Merge tag 'drm-intel-next-2014-12-19' of git://anongit.freedesktop.org/drm-intel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 uint32_t *handle_p)
405 {
406         struct drm_i915_gem_object *obj;
407         int ret;
408         u32 handle;
409
410         size = roundup(size, PAGE_SIZE);
411         if (size == 0)
412                 return -EINVAL;
413
414         /* Allocate the new object */
415         obj = i915_gem_alloc_object(dev, size);
416         if (obj == NULL)
417                 return -ENOMEM;
418
419         ret = drm_gem_handle_create(file, &obj->base, &handle);
420         /* drop reference from allocate - handle holds it now */
421         drm_gem_object_unreference_unlocked(&obj->base);
422         if (ret)
423                 return ret;
424
425         *handle_p = handle;
426         return 0;
427 }
428
429 int
430 i915_gem_dumb_create(struct drm_file *file,
431                      struct drm_device *dev,
432                      struct drm_mode_create_dumb *args)
433 {
434         /* have to work out size/pitch and return them */
435         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436         args->size = args->pitch * args->height;
437         return i915_gem_create(file, dev,
438                                args->size, &args->handle);
439 }
440
441 /**
442  * Creates a new mm object and returns a handle to it.
443  */
444 int
445 i915_gem_create_ioctl(struct drm_device *dev, void *data,
446                       struct drm_file *file)
447 {
448         struct drm_i915_gem_create *args = data;
449
450         return i915_gem_create(file, dev,
451                                args->size, &args->handle);
452 }
453
454 static inline int
455 __copy_to_user_swizzled(char __user *cpu_vaddr,
456                         const char *gpu_vaddr, int gpu_offset,
457                         int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467                                      gpu_vaddr + swizzled_gpu_offset,
468                                      this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 static inline int
481 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482                           const char __user *cpu_vaddr,
483                           int length)
484 {
485         int ret, cpu_offset = 0;
486
487         while (length > 0) {
488                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489                 int this_length = min(cacheline_end - gpu_offset, length);
490                 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493                                        cpu_vaddr + cpu_offset,
494                                        this_length);
495                 if (ret)
496                         return ret + length;
497
498                 cpu_offset += this_length;
499                 gpu_offset += this_length;
500                 length -= this_length;
501         }
502
503         return 0;
504 }
505
506 /*
507  * Pins the specified object's pages and synchronizes the object with
508  * GPU accesses. Sets needs_clflush to non-zero if the caller should
509  * flush the object from the CPU cache.
510  */
511 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512                                     int *needs_clflush)
513 {
514         int ret;
515
516         *needs_clflush = 0;
517
518         if (!obj->base.filp)
519                 return -EINVAL;
520
521         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
522                 /* If we're not in the cpu read domain, set ourself into the gtt
523                  * read domain and manually flush cachelines (if required). This
524                  * optimizes for the case when the gpu will dirty the data
525                  * anyway again before the next pread happens. */
526                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
527                                                         obj->cache_level);
528                 ret = i915_gem_object_wait_rendering(obj, true);
529                 if (ret)
530                         return ret;
531
532                 i915_gem_object_retire(obj);
533         }
534
535         ret = i915_gem_object_get_pages(obj);
536         if (ret)
537                 return ret;
538
539         i915_gem_object_pin_pages(obj);
540
541         return ret;
542 }
543
544 /* Per-page copy function for the shmem pread fastpath.
545  * Flushes invalid cachelines before reading the target if
546  * needs_clflush is set. */
547 static int
548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549                  char __user *user_data,
550                  bool page_do_bit17_swizzling, bool needs_clflush)
551 {
552         char *vaddr;
553         int ret;
554
555         if (unlikely(page_do_bit17_swizzling))
556                 return -EINVAL;
557
558         vaddr = kmap_atomic(page);
559         if (needs_clflush)
560                 drm_clflush_virt_range(vaddr + shmem_page_offset,
561                                        page_length);
562         ret = __copy_to_user_inatomic(user_data,
563                                       vaddr + shmem_page_offset,
564                                       page_length);
565         kunmap_atomic(vaddr);
566
567         return ret ? -EFAULT : 0;
568 }
569
570 static void
571 shmem_clflush_swizzled_range(char *addr, unsigned long length,
572                              bool swizzled)
573 {
574         if (unlikely(swizzled)) {
575                 unsigned long start = (unsigned long) addr;
576                 unsigned long end = (unsigned long) addr + length;
577
578                 /* For swizzling simply ensure that we always flush both
579                  * channels. Lame, but simple and it works. Swizzled
580                  * pwrite/pread is far from a hotpath - current userspace
581                  * doesn't use it at all. */
582                 start = round_down(start, 128);
583                 end = round_up(end, 128);
584
585                 drm_clflush_virt_range((void *)start, end - start);
586         } else {
587                 drm_clflush_virt_range(addr, length);
588         }
589
590 }
591
592 /* Only difference to the fast-path function is that this can handle bit17
593  * and uses non-atomic copy and kmap functions. */
594 static int
595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596                  char __user *user_data,
597                  bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599         char *vaddr;
600         int ret;
601
602         vaddr = kmap(page);
603         if (needs_clflush)
604                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605                                              page_length,
606                                              page_do_bit17_swizzling);
607
608         if (page_do_bit17_swizzling)
609                 ret = __copy_to_user_swizzled(user_data,
610                                               vaddr, shmem_page_offset,
611                                               page_length);
612         else
613                 ret = __copy_to_user(user_data,
614                                      vaddr + shmem_page_offset,
615                                      page_length);
616         kunmap(page);
617
618         return ret ? - EFAULT : 0;
619 }
620
621 static int
622 i915_gem_shmem_pread(struct drm_device *dev,
623                      struct drm_i915_gem_object *obj,
624                      struct drm_i915_gem_pread *args,
625                      struct drm_file *file)
626 {
627         char __user *user_data;
628         ssize_t remain;
629         loff_t offset;
630         int shmem_page_offset, page_length, ret = 0;
631         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632         int prefaulted = 0;
633         int needs_clflush = 0;
634         struct sg_page_iter sg_iter;
635
636         user_data = to_user_ptr(args->data_ptr);
637         remain = args->size;
638
639         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640
641         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642         if (ret)
643                 return ret;
644
645         offset = args->offset;
646
647         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
648                          offset >> PAGE_SHIFT) {
649                 struct page *page = sg_page_iter_page(&sg_iter);
650
651                 if (remain <= 0)
652                         break;
653
654                 /* Operation in this page
655                  *
656                  * shmem_page_offset = offset within page in shmem file
657                  * page_length = bytes to copy for this page
658                  */
659                 shmem_page_offset = offset_in_page(offset);
660                 page_length = remain;
661                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
662                         page_length = PAGE_SIZE - shmem_page_offset;
663
664                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
665                         (page_to_phys(page) & (1 << 17)) != 0;
666
667                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
668                                        user_data, page_do_bit17_swizzling,
669                                        needs_clflush);
670                 if (ret == 0)
671                         goto next_page;
672
673                 mutex_unlock(&dev->struct_mutex);
674
675                 if (likely(!i915.prefault_disable) && !prefaulted) {
676                         ret = fault_in_multipages_writeable(user_data, remain);
677                         /* Userspace is tricking us, but we've already clobbered
678                          * its pages with the prefault and promised to write the
679                          * data up to the first fault. Hence ignore any errors
680                          * and just continue. */
681                         (void)ret;
682                         prefaulted = 1;
683                 }
684
685                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
686                                        user_data, page_do_bit17_swizzling,
687                                        needs_clflush);
688
689                 mutex_lock(&dev->struct_mutex);
690
691                 if (ret)
692                         goto out;
693
694 next_page:
695                 remain -= page_length;
696                 user_data += page_length;
697                 offset += page_length;
698         }
699
700 out:
701         i915_gem_object_unpin_pages(obj);
702
703         return ret;
704 }
705
706 /**
707  * Reads data from the object referenced by handle.
708  *
709  * On error, the contents of *data are undefined.
710  */
711 int
712 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713                      struct drm_file *file)
714 {
715         struct drm_i915_gem_pread *args = data;
716         struct drm_i915_gem_object *obj;
717         int ret = 0;
718
719         if (args->size == 0)
720                 return 0;
721
722         if (!access_ok(VERIFY_WRITE,
723                        to_user_ptr(args->data_ptr),
724                        args->size))
725                 return -EFAULT;
726
727         ret = i915_mutex_lock_interruptible(dev);
728         if (ret)
729                 return ret;
730
731         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732         if (&obj->base == NULL) {
733                 ret = -ENOENT;
734                 goto unlock;
735         }
736
737         /* Bounds check source.  */
738         if (args->offset > obj->base.size ||
739             args->size > obj->base.size - args->offset) {
740                 ret = -EINVAL;
741                 goto out;
742         }
743
744         /* prime objects have no backing filp to GEM pread/pwrite
745          * pages from.
746          */
747         if (!obj->base.filp) {
748                 ret = -EINVAL;
749                 goto out;
750         }
751
752         trace_i915_gem_object_pread(obj, args->offset, args->size);
753
754         ret = i915_gem_shmem_pread(dev, obj, args, file);
755
756 out:
757         drm_gem_object_unreference(&obj->base);
758 unlock:
759         mutex_unlock(&dev->struct_mutex);
760         return ret;
761 }
762
763 /* This is the fast write path which cannot handle
764  * page faults in the source data
765  */
766
767 static inline int
768 fast_user_write(struct io_mapping *mapping,
769                 loff_t page_base, int page_offset,
770                 char __user *user_data,
771                 int length)
772 {
773         void __iomem *vaddr_atomic;
774         void *vaddr;
775         unsigned long unwritten;
776
777         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778         /* We can use the cpu mem copy function because this is X86. */
779         vaddr = (void __force*)vaddr_atomic + page_offset;
780         unwritten = __copy_from_user_inatomic_nocache(vaddr,
781                                                       user_data, length);
782         io_mapping_unmap_atomic(vaddr_atomic);
783         return unwritten;
784 }
785
786 /**
787  * This is the fast pwrite path, where we copy the data directly from the
788  * user into the GTT, uncached.
789  */
790 static int
791 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
792                          struct drm_i915_gem_object *obj,
793                          struct drm_i915_gem_pwrite *args,
794                          struct drm_file *file)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         ssize_t remain;
798         loff_t offset, page_base;
799         char __user *user_data;
800         int page_offset, page_length, ret;
801
802         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
803         if (ret)
804                 goto out;
805
806         ret = i915_gem_object_set_to_gtt_domain(obj, true);
807         if (ret)
808                 goto out_unpin;
809
810         ret = i915_gem_object_put_fence(obj);
811         if (ret)
812                 goto out_unpin;
813
814         user_data = to_user_ptr(args->data_ptr);
815         remain = args->size;
816
817         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818
819         while (remain > 0) {
820                 /* Operation in this page
821                  *
822                  * page_base = page offset within aperture
823                  * page_offset = offset within page
824                  * page_length = bytes to copy for this page
825                  */
826                 page_base = offset & PAGE_MASK;
827                 page_offset = offset_in_page(offset);
828                 page_length = remain;
829                 if ((page_offset + remain) > PAGE_SIZE)
830                         page_length = PAGE_SIZE - page_offset;
831
832                 /* If we get a fault while copying data, then (presumably) our
833                  * source page isn't available.  Return the error and we'll
834                  * retry in the slow path.
835                  */
836                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
837                                     page_offset, user_data, page_length)) {
838                         ret = -EFAULT;
839                         goto out_unpin;
840                 }
841
842                 remain -= page_length;
843                 user_data += page_length;
844                 offset += page_length;
845         }
846
847 out_unpin:
848         i915_gem_object_ggtt_unpin(obj);
849 out:
850         return ret;
851 }
852
853 /* Per-page copy function for the shmem pwrite fastpath.
854  * Flushes invalid cachelines before writing to the target if
855  * needs_clflush_before is set and flushes out any written cachelines after
856  * writing if needs_clflush is set. */
857 static int
858 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
859                   char __user *user_data,
860                   bool page_do_bit17_swizzling,
861                   bool needs_clflush_before,
862                   bool needs_clflush_after)
863 {
864         char *vaddr;
865         int ret;
866
867         if (unlikely(page_do_bit17_swizzling))
868                 return -EINVAL;
869
870         vaddr = kmap_atomic(page);
871         if (needs_clflush_before)
872                 drm_clflush_virt_range(vaddr + shmem_page_offset,
873                                        page_length);
874         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
875                                         user_data, page_length);
876         if (needs_clflush_after)
877                 drm_clflush_virt_range(vaddr + shmem_page_offset,
878                                        page_length);
879         kunmap_atomic(vaddr);
880
881         return ret ? -EFAULT : 0;
882 }
883
884 /* Only difference to the fast-path function is that this can handle bit17
885  * and uses non-atomic copy and kmap functions. */
886 static int
887 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
888                   char __user *user_data,
889                   bool page_do_bit17_swizzling,
890                   bool needs_clflush_before,
891                   bool needs_clflush_after)
892 {
893         char *vaddr;
894         int ret;
895
896         vaddr = kmap(page);
897         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
898                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
899                                              page_length,
900                                              page_do_bit17_swizzling);
901         if (page_do_bit17_swizzling)
902                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
903                                                 user_data,
904                                                 page_length);
905         else
906                 ret = __copy_from_user(vaddr + shmem_page_offset,
907                                        user_data,
908                                        page_length);
909         if (needs_clflush_after)
910                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
911                                              page_length,
912                                              page_do_bit17_swizzling);
913         kunmap(page);
914
915         return ret ? -EFAULT : 0;
916 }
917
918 static int
919 i915_gem_shmem_pwrite(struct drm_device *dev,
920                       struct drm_i915_gem_object *obj,
921                       struct drm_i915_gem_pwrite *args,
922                       struct drm_file *file)
923 {
924         ssize_t remain;
925         loff_t offset;
926         char __user *user_data;
927         int shmem_page_offset, page_length, ret = 0;
928         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
929         int hit_slowpath = 0;
930         int needs_clflush_after = 0;
931         int needs_clflush_before = 0;
932         struct sg_page_iter sg_iter;
933
934         user_data = to_user_ptr(args->data_ptr);
935         remain = args->size;
936
937         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
938
939         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
940                 /* If we're not in the cpu write domain, set ourself into the gtt
941                  * write domain and manually flush cachelines (if required). This
942                  * optimizes for the case when the gpu will use the data
943                  * right away and we therefore have to clflush anyway. */
944                 needs_clflush_after = cpu_write_needs_clflush(obj);
945                 ret = i915_gem_object_wait_rendering(obj, false);
946                 if (ret)
947                         return ret;
948
949                 i915_gem_object_retire(obj);
950         }
951         /* Same trick applies to invalidate partially written cachelines read
952          * before writing. */
953         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
954                 needs_clflush_before =
955                         !cpu_cache_is_coherent(dev, obj->cache_level);
956
957         ret = i915_gem_object_get_pages(obj);
958         if (ret)
959                 return ret;
960
961         i915_gem_object_pin_pages(obj);
962
963         offset = args->offset;
964         obj->dirty = 1;
965
966         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
967                          offset >> PAGE_SHIFT) {
968                 struct page *page = sg_page_iter_page(&sg_iter);
969                 int partial_cacheline_write;
970
971                 if (remain <= 0)
972                         break;
973
974                 /* Operation in this page
975                  *
976                  * shmem_page_offset = offset within page in shmem file
977                  * page_length = bytes to copy for this page
978                  */
979                 shmem_page_offset = offset_in_page(offset);
980
981                 page_length = remain;
982                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
983                         page_length = PAGE_SIZE - shmem_page_offset;
984
985                 /* If we don't overwrite a cacheline completely we need to be
986                  * careful to have up-to-date data by first clflushing. Don't
987                  * overcomplicate things and flush the entire patch. */
988                 partial_cacheline_write = needs_clflush_before &&
989                         ((shmem_page_offset | page_length)
990                                 & (boot_cpu_data.x86_clflush_size - 1));
991
992                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
993                         (page_to_phys(page) & (1 << 17)) != 0;
994
995                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
996                                         user_data, page_do_bit17_swizzling,
997                                         partial_cacheline_write,
998                                         needs_clflush_after);
999                 if (ret == 0)
1000                         goto next_page;
1001
1002                 hit_slowpath = 1;
1003                 mutex_unlock(&dev->struct_mutex);
1004                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1005                                         user_data, page_do_bit17_swizzling,
1006                                         partial_cacheline_write,
1007                                         needs_clflush_after);
1008
1009                 mutex_lock(&dev->struct_mutex);
1010
1011                 if (ret)
1012                         goto out;
1013
1014 next_page:
1015                 remain -= page_length;
1016                 user_data += page_length;
1017                 offset += page_length;
1018         }
1019
1020 out:
1021         i915_gem_object_unpin_pages(obj);
1022
1023         if (hit_slowpath) {
1024                 /*
1025                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1026                  * cachelines in-line while writing and the object moved
1027                  * out of the cpu write domain while we've dropped the lock.
1028                  */
1029                 if (!needs_clflush_after &&
1030                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1031                         if (i915_gem_clflush_object(obj, obj->pin_display))
1032                                 i915_gem_chipset_flush(dev);
1033                 }
1034         }
1035
1036         if (needs_clflush_after)
1037                 i915_gem_chipset_flush(dev);
1038
1039         return ret;
1040 }
1041
1042 /**
1043  * Writes data to the object referenced by handle.
1044  *
1045  * On error, the contents of the buffer that were to be modified are undefined.
1046  */
1047 int
1048 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1049                       struct drm_file *file)
1050 {
1051         struct drm_i915_gem_pwrite *args = data;
1052         struct drm_i915_gem_object *obj;
1053         int ret;
1054
1055         if (args->size == 0)
1056                 return 0;
1057
1058         if (!access_ok(VERIFY_READ,
1059                        to_user_ptr(args->data_ptr),
1060                        args->size))
1061                 return -EFAULT;
1062
1063         if (likely(!i915.prefault_disable)) {
1064                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1065                                                    args->size);
1066                 if (ret)
1067                         return -EFAULT;
1068         }
1069
1070         ret = i915_mutex_lock_interruptible(dev);
1071         if (ret)
1072                 return ret;
1073
1074         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075         if (&obj->base == NULL) {
1076                 ret = -ENOENT;
1077                 goto unlock;
1078         }
1079
1080         /* Bounds check destination. */
1081         if (args->offset > obj->base.size ||
1082             args->size > obj->base.size - args->offset) {
1083                 ret = -EINVAL;
1084                 goto out;
1085         }
1086
1087         /* prime objects have no backing filp to GEM pread/pwrite
1088          * pages from.
1089          */
1090         if (!obj->base.filp) {
1091                 ret = -EINVAL;
1092                 goto out;
1093         }
1094
1095         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097         ret = -EFAULT;
1098         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099          * it would end up going through the fenced access, and we'll get
1100          * different detiling behavior between reading and writing.
1101          * pread/pwrite currently are reading and writing from the CPU
1102          * perspective, requiring manual detiling by the client.
1103          */
1104         if (obj->tiling_mode == I915_TILING_NONE &&
1105             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106             cpu_write_needs_clflush(obj)) {
1107                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108                 /* Note that the gtt paths might fail with non-page-backed user
1109                  * pointers (e.g. gtt mappings when moving data between
1110                  * textures). Fallback to the shmem path in that case. */
1111         }
1112
1113         if (ret == -EFAULT || ret == -ENOSPC) {
1114                 if (obj->phys_handle)
1115                         ret = i915_gem_phys_pwrite(obj, args, file);
1116                 else
1117                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118         }
1119
1120 out:
1121         drm_gem_object_unreference(&obj->base);
1122 unlock:
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129                      bool interruptible)
1130 {
1131         if (i915_reset_in_progress(error)) {
1132                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133                  * -EIO unconditionally for these. */
1134                 if (!interruptible)
1135                         return -EIO;
1136
1137                 /* Recovery complete, but the reset failed ... */
1138                 if (i915_terminally_wedged(error))
1139                         return -EIO;
1140
1141                 /*
1142                  * Check if GPU Reset is in progress - we need intel_ring_begin
1143                  * to work properly to reinit the hw state while the gpu is
1144                  * still marked as reset-in-progress. Handle this with a flag.
1145                  */
1146                 if (!error->reload_in_reset)
1147                         return -EAGAIN;
1148         }
1149
1150         return 0;
1151 }
1152
1153 /*
1154  * Compare arbitrary request against outstanding lazy request. Emit on match.
1155  */
1156 int
1157 i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 {
1159         int ret;
1160
1161         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162
1163         ret = 0;
1164         if (req == req->ring->outstanding_lazy_request)
1165                 ret = i915_add_request(req->ring);
1166
1167         return ret;
1168 }
1169
1170 static void fake_irq(unsigned long data)
1171 {
1172         wake_up_process((struct task_struct *)data);
1173 }
1174
1175 static bool missed_irq(struct drm_i915_private *dev_priv,
1176                        struct intel_engine_cs *ring)
1177 {
1178         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179 }
1180
1181 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182 {
1183         if (file_priv == NULL)
1184                 return true;
1185
1186         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187 }
1188
1189 /**
1190  * __i915_wait_request - wait until execution of request has finished
1191  * @req: duh!
1192  * @reset_counter: reset sequence associated with the given request
1193  * @interruptible: do an interruptible wait (normally yes)
1194  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195  *
1196  * Note: It is of utmost importance that the passed in seqno and reset_counter
1197  * values have been read by the caller in an smp safe manner. Where read-side
1198  * locks are involved, it is sufficient to read the reset_counter before
1199  * unlocking the lock that protects the seqno. For lockless tricks, the
1200  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201  * inserted.
1202  *
1203  * Returns 0 if the request was found within the alloted time. Else returns the
1204  * errno with remaining time filled in timeout argument.
1205  */
1206 int __i915_wait_request(struct drm_i915_gem_request *req,
1207                         unsigned reset_counter,
1208                         bool interruptible,
1209                         s64 *timeout,
1210                         struct drm_i915_file_private *file_priv)
1211 {
1212         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1213         struct drm_device *dev = ring->dev;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         const bool irq_test_in_progress =
1216                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1217         DEFINE_WAIT(wait);
1218         unsigned long timeout_expire;
1219         s64 before, now;
1220         int ret;
1221
1222         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1223
1224         if (i915_gem_request_completed(req, true))
1225                 return 0;
1226
1227         timeout_expire = timeout ?
1228                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229
1230         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231                 gen6_rps_boost(dev_priv);
1232                 if (file_priv)
1233                         mod_delayed_work(dev_priv->wq,
1234                                          &file_priv->mm.idle_work,
1235                                          msecs_to_jiffies(100));
1236         }
1237
1238         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239                 return -ENODEV;
1240
1241         /* Record current time in case interrupted by signal, or wedged */
1242         trace_i915_gem_request_wait_begin(req);
1243         before = ktime_get_raw_ns();
1244         for (;;) {
1245                 struct timer_list timer;
1246
1247                 prepare_to_wait(&ring->irq_queue, &wait,
1248                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249
1250                 /* We need to check whether any gpu reset happened in between
1251                  * the caller grabbing the seqno and now ... */
1252                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254                          * is truely gone. */
1255                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256                         if (ret == 0)
1257                                 ret = -EAGAIN;
1258                         break;
1259                 }
1260
1261                 if (i915_gem_request_completed(req, false)) {
1262                         ret = 0;
1263                         break;
1264                 }
1265
1266                 if (interruptible && signal_pending(current)) {
1267                         ret = -ERESTARTSYS;
1268                         break;
1269                 }
1270
1271                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272                         ret = -ETIME;
1273                         break;
1274                 }
1275
1276                 timer.function = NULL;
1277                 if (timeout || missed_irq(dev_priv, ring)) {
1278                         unsigned long expire;
1279
1280                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282                         mod_timer(&timer, expire);
1283                 }
1284
1285                 io_schedule();
1286
1287                 if (timer.function) {
1288                         del_singleshot_timer_sync(&timer);
1289                         destroy_timer_on_stack(&timer);
1290                 }
1291         }
1292         now = ktime_get_raw_ns();
1293         trace_i915_gem_request_wait_end(req);
1294
1295         if (!irq_test_in_progress)
1296                 ring->irq_put(ring);
1297
1298         finish_wait(&ring->irq_queue, &wait);
1299
1300         if (timeout) {
1301                 s64 tres = *timeout - (now - before);
1302
1303                 *timeout = tres < 0 ? 0 : tres;
1304
1305                 /*
1306                  * Apparently ktime isn't accurate enough and occasionally has a
1307                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308                  * things up to make the test happy. We allow up to 1 jiffy.
1309                  *
1310                  * This is a regrssion from the timespec->ktime conversion.
1311                  */
1312                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313                         *timeout = 0;
1314         }
1315
1316         return ret;
1317 }
1318
1319 /**
1320  * Waits for a request to be signaled, and cleans up the
1321  * request and object lists appropriately for that event.
1322  */
1323 int
1324 i915_wait_request(struct drm_i915_gem_request *req)
1325 {
1326         struct drm_device *dev;
1327         struct drm_i915_private *dev_priv;
1328         bool interruptible;
1329         unsigned reset_counter;
1330         int ret;
1331
1332         BUG_ON(req == NULL);
1333
1334         dev = req->ring->dev;
1335         dev_priv = dev->dev_private;
1336         interruptible = dev_priv->mm.interruptible;
1337
1338         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1339
1340         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1341         if (ret)
1342                 return ret;
1343
1344         ret = i915_gem_check_olr(req);
1345         if (ret)
1346                 return ret;
1347
1348         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349         i915_gem_request_reference(req);
1350         ret = __i915_wait_request(req, reset_counter,
1351                                   interruptible, NULL, NULL);
1352         i915_gem_request_unreference(req);
1353         return ret;
1354 }
1355
1356 static int
1357 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1358 {
1359         if (!obj->active)
1360                 return 0;
1361
1362         /* Manually manage the write flush as we may have not yet
1363          * retired the buffer.
1364          *
1365          * Note that the last_write_req is always the earlier of
1366          * the two (read/write) requests, so if we haved successfully waited,
1367          * we know we have passed the last write.
1368          */
1369         i915_gem_request_assign(&obj->last_write_req, NULL);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  * Ensures that all rendering to the object has completed and the object is
1376  * safe to unbind from the GTT or access from the CPU.
1377  */
1378 static __must_check int
1379 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380                                bool readonly)
1381 {
1382         struct drm_i915_gem_request *req;
1383         int ret;
1384
1385         req = readonly ? obj->last_write_req : obj->last_read_req;
1386         if (!req)
1387                 return 0;
1388
1389         ret = i915_wait_request(req);
1390         if (ret)
1391                 return ret;
1392
1393         return i915_gem_object_wait_rendering__tail(obj);
1394 }
1395
1396 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1397  * as the object state may change during this call.
1398  */
1399 static __must_check int
1400 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401                                             struct drm_i915_file_private *file_priv,
1402                                             bool readonly)
1403 {
1404         struct drm_i915_gem_request *req;
1405         struct drm_device *dev = obj->base.dev;
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407         unsigned reset_counter;
1408         int ret;
1409
1410         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411         BUG_ON(!dev_priv->mm.interruptible);
1412
1413         req = readonly ? obj->last_write_req : obj->last_read_req;
1414         if (!req)
1415                 return 0;
1416
1417         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1418         if (ret)
1419                 return ret;
1420
1421         ret = i915_gem_check_olr(req);
1422         if (ret)
1423                 return ret;
1424
1425         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1426         i915_gem_request_reference(req);
1427         mutex_unlock(&dev->struct_mutex);
1428         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1429         mutex_lock(&dev->struct_mutex);
1430         i915_gem_request_unreference(req);
1431         if (ret)
1432                 return ret;
1433
1434         return i915_gem_object_wait_rendering__tail(obj);
1435 }
1436
1437 /**
1438  * Called when user space prepares to use an object with the CPU, either
1439  * through the mmap ioctl's mapping or a GTT mapping.
1440  */
1441 int
1442 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443                           struct drm_file *file)
1444 {
1445         struct drm_i915_gem_set_domain *args = data;
1446         struct drm_i915_gem_object *obj;
1447         uint32_t read_domains = args->read_domains;
1448         uint32_t write_domain = args->write_domain;
1449         int ret;
1450
1451         /* Only handle setting domains to types used by the CPU. */
1452         if (write_domain & I915_GEM_GPU_DOMAINS)
1453                 return -EINVAL;
1454
1455         if (read_domains & I915_GEM_GPU_DOMAINS)
1456                 return -EINVAL;
1457
1458         /* Having something in the write domain implies it's in the read
1459          * domain, and only that read domain.  Enforce that in the request.
1460          */
1461         if (write_domain != 0 && read_domains != write_domain)
1462                 return -EINVAL;
1463
1464         ret = i915_mutex_lock_interruptible(dev);
1465         if (ret)
1466                 return ret;
1467
1468         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469         if (&obj->base == NULL) {
1470                 ret = -ENOENT;
1471                 goto unlock;
1472         }
1473
1474         /* Try to flush the object off the GPU without holding the lock.
1475          * We will repeat the flush holding the lock in the normal manner
1476          * to catch cases where we are gazumped.
1477          */
1478         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479                                                           file->driver_priv,
1480                                                           !write_domain);
1481         if (ret)
1482                 goto unref;
1483
1484         if (read_domains & I915_GEM_DOMAIN_GTT) {
1485                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486
1487                 /* Silently promote "you're not bound, there was nothing to do"
1488                  * to success, since the client was just asking us to
1489                  * make sure everything was done.
1490                  */
1491                 if (ret == -EINVAL)
1492                         ret = 0;
1493         } else {
1494                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1495         }
1496
1497 unref:
1498         drm_gem_object_unreference(&obj->base);
1499 unlock:
1500         mutex_unlock(&dev->struct_mutex);
1501         return ret;
1502 }
1503
1504 /**
1505  * Called when user space has done writes to this buffer
1506  */
1507 int
1508 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1509                          struct drm_file *file)
1510 {
1511         struct drm_i915_gem_sw_finish *args = data;
1512         struct drm_i915_gem_object *obj;
1513         int ret = 0;
1514
1515         ret = i915_mutex_lock_interruptible(dev);
1516         if (ret)
1517                 return ret;
1518
1519         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1520         if (&obj->base == NULL) {
1521                 ret = -ENOENT;
1522                 goto unlock;
1523         }
1524
1525         /* Pinned buffers may be scanout, so flush the cache */
1526         if (obj->pin_display)
1527                 i915_gem_object_flush_cpu_write_domain(obj, true);
1528
1529         drm_gem_object_unreference(&obj->base);
1530 unlock:
1531         mutex_unlock(&dev->struct_mutex);
1532         return ret;
1533 }
1534
1535 /**
1536  * Maps the contents of an object, returning the address it is mapped
1537  * into.
1538  *
1539  * While the mapping holds a reference on the contents of the object, it doesn't
1540  * imply a ref on the object itself.
1541  *
1542  * IMPORTANT:
1543  *
1544  * DRM driver writers who look a this function as an example for how to do GEM
1545  * mmap support, please don't implement mmap support like here. The modern way
1546  * to implement DRM mmap support is with an mmap offset ioctl (like
1547  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1548  * That way debug tooling like valgrind will understand what's going on, hiding
1549  * the mmap call in a driver private ioctl will break that. The i915 driver only
1550  * does cpu mmaps this way because we didn't know better.
1551  */
1552 int
1553 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1554                     struct drm_file *file)
1555 {
1556         struct drm_i915_gem_mmap *args = data;
1557         struct drm_gem_object *obj;
1558         unsigned long addr;
1559
1560         obj = drm_gem_object_lookup(dev, file, args->handle);
1561         if (obj == NULL)
1562                 return -ENOENT;
1563
1564         /* prime objects have no backing filp to GEM mmap
1565          * pages from.
1566          */
1567         if (!obj->filp) {
1568                 drm_gem_object_unreference_unlocked(obj);
1569                 return -EINVAL;
1570         }
1571
1572         addr = vm_mmap(obj->filp, 0, args->size,
1573                        PROT_READ | PROT_WRITE, MAP_SHARED,
1574                        args->offset);
1575         drm_gem_object_unreference_unlocked(obj);
1576         if (IS_ERR((void *)addr))
1577                 return addr;
1578
1579         args->addr_ptr = (uint64_t) addr;
1580
1581         return 0;
1582 }
1583
1584 /**
1585  * i915_gem_fault - fault a page into the GTT
1586  * vma: VMA in question
1587  * vmf: fault info
1588  *
1589  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1590  * from userspace.  The fault handler takes care of binding the object to
1591  * the GTT (if needed), allocating and programming a fence register (again,
1592  * only if needed based on whether the old reg is still valid or the object
1593  * is tiled) and inserting a new PTE into the faulting process.
1594  *
1595  * Note that the faulting process may involve evicting existing objects
1596  * from the GTT and/or fence registers to make room.  So performance may
1597  * suffer if the GTT working set is large or there are few fence registers
1598  * left.
1599  */
1600 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1601 {
1602         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1603         struct drm_device *dev = obj->base.dev;
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605         pgoff_t page_offset;
1606         unsigned long pfn;
1607         int ret = 0;
1608         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1609
1610         intel_runtime_pm_get(dev_priv);
1611
1612         /* We don't use vmf->pgoff since that has the fake offset */
1613         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1614                 PAGE_SHIFT;
1615
1616         ret = i915_mutex_lock_interruptible(dev);
1617         if (ret)
1618                 goto out;
1619
1620         trace_i915_gem_object_fault(obj, page_offset, true, write);
1621
1622         /* Try to flush the object off the GPU first without holding the lock.
1623          * Upon reacquiring the lock, we will perform our sanity checks and then
1624          * repeat the flush holding the lock in the normal manner to catch cases
1625          * where we are gazumped.
1626          */
1627         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1628         if (ret)
1629                 goto unlock;
1630
1631         /* Access to snoopable pages through the GTT is incoherent. */
1632         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1633                 ret = -EFAULT;
1634                 goto unlock;
1635         }
1636
1637         /* Now bind it into the GTT if needed */
1638         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1639         if (ret)
1640                 goto unlock;
1641
1642         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1643         if (ret)
1644                 goto unpin;
1645
1646         ret = i915_gem_object_get_fence(obj);
1647         if (ret)
1648                 goto unpin;
1649
1650         /* Finally, remap it using the new GTT offset */
1651         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1652         pfn >>= PAGE_SHIFT;
1653
1654         if (!obj->fault_mappable) {
1655                 unsigned long size = min_t(unsigned long,
1656                                            vma->vm_end - vma->vm_start,
1657                                            obj->base.size);
1658                 int i;
1659
1660                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1661                         ret = vm_insert_pfn(vma,
1662                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1663                                             pfn + i);
1664                         if (ret)
1665                                 break;
1666                 }
1667
1668                 obj->fault_mappable = true;
1669         } else
1670                 ret = vm_insert_pfn(vma,
1671                                     (unsigned long)vmf->virtual_address,
1672                                     pfn + page_offset);
1673 unpin:
1674         i915_gem_object_ggtt_unpin(obj);
1675 unlock:
1676         mutex_unlock(&dev->struct_mutex);
1677 out:
1678         switch (ret) {
1679         case -EIO:
1680                 /*
1681                  * We eat errors when the gpu is terminally wedged to avoid
1682                  * userspace unduly crashing (gl has no provisions for mmaps to
1683                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1684                  * and so needs to be reported.
1685                  */
1686                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1687                         ret = VM_FAULT_SIGBUS;
1688                         break;
1689                 }
1690         case -EAGAIN:
1691                 /*
1692                  * EAGAIN means the gpu is hung and we'll wait for the error
1693                  * handler to reset everything when re-faulting in
1694                  * i915_mutex_lock_interruptible.
1695                  */
1696         case 0:
1697         case -ERESTARTSYS:
1698         case -EINTR:
1699         case -EBUSY:
1700                 /*
1701                  * EBUSY is ok: this just means that another thread
1702                  * already did the job.
1703                  */
1704                 ret = VM_FAULT_NOPAGE;
1705                 break;
1706         case -ENOMEM:
1707                 ret = VM_FAULT_OOM;
1708                 break;
1709         case -ENOSPC:
1710         case -EFAULT:
1711                 ret = VM_FAULT_SIGBUS;
1712                 break;
1713         default:
1714                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1715                 ret = VM_FAULT_SIGBUS;
1716                 break;
1717         }
1718
1719         intel_runtime_pm_put(dev_priv);
1720         return ret;
1721 }
1722
1723 /**
1724  * i915_gem_release_mmap - remove physical page mappings
1725  * @obj: obj in question
1726  *
1727  * Preserve the reservation of the mmapping with the DRM core code, but
1728  * relinquish ownership of the pages back to the system.
1729  *
1730  * It is vital that we remove the page mapping if we have mapped a tiled
1731  * object through the GTT and then lose the fence register due to
1732  * resource pressure. Similarly if the object has been moved out of the
1733  * aperture, than pages mapped into userspace must be revoked. Removing the
1734  * mapping will then trigger a page fault on the next user access, allowing
1735  * fixup by i915_gem_fault().
1736  */
1737 void
1738 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1739 {
1740         if (!obj->fault_mappable)
1741                 return;
1742
1743         drm_vma_node_unmap(&obj->base.vma_node,
1744                            obj->base.dev->anon_inode->i_mapping);
1745         obj->fault_mappable = false;
1746 }
1747
1748 void
1749 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1750 {
1751         struct drm_i915_gem_object *obj;
1752
1753         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1754                 i915_gem_release_mmap(obj);
1755 }
1756
1757 uint32_t
1758 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1759 {
1760         uint32_t gtt_size;
1761
1762         if (INTEL_INFO(dev)->gen >= 4 ||
1763             tiling_mode == I915_TILING_NONE)
1764                 return size;
1765
1766         /* Previous chips need a power-of-two fence region when tiling */
1767         if (INTEL_INFO(dev)->gen == 3)
1768                 gtt_size = 1024*1024;
1769         else
1770                 gtt_size = 512*1024;
1771
1772         while (gtt_size < size)
1773                 gtt_size <<= 1;
1774
1775         return gtt_size;
1776 }
1777
1778 /**
1779  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1780  * @obj: object to check
1781  *
1782  * Return the required GTT alignment for an object, taking into account
1783  * potential fence register mapping.
1784  */
1785 uint32_t
1786 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1787                            int tiling_mode, bool fenced)
1788 {
1789         /*
1790          * Minimum alignment is 4k (GTT page size), but might be greater
1791          * if a fence register is needed for the object.
1792          */
1793         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1794             tiling_mode == I915_TILING_NONE)
1795                 return 4096;
1796
1797         /*
1798          * Previous chips need to be aligned to the size of the smallest
1799          * fence register that can contain the object.
1800          */
1801         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1802 }
1803
1804 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1805 {
1806         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1807         int ret;
1808
1809         if (drm_vma_node_has_offset(&obj->base.vma_node))
1810                 return 0;
1811
1812         dev_priv->mm.shrinker_no_lock_stealing = true;
1813
1814         ret = drm_gem_create_mmap_offset(&obj->base);
1815         if (ret != -ENOSPC)
1816                 goto out;
1817
1818         /* Badly fragmented mmap space? The only way we can recover
1819          * space is by destroying unwanted objects. We can't randomly release
1820          * mmap_offsets as userspace expects them to be persistent for the
1821          * lifetime of the objects. The closest we can is to release the
1822          * offsets on purgeable objects by truncating it and marking it purged,
1823          * which prevents userspace from ever using that object again.
1824          */
1825         i915_gem_shrink(dev_priv,
1826                         obj->base.size >> PAGE_SHIFT,
1827                         I915_SHRINK_BOUND |
1828                         I915_SHRINK_UNBOUND |
1829                         I915_SHRINK_PURGEABLE);
1830         ret = drm_gem_create_mmap_offset(&obj->base);
1831         if (ret != -ENOSPC)
1832                 goto out;
1833
1834         i915_gem_shrink_all(dev_priv);
1835         ret = drm_gem_create_mmap_offset(&obj->base);
1836 out:
1837         dev_priv->mm.shrinker_no_lock_stealing = false;
1838
1839         return ret;
1840 }
1841
1842 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1843 {
1844         drm_gem_free_mmap_offset(&obj->base);
1845 }
1846
1847 int
1848 i915_gem_mmap_gtt(struct drm_file *file,
1849                   struct drm_device *dev,
1850                   uint32_t handle,
1851                   uint64_t *offset)
1852 {
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         struct drm_i915_gem_object *obj;
1855         int ret;
1856
1857         ret = i915_mutex_lock_interruptible(dev);
1858         if (ret)
1859                 return ret;
1860
1861         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1862         if (&obj->base == NULL) {
1863                 ret = -ENOENT;
1864                 goto unlock;
1865         }
1866
1867         if (obj->base.size > dev_priv->gtt.mappable_end) {
1868                 ret = -E2BIG;
1869                 goto out;
1870         }
1871
1872         if (obj->madv != I915_MADV_WILLNEED) {
1873                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1874                 ret = -EFAULT;
1875                 goto out;
1876         }
1877
1878         ret = i915_gem_object_create_mmap_offset(obj);
1879         if (ret)
1880                 goto out;
1881
1882         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1883
1884 out:
1885         drm_gem_object_unreference(&obj->base);
1886 unlock:
1887         mutex_unlock(&dev->struct_mutex);
1888         return ret;
1889 }
1890
1891 /**
1892  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1893  * @dev: DRM device
1894  * @data: GTT mapping ioctl data
1895  * @file: GEM object info
1896  *
1897  * Simply returns the fake offset to userspace so it can mmap it.
1898  * The mmap call will end up in drm_gem_mmap(), which will set things
1899  * up so we can get faults in the handler above.
1900  *
1901  * The fault handler will take care of binding the object into the GTT
1902  * (since it may have been evicted to make room for something), allocating
1903  * a fence register, and mapping the appropriate aperture address into
1904  * userspace.
1905  */
1906 int
1907 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1908                         struct drm_file *file)
1909 {
1910         struct drm_i915_gem_mmap_gtt *args = data;
1911
1912         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1913 }
1914
1915 static inline int
1916 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1917 {
1918         return obj->madv == I915_MADV_DONTNEED;
1919 }
1920
1921 /* Immediately discard the backing storage */
1922 static void
1923 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1924 {
1925         i915_gem_object_free_mmap_offset(obj);
1926
1927         if (obj->base.filp == NULL)
1928                 return;
1929
1930         /* Our goal here is to return as much of the memory as
1931          * is possible back to the system as we are called from OOM.
1932          * To do this we must instruct the shmfs to drop all of its
1933          * backing pages, *now*.
1934          */
1935         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1936         obj->madv = __I915_MADV_PURGED;
1937 }
1938
1939 /* Try to discard unwanted pages */
1940 static void
1941 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1942 {
1943         struct address_space *mapping;
1944
1945         switch (obj->madv) {
1946         case I915_MADV_DONTNEED:
1947                 i915_gem_object_truncate(obj);
1948         case __I915_MADV_PURGED:
1949                 return;
1950         }
1951
1952         if (obj->base.filp == NULL)
1953                 return;
1954
1955         mapping = file_inode(obj->base.filp)->i_mapping,
1956         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1957 }
1958
1959 static void
1960 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1961 {
1962         struct sg_page_iter sg_iter;
1963         int ret;
1964
1965         BUG_ON(obj->madv == __I915_MADV_PURGED);
1966
1967         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1968         if (ret) {
1969                 /* In the event of a disaster, abandon all caches and
1970                  * hope for the best.
1971                  */
1972                 WARN_ON(ret != -EIO);
1973                 i915_gem_clflush_object(obj, true);
1974                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1975         }
1976
1977         if (i915_gem_object_needs_bit17_swizzle(obj))
1978                 i915_gem_object_save_bit_17_swizzle(obj);
1979
1980         if (obj->madv == I915_MADV_DONTNEED)
1981                 obj->dirty = 0;
1982
1983         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1984                 struct page *page = sg_page_iter_page(&sg_iter);
1985
1986                 if (obj->dirty)
1987                         set_page_dirty(page);
1988
1989                 if (obj->madv == I915_MADV_WILLNEED)
1990                         mark_page_accessed(page);
1991
1992                 page_cache_release(page);
1993         }
1994         obj->dirty = 0;
1995
1996         sg_free_table(obj->pages);
1997         kfree(obj->pages);
1998 }
1999
2000 int
2001 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2002 {
2003         const struct drm_i915_gem_object_ops *ops = obj->ops;
2004
2005         if (obj->pages == NULL)
2006                 return 0;
2007
2008         if (obj->pages_pin_count)
2009                 return -EBUSY;
2010
2011         BUG_ON(i915_gem_obj_bound_any(obj));
2012
2013         /* ->put_pages might need to allocate memory for the bit17 swizzle
2014          * array, hence protect them from being reaped by removing them from gtt
2015          * lists early. */
2016         list_del(&obj->global_list);
2017
2018         ops->put_pages(obj);
2019         obj->pages = NULL;
2020
2021         i915_gem_object_invalidate(obj);
2022
2023         return 0;
2024 }
2025
2026 unsigned long
2027 i915_gem_shrink(struct drm_i915_private *dev_priv,
2028                 long target, unsigned flags)
2029 {
2030         const struct {
2031                 struct list_head *list;
2032                 unsigned int bit;
2033         } phases[] = {
2034                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2035                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2036                 { NULL, 0 },
2037         }, *phase;
2038         unsigned long count = 0;
2039
2040         /*
2041          * As we may completely rewrite the (un)bound list whilst unbinding
2042          * (due to retiring requests) we have to strictly process only
2043          * one element of the list at the time, and recheck the list
2044          * on every iteration.
2045          *
2046          * In particular, we must hold a reference whilst removing the
2047          * object as we may end up waiting for and/or retiring the objects.
2048          * This might release the final reference (held by the active list)
2049          * and result in the object being freed from under us. This is
2050          * similar to the precautions the eviction code must take whilst
2051          * removing objects.
2052          *
2053          * Also note that although these lists do not hold a reference to
2054          * the object we can safely grab one here: The final object
2055          * unreferencing and the bound_list are both protected by the
2056          * dev->struct_mutex and so we won't ever be able to observe an
2057          * object on the bound_list with a reference count equals 0.
2058          */
2059         for (phase = phases; phase->list; phase++) {
2060                 struct list_head still_in_list;
2061
2062                 if ((flags & phase->bit) == 0)
2063                         continue;
2064
2065                 INIT_LIST_HEAD(&still_in_list);
2066                 while (count < target && !list_empty(phase->list)) {
2067                         struct drm_i915_gem_object *obj;
2068                         struct i915_vma *vma, *v;
2069
2070                         obj = list_first_entry(phase->list,
2071                                                typeof(*obj), global_list);
2072                         list_move_tail(&obj->global_list, &still_in_list);
2073
2074                         if (flags & I915_SHRINK_PURGEABLE &&
2075                             !i915_gem_object_is_purgeable(obj))
2076                                 continue;
2077
2078                         drm_gem_object_reference(&obj->base);
2079
2080                         /* For the unbound phase, this should be a no-op! */
2081                         list_for_each_entry_safe(vma, v,
2082                                                  &obj->vma_list, vma_link)
2083                                 if (i915_vma_unbind(vma))
2084                                         break;
2085
2086                         if (i915_gem_object_put_pages(obj) == 0)
2087                                 count += obj->base.size >> PAGE_SHIFT;
2088
2089                         drm_gem_object_unreference(&obj->base);
2090                 }
2091                 list_splice(&still_in_list, phase->list);
2092         }
2093
2094         return count;
2095 }
2096
2097 static unsigned long
2098 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2099 {
2100         i915_gem_evict_everything(dev_priv->dev);
2101         return i915_gem_shrink(dev_priv, LONG_MAX,
2102                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2103 }
2104
2105 static int
2106 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2107 {
2108         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2109         int page_count, i;
2110         struct address_space *mapping;
2111         struct sg_table *st;
2112         struct scatterlist *sg;
2113         struct sg_page_iter sg_iter;
2114         struct page *page;
2115         unsigned long last_pfn = 0;     /* suppress gcc warning */
2116         gfp_t gfp;
2117
2118         /* Assert that the object is not currently in any GPU domain. As it
2119          * wasn't in the GTT, there shouldn't be any way it could have been in
2120          * a GPU cache
2121          */
2122         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2123         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2124
2125         st = kmalloc(sizeof(*st), GFP_KERNEL);
2126         if (st == NULL)
2127                 return -ENOMEM;
2128
2129         page_count = obj->base.size / PAGE_SIZE;
2130         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2131                 kfree(st);
2132                 return -ENOMEM;
2133         }
2134
2135         /* Get the list of pages out of our struct file.  They'll be pinned
2136          * at this point until we release them.
2137          *
2138          * Fail silently without starting the shrinker
2139          */
2140         mapping = file_inode(obj->base.filp)->i_mapping;
2141         gfp = mapping_gfp_mask(mapping);
2142         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2143         gfp &= ~(__GFP_IO | __GFP_WAIT);
2144         sg = st->sgl;
2145         st->nents = 0;
2146         for (i = 0; i < page_count; i++) {
2147                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2148                 if (IS_ERR(page)) {
2149                         i915_gem_shrink(dev_priv,
2150                                         page_count,
2151                                         I915_SHRINK_BOUND |
2152                                         I915_SHRINK_UNBOUND |
2153                                         I915_SHRINK_PURGEABLE);
2154                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155                 }
2156                 if (IS_ERR(page)) {
2157                         /* We've tried hard to allocate the memory by reaping
2158                          * our own buffer, now let the real VM do its job and
2159                          * go down in flames if truly OOM.
2160                          */
2161                         i915_gem_shrink_all(dev_priv);
2162                         page = shmem_read_mapping_page(mapping, i);
2163                         if (IS_ERR(page))
2164                                 goto err_pages;
2165                 }
2166 #ifdef CONFIG_SWIOTLB
2167                 if (swiotlb_nr_tbl()) {
2168                         st->nents++;
2169                         sg_set_page(sg, page, PAGE_SIZE, 0);
2170                         sg = sg_next(sg);
2171                         continue;
2172                 }
2173 #endif
2174                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2175                         if (i)
2176                                 sg = sg_next(sg);
2177                         st->nents++;
2178                         sg_set_page(sg, page, PAGE_SIZE, 0);
2179                 } else {
2180                         sg->length += PAGE_SIZE;
2181                 }
2182                 last_pfn = page_to_pfn(page);
2183
2184                 /* Check that the i965g/gm workaround works. */
2185                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2186         }
2187 #ifdef CONFIG_SWIOTLB
2188         if (!swiotlb_nr_tbl())
2189 #endif
2190                 sg_mark_end(sg);
2191         obj->pages = st;
2192
2193         if (i915_gem_object_needs_bit17_swizzle(obj))
2194                 i915_gem_object_do_bit_17_swizzle(obj);
2195
2196         if (obj->tiling_mode != I915_TILING_NONE &&
2197             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2198                 i915_gem_object_pin_pages(obj);
2199
2200         return 0;
2201
2202 err_pages:
2203         sg_mark_end(sg);
2204         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2205                 page_cache_release(sg_page_iter_page(&sg_iter));
2206         sg_free_table(st);
2207         kfree(st);
2208
2209         /* shmemfs first checks if there is enough memory to allocate the page
2210          * and reports ENOSPC should there be insufficient, along with the usual
2211          * ENOMEM for a genuine allocation failure.
2212          *
2213          * We use ENOSPC in our driver to mean that we have run out of aperture
2214          * space and so want to translate the error from shmemfs back to our
2215          * usual understanding of ENOMEM.
2216          */
2217         if (PTR_ERR(page) == -ENOSPC)
2218                 return -ENOMEM;
2219         else
2220                 return PTR_ERR(page);
2221 }
2222
2223 /* Ensure that the associated pages are gathered from the backing storage
2224  * and pinned into our object. i915_gem_object_get_pages() may be called
2225  * multiple times before they are released by a single call to
2226  * i915_gem_object_put_pages() - once the pages are no longer referenced
2227  * either as a result of memory pressure (reaping pages under the shrinker)
2228  * or as the object is itself released.
2229  */
2230 int
2231 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2232 {
2233         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2234         const struct drm_i915_gem_object_ops *ops = obj->ops;
2235         int ret;
2236
2237         if (obj->pages)
2238                 return 0;
2239
2240         if (obj->madv != I915_MADV_WILLNEED) {
2241                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2242                 return -EFAULT;
2243         }
2244
2245         BUG_ON(obj->pages_pin_count);
2246
2247         ret = ops->get_pages(obj);
2248         if (ret)
2249                 return ret;
2250
2251         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2252         return 0;
2253 }
2254
2255 static void
2256 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2257                                struct intel_engine_cs *ring)
2258 {
2259         struct drm_i915_gem_request *req;
2260         struct intel_engine_cs *old_ring;
2261
2262         BUG_ON(ring == NULL);
2263
2264         req = intel_ring_get_request(ring);
2265         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2266
2267         if (old_ring != ring && obj->last_write_req) {
2268                 /* Keep the request relative to the current ring */
2269                 i915_gem_request_assign(&obj->last_write_req, req);
2270         }
2271
2272         /* Add a reference if we're newly entering the active list. */
2273         if (!obj->active) {
2274                 drm_gem_object_reference(&obj->base);
2275                 obj->active = 1;
2276         }
2277
2278         list_move_tail(&obj->ring_list, &ring->active_list);
2279
2280         i915_gem_request_assign(&obj->last_read_req, req);
2281 }
2282
2283 void i915_vma_move_to_active(struct i915_vma *vma,
2284                              struct intel_engine_cs *ring)
2285 {
2286         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2287         return i915_gem_object_move_to_active(vma->obj, ring);
2288 }
2289
2290 static void
2291 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2292 {
2293         struct i915_vma *vma;
2294
2295         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2296         BUG_ON(!obj->active);
2297
2298         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2299                 if (!list_empty(&vma->mm_list))
2300                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2301         }
2302
2303         intel_fb_obj_flush(obj, true);
2304
2305         list_del_init(&obj->ring_list);
2306
2307         i915_gem_request_assign(&obj->last_read_req, NULL);
2308         i915_gem_request_assign(&obj->last_write_req, NULL);
2309         obj->base.write_domain = 0;
2310
2311         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2312
2313         obj->active = 0;
2314         drm_gem_object_unreference(&obj->base);
2315
2316         WARN_ON(i915_verify_lists(dev));
2317 }
2318
2319 static void
2320 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2321 {
2322         if (obj->last_read_req == NULL)
2323                 return;
2324
2325         if (i915_gem_request_completed(obj->last_read_req, true))
2326                 i915_gem_object_move_to_inactive(obj);
2327 }
2328
2329 static int
2330 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2331 {
2332         struct drm_i915_private *dev_priv = dev->dev_private;
2333         struct intel_engine_cs *ring;
2334         int ret, i, j;
2335
2336         /* Carefully retire all requests without writing to the rings */
2337         for_each_ring(ring, dev_priv, i) {
2338                 ret = intel_ring_idle(ring);
2339                 if (ret)
2340                         return ret;
2341         }
2342         i915_gem_retire_requests(dev);
2343
2344         /* Finally reset hw state */
2345         for_each_ring(ring, dev_priv, i) {
2346                 intel_ring_init_seqno(ring, seqno);
2347
2348                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2349                         ring->semaphore.sync_seqno[j] = 0;
2350         }
2351
2352         return 0;
2353 }
2354
2355 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2356 {
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358         int ret;
2359
2360         if (seqno == 0)
2361                 return -EINVAL;
2362
2363         /* HWS page needs to be set less than what we
2364          * will inject to ring
2365          */
2366         ret = i915_gem_init_seqno(dev, seqno - 1);
2367         if (ret)
2368                 return ret;
2369
2370         /* Carefully set the last_seqno value so that wrap
2371          * detection still works
2372          */
2373         dev_priv->next_seqno = seqno;
2374         dev_priv->last_seqno = seqno - 1;
2375         if (dev_priv->last_seqno == 0)
2376                 dev_priv->last_seqno--;
2377
2378         return 0;
2379 }
2380
2381 int
2382 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2383 {
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385
2386         /* reserve 0 for non-seqno */
2387         if (dev_priv->next_seqno == 0) {
2388                 int ret = i915_gem_init_seqno(dev, 0);
2389                 if (ret)
2390                         return ret;
2391
2392                 dev_priv->next_seqno = 1;
2393         }
2394
2395         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2396         return 0;
2397 }
2398
2399 int __i915_add_request(struct intel_engine_cs *ring,
2400                        struct drm_file *file,
2401                        struct drm_i915_gem_object *obj)
2402 {
2403         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2404         struct drm_i915_gem_request *request;
2405         struct intel_ringbuffer *ringbuf;
2406         u32 request_ring_position, request_start;
2407         int ret;
2408
2409         request = ring->outstanding_lazy_request;
2410         if (WARN_ON(request == NULL))
2411                 return -ENOMEM;
2412
2413         if (i915.enable_execlists) {
2414                 struct intel_context *ctx = request->ctx;
2415                 ringbuf = ctx->engine[ring->id].ringbuf;
2416         } else
2417                 ringbuf = ring->buffer;
2418
2419         request_start = intel_ring_get_tail(ringbuf);
2420         /*
2421          * Emit any outstanding flushes - execbuf can fail to emit the flush
2422          * after having emitted the batchbuffer command. Hence we need to fix
2423          * things up similar to emitting the lazy request. The difference here
2424          * is that the flush _must_ happen before the next request, no matter
2425          * what.
2426          */
2427         if (i915.enable_execlists) {
2428                 ret = logical_ring_flush_all_caches(ringbuf);
2429                 if (ret)
2430                         return ret;
2431         } else {
2432                 ret = intel_ring_flush_all_caches(ring);
2433                 if (ret)
2434                         return ret;
2435         }
2436
2437         /* Record the position of the start of the request so that
2438          * should we detect the updated seqno part-way through the
2439          * GPU processing the request, we never over-estimate the
2440          * position of the head.
2441          */
2442         request_ring_position = intel_ring_get_tail(ringbuf);
2443
2444         if (i915.enable_execlists) {
2445                 ret = ring->emit_request(ringbuf);
2446                 if (ret)
2447                         return ret;
2448         } else {
2449                 ret = ring->add_request(ring);
2450                 if (ret)
2451                         return ret;
2452         }
2453
2454         request->head = request_start;
2455         request->tail = request_ring_position;
2456
2457         /* Whilst this request exists, batch_obj will be on the
2458          * active_list, and so will hold the active reference. Only when this
2459          * request is retired will the the batch_obj be moved onto the
2460          * inactive_list and lose its active reference. Hence we do not need
2461          * to explicitly hold another reference here.
2462          */
2463         request->batch_obj = obj;
2464
2465         if (!i915.enable_execlists) {
2466                 /* Hold a reference to the current context so that we can inspect
2467                  * it later in case a hangcheck error event fires.
2468                  */
2469                 request->ctx = ring->last_context;
2470                 if (request->ctx)
2471                         i915_gem_context_reference(request->ctx);
2472         }
2473
2474         request->emitted_jiffies = jiffies;
2475         list_add_tail(&request->list, &ring->request_list);
2476         request->file_priv = NULL;
2477
2478         if (file) {
2479                 struct drm_i915_file_private *file_priv = file->driver_priv;
2480
2481                 spin_lock(&file_priv->mm.lock);
2482                 request->file_priv = file_priv;
2483                 list_add_tail(&request->client_list,
2484                               &file_priv->mm.request_list);
2485                 spin_unlock(&file_priv->mm.lock);
2486         }
2487
2488         trace_i915_gem_request_add(request);
2489         ring->outstanding_lazy_request = NULL;
2490
2491         i915_queue_hangcheck(ring->dev);
2492
2493         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2494         queue_delayed_work(dev_priv->wq,
2495                            &dev_priv->mm.retire_work,
2496                            round_jiffies_up_relative(HZ));
2497         intel_mark_busy(dev_priv->dev);
2498
2499         return 0;
2500 }
2501
2502 static inline void
2503 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2504 {
2505         struct drm_i915_file_private *file_priv = request->file_priv;
2506
2507         if (!file_priv)
2508                 return;
2509
2510         spin_lock(&file_priv->mm.lock);
2511         list_del(&request->client_list);
2512         request->file_priv = NULL;
2513         spin_unlock(&file_priv->mm.lock);
2514 }
2515
2516 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2517                                    const struct intel_context *ctx)
2518 {
2519         unsigned long elapsed;
2520
2521         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2522
2523         if (ctx->hang_stats.banned)
2524                 return true;
2525
2526         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2527                 if (!i915_gem_context_is_default(ctx)) {
2528                         DRM_DEBUG("context hanging too fast, banning!\n");
2529                         return true;
2530                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2531                         if (i915_stop_ring_allow_warn(dev_priv))
2532                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2533                         return true;
2534                 }
2535         }
2536
2537         return false;
2538 }
2539
2540 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2541                                   struct intel_context *ctx,
2542                                   const bool guilty)
2543 {
2544         struct i915_ctx_hang_stats *hs;
2545
2546         if (WARN_ON(!ctx))
2547                 return;
2548
2549         hs = &ctx->hang_stats;
2550
2551         if (guilty) {
2552                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2553                 hs->batch_active++;
2554                 hs->guilty_ts = get_seconds();
2555         } else {
2556                 hs->batch_pending++;
2557         }
2558 }
2559
2560 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2561 {
2562         list_del(&request->list);
2563         i915_gem_request_remove_from_client(request);
2564
2565         i915_gem_request_unreference(request);
2566 }
2567
2568 void i915_gem_request_free(struct kref *req_ref)
2569 {
2570         struct drm_i915_gem_request *req = container_of(req_ref,
2571                                                  typeof(*req), ref);
2572         struct intel_context *ctx = req->ctx;
2573
2574         if (ctx) {
2575                 if (i915.enable_execlists) {
2576                         struct intel_engine_cs *ring = req->ring;
2577
2578                         if (ctx != ring->default_context)
2579                                 intel_lr_context_unpin(ring, ctx);
2580                 }
2581
2582                 i915_gem_context_unreference(ctx);
2583         }
2584
2585         kfree(req);
2586 }
2587
2588 struct drm_i915_gem_request *
2589 i915_gem_find_active_request(struct intel_engine_cs *ring)
2590 {
2591         struct drm_i915_gem_request *request;
2592
2593         list_for_each_entry(request, &ring->request_list, list) {
2594                 if (i915_gem_request_completed(request, false))
2595                         continue;
2596
2597                 return request;
2598         }
2599
2600         return NULL;
2601 }
2602
2603 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2604                                        struct intel_engine_cs *ring)
2605 {
2606         struct drm_i915_gem_request *request;
2607         bool ring_hung;
2608
2609         request = i915_gem_find_active_request(ring);
2610
2611         if (request == NULL)
2612                 return;
2613
2614         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2615
2616         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2617
2618         list_for_each_entry_continue(request, &ring->request_list, list)
2619                 i915_set_reset_status(dev_priv, request->ctx, false);
2620 }
2621
2622 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2623                                         struct intel_engine_cs *ring)
2624 {
2625         while (!list_empty(&ring->active_list)) {
2626                 struct drm_i915_gem_object *obj;
2627
2628                 obj = list_first_entry(&ring->active_list,
2629                                        struct drm_i915_gem_object,
2630                                        ring_list);
2631
2632                 i915_gem_object_move_to_inactive(obj);
2633         }
2634
2635         /*
2636          * Clear the execlists queue up before freeing the requests, as those
2637          * are the ones that keep the context and ringbuffer backing objects
2638          * pinned in place.
2639          */
2640         while (!list_empty(&ring->execlist_queue)) {
2641                 struct intel_ctx_submit_request *submit_req;
2642
2643                 submit_req = list_first_entry(&ring->execlist_queue,
2644                                 struct intel_ctx_submit_request,
2645                                 execlist_link);
2646                 list_del(&submit_req->execlist_link);
2647                 intel_runtime_pm_put(dev_priv);
2648                 i915_gem_context_unreference(submit_req->ctx);
2649                 kfree(submit_req);
2650         }
2651
2652         /*
2653          * We must free the requests after all the corresponding objects have
2654          * been moved off active lists. Which is the same order as the normal
2655          * retire_requests function does. This is important if object hold
2656          * implicit references on things like e.g. ppgtt address spaces through
2657          * the request.
2658          */
2659         while (!list_empty(&ring->request_list)) {
2660                 struct drm_i915_gem_request *request;
2661
2662                 request = list_first_entry(&ring->request_list,
2663                                            struct drm_i915_gem_request,
2664                                            list);
2665
2666                 i915_gem_free_request(request);
2667         }
2668
2669         /* This may not have been flushed before the reset, so clean it now */
2670         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2671 }
2672
2673 void i915_gem_restore_fences(struct drm_device *dev)
2674 {
2675         struct drm_i915_private *dev_priv = dev->dev_private;
2676         int i;
2677
2678         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2679                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2680
2681                 /*
2682                  * Commit delayed tiling changes if we have an object still
2683                  * attached to the fence, otherwise just clear the fence.
2684                  */
2685                 if (reg->obj) {
2686                         i915_gem_object_update_fence(reg->obj, reg,
2687                                                      reg->obj->tiling_mode);
2688                 } else {
2689                         i915_gem_write_fence(dev, i, NULL);
2690                 }
2691         }
2692 }
2693
2694 void i915_gem_reset(struct drm_device *dev)
2695 {
2696         struct drm_i915_private *dev_priv = dev->dev_private;
2697         struct intel_engine_cs *ring;
2698         int i;
2699
2700         /*
2701          * Before we free the objects from the requests, we need to inspect
2702          * them for finding the guilty party. As the requests only borrow
2703          * their reference to the objects, the inspection must be done first.
2704          */
2705         for_each_ring(ring, dev_priv, i)
2706                 i915_gem_reset_ring_status(dev_priv, ring);
2707
2708         for_each_ring(ring, dev_priv, i)
2709                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2710
2711         i915_gem_context_reset(dev);
2712
2713         i915_gem_restore_fences(dev);
2714 }
2715
2716 /**
2717  * This function clears the request list as sequence numbers are passed.
2718  */
2719 void
2720 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2721 {
2722         if (list_empty(&ring->request_list))
2723                 return;
2724
2725         WARN_ON(i915_verify_lists(ring->dev));
2726
2727         /* Move any buffers on the active list that are no longer referenced
2728          * by the ringbuffer to the flushing/inactive lists as appropriate,
2729          * before we free the context associated with the requests.
2730          */
2731         while (!list_empty(&ring->active_list)) {
2732                 struct drm_i915_gem_object *obj;
2733
2734                 obj = list_first_entry(&ring->active_list,
2735                                       struct drm_i915_gem_object,
2736                                       ring_list);
2737
2738                 if (!i915_gem_request_completed(obj->last_read_req, true))
2739                         break;
2740
2741                 i915_gem_object_move_to_inactive(obj);
2742         }
2743
2744
2745         while (!list_empty(&ring->request_list)) {
2746                 struct drm_i915_gem_request *request;
2747                 struct intel_ringbuffer *ringbuf;
2748
2749                 request = list_first_entry(&ring->request_list,
2750                                            struct drm_i915_gem_request,
2751                                            list);
2752
2753                 if (!i915_gem_request_completed(request, true))
2754                         break;
2755
2756                 trace_i915_gem_request_retire(request);
2757
2758                 /* This is one of the few common intersection points
2759                  * between legacy ringbuffer submission and execlists:
2760                  * we need to tell them apart in order to find the correct
2761                  * ringbuffer to which the request belongs to.
2762                  */
2763                 if (i915.enable_execlists) {
2764                         struct intel_context *ctx = request->ctx;
2765                         ringbuf = ctx->engine[ring->id].ringbuf;
2766                 } else
2767                         ringbuf = ring->buffer;
2768
2769                 /* We know the GPU must have read the request to have
2770                  * sent us the seqno + interrupt, so use the position
2771                  * of tail of the request to update the last known position
2772                  * of the GPU head.
2773                  */
2774                 ringbuf->last_retired_head = request->tail;
2775
2776                 i915_gem_free_request(request);
2777         }
2778
2779         if (unlikely(ring->trace_irq_req &&
2780                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2781                 ring->irq_put(ring);
2782                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2783         }
2784
2785         WARN_ON(i915_verify_lists(ring->dev));
2786 }
2787
2788 bool
2789 i915_gem_retire_requests(struct drm_device *dev)
2790 {
2791         struct drm_i915_private *dev_priv = dev->dev_private;
2792         struct intel_engine_cs *ring;
2793         bool idle = true;
2794         int i;
2795
2796         for_each_ring(ring, dev_priv, i) {
2797                 i915_gem_retire_requests_ring(ring);
2798                 idle &= list_empty(&ring->request_list);
2799                 if (i915.enable_execlists) {
2800                         unsigned long flags;
2801
2802                         spin_lock_irqsave(&ring->execlist_lock, flags);
2803                         idle &= list_empty(&ring->execlist_queue);
2804                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2805
2806                         intel_execlists_retire_requests(ring);
2807                 }
2808         }
2809
2810         if (idle)
2811                 mod_delayed_work(dev_priv->wq,
2812                                    &dev_priv->mm.idle_work,
2813                                    msecs_to_jiffies(100));
2814
2815         return idle;
2816 }
2817
2818 static void
2819 i915_gem_retire_work_handler(struct work_struct *work)
2820 {
2821         struct drm_i915_private *dev_priv =
2822                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2823         struct drm_device *dev = dev_priv->dev;
2824         bool idle;
2825
2826         /* Come back later if the device is busy... */
2827         idle = false;
2828         if (mutex_trylock(&dev->struct_mutex)) {
2829                 idle = i915_gem_retire_requests(dev);
2830                 mutex_unlock(&dev->struct_mutex);
2831         }
2832         if (!idle)
2833                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2834                                    round_jiffies_up_relative(HZ));
2835 }
2836
2837 static void
2838 i915_gem_idle_work_handler(struct work_struct *work)
2839 {
2840         struct drm_i915_private *dev_priv =
2841                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2842
2843         intel_mark_idle(dev_priv->dev);
2844 }
2845
2846 /**
2847  * Ensures that an object will eventually get non-busy by flushing any required
2848  * write domains, emitting any outstanding lazy request and retiring and
2849  * completed requests.
2850  */
2851 static int
2852 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2853 {
2854         struct intel_engine_cs *ring;
2855         int ret;
2856
2857         if (obj->active) {
2858                 ring = i915_gem_request_get_ring(obj->last_read_req);
2859
2860                 ret = i915_gem_check_olr(obj->last_read_req);
2861                 if (ret)
2862                         return ret;
2863
2864                 i915_gem_retire_requests_ring(ring);
2865         }
2866
2867         return 0;
2868 }
2869
2870 /**
2871  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2872  * @DRM_IOCTL_ARGS: standard ioctl arguments
2873  *
2874  * Returns 0 if successful, else an error is returned with the remaining time in
2875  * the timeout parameter.
2876  *  -ETIME: object is still busy after timeout
2877  *  -ERESTARTSYS: signal interrupted the wait
2878  *  -ENONENT: object doesn't exist
2879  * Also possible, but rare:
2880  *  -EAGAIN: GPU wedged
2881  *  -ENOMEM: damn
2882  *  -ENODEV: Internal IRQ fail
2883  *  -E?: The add request failed
2884  *
2885  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2886  * non-zero timeout parameter the wait ioctl will wait for the given number of
2887  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2888  * without holding struct_mutex the object may become re-busied before this
2889  * function completes. A similar but shorter * race condition exists in the busy
2890  * ioctl
2891  */
2892 int
2893 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2894 {
2895         struct drm_i915_private *dev_priv = dev->dev_private;
2896         struct drm_i915_gem_wait *args = data;
2897         struct drm_i915_gem_object *obj;
2898         struct drm_i915_gem_request *req;
2899         unsigned reset_counter;
2900         int ret = 0;
2901
2902         if (args->flags != 0)
2903                 return -EINVAL;
2904
2905         ret = i915_mutex_lock_interruptible(dev);
2906         if (ret)
2907                 return ret;
2908
2909         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2910         if (&obj->base == NULL) {
2911                 mutex_unlock(&dev->struct_mutex);
2912                 return -ENOENT;
2913         }
2914
2915         /* Need to make sure the object gets inactive eventually. */
2916         ret = i915_gem_object_flush_active(obj);
2917         if (ret)
2918                 goto out;
2919
2920         if (!obj->active || !obj->last_read_req)
2921                 goto out;
2922
2923         req = obj->last_read_req;
2924
2925         /* Do this after OLR check to make sure we make forward progress polling
2926          * on this IOCTL with a timeout <=0 (like busy ioctl)
2927          */
2928         if (args->timeout_ns <= 0) {
2929                 ret = -ETIME;
2930                 goto out;
2931         }
2932
2933         drm_gem_object_unreference(&obj->base);
2934         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2935         i915_gem_request_reference(req);
2936         mutex_unlock(&dev->struct_mutex);
2937
2938         ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2939                                   file->driver_priv);
2940         mutex_lock(&dev->struct_mutex);
2941         i915_gem_request_unreference(req);
2942         mutex_unlock(&dev->struct_mutex);
2943         return ret;
2944
2945 out:
2946         drm_gem_object_unreference(&obj->base);
2947         mutex_unlock(&dev->struct_mutex);
2948         return ret;
2949 }
2950
2951 /**
2952  * i915_gem_object_sync - sync an object to a ring.
2953  *
2954  * @obj: object which may be in use on another ring.
2955  * @to: ring we wish to use the object on. May be NULL.
2956  *
2957  * This code is meant to abstract object synchronization with the GPU.
2958  * Calling with NULL implies synchronizing the object with the CPU
2959  * rather than a particular GPU ring.
2960  *
2961  * Returns 0 if successful, else propagates up the lower layer error.
2962  */
2963 int
2964 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2965                      struct intel_engine_cs *to)
2966 {
2967         struct intel_engine_cs *from;
2968         u32 seqno;
2969         int ret, idx;
2970
2971         from = i915_gem_request_get_ring(obj->last_read_req);
2972
2973         if (from == NULL || to == from)
2974                 return 0;
2975
2976         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2977                 return i915_gem_object_wait_rendering(obj, false);
2978
2979         idx = intel_ring_sync_index(from, to);
2980
2981         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2982         /* Optimization: Avoid semaphore sync when we are sure we already
2983          * waited for an object with higher seqno */
2984         if (seqno <= from->semaphore.sync_seqno[idx])
2985                 return 0;
2986
2987         ret = i915_gem_check_olr(obj->last_read_req);
2988         if (ret)
2989                 return ret;
2990
2991         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2992         ret = to->semaphore.sync_to(to, from, seqno);
2993         if (!ret)
2994                 /* We use last_read_req because sync_to()
2995                  * might have just caused seqno wrap under
2996                  * the radar.
2997                  */
2998                 from->semaphore.sync_seqno[idx] =
2999                                 i915_gem_request_get_seqno(obj->last_read_req);
3000
3001         return ret;
3002 }
3003
3004 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3005 {
3006         u32 old_write_domain, old_read_domains;
3007
3008         /* Force a pagefault for domain tracking on next user access */
3009         i915_gem_release_mmap(obj);
3010
3011         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3012                 return;
3013
3014         /* Wait for any direct GTT access to complete */
3015         mb();
3016
3017         old_read_domains = obj->base.read_domains;
3018         old_write_domain = obj->base.write_domain;
3019
3020         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3021         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3022
3023         trace_i915_gem_object_change_domain(obj,
3024                                             old_read_domains,
3025                                             old_write_domain);
3026 }
3027
3028 int i915_vma_unbind(struct i915_vma *vma)
3029 {
3030         struct drm_i915_gem_object *obj = vma->obj;
3031         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3032         int ret;
3033
3034         if (list_empty(&vma->vma_link))
3035                 return 0;
3036
3037         if (!drm_mm_node_allocated(&vma->node)) {
3038                 i915_gem_vma_destroy(vma);
3039                 return 0;
3040         }
3041
3042         if (vma->pin_count)
3043                 return -EBUSY;
3044
3045         BUG_ON(obj->pages == NULL);
3046
3047         ret = i915_gem_object_finish_gpu(obj);
3048         if (ret)
3049                 return ret;
3050         /* Continue on if we fail due to EIO, the GPU is hung so we
3051          * should be safe and we need to cleanup or else we might
3052          * cause memory corruption through use-after-free.
3053          */
3054
3055         if (i915_is_ggtt(vma->vm) &&
3056             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3057                 i915_gem_object_finish_gtt(obj);
3058
3059                 /* release the fence reg _after_ flushing */
3060                 ret = i915_gem_object_put_fence(obj);
3061                 if (ret)
3062                         return ret;
3063         }
3064
3065         trace_i915_vma_unbind(vma);
3066
3067         vma->unbind_vma(vma);
3068
3069         list_del_init(&vma->mm_list);
3070         if (i915_is_ggtt(vma->vm)) {
3071                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3072                         obj->map_and_fenceable = false;
3073                 } else if (vma->ggtt_view.pages) {
3074                         sg_free_table(vma->ggtt_view.pages);
3075                         kfree(vma->ggtt_view.pages);
3076                         vma->ggtt_view.pages = NULL;
3077                 }
3078         }
3079
3080         drm_mm_remove_node(&vma->node);
3081         i915_gem_vma_destroy(vma);
3082
3083         /* Since the unbound list is global, only move to that list if
3084          * no more VMAs exist. */
3085         if (list_empty(&obj->vma_list)) {
3086                 /* Throw away the active reference before
3087                  * moving to the unbound list. */
3088                 i915_gem_object_retire(obj);
3089
3090                 i915_gem_gtt_finish_object(obj);
3091                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3092         }
3093
3094         /* And finally now the object is completely decoupled from this vma,
3095          * we can drop its hold on the backing storage and allow it to be
3096          * reaped by the shrinker.
3097          */
3098         i915_gem_object_unpin_pages(obj);
3099
3100         return 0;
3101 }
3102
3103 int i915_gpu_idle(struct drm_device *dev)
3104 {
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106         struct intel_engine_cs *ring;
3107         int ret, i;
3108
3109         /* Flush everything onto the inactive list. */
3110         for_each_ring(ring, dev_priv, i) {
3111                 if (!i915.enable_execlists) {
3112                         ret = i915_switch_context(ring, ring->default_context);
3113                         if (ret)
3114                                 return ret;
3115                 }
3116
3117                 ret = intel_ring_idle(ring);
3118                 if (ret)
3119                         return ret;
3120         }
3121
3122         return 0;
3123 }
3124
3125 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3126                                  struct drm_i915_gem_object *obj)
3127 {
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129         int fence_reg;
3130         int fence_pitch_shift;
3131
3132         if (INTEL_INFO(dev)->gen >= 6) {
3133                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3134                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3135         } else {
3136                 fence_reg = FENCE_REG_965_0;
3137                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3138         }
3139
3140         fence_reg += reg * 8;
3141
3142         /* To w/a incoherency with non-atomic 64-bit register updates,
3143          * we split the 64-bit update into two 32-bit writes. In order
3144          * for a partial fence not to be evaluated between writes, we
3145          * precede the update with write to turn off the fence register,
3146          * and only enable the fence as the last step.
3147          *
3148          * For extra levels of paranoia, we make sure each step lands
3149          * before applying the next step.
3150          */
3151         I915_WRITE(fence_reg, 0);
3152         POSTING_READ(fence_reg);
3153
3154         if (obj) {
3155                 u32 size = i915_gem_obj_ggtt_size(obj);
3156                 uint64_t val;
3157
3158                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3159                                  0xfffff000) << 32;
3160                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3161                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3162                 if (obj->tiling_mode == I915_TILING_Y)
3163                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3164                 val |= I965_FENCE_REG_VALID;
3165
3166                 I915_WRITE(fence_reg + 4, val >> 32);
3167                 POSTING_READ(fence_reg + 4);
3168
3169                 I915_WRITE(fence_reg + 0, val);
3170                 POSTING_READ(fence_reg);
3171         } else {
3172                 I915_WRITE(fence_reg + 4, 0);
3173                 POSTING_READ(fence_reg + 4);
3174         }
3175 }
3176
3177 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3178                                  struct drm_i915_gem_object *obj)
3179 {
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         u32 val;
3182
3183         if (obj) {
3184                 u32 size = i915_gem_obj_ggtt_size(obj);
3185                 int pitch_val;
3186                 int tile_width;
3187
3188                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3189                      (size & -size) != size ||
3190                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3191                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3192                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3193
3194                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3195                         tile_width = 128;
3196                 else
3197                         tile_width = 512;
3198
3199                 /* Note: pitch better be a power of two tile widths */
3200                 pitch_val = obj->stride / tile_width;
3201                 pitch_val = ffs(pitch_val) - 1;
3202
3203                 val = i915_gem_obj_ggtt_offset(obj);
3204                 if (obj->tiling_mode == I915_TILING_Y)
3205                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3206                 val |= I915_FENCE_SIZE_BITS(size);
3207                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3208                 val |= I830_FENCE_REG_VALID;
3209         } else
3210                 val = 0;
3211
3212         if (reg < 8)
3213                 reg = FENCE_REG_830_0 + reg * 4;
3214         else
3215                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3216
3217         I915_WRITE(reg, val);
3218         POSTING_READ(reg);
3219 }
3220
3221 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3222                                 struct drm_i915_gem_object *obj)
3223 {
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         uint32_t val;
3226
3227         if (obj) {
3228                 u32 size = i915_gem_obj_ggtt_size(obj);
3229                 uint32_t pitch_val;
3230
3231                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3232                      (size & -size) != size ||
3233                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3234                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3235                      i915_gem_obj_ggtt_offset(obj), size);
3236
3237                 pitch_val = obj->stride / 128;
3238                 pitch_val = ffs(pitch_val) - 1;
3239
3240                 val = i915_gem_obj_ggtt_offset(obj);
3241                 if (obj->tiling_mode == I915_TILING_Y)
3242                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3243                 val |= I830_FENCE_SIZE_BITS(size);
3244                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3245                 val |= I830_FENCE_REG_VALID;
3246         } else
3247                 val = 0;
3248
3249         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3250         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3251 }
3252
3253 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3254 {
3255         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3256 }
3257
3258 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3259                                  struct drm_i915_gem_object *obj)
3260 {
3261         struct drm_i915_private *dev_priv = dev->dev_private;
3262
3263         /* Ensure that all CPU reads are completed before installing a fence
3264          * and all writes before removing the fence.
3265          */
3266         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3267                 mb();
3268
3269         WARN(obj && (!obj->stride || !obj->tiling_mode),
3270              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3271              obj->stride, obj->tiling_mode);
3272
3273         if (IS_GEN2(dev))
3274                 i830_write_fence_reg(dev, reg, obj);
3275         else if (IS_GEN3(dev))
3276                 i915_write_fence_reg(dev, reg, obj);
3277         else if (INTEL_INFO(dev)->gen >= 4)
3278                 i965_write_fence_reg(dev, reg, obj);
3279
3280         /* And similarly be paranoid that no direct access to this region
3281          * is reordered to before the fence is installed.
3282          */
3283         if (i915_gem_object_needs_mb(obj))
3284                 mb();
3285 }
3286
3287 static inline int fence_number(struct drm_i915_private *dev_priv,
3288                                struct drm_i915_fence_reg *fence)
3289 {
3290         return fence - dev_priv->fence_regs;
3291 }
3292
3293 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3294                                          struct drm_i915_fence_reg *fence,
3295                                          bool enable)
3296 {
3297         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3298         int reg = fence_number(dev_priv, fence);
3299
3300         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3301
3302         if (enable) {
3303                 obj->fence_reg = reg;
3304                 fence->obj = obj;
3305                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3306         } else {
3307                 obj->fence_reg = I915_FENCE_REG_NONE;
3308                 fence->obj = NULL;
3309                 list_del_init(&fence->lru_list);
3310         }
3311         obj->fence_dirty = false;
3312 }
3313
3314 static int
3315 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3316 {
3317         if (obj->last_fenced_req) {
3318                 int ret = i915_wait_request(obj->last_fenced_req);
3319                 if (ret)
3320                         return ret;
3321
3322                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3323         }
3324
3325         return 0;
3326 }
3327
3328 int
3329 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3330 {
3331         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3332         struct drm_i915_fence_reg *fence;
3333         int ret;
3334
3335         ret = i915_gem_object_wait_fence(obj);
3336         if (ret)
3337                 return ret;
3338
3339         if (obj->fence_reg == I915_FENCE_REG_NONE)
3340                 return 0;
3341
3342         fence = &dev_priv->fence_regs[obj->fence_reg];
3343
3344         if (WARN_ON(fence->pin_count))
3345                 return -EBUSY;
3346
3347         i915_gem_object_fence_lost(obj);
3348         i915_gem_object_update_fence(obj, fence, false);
3349
3350         return 0;
3351 }
3352
3353 static struct drm_i915_fence_reg *
3354 i915_find_fence_reg(struct drm_device *dev)
3355 {
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357         struct drm_i915_fence_reg *reg, *avail;
3358         int i;
3359
3360         /* First try to find a free reg */
3361         avail = NULL;
3362         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3363                 reg = &dev_priv->fence_regs[i];
3364                 if (!reg->obj)
3365                         return reg;
3366
3367                 if (!reg->pin_count)
3368                         avail = reg;
3369         }
3370
3371         if (avail == NULL)
3372                 goto deadlock;
3373
3374         /* None available, try to steal one or wait for a user to finish */
3375         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3376                 if (reg->pin_count)
3377                         continue;
3378
3379                 return reg;
3380         }
3381
3382 deadlock:
3383         /* Wait for completion of pending flips which consume fences */
3384         if (intel_has_pending_fb_unpin(dev))
3385                 return ERR_PTR(-EAGAIN);
3386
3387         return ERR_PTR(-EDEADLK);
3388 }
3389
3390 /**
3391  * i915_gem_object_get_fence - set up fencing for an object
3392  * @obj: object to map through a fence reg
3393  *
3394  * When mapping objects through the GTT, userspace wants to be able to write
3395  * to them without having to worry about swizzling if the object is tiled.
3396  * This function walks the fence regs looking for a free one for @obj,
3397  * stealing one if it can't find any.
3398  *
3399  * It then sets up the reg based on the object's properties: address, pitch
3400  * and tiling format.
3401  *
3402  * For an untiled surface, this removes any existing fence.
3403  */
3404 int
3405 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3406 {
3407         struct drm_device *dev = obj->base.dev;
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409         bool enable = obj->tiling_mode != I915_TILING_NONE;
3410         struct drm_i915_fence_reg *reg;
3411         int ret;
3412
3413         /* Have we updated the tiling parameters upon the object and so
3414          * will need to serialise the write to the associated fence register?
3415          */
3416         if (obj->fence_dirty) {
3417                 ret = i915_gem_object_wait_fence(obj);
3418                 if (ret)
3419                         return ret;
3420         }
3421
3422         /* Just update our place in the LRU if our fence is getting reused. */
3423         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3424                 reg = &dev_priv->fence_regs[obj->fence_reg];
3425                 if (!obj->fence_dirty) {
3426                         list_move_tail(&reg->lru_list,
3427                                        &dev_priv->mm.fence_list);
3428                         return 0;
3429                 }
3430         } else if (enable) {
3431                 if (WARN_ON(!obj->map_and_fenceable))
3432                         return -EINVAL;
3433
3434                 reg = i915_find_fence_reg(dev);
3435                 if (IS_ERR(reg))
3436                         return PTR_ERR(reg);
3437
3438                 if (reg->obj) {
3439                         struct drm_i915_gem_object *old = reg->obj;
3440
3441                         ret = i915_gem_object_wait_fence(old);
3442                         if (ret)
3443                                 return ret;
3444
3445                         i915_gem_object_fence_lost(old);
3446                 }
3447         } else
3448                 return 0;
3449
3450         i915_gem_object_update_fence(obj, reg, enable);
3451
3452         return 0;
3453 }
3454
3455 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3456                                      unsigned long cache_level)
3457 {
3458         struct drm_mm_node *gtt_space = &vma->node;
3459         struct drm_mm_node *other;
3460
3461         /*
3462          * On some machines we have to be careful when putting differing types
3463          * of snoopable memory together to avoid the prefetcher crossing memory
3464          * domains and dying. During vm initialisation, we decide whether or not
3465          * these constraints apply and set the drm_mm.color_adjust
3466          * appropriately.
3467          */
3468         if (vma->vm->mm.color_adjust == NULL)
3469                 return true;
3470
3471         if (!drm_mm_node_allocated(gtt_space))
3472                 return true;
3473
3474         if (list_empty(&gtt_space->node_list))
3475                 return true;
3476
3477         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3478         if (other->allocated && !other->hole_follows && other->color != cache_level)
3479                 return false;
3480
3481         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3482         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3483                 return false;
3484
3485         return true;
3486 }
3487
3488 /**
3489  * Finds free space in the GTT aperture and binds the object there.
3490  */
3491 static struct i915_vma *
3492 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3493                            struct i915_address_space *vm,
3494                            unsigned alignment,
3495                            uint64_t flags,
3496                            const struct i915_ggtt_view *view)
3497 {
3498         struct drm_device *dev = obj->base.dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         u32 size, fence_size, fence_alignment, unfenced_alignment;
3501         unsigned long start =
3502                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3503         unsigned long end =
3504                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3505         struct i915_vma *vma;
3506         int ret;
3507
3508         fence_size = i915_gem_get_gtt_size(dev,
3509                                            obj->base.size,
3510                                            obj->tiling_mode);
3511         fence_alignment = i915_gem_get_gtt_alignment(dev,
3512                                                      obj->base.size,
3513                                                      obj->tiling_mode, true);
3514         unfenced_alignment =
3515                 i915_gem_get_gtt_alignment(dev,
3516                                            obj->base.size,
3517                                            obj->tiling_mode, false);
3518
3519         if (alignment == 0)
3520                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3521                                                 unfenced_alignment;
3522         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3523                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3524                 return ERR_PTR(-EINVAL);
3525         }
3526
3527         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3528
3529         /* If the object is bigger than the entire aperture, reject it early
3530          * before evicting everything in a vain attempt to find space.
3531          */
3532         if (obj->base.size > end) {
3533                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3534                           obj->base.size,
3535                           flags & PIN_MAPPABLE ? "mappable" : "total",
3536                           end);
3537                 return ERR_PTR(-E2BIG);
3538         }
3539
3540         ret = i915_gem_object_get_pages(obj);
3541         if (ret)
3542                 return ERR_PTR(ret);
3543
3544         i915_gem_object_pin_pages(obj);
3545
3546         vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3547         if (IS_ERR(vma))
3548                 goto err_unpin;
3549
3550 search_free:
3551         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3552                                                   size, alignment,
3553                                                   obj->cache_level,
3554                                                   start, end,
3555                                                   DRM_MM_SEARCH_DEFAULT,
3556                                                   DRM_MM_CREATE_DEFAULT);
3557         if (ret) {
3558                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3559                                                obj->cache_level,
3560                                                start, end,
3561                                                flags);
3562                 if (ret == 0)
3563                         goto search_free;
3564
3565                 goto err_free_vma;
3566         }
3567         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3568                 ret = -EINVAL;
3569                 goto err_remove_node;
3570         }
3571
3572         ret = i915_gem_gtt_prepare_object(obj);
3573         if (ret)
3574                 goto err_remove_node;
3575
3576         trace_i915_vma_bind(vma, flags);
3577         ret = i915_vma_bind(vma, obj->cache_level,
3578                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3579         if (ret)
3580                 goto err_finish_gtt;
3581
3582         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3583         list_add_tail(&vma->mm_list, &vm->inactive_list);
3584
3585         return vma;
3586
3587 err_finish_gtt:
3588         i915_gem_gtt_finish_object(obj);
3589 err_remove_node:
3590         drm_mm_remove_node(&vma->node);
3591 err_free_vma:
3592         i915_gem_vma_destroy(vma);
3593         vma = ERR_PTR(ret);
3594 err_unpin:
3595         i915_gem_object_unpin_pages(obj);
3596         return vma;
3597 }
3598
3599 bool
3600 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3601                         bool force)
3602 {
3603         /* If we don't have a page list set up, then we're not pinned
3604          * to GPU, and we can ignore the cache flush because it'll happen
3605          * again at bind time.
3606          */
3607         if (obj->pages == NULL)
3608                 return false;
3609
3610         /*
3611          * Stolen memory is always coherent with the GPU as it is explicitly
3612          * marked as wc by the system, or the system is cache-coherent.
3613          */
3614         if (obj->stolen || obj->phys_handle)
3615                 return false;
3616
3617         /* If the GPU is snooping the contents of the CPU cache,
3618          * we do not need to manually clear the CPU cache lines.  However,
3619          * the caches are only snooped when the render cache is
3620          * flushed/invalidated.  As we always have to emit invalidations
3621          * and flushes when moving into and out of the RENDER domain, correct
3622          * snooping behaviour occurs naturally as the result of our domain
3623          * tracking.
3624          */
3625         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3626                 return false;
3627
3628         trace_i915_gem_object_clflush(obj);
3629         drm_clflush_sg(obj->pages);
3630
3631         return true;
3632 }
3633
3634 /** Flushes the GTT write domain for the object if it's dirty. */
3635 static void
3636 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3637 {
3638         uint32_t old_write_domain;
3639
3640         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3641                 return;
3642
3643         /* No actual flushing is required for the GTT write domain.  Writes
3644          * to it immediately go to main memory as far as we know, so there's
3645          * no chipset flush.  It also doesn't land in render cache.
3646          *
3647          * However, we do have to enforce the order so that all writes through
3648          * the GTT land before any writes to the device, such as updates to
3649          * the GATT itself.
3650          */
3651         wmb();
3652
3653         old_write_domain = obj->base.write_domain;
3654         obj->base.write_domain = 0;
3655
3656         intel_fb_obj_flush(obj, false);
3657
3658         trace_i915_gem_object_change_domain(obj,
3659                                             obj->base.read_domains,
3660                                             old_write_domain);
3661 }
3662
3663 /** Flushes the CPU write domain for the object if it's dirty. */
3664 static void
3665 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3666                                        bool force)
3667 {
3668         uint32_t old_write_domain;
3669
3670         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3671                 return;
3672
3673         if (i915_gem_clflush_object(obj, force))
3674                 i915_gem_chipset_flush(obj->base.dev);
3675
3676         old_write_domain = obj->base.write_domain;
3677         obj->base.write_domain = 0;
3678
3679         intel_fb_obj_flush(obj, false);
3680
3681         trace_i915_gem_object_change_domain(obj,
3682                                             obj->base.read_domains,
3683                                             old_write_domain);
3684 }
3685
3686 /**
3687  * Moves a single object to the GTT read, and possibly write domain.
3688  *
3689  * This function returns when the move is complete, including waiting on
3690  * flushes to occur.
3691  */
3692 int
3693 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3694 {
3695         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3696         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3697         uint32_t old_write_domain, old_read_domains;
3698         int ret;
3699
3700         /* Not valid to be called on unbound objects. */
3701         if (vma == NULL)
3702                 return -EINVAL;
3703
3704         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3705                 return 0;
3706
3707         ret = i915_gem_object_wait_rendering(obj, !write);
3708         if (ret)
3709                 return ret;
3710
3711         i915_gem_object_retire(obj);
3712         i915_gem_object_flush_cpu_write_domain(obj, false);
3713
3714         /* Serialise direct access to this object with the barriers for
3715          * coherent writes from the GPU, by effectively invalidating the
3716          * GTT domain upon first access.
3717          */
3718         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3719                 mb();
3720
3721         old_write_domain = obj->base.write_domain;
3722         old_read_domains = obj->base.read_domains;
3723
3724         /* It should now be out of any other write domains, and we can update
3725          * the domain values for our changes.
3726          */
3727         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3728         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3729         if (write) {
3730                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3731                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3732                 obj->dirty = 1;
3733         }
3734
3735         if (write)
3736                 intel_fb_obj_invalidate(obj, NULL);
3737
3738         trace_i915_gem_object_change_domain(obj,
3739                                             old_read_domains,
3740                                             old_write_domain);
3741
3742         /* And bump the LRU for this access */
3743         if (i915_gem_object_is_inactive(obj))
3744                 list_move_tail(&vma->mm_list,
3745                                &dev_priv->gtt.base.inactive_list);
3746
3747         return 0;
3748 }
3749
3750 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3751                                     enum i915_cache_level cache_level)
3752 {
3753         struct drm_device *dev = obj->base.dev;
3754         struct i915_vma *vma, *next;
3755         int ret;
3756
3757         if (obj->cache_level == cache_level)
3758                 return 0;
3759
3760         if (i915_gem_obj_is_pinned(obj)) {
3761                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3762                 return -EBUSY;
3763         }
3764
3765         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3766                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3767                         ret = i915_vma_unbind(vma);
3768                         if (ret)
3769                                 return ret;
3770                 }
3771         }
3772
3773         if (i915_gem_obj_bound_any(obj)) {
3774                 ret = i915_gem_object_finish_gpu(obj);
3775                 if (ret)
3776                         return ret;
3777
3778                 i915_gem_object_finish_gtt(obj);
3779
3780                 /* Before SandyBridge, you could not use tiling or fence
3781                  * registers with snooped memory, so relinquish any fences
3782                  * currently pointing to our region in the aperture.
3783                  */
3784                 if (INTEL_INFO(dev)->gen < 6) {
3785                         ret = i915_gem_object_put_fence(obj);
3786                         if (ret)
3787                                 return ret;
3788                 }
3789
3790                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3791                         if (drm_mm_node_allocated(&vma->node)) {
3792                                 ret = i915_vma_bind(vma, cache_level,
3793                                                     vma->bound & GLOBAL_BIND);
3794                                 if (ret)
3795                                         return ret;
3796                         }
3797         }
3798
3799         list_for_each_entry(vma, &obj->vma_list, vma_link)
3800                 vma->node.color = cache_level;
3801         obj->cache_level = cache_level;
3802
3803         if (cpu_write_needs_clflush(obj)) {
3804                 u32 old_read_domains, old_write_domain;
3805
3806                 /* If we're coming from LLC cached, then we haven't
3807                  * actually been tracking whether the data is in the
3808                  * CPU cache or not, since we only allow one bit set
3809                  * in obj->write_domain and have been skipping the clflushes.
3810                  * Just set it to the CPU cache for now.
3811                  */
3812                 i915_gem_object_retire(obj);
3813                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3814
3815                 old_read_domains = obj->base.read_domains;
3816                 old_write_domain = obj->base.write_domain;
3817
3818                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3819                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3820
3821                 trace_i915_gem_object_change_domain(obj,
3822                                                     old_read_domains,
3823                                                     old_write_domain);
3824         }
3825
3826         return 0;
3827 }
3828
3829 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3830                                struct drm_file *file)
3831 {
3832         struct drm_i915_gem_caching *args = data;
3833         struct drm_i915_gem_object *obj;
3834         int ret;
3835
3836         ret = i915_mutex_lock_interruptible(dev);
3837         if (ret)
3838                 return ret;
3839
3840         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841         if (&obj->base == NULL) {
3842                 ret = -ENOENT;
3843                 goto unlock;
3844         }
3845
3846         switch (obj->cache_level) {
3847         case I915_CACHE_LLC:
3848         case I915_CACHE_L3_LLC:
3849                 args->caching = I915_CACHING_CACHED;
3850                 break;
3851
3852         case I915_CACHE_WT:
3853                 args->caching = I915_CACHING_DISPLAY;
3854                 break;
3855
3856         default:
3857                 args->caching = I915_CACHING_NONE;
3858                 break;
3859         }
3860
3861         drm_gem_object_unreference(&obj->base);
3862 unlock:
3863         mutex_unlock(&dev->struct_mutex);
3864         return ret;
3865 }
3866
3867 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3868                                struct drm_file *file)
3869 {
3870         struct drm_i915_gem_caching *args = data;
3871         struct drm_i915_gem_object *obj;
3872         enum i915_cache_level level;
3873         int ret;
3874
3875         switch (args->caching) {
3876         case I915_CACHING_NONE:
3877                 level = I915_CACHE_NONE;
3878                 break;
3879         case I915_CACHING_CACHED:
3880                 level = I915_CACHE_LLC;
3881                 break;
3882         case I915_CACHING_DISPLAY:
3883                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3884                 break;
3885         default:
3886                 return -EINVAL;
3887         }
3888
3889         ret = i915_mutex_lock_interruptible(dev);
3890         if (ret)
3891                 return ret;
3892
3893         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3894         if (&obj->base == NULL) {
3895                 ret = -ENOENT;
3896                 goto unlock;
3897         }
3898
3899         ret = i915_gem_object_set_cache_level(obj, level);
3900
3901         drm_gem_object_unreference(&obj->base);
3902 unlock:
3903         mutex_unlock(&dev->struct_mutex);
3904         return ret;
3905 }
3906
3907 static bool is_pin_display(struct drm_i915_gem_object *obj)
3908 {
3909         struct i915_vma *vma;
3910
3911         vma = i915_gem_obj_to_ggtt(obj);
3912         if (!vma)
3913                 return false;
3914
3915         /* There are 2 sources that pin objects:
3916          *   1. The display engine (scanouts, sprites, cursors);
3917          *   2. Reservations for execbuffer;
3918          *
3919          * We can ignore reservations as we hold the struct_mutex and
3920          * are only called outside of the reservation path.
3921          */
3922         return vma->pin_count;
3923 }
3924
3925 /*
3926  * Prepare buffer for display plane (scanout, cursors, etc).
3927  * Can be called from an uninterruptible phase (modesetting) and allows
3928  * any flushes to be pipelined (for pageflips).
3929  */
3930 int
3931 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3932                                      u32 alignment,
3933                                      struct intel_engine_cs *pipelined)
3934 {
3935         u32 old_read_domains, old_write_domain;
3936         bool was_pin_display;
3937         int ret;
3938
3939         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3940                 ret = i915_gem_object_sync(obj, pipelined);
3941                 if (ret)
3942                         return ret;
3943         }
3944
3945         /* Mark the pin_display early so that we account for the
3946          * display coherency whilst setting up the cache domains.
3947          */
3948         was_pin_display = obj->pin_display;
3949         obj->pin_display = true;
3950
3951         /* The display engine is not coherent with the LLC cache on gen6.  As
3952          * a result, we make sure that the pinning that is about to occur is
3953          * done with uncached PTEs. This is lowest common denominator for all
3954          * chipsets.
3955          *
3956          * However for gen6+, we could do better by using the GFDT bit instead
3957          * of uncaching, which would allow us to flush all the LLC-cached data
3958          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3959          */
3960         ret = i915_gem_object_set_cache_level(obj,
3961                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3962         if (ret)
3963                 goto err_unpin_display;
3964
3965         /* As the user may map the buffer once pinned in the display plane
3966          * (e.g. libkms for the bootup splash), we have to ensure that we
3967          * always use map_and_fenceable for all scanout buffers.
3968          */
3969         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3970         if (ret)
3971                 goto err_unpin_display;
3972
3973         i915_gem_object_flush_cpu_write_domain(obj, true);
3974
3975         old_write_domain = obj->base.write_domain;
3976         old_read_domains = obj->base.read_domains;
3977
3978         /* It should now be out of any other write domains, and we can update
3979          * the domain values for our changes.
3980          */
3981         obj->base.write_domain = 0;
3982         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3983
3984         trace_i915_gem_object_change_domain(obj,
3985                                             old_read_domains,
3986                                             old_write_domain);
3987
3988         return 0;
3989
3990 err_unpin_display:
3991         WARN_ON(was_pin_display != is_pin_display(obj));
3992         obj->pin_display = was_pin_display;
3993         return ret;
3994 }
3995
3996 void
3997 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3998 {
3999         i915_gem_object_ggtt_unpin(obj);
4000         obj->pin_display = is_pin_display(obj);
4001 }
4002
4003 int
4004 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4005 {
4006         int ret;
4007
4008         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4009                 return 0;
4010
4011         ret = i915_gem_object_wait_rendering(obj, false);
4012         if (ret)
4013                 return ret;
4014
4015         /* Ensure that we invalidate the GPU's caches and TLBs. */
4016         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4017         return 0;
4018 }
4019
4020 /**
4021  * Moves a single object to the CPU read, and possibly write domain.
4022  *
4023  * This function returns when the move is complete, including waiting on
4024  * flushes to occur.
4025  */
4026 int
4027 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4028 {
4029         uint32_t old_write_domain, old_read_domains;
4030         int ret;
4031
4032         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4033                 return 0;
4034
4035         ret = i915_gem_object_wait_rendering(obj, !write);
4036         if (ret)
4037                 return ret;
4038
4039         i915_gem_object_retire(obj);
4040         i915_gem_object_flush_gtt_write_domain(obj);
4041
4042         old_write_domain = obj->base.write_domain;
4043         old_read_domains = obj->base.read_domains;
4044
4045         /* Flush the CPU cache if it's still invalid. */
4046         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4047                 i915_gem_clflush_object(obj, false);
4048
4049                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4050         }
4051
4052         /* It should now be out of any other write domains, and we can update
4053          * the domain values for our changes.
4054          */
4055         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4056
4057         /* If we're writing through the CPU, then the GPU read domains will
4058          * need to be invalidated at next use.
4059          */
4060         if (write) {
4061                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4062                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4063         }
4064
4065         if (write)
4066                 intel_fb_obj_invalidate(obj, NULL);
4067
4068         trace_i915_gem_object_change_domain(obj,
4069                                             old_read_domains,
4070                                             old_write_domain);
4071
4072         return 0;
4073 }
4074
4075 /* Throttle our rendering by waiting until the ring has completed our requests
4076  * emitted over 20 msec ago.
4077  *
4078  * Note that if we were to use the current jiffies each time around the loop,
4079  * we wouldn't escape the function with any frames outstanding if the time to
4080  * render a frame was over 20ms.
4081  *
4082  * This should get us reasonable parallelism between CPU and GPU but also
4083  * relatively low latency when blocking on a particular request to finish.
4084  */
4085 static int
4086 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4087 {
4088         struct drm_i915_private *dev_priv = dev->dev_private;
4089         struct drm_i915_file_private *file_priv = file->driver_priv;
4090         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4091         struct drm_i915_gem_request *request, *target = NULL;
4092         unsigned reset_counter;
4093         int ret;
4094
4095         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4096         if (ret)
4097                 return ret;
4098
4099         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4100         if (ret)
4101                 return ret;
4102
4103         spin_lock(&file_priv->mm.lock);
4104         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4105                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4106                         break;
4107
4108                 target = request;
4109         }
4110         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4111         if (target)
4112                 i915_gem_request_reference(target);
4113         spin_unlock(&file_priv->mm.lock);
4114
4115         if (target == NULL)
4116                 return 0;
4117
4118         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4119         if (ret == 0)
4120                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4121
4122         mutex_lock(&dev->struct_mutex);
4123         i915_gem_request_unreference(target);
4124         mutex_unlock(&dev->struct_mutex);
4125
4126         return ret;
4127 }
4128
4129 static bool
4130 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4131 {
4132         struct drm_i915_gem_object *obj = vma->obj;
4133
4134         if (alignment &&
4135             vma->node.start & (alignment - 1))
4136                 return true;
4137
4138         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4139                 return true;
4140
4141         if (flags & PIN_OFFSET_BIAS &&
4142             vma->node.start < (flags & PIN_OFFSET_MASK))
4143                 return true;
4144
4145         return false;
4146 }
4147
4148 int
4149 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4150                          struct i915_address_space *vm,
4151                          uint32_t alignment,
4152                          uint64_t flags,
4153                          const struct i915_ggtt_view *view)
4154 {
4155         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4156         struct i915_vma *vma;
4157         unsigned bound;
4158         int ret;
4159
4160         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4161                 return -ENODEV;
4162
4163         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4164                 return -EINVAL;
4165
4166         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4167                 return -EINVAL;
4168
4169         vma = i915_gem_obj_to_vma_view(obj, vm, view);
4170         if (vma) {
4171                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4172                         return -EBUSY;
4173
4174                 if (i915_vma_misplaced(vma, alignment, flags)) {
4175                         WARN(vma->pin_count,
4176                              "bo is already pinned with incorrect alignment:"
4177                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4178                              " obj->map_and_fenceable=%d\n",
4179                              i915_gem_obj_offset_view(obj, vm, view->type),
4180                              alignment,
4181                              !!(flags & PIN_MAPPABLE),
4182                              obj->map_and_fenceable);
4183                         ret = i915_vma_unbind(vma);
4184                         if (ret)
4185                                 return ret;
4186
4187                         vma = NULL;
4188                 }
4189         }
4190
4191         bound = vma ? vma->bound : 0;
4192         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4193                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4194                                                  flags, view);
4195                 if (IS_ERR(vma))
4196                         return PTR_ERR(vma);
4197         }
4198
4199         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4200                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4201                 if (ret)
4202                         return ret;
4203         }
4204
4205         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4206                 bool mappable, fenceable;
4207                 u32 fence_size, fence_alignment;
4208
4209                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4210                                                    obj->base.size,
4211                                                    obj->tiling_mode);
4212                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4213                                                              obj->base.size,
4214                                                              obj->tiling_mode,
4215                                                              true);
4216
4217                 fenceable = (vma->node.size == fence_size &&
4218                              (vma->node.start & (fence_alignment - 1)) == 0);
4219
4220                 mappable = (vma->node.start + obj->base.size <=
4221                             dev_priv->gtt.mappable_end);
4222
4223                 obj->map_and_fenceable = mappable && fenceable;
4224         }
4225
4226         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4227
4228         vma->pin_count++;
4229         if (flags & PIN_MAPPABLE)
4230                 obj->pin_mappable |= true;
4231
4232         return 0;
4233 }
4234
4235 void
4236 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4237 {
4238         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4239
4240         BUG_ON(!vma);
4241         BUG_ON(vma->pin_count == 0);
4242         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4243
4244         if (--vma->pin_count == 0)
4245                 obj->pin_mappable = false;
4246 }
4247
4248 bool
4249 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4250 {
4251         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4252                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4254
4255                 WARN_ON(!ggtt_vma ||
4256                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4257                         ggtt_vma->pin_count);
4258                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4259                 return true;
4260         } else
4261                 return false;
4262 }
4263
4264 void
4265 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4266 {
4267         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4268                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4269                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4270                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4271         }
4272 }
4273
4274 int
4275 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4276                     struct drm_file *file)
4277 {
4278         struct drm_i915_gem_busy *args = data;
4279         struct drm_i915_gem_object *obj;
4280         int ret;
4281
4282         ret = i915_mutex_lock_interruptible(dev);
4283         if (ret)
4284                 return ret;
4285
4286         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4287         if (&obj->base == NULL) {
4288                 ret = -ENOENT;
4289                 goto unlock;
4290         }
4291
4292         /* Count all active objects as busy, even if they are currently not used
4293          * by the gpu. Users of this interface expect objects to eventually
4294          * become non-busy without any further actions, therefore emit any
4295          * necessary flushes here.
4296          */
4297         ret = i915_gem_object_flush_active(obj);
4298
4299         args->busy = obj->active;
4300         if (obj->last_read_req) {
4301                 struct intel_engine_cs *ring;
4302                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4303                 ring = i915_gem_request_get_ring(obj->last_read_req);
4304                 args->busy |= intel_ring_flag(ring) << 16;
4305         }
4306
4307         drm_gem_object_unreference(&obj->base);
4308 unlock:
4309         mutex_unlock(&dev->struct_mutex);
4310         return ret;
4311 }
4312
4313 int
4314 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4315                         struct drm_file *file_priv)
4316 {
4317         return i915_gem_ring_throttle(dev, file_priv);
4318 }
4319
4320 int
4321 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4322                        struct drm_file *file_priv)
4323 {
4324         struct drm_i915_private *dev_priv = dev->dev_private;
4325         struct drm_i915_gem_madvise *args = data;
4326         struct drm_i915_gem_object *obj;
4327         int ret;
4328
4329         switch (args->madv) {
4330         case I915_MADV_DONTNEED:
4331         case I915_MADV_WILLNEED:
4332             break;
4333         default:
4334             return -EINVAL;
4335         }
4336
4337         ret = i915_mutex_lock_interruptible(dev);
4338         if (ret)
4339                 return ret;
4340
4341         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4342         if (&obj->base == NULL) {
4343                 ret = -ENOENT;
4344                 goto unlock;
4345         }
4346
4347         if (i915_gem_obj_is_pinned(obj)) {
4348                 ret = -EINVAL;
4349                 goto out;
4350         }
4351
4352         if (obj->pages &&
4353             obj->tiling_mode != I915_TILING_NONE &&
4354             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4355                 if (obj->madv == I915_MADV_WILLNEED)
4356                         i915_gem_object_unpin_pages(obj);
4357                 if (args->madv == I915_MADV_WILLNEED)
4358                         i915_gem_object_pin_pages(obj);
4359         }
4360
4361         if (obj->madv != __I915_MADV_PURGED)
4362                 obj->madv = args->madv;
4363
4364         /* if the object is no longer attached, discard its backing storage */
4365         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4366                 i915_gem_object_truncate(obj);
4367
4368         args->retained = obj->madv != __I915_MADV_PURGED;
4369
4370 out:
4371         drm_gem_object_unreference(&obj->base);
4372 unlock:
4373         mutex_unlock(&dev->struct_mutex);
4374         return ret;
4375 }
4376
4377 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4378                           const struct drm_i915_gem_object_ops *ops)
4379 {
4380         INIT_LIST_HEAD(&obj->global_list);
4381         INIT_LIST_HEAD(&obj->ring_list);
4382         INIT_LIST_HEAD(&obj->obj_exec_link);
4383         INIT_LIST_HEAD(&obj->vma_list);
4384         INIT_LIST_HEAD(&obj->batch_pool_list);
4385
4386         obj->ops = ops;
4387
4388         obj->fence_reg = I915_FENCE_REG_NONE;
4389         obj->madv = I915_MADV_WILLNEED;
4390
4391         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4392 }
4393
4394 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4395         .get_pages = i915_gem_object_get_pages_gtt,
4396         .put_pages = i915_gem_object_put_pages_gtt,
4397 };
4398
4399 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4400                                                   size_t size)
4401 {
4402         struct drm_i915_gem_object *obj;
4403         struct address_space *mapping;
4404         gfp_t mask;
4405
4406         obj = i915_gem_object_alloc(dev);
4407         if (obj == NULL)
4408                 return NULL;
4409
4410         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4411                 i915_gem_object_free(obj);
4412                 return NULL;
4413         }
4414
4415         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4416         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4417                 /* 965gm cannot relocate objects above 4GiB. */
4418                 mask &= ~__GFP_HIGHMEM;
4419                 mask |= __GFP_DMA32;
4420         }
4421
4422         mapping = file_inode(obj->base.filp)->i_mapping;
4423         mapping_set_gfp_mask(mapping, mask);
4424
4425         i915_gem_object_init(obj, &i915_gem_object_ops);
4426
4427         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4428         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4429
4430         if (HAS_LLC(dev)) {
4431                 /* On some devices, we can have the GPU use the LLC (the CPU
4432                  * cache) for about a 10% performance improvement
4433                  * compared to uncached.  Graphics requests other than
4434                  * display scanout are coherent with the CPU in
4435                  * accessing this cache.  This means in this mode we
4436                  * don't need to clflush on the CPU side, and on the
4437                  * GPU side we only need to flush internal caches to
4438                  * get data visible to the CPU.
4439                  *
4440                  * However, we maintain the display planes as UC, and so
4441                  * need to rebind when first used as such.
4442                  */
4443                 obj->cache_level = I915_CACHE_LLC;
4444         } else
4445                 obj->cache_level = I915_CACHE_NONE;
4446
4447         trace_i915_gem_object_create(obj);
4448
4449         return obj;
4450 }
4451
4452 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4453 {
4454         /* If we are the last user of the backing storage (be it shmemfs
4455          * pages or stolen etc), we know that the pages are going to be
4456          * immediately released. In this case, we can then skip copying
4457          * back the contents from the GPU.
4458          */
4459
4460         if (obj->madv != I915_MADV_WILLNEED)
4461                 return false;
4462
4463         if (obj->base.filp == NULL)
4464                 return true;
4465
4466         /* At first glance, this looks racy, but then again so would be
4467          * userspace racing mmap against close. However, the first external
4468          * reference to the filp can only be obtained through the
4469          * i915_gem_mmap_ioctl() which safeguards us against the user
4470          * acquiring such a reference whilst we are in the middle of
4471          * freeing the object.
4472          */
4473         return atomic_long_read(&obj->base.filp->f_count) == 1;
4474 }
4475
4476 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4477 {
4478         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4479         struct drm_device *dev = obj->base.dev;
4480         struct drm_i915_private *dev_priv = dev->dev_private;
4481         struct i915_vma *vma, *next;
4482
4483         intel_runtime_pm_get(dev_priv);
4484
4485         trace_i915_gem_object_destroy(obj);
4486
4487         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4488                 int ret;
4489
4490                 vma->pin_count = 0;
4491                 ret = i915_vma_unbind(vma);
4492                 if (WARN_ON(ret == -ERESTARTSYS)) {
4493                         bool was_interruptible;
4494
4495                         was_interruptible = dev_priv->mm.interruptible;
4496                         dev_priv->mm.interruptible = false;
4497
4498                         WARN_ON(i915_vma_unbind(vma));
4499
4500                         dev_priv->mm.interruptible = was_interruptible;
4501                 }
4502         }
4503
4504         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4505          * before progressing. */
4506         if (obj->stolen)
4507                 i915_gem_object_unpin_pages(obj);
4508
4509         WARN_ON(obj->frontbuffer_bits);
4510
4511         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4512             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4513             obj->tiling_mode != I915_TILING_NONE)
4514                 i915_gem_object_unpin_pages(obj);
4515
4516         if (WARN_ON(obj->pages_pin_count))
4517                 obj->pages_pin_count = 0;
4518         if (discard_backing_storage(obj))
4519                 obj->madv = I915_MADV_DONTNEED;
4520         i915_gem_object_put_pages(obj);
4521         i915_gem_object_free_mmap_offset(obj);
4522
4523         BUG_ON(obj->pages);
4524
4525         if (obj->base.import_attach)
4526                 drm_prime_gem_destroy(&obj->base, NULL);
4527
4528         if (obj->ops->release)
4529                 obj->ops->release(obj);
4530
4531         drm_gem_object_release(&obj->base);
4532         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4533
4534         kfree(obj->bit_17);
4535         i915_gem_object_free(obj);
4536
4537         intel_runtime_pm_put(dev_priv);
4538 }
4539
4540 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4541                                           struct i915_address_space *vm,
4542                                           const struct i915_ggtt_view *view)
4543 {
4544         struct i915_vma *vma;
4545         list_for_each_entry(vma, &obj->vma_list, vma_link)
4546                 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4547                         return vma;
4548
4549         return NULL;
4550 }
4551
4552 void i915_gem_vma_destroy(struct i915_vma *vma)
4553 {
4554         struct i915_address_space *vm = NULL;
4555         WARN_ON(vma->node.allocated);
4556
4557         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4558         if (!list_empty(&vma->exec_list))
4559                 return;
4560
4561         vm = vma->vm;
4562
4563         if (!i915_is_ggtt(vm))
4564                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4565
4566         list_del(&vma->vma_link);
4567
4568         kfree(vma);
4569 }
4570
4571 static void
4572 i915_gem_stop_ringbuffers(struct drm_device *dev)
4573 {
4574         struct drm_i915_private *dev_priv = dev->dev_private;
4575         struct intel_engine_cs *ring;
4576         int i;
4577
4578         for_each_ring(ring, dev_priv, i)
4579                 dev_priv->gt.stop_ring(ring);
4580 }
4581
4582 int
4583 i915_gem_suspend(struct drm_device *dev)
4584 {
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586         int ret = 0;
4587
4588         mutex_lock(&dev->struct_mutex);
4589         ret = i915_gpu_idle(dev);
4590         if (ret)
4591                 goto err;
4592
4593         i915_gem_retire_requests(dev);
4594
4595         /* Under UMS, be paranoid and evict. */
4596         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4597                 i915_gem_evict_everything(dev);
4598
4599         i915_gem_stop_ringbuffers(dev);
4600         mutex_unlock(&dev->struct_mutex);
4601
4602         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4603         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4604         flush_delayed_work(&dev_priv->mm.idle_work);
4605
4606         /* Assert that we sucessfully flushed all the work and
4607          * reset the GPU back to its idle, low power state.
4608          */
4609         WARN_ON(dev_priv->mm.busy);
4610
4611         return 0;
4612
4613 err:
4614         mutex_unlock(&dev->struct_mutex);
4615         return ret;
4616 }
4617
4618 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4619 {
4620         struct drm_device *dev = ring->dev;
4621         struct drm_i915_private *dev_priv = dev->dev_private;
4622         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4623         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4624         int i, ret;
4625
4626         if (!HAS_L3_DPF(dev) || !remap_info)
4627                 return 0;
4628
4629         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4630         if (ret)
4631                 return ret;
4632
4633         /*
4634          * Note: We do not worry about the concurrent register cacheline hang
4635          * here because no other code should access these registers other than
4636          * at initialization time.
4637          */
4638         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4639                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4640                 intel_ring_emit(ring, reg_base + i);
4641                 intel_ring_emit(ring, remap_info[i/4]);
4642         }
4643
4644         intel_ring_advance(ring);
4645
4646         return ret;
4647 }
4648
4649 void i915_gem_init_swizzling(struct drm_device *dev)
4650 {
4651         struct drm_i915_private *dev_priv = dev->dev_private;
4652
4653         if (INTEL_INFO(dev)->gen < 5 ||
4654             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4655                 return;
4656
4657         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4658                                  DISP_TILE_SURFACE_SWIZZLING);
4659
4660         if (IS_GEN5(dev))
4661                 return;
4662
4663         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4664         if (IS_GEN6(dev))
4665                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4666         else if (IS_GEN7(dev))
4667                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4668         else if (IS_GEN8(dev))
4669                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4670         else
4671                 BUG();
4672 }
4673
4674 static bool
4675 intel_enable_blt(struct drm_device *dev)
4676 {
4677         if (!HAS_BLT(dev))
4678                 return false;
4679
4680         /* The blitter was dysfunctional on early prototypes */
4681         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4682                 DRM_INFO("BLT not supported on this pre-production hardware;"
4683                          " graphics performance will be degraded.\n");
4684                 return false;
4685         }
4686
4687         return true;
4688 }
4689
4690 static void init_unused_ring(struct drm_device *dev, u32 base)
4691 {
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694         I915_WRITE(RING_CTL(base), 0);
4695         I915_WRITE(RING_HEAD(base), 0);
4696         I915_WRITE(RING_TAIL(base), 0);
4697         I915_WRITE(RING_START(base), 0);
4698 }
4699
4700 static void init_unused_rings(struct drm_device *dev)
4701 {
4702         if (IS_I830(dev)) {
4703                 init_unused_ring(dev, PRB1_BASE);
4704                 init_unused_ring(dev, SRB0_BASE);
4705                 init_unused_ring(dev, SRB1_BASE);
4706                 init_unused_ring(dev, SRB2_BASE);
4707                 init_unused_ring(dev, SRB3_BASE);
4708         } else if (IS_GEN2(dev)) {
4709                 init_unused_ring(dev, SRB0_BASE);
4710                 init_unused_ring(dev, SRB1_BASE);
4711         } else if (IS_GEN3(dev)) {
4712                 init_unused_ring(dev, PRB1_BASE);
4713                 init_unused_ring(dev, PRB2_BASE);
4714         }
4715 }
4716
4717 int i915_gem_init_rings(struct drm_device *dev)
4718 {
4719         struct drm_i915_private *dev_priv = dev->dev_private;
4720         int ret;
4721
4722         ret = intel_init_render_ring_buffer(dev);
4723         if (ret)
4724                 return ret;
4725
4726         if (HAS_BSD(dev)) {
4727                 ret = intel_init_bsd_ring_buffer(dev);
4728                 if (ret)
4729                         goto cleanup_render_ring;
4730         }
4731
4732         if (intel_enable_blt(dev)) {
4733                 ret = intel_init_blt_ring_buffer(dev);
4734                 if (ret)
4735                         goto cleanup_bsd_ring;
4736         }
4737
4738         if (HAS_VEBOX(dev)) {
4739                 ret = intel_init_vebox_ring_buffer(dev);
4740                 if (ret)
4741                         goto cleanup_blt_ring;
4742         }
4743
4744         if (HAS_BSD2(dev)) {
4745                 ret = intel_init_bsd2_ring_buffer(dev);
4746                 if (ret)
4747                         goto cleanup_vebox_ring;
4748         }
4749
4750         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4751         if (ret)
4752                 goto cleanup_bsd2_ring;
4753
4754         return 0;
4755
4756 cleanup_bsd2_ring:
4757         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4758 cleanup_vebox_ring:
4759         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4760 cleanup_blt_ring:
4761         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4762 cleanup_bsd_ring:
4763         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4764 cleanup_render_ring:
4765         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4766
4767         return ret;
4768 }
4769
4770 int
4771 i915_gem_init_hw(struct drm_device *dev)
4772 {
4773         struct drm_i915_private *dev_priv = dev->dev_private;
4774         struct intel_engine_cs *ring;
4775         int ret, i;
4776
4777         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4778                 return -EIO;
4779
4780         if (dev_priv->ellc_size)
4781                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4782
4783         if (IS_HASWELL(dev))
4784                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4785                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4786
4787         if (HAS_PCH_NOP(dev)) {
4788                 if (IS_IVYBRIDGE(dev)) {
4789                         u32 temp = I915_READ(GEN7_MSG_CTL);
4790                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4791                         I915_WRITE(GEN7_MSG_CTL, temp);
4792                 } else if (INTEL_INFO(dev)->gen >= 7) {
4793                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4794                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4795                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4796                 }
4797         }
4798
4799         i915_gem_init_swizzling(dev);
4800
4801         /*
4802          * At least 830 can leave some of the unused rings
4803          * "active" (ie. head != tail) after resume which
4804          * will prevent c3 entry. Makes sure all unused rings
4805          * are totally idle.
4806          */
4807         init_unused_rings(dev);
4808
4809         for_each_ring(ring, dev_priv, i) {
4810                 ret = ring->init_hw(ring);
4811                 if (ret)
4812                         return ret;
4813         }
4814
4815         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4816                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4817
4818         /*
4819          * XXX: Contexts should only be initialized once. Doing a switch to the
4820          * default context switch however is something we'd like to do after
4821          * reset or thaw (the latter may not actually be necessary for HW, but
4822          * goes with our code better). Context switching requires rings (for
4823          * the do_switch), but before enabling PPGTT. So don't move this.
4824          */
4825         ret = i915_gem_context_enable(dev_priv);
4826         if (ret && ret != -EIO) {
4827                 DRM_ERROR("Context enable failed %d\n", ret);
4828                 i915_gem_cleanup_ringbuffer(dev);
4829
4830                 return ret;
4831         }
4832
4833         ret = i915_ppgtt_init_hw(dev);
4834         if (ret && ret != -EIO) {
4835                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4836                 i915_gem_cleanup_ringbuffer(dev);
4837         }
4838
4839         return ret;
4840 }
4841
4842 int i915_gem_init(struct drm_device *dev)
4843 {
4844         struct drm_i915_private *dev_priv = dev->dev_private;
4845         int ret;
4846
4847         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4848                         i915.enable_execlists);
4849
4850         mutex_lock(&dev->struct_mutex);
4851
4852         if (IS_VALLEYVIEW(dev)) {
4853                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4854                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4855                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4856                               VLV_GTLC_ALLOWWAKEACK), 10))
4857                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4858         }
4859
4860         if (!i915.enable_execlists) {
4861                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4862                 dev_priv->gt.init_rings = i915_gem_init_rings;
4863                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4864                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4865         } else {
4866                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4867                 dev_priv->gt.init_rings = intel_logical_rings_init;
4868                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4869                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4870         }
4871
4872         ret = i915_gem_init_userptr(dev);
4873         if (ret)
4874                 goto out_unlock;
4875
4876         i915_gem_init_global_gtt(dev);
4877
4878         ret = i915_gem_context_init(dev);
4879         if (ret)
4880                 goto out_unlock;
4881
4882         ret = dev_priv->gt.init_rings(dev);
4883         if (ret)
4884                 goto out_unlock;
4885
4886         ret = i915_gem_init_hw(dev);
4887         if (ret == -EIO) {
4888                 /* Allow ring initialisation to fail by marking the GPU as
4889                  * wedged. But we only want to do this where the GPU is angry,
4890                  * for all other failure, such as an allocation failure, bail.
4891                  */
4892                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4893                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4894                 ret = 0;
4895         }
4896
4897 out_unlock:
4898         mutex_unlock(&dev->struct_mutex);
4899
4900         return ret;
4901 }
4902
4903 void
4904 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4905 {
4906         struct drm_i915_private *dev_priv = dev->dev_private;
4907         struct intel_engine_cs *ring;
4908         int i;
4909
4910         for_each_ring(ring, dev_priv, i)
4911                 dev_priv->gt.cleanup_ring(ring);
4912 }
4913
4914 static void
4915 init_ring_lists(struct intel_engine_cs *ring)
4916 {
4917         INIT_LIST_HEAD(&ring->active_list);
4918         INIT_LIST_HEAD(&ring->request_list);
4919 }
4920
4921 void i915_init_vm(struct drm_i915_private *dev_priv,
4922                   struct i915_address_space *vm)
4923 {
4924         if (!i915_is_ggtt(vm))
4925                 drm_mm_init(&vm->mm, vm->start, vm->total);
4926         vm->dev = dev_priv->dev;
4927         INIT_LIST_HEAD(&vm->active_list);
4928         INIT_LIST_HEAD(&vm->inactive_list);
4929         INIT_LIST_HEAD(&vm->global_link);
4930         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4931 }
4932
4933 void
4934 i915_gem_load(struct drm_device *dev)
4935 {
4936         struct drm_i915_private *dev_priv = dev->dev_private;
4937         int i;
4938
4939         dev_priv->slab =
4940                 kmem_cache_create("i915_gem_object",
4941                                   sizeof(struct drm_i915_gem_object), 0,
4942                                   SLAB_HWCACHE_ALIGN,
4943                                   NULL);
4944
4945         INIT_LIST_HEAD(&dev_priv->vm_list);
4946         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4947
4948         INIT_LIST_HEAD(&dev_priv->context_list);
4949         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4950         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4951         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4952         for (i = 0; i < I915_NUM_RINGS; i++)
4953                 init_ring_lists(&dev_priv->ring[i]);
4954         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4955                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4956         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4957                           i915_gem_retire_work_handler);
4958         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4959                           i915_gem_idle_work_handler);
4960         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4961
4962         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4963         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4964                 I915_WRITE(MI_ARB_STATE,
4965                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4966         }
4967
4968         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4969
4970         /* Old X drivers will take 0-2 for front, back, depth buffers */
4971         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4972                 dev_priv->fence_reg_start = 3;
4973
4974         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4975                 dev_priv->num_fence_regs = 32;
4976         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4977                 dev_priv->num_fence_regs = 16;
4978         else
4979                 dev_priv->num_fence_regs = 8;
4980
4981         /* Initialize fence registers to zero */
4982         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4983         i915_gem_restore_fences(dev);
4984
4985         i915_gem_detect_bit_6_swizzle(dev);
4986         init_waitqueue_head(&dev_priv->pending_flip_queue);
4987
4988         dev_priv->mm.interruptible = true;
4989
4990         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4991         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4992         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4993         register_shrinker(&dev_priv->mm.shrinker);
4994
4995         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4996         register_oom_notifier(&dev_priv->mm.oom_notifier);
4997
4998         i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
4999
5000         mutex_init(&dev_priv->fb_tracking.lock);
5001 }
5002
5003 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5004 {
5005         struct drm_i915_file_private *file_priv = file->driver_priv;
5006
5007         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5008
5009         /* Clean up our request list when the client is going away, so that
5010          * later retire_requests won't dereference our soon-to-be-gone
5011          * file_priv.
5012          */
5013         spin_lock(&file_priv->mm.lock);
5014         while (!list_empty(&file_priv->mm.request_list)) {
5015                 struct drm_i915_gem_request *request;
5016
5017                 request = list_first_entry(&file_priv->mm.request_list,
5018                                            struct drm_i915_gem_request,
5019                                            client_list);
5020                 list_del(&request->client_list);
5021                 request->file_priv = NULL;
5022         }
5023         spin_unlock(&file_priv->mm.lock);
5024 }
5025
5026 static void
5027 i915_gem_file_idle_work_handler(struct work_struct *work)
5028 {
5029         struct drm_i915_file_private *file_priv =
5030                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5031
5032         atomic_set(&file_priv->rps_wait_boost, false);
5033 }
5034
5035 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5036 {
5037         struct drm_i915_file_private *file_priv;
5038         int ret;
5039
5040         DRM_DEBUG_DRIVER("\n");
5041
5042         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5043         if (!file_priv)
5044                 return -ENOMEM;
5045
5046         file->driver_priv = file_priv;
5047         file_priv->dev_priv = dev->dev_private;
5048         file_priv->file = file;
5049
5050         spin_lock_init(&file_priv->mm.lock);
5051         INIT_LIST_HEAD(&file_priv->mm.request_list);
5052         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5053                           i915_gem_file_idle_work_handler);
5054
5055         ret = i915_gem_context_open(dev, file);
5056         if (ret)
5057                 kfree(file_priv);
5058
5059         return ret;
5060 }
5061
5062 /**
5063  * i915_gem_track_fb - update frontbuffer tracking
5064  * old: current GEM buffer for the frontbuffer slots
5065  * new: new GEM buffer for the frontbuffer slots
5066  * frontbuffer_bits: bitmask of frontbuffer slots
5067  *
5068  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5069  * from @old and setting them in @new. Both @old and @new can be NULL.
5070  */
5071 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5072                        struct drm_i915_gem_object *new,
5073                        unsigned frontbuffer_bits)
5074 {
5075         if (old) {
5076                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5077                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5078                 old->frontbuffer_bits &= ~frontbuffer_bits;
5079         }
5080
5081         if (new) {
5082                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5083                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5084                 new->frontbuffer_bits |= frontbuffer_bits;
5085         }
5086 }
5087
5088 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5089 {
5090         if (!mutex_is_locked(mutex))
5091                 return false;
5092
5093 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5094         return mutex->owner == task;
5095 #else
5096         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5097         return false;
5098 #endif
5099 }
5100
5101 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5102 {
5103         if (!mutex_trylock(&dev->struct_mutex)) {
5104                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5105                         return false;
5106
5107                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5108                         return false;
5109
5110                 *unlock = false;
5111         } else
5112                 *unlock = true;
5113
5114         return true;
5115 }
5116
5117 static int num_vma_bound(struct drm_i915_gem_object *obj)
5118 {
5119         struct i915_vma *vma;
5120         int count = 0;
5121
5122         list_for_each_entry(vma, &obj->vma_list, vma_link)
5123                 if (drm_mm_node_allocated(&vma->node))
5124                         count++;
5125
5126         return count;
5127 }
5128
5129 static unsigned long
5130 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5131 {
5132         struct drm_i915_private *dev_priv =
5133                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5134         struct drm_device *dev = dev_priv->dev;
5135         struct drm_i915_gem_object *obj;
5136         unsigned long count;
5137         bool unlock;
5138
5139         if (!i915_gem_shrinker_lock(dev, &unlock))
5140                 return 0;
5141
5142         count = 0;
5143         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5144                 if (obj->pages_pin_count == 0)
5145                         count += obj->base.size >> PAGE_SHIFT;
5146
5147         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5148                 if (!i915_gem_obj_is_pinned(obj) &&
5149                     obj->pages_pin_count == num_vma_bound(obj))
5150                         count += obj->base.size >> PAGE_SHIFT;
5151         }
5152
5153         if (unlock)
5154                 mutex_unlock(&dev->struct_mutex);
5155
5156         return count;
5157 }
5158
5159 /* All the new VM stuff */
5160 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5161                                        struct i915_address_space *vm,
5162                                        enum i915_ggtt_view_type view)
5163 {
5164         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5165         struct i915_vma *vma;
5166
5167         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5168
5169         list_for_each_entry(vma, &o->vma_list, vma_link) {
5170                 if (vma->vm == vm && vma->ggtt_view.type == view)
5171                         return vma->node.start;
5172
5173         }
5174         WARN(1, "%s vma for this object not found.\n",
5175              i915_is_ggtt(vm) ? "global" : "ppgtt");
5176         return -1;
5177 }
5178
5179 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5180                              struct i915_address_space *vm,
5181                              enum i915_ggtt_view_type view)
5182 {
5183         struct i915_vma *vma;
5184
5185         list_for_each_entry(vma, &o->vma_list, vma_link)
5186                 if (vma->vm == vm &&
5187                     vma->ggtt_view.type == view &&
5188                     drm_mm_node_allocated(&vma->node))
5189                         return true;
5190
5191         return false;
5192 }
5193
5194 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5195 {
5196         struct i915_vma *vma;
5197
5198         list_for_each_entry(vma, &o->vma_list, vma_link)
5199                 if (drm_mm_node_allocated(&vma->node))
5200                         return true;
5201
5202         return false;
5203 }
5204
5205 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5206                                 struct i915_address_space *vm)
5207 {
5208         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5209         struct i915_vma *vma;
5210
5211         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5212
5213         BUG_ON(list_empty(&o->vma_list));
5214
5215         list_for_each_entry(vma, &o->vma_list, vma_link)
5216                 if (vma->vm == vm)
5217                         return vma->node.size;
5218
5219         return 0;
5220 }
5221
5222 static unsigned long
5223 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5224 {
5225         struct drm_i915_private *dev_priv =
5226                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5227         struct drm_device *dev = dev_priv->dev;
5228         unsigned long freed;
5229         bool unlock;
5230
5231         if (!i915_gem_shrinker_lock(dev, &unlock))
5232                 return SHRINK_STOP;
5233
5234         freed = i915_gem_shrink(dev_priv,
5235                                 sc->nr_to_scan,
5236                                 I915_SHRINK_BOUND |
5237                                 I915_SHRINK_UNBOUND |
5238                                 I915_SHRINK_PURGEABLE);
5239         if (freed < sc->nr_to_scan)
5240                 freed += i915_gem_shrink(dev_priv,
5241                                          sc->nr_to_scan - freed,
5242                                          I915_SHRINK_BOUND |
5243                                          I915_SHRINK_UNBOUND);
5244         if (unlock)
5245                 mutex_unlock(&dev->struct_mutex);
5246
5247         return freed;
5248 }
5249
5250 static int
5251 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5252 {
5253         struct drm_i915_private *dev_priv =
5254                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5255         struct drm_device *dev = dev_priv->dev;
5256         struct drm_i915_gem_object *obj;
5257         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5258         unsigned long pinned, bound, unbound, freed_pages;
5259         bool was_interruptible;
5260         bool unlock;
5261
5262         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5263                 schedule_timeout_killable(1);
5264                 if (fatal_signal_pending(current))
5265                         return NOTIFY_DONE;
5266         }
5267         if (timeout == 0) {
5268                 pr_err("Unable to purge GPU memory due lock contention.\n");
5269                 return NOTIFY_DONE;
5270         }
5271
5272         was_interruptible = dev_priv->mm.interruptible;
5273         dev_priv->mm.interruptible = false;
5274
5275         freed_pages = i915_gem_shrink_all(dev_priv);
5276
5277         dev_priv->mm.interruptible = was_interruptible;
5278
5279         /* Because we may be allocating inside our own driver, we cannot
5280          * assert that there are no objects with pinned pages that are not
5281          * being pointed to by hardware.
5282          */
5283         unbound = bound = pinned = 0;
5284         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5285                 if (!obj->base.filp) /* not backed by a freeable object */
5286                         continue;
5287
5288                 if (obj->pages_pin_count)
5289                         pinned += obj->base.size;
5290                 else
5291                         unbound += obj->base.size;
5292         }
5293         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5294                 if (!obj->base.filp)
5295                         continue;
5296
5297                 if (obj->pages_pin_count)
5298                         pinned += obj->base.size;
5299                 else
5300                         bound += obj->base.size;
5301         }
5302
5303         if (unlock)
5304                 mutex_unlock(&dev->struct_mutex);
5305
5306         if (freed_pages || unbound || bound)
5307                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5308                         freed_pages << PAGE_SHIFT, pinned);
5309         if (unbound || bound)
5310                 pr_err("%lu and %lu bytes still available in the "
5311                        "bound and unbound GPU page lists.\n",
5312                        bound, unbound);
5313
5314         *(unsigned long *)ptr += freed_pages;
5315         return NOTIFY_DONE;
5316 }
5317
5318 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5319 {
5320         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5321         struct i915_vma *vma;
5322
5323         list_for_each_entry(vma, &obj->vma_list, vma_link)
5324                 if (vma->vm == ggtt &&
5325                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5326                         return vma;
5327
5328         return NULL;
5329 }