6405
6406         /*
6407          * Don't free anything from rbd_dev->disk until after all
6408          * notifies are completely processed. Otherwise
6409          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6410          * in a potential use after free of rbd_dev->disk or rbd_dev.
6411          */
6412         rbd_dev_device_release(rbd_dev);
6413         rbd_dev_image_release(rbd_dev);
6414
6415         return count;
6416 }
6417
6418 static ssize_t rbd_remove(struct bus_type *bus,
6419                           const char *buf,
6420                           size_t count)
6421 {
6422         if (single_major)
6423                 return -EINVAL;
6424
6425         return do_rbd_remove(bus, buf, count);
6426 }
6427
6428 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6429                                        const char *buf,
6430                                        size_t count)
6431 {
6432         return do_rbd_remove(bus, buf, count);
6433 }
6434
6435 /*
6436  * create control files in sysfs
6437  * /sys/bus/rbd/...
6438  */
6439 static int rbd_sysfs_init(void)
6440 {
6441         int ret;
6442
6443         ret = device_register(&rbd_root_dev);
6444         if (ret < 0)
6445                 return ret;
6446
6447         ret = bus_register(&rbd_bus_type);
6448         if (ret < 0)
6449                 device_unregister(&rbd_root_dev);
6450
6451         return ret;
6452 }
6453
6454 static void rbd_sysfs_cleanup(void)
6455 {
6456         bus_unregister(&rbd_bus_type);
6457         device_unregister(&rbd_root_dev);
6458 }
6459
6460 static int rbd_slab_init(void)
6461 {
6462         rbd_assert(!rbd_img_request_cache);
6463         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6464         if (!rbd_img_request_cache)
6465                 return -ENOMEM;
6466
6467         rbd_assert(!rbd_obj_request_cache);
6468         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6469         if (!rbd_obj_request_cache)
6470                 goto out_err;
6471
6472         rbd_assert(!rbd_segment_name_cache);
6473         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6474                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6475         if (rbd_segment_name_cache)
6476                 return 0;
6477 out_err:
6478         kmem_cache_destroy(rbd_obj_request_cache);
6479         rbd_obj_request_cache = NULL;
6480
6481         kmem_cache_destroy(rbd_img_request_cache);
6482         rbd_img_request_cache = NULL;
6483
6484         return -ENOMEM;
6485 }
6486
6487 static void rbd_slab_exit(void)
6488 {
6489         rbd_assert(rbd_segment_name_cache);
6490         kmem_cache_destroy(rbd_segment_name_cache);
6491         rbd_segment_name_cache = NULL;
6492
6493         rbd_assert(rbd_obj_request_cache);
6494         kmem_cache_destroy(rbd_obj_request_cache);
6495         rbd_obj_request_cache = NULL;
6496
6497         rbd_assert(rbd_img_request_cache);
6498         kmem_cache_destroy(rbd_img_request_cache);
6499         rbd_img_request_cache = NULL;
6500 }
6501
6502 static int __init rbd_init(void)
6503 {
6504         int rc;
6505
6506         if (!libceph_compatible(NULL)) {
6507                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6508                 return -EINVAL;
6509         }
6510
6511         rc = rbd_slab_init();
6512         if (rc)
6513                 return rc;
6514
6515         /*
6516          * The number of active work items is limited by the number of
6517          * rbd devices * queue depth, so leave @max_active at default.
6518          */
6519         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6520         if (!rbd_wq) {
6521                 rc = -ENOMEM;
6522                 goto err_out_slab;
6523         }
6524
6525         if (single_major) {
6526                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6527                 if (rbd_major < 0) {
6528                         rc = rbd_major;
6529                         goto err_out_wq;
6530                 }
6531         }
6532
6533         rc = rbd_sysfs_init();
6534         if (rc)
6535                 goto err_out_blkdev;
6536
6537         if (single_major)
6538                 pr_info("loaded (major %d)\n", rbd_major);
6539         else
6540                 pr_info("loaded\n");
6541
6542         return 0;
6543
6544 err_out_blkdev:
6545         if (single_major)
6546                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6547 err_out_wq:
6548         destroy_workqueue(rbd_wq);
6549 err_out_slab:
6550         rbd_slab_exit();
6551         return rc;
6552 }
6553
6554 static void __exit rbd_exit(void)
6555 {
6556         ida_destroy(&rbd_dev_id_ida);
6557         rbd_sysfs_cleanup();
6558         if (single_major)
6559                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6560         destroy_workqueue(rbd_wq);
6561         rbd_slab_exit();
6562 }
6563
6564 module_init(rbd_init);
6565 module_exit(rbd_exit);
6566
6567 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6568 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6569 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6570 /* following authorship retained from original osdblk.c */
6571 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6572
6573 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6574 MODULE_LICENSE("GPL");