Merge tag 'drm-for-v4.9' of git://people.freedesktop.org/~airlied/linux
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35
36 #include "i915_drv.h"
37 #include "i915_gem_dmabuf.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include "intel_frontbuffer.h"
41
42 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
43
44 #define  __EXEC_OBJECT_HAS_PIN          (1<<31)
45 #define  __EXEC_OBJECT_HAS_FENCE        (1<<30)
46 #define  __EXEC_OBJECT_NEEDS_MAP        (1<<29)
47 #define  __EXEC_OBJECT_NEEDS_BIAS       (1<<28)
48 #define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
49
50 #define BATCH_OFFSET_BIAS (256*1024)
51
52 struct i915_execbuffer_params {
53         struct drm_device               *dev;
54         struct drm_file                 *file;
55         struct i915_vma                 *batch;
56         u32                             dispatch_flags;
57         u32                             args_batch_start_offset;
58         struct intel_engine_cs          *engine;
59         struct i915_gem_context         *ctx;
60         struct drm_i915_gem_request     *request;
61 };
62
63 struct eb_vmas {
64         struct drm_i915_private *i915;
65         struct list_head vmas;
66         int and;
67         union {
68                 struct i915_vma *lut[0];
69                 struct hlist_head buckets[0];
70         };
71 };
72
73 static struct eb_vmas *
74 eb_create(struct drm_i915_private *i915,
75           struct drm_i915_gem_execbuffer2 *args)
76 {
77         struct eb_vmas *eb = NULL;
78
79         if (args->flags & I915_EXEC_HANDLE_LUT) {
80                 unsigned size = args->buffer_count;
81                 size *= sizeof(struct i915_vma *);
82                 size += sizeof(struct eb_vmas);
83                 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
84         }
85
86         if (eb == NULL) {
87                 unsigned size = args->buffer_count;
88                 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
89                 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
90                 while (count > 2*size)
91                         count >>= 1;
92                 eb = kzalloc(count*sizeof(struct hlist_head) +
93                              sizeof(struct eb_vmas),
94                              GFP_TEMPORARY);
95                 if (eb == NULL)
96                         return eb;
97
98                 eb->and = count - 1;
99         } else
100                 eb->and = -args->buffer_count;
101
102         eb->i915 = i915;
103         INIT_LIST_HEAD(&eb->vmas);
104         return eb;
105 }
106
107 static void
108 eb_reset(struct eb_vmas *eb)
109 {
110         if (eb->and >= 0)
111                 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
112 }
113
114 static struct i915_vma *
115 eb_get_batch(struct eb_vmas *eb)
116 {
117         struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
118
119         /*
120          * SNA is doing fancy tricks with compressing batch buffers, which leads
121          * to negative relocation deltas. Usually that works out ok since the
122          * relocate address is still positive, except when the batch is placed
123          * very low in the GTT. Ensure this doesn't happen.
124          *
125          * Note that actual hangs have only been observed on gen7, but for
126          * paranoia do it everywhere.
127          */
128         if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
129                 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
130
131         return vma;
132 }
133
134 static int
135 eb_lookup_vmas(struct eb_vmas *eb,
136                struct drm_i915_gem_exec_object2 *exec,
137                const struct drm_i915_gem_execbuffer2 *args,
138                struct i915_address_space *vm,
139                struct drm_file *file)
140 {
141         struct drm_i915_gem_object *obj;
142         struct list_head objects;
143         int i, ret;
144
145         INIT_LIST_HEAD(&objects);
146         spin_lock(&file->table_lock);
147         /* Grab a reference to the object and release the lock so we can lookup
148          * or create the VMA without using GFP_ATOMIC */
149         for (i = 0; i < args->buffer_count; i++) {
150                 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
151                 if (obj == NULL) {
152                         spin_unlock(&file->table_lock);
153                         DRM_DEBUG("Invalid object handle %d at index %d\n",
154                                    exec[i].handle, i);
155                         ret = -ENOENT;
156                         goto err;
157                 }
158
159                 if (!list_empty(&obj->obj_exec_link)) {
160                         spin_unlock(&file->table_lock);
161                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
162                                    obj, exec[i].handle, i);
163                         ret = -EINVAL;
164                         goto err;
165                 }
166
167                 i915_gem_object_get(obj);
168                 list_add_tail(&obj->obj_exec_link, &objects);
169         }
170         spin_unlock(&file->table_lock);
171
172         i = 0;
173         while (!list_empty(&objects)) {
174                 struct i915_vma *vma;
175
176                 obj = list_first_entry(&objects,
177                                        struct drm_i915_gem_object,
178                                        obj_exec_link);
179
180                 /*
181                  * NOTE: We can leak any vmas created here when something fails
182                  * later on. But that's no issue since vma_unbind can deal with
183                  * vmas which are not actually bound. And since only
184                  * lookup_or_create exists as an interface to get at the vma
185                  * from the (obj, vm) we don't run the risk of creating
186                  * duplicated vmas for the same vm.
187                  */
188                 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
189                 if (unlikely(IS_ERR(vma))) {
190                         DRM_DEBUG("Failed to lookup VMA\n");
191                         ret = PTR_ERR(vma);
192                         goto err;
193                 }
194
195                 /* Transfer ownership from the objects list to the vmas list. */
196                 list_add_tail(&vma->exec_list, &eb->vmas);
197                 list_del_init(&obj->obj_exec_link);
198
199                 vma->exec_entry = &exec[i];
200                 if (eb->and < 0) {
201                         eb->lut[i] = vma;
202                 } else {
203                         uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
204                         vma->exec_handle = handle;
205                         hlist_add_head(&vma->exec_node,
206                                        &eb->buckets[handle & eb->and]);
207                 }
208                 ++i;
209         }
210
211         return 0;
212
213
214 err:
215         while (!list_empty(&objects)) {
216                 obj = list_first_entry(&objects,
217                                        struct drm_i915_gem_object,
218                                        obj_exec_link);
219                 list_del_init(&obj->obj_exec_link);
220                 i915_gem_object_put(obj);
221         }
222         /*
223          * Objects already transfered to the vmas list will be unreferenced by
224          * eb_destroy.
225          */
226
227         return ret;
228 }
229
230 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
231 {
232         if (eb->and < 0) {
233                 if (handle >= -eb->and)
234                         return NULL;
235                 return eb->lut[handle];
236         } else {
237                 struct hlist_head *head;
238                 struct i915_vma *vma;
239
240                 head = &eb->buckets[handle & eb->and];
241                 hlist_for_each_entry(vma, head, exec_node) {
242                         if (vma->exec_handle == handle)
243                                 return vma;
244                 }
245                 return NULL;
246         }
247 }
248
249 static void
250 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
251 {
252         struct drm_i915_gem_exec_object2 *entry;
253
254         if (!drm_mm_node_allocated(&vma->node))
255                 return;
256
257         entry = vma->exec_entry;
258
259         if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
260                 i915_vma_unpin_fence(vma);
261
262         if (entry->flags & __EXEC_OBJECT_HAS_PIN)
263                 __i915_vma_unpin(vma);
264
265         entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
266 }
267
268 static void eb_destroy(struct eb_vmas *eb)
269 {
270         while (!list_empty(&eb->vmas)) {
271                 struct i915_vma *vma;
272
273                 vma = list_first_entry(&eb->vmas,
274                                        struct i915_vma,
275                                        exec_list);
276                 list_del_init(&vma->exec_list);
277                 i915_gem_execbuffer_unreserve_vma(vma);
278                 i915_vma_put(vma);
279         }
280         kfree(eb);
281 }
282
283 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
284 {
285         if (!i915_gem_object_has_struct_page(obj))
286                 return false;
287
288         if (DBG_USE_CPU_RELOC)
289                 return DBG_USE_CPU_RELOC > 0;
290
291         return (HAS_LLC(obj->base.dev) ||
292                 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
293                 obj->cache_level != I915_CACHE_NONE);
294 }
295
296 /* Used to convert any address to canonical form.
297  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
298  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
299  * addresses to be in a canonical form:
300  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
301  * canonical form [63:48] == [47]."
302  */
303 #define GEN8_HIGH_ADDRESS_BIT 47
304 static inline uint64_t gen8_canonical_addr(uint64_t address)
305 {
306         return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
307 }
308
309 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
310 {
311         return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
312 }
313
314 static inline uint64_t
315 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
316                   uint64_t target_offset)
317 {
318         return gen8_canonical_addr((int)reloc->delta + target_offset);
319 }
320
321 struct reloc_cache {
322         struct drm_i915_private *i915;
323         struct drm_mm_node node;
324         unsigned long vaddr;
325         unsigned int page;
326         bool use_64bit_reloc;
327 };
328
329 static void reloc_cache_init(struct reloc_cache *cache,
330                              struct drm_i915_private *i915)
331 {
332         cache->page = -1;
333         cache->vaddr = 0;
334         cache->i915 = i915;
335         cache->use_64bit_reloc = INTEL_GEN(cache->i915) >= 8;
336         cache->node.allocated = false;
337 }
338
339 static inline void *unmask_page(unsigned long p)
340 {
341         return (void *)(uintptr_t)(p & PAGE_MASK);
342 }
343
344 static inline unsigned int unmask_flags(unsigned long p)
345 {
346         return p & ~PAGE_MASK;
347 }
348
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
350
351 static void reloc_cache_fini(struct reloc_cache *cache)
352 {
353         void *vaddr;
354
355         if (!cache->vaddr)
356                 return;
357
358         vaddr = unmask_page(cache->vaddr);
359         if (cache->vaddr & KMAP) {
360                 if (cache->vaddr & CLFLUSH_AFTER)
361                         mb();
362
363                 kunmap_atomic(vaddr);
364                 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
365         } else {
366                 wmb();
367                 io_mapping_unmap_atomic((void __iomem *)vaddr);
368                 if (cache->node.allocated) {
369                         struct i915_ggtt *ggtt = &cache->i915->ggtt;
370
371                         ggtt->base.clear_range(&ggtt->base,
372                                                cache->node.start,
373                                                cache->node.size,
374                                                true);
375                         drm_mm_remove_node(&cache->node);
376                 } else {
377                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
378                 }
379         }
380 }
381
382 static void *reloc_kmap(struct drm_i915_gem_object *obj,
383                         struct reloc_cache *cache,
384                         int page)
385 {
386         void *vaddr;
387
388         if (cache->vaddr) {
389                 kunmap_atomic(unmask_page(cache->vaddr));
390         } else {
391                 unsigned int flushes;
392                 int ret;
393
394                 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
395                 if (ret)
396                         return ERR_PTR(ret);
397
398                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
399                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
400
401                 cache->vaddr = flushes | KMAP;
402                 cache->node.mm = (void *)obj;
403                 if (flushes)
404                         mb();
405         }
406
407         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
408         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
409         cache->page = page;
410
411         return vaddr;
412 }
413
414 static void *reloc_iomap(struct drm_i915_gem_object *obj,
415                          struct reloc_cache *cache,
416                          int page)
417 {
418         struct i915_ggtt *ggtt = &cache->i915->ggtt;
419         unsigned long offset;
420         void *vaddr;
421
422         if (cache->node.allocated) {
423                 wmb();
424                 ggtt->base.insert_page(&ggtt->base,
425                                        i915_gem_object_get_dma_address(obj, page),
426                                        cache->node.start, I915_CACHE_NONE, 0);
427                 cache->page = page;
428                 return unmask_page(cache->vaddr);
429         }
430
431         if (cache->vaddr) {
432                 io_mapping_unmap_atomic(unmask_page(cache->vaddr));
433         } else {
434                 struct i915_vma *vma;
435                 int ret;
436
437                 if (use_cpu_reloc(obj))
438                         return NULL;
439
440                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
441                 if (ret)
442                         return ERR_PTR(ret);
443
444                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
445                                                PIN_MAPPABLE | PIN_NONBLOCK);
446                 if (IS_ERR(vma)) {
447                         memset(&cache->node, 0, sizeof(cache->node));
448                         ret = drm_mm_insert_node_in_range_generic
449                                 (&ggtt->base.mm, &cache->node,
450                                  4096, 0, 0,
451                                  0, ggtt->mappable_end,
452                                  DRM_MM_SEARCH_DEFAULT,
453                                  DRM_MM_CREATE_DEFAULT);
454                         if (ret) /* no inactive aperture space, use cpu reloc */
455                                 return NULL;
456                 } else {
457                         ret = i915_vma_put_fence(vma);
458                         if (ret) {
459                                 i915_vma_unpin(vma);
460                                 return ERR_PTR(ret);
461                         }
462
463                         cache->node.start = vma->node.start;
464                         cache->node.mm = (void *)vma;
465                 }
466         }
467
468         offset = cache->node.start;
469         if (cache->node.allocated) {
470                 ggtt->base.insert_page(&ggtt->base,
471                                        i915_gem_object_get_dma_address(obj, page),
472                                        offset, I915_CACHE_NONE, 0);
473         } else {
474                 offset += page << PAGE_SHIFT;
475         }
476
477         vaddr = io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
478         cache->page = page;
479         cache->vaddr = (unsigned long)vaddr;
480
481         return vaddr;
482 }
483
484 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
485                          struct reloc_cache *cache,
486                          int page)
487 {
488         void *vaddr;
489
490         if (cache->page == page) {
491                 vaddr = unmask_page(cache->vaddr);
492         } else {
493                 vaddr = NULL;
494                 if ((cache->vaddr & KMAP) == 0)
495                         vaddr = reloc_iomap(obj, cache, page);
496                 if (!vaddr)
497                         vaddr = reloc_kmap(obj, cache, page);
498         }
499
500         return vaddr;
501 }
502
503 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
504 {
505         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
506                 if (flushes & CLFLUSH_BEFORE) {
507                         clflushopt(addr);
508                         mb();
509                 }
510
511                 *addr = value;
512
513                 /* Writes to the same cacheline are serialised by the CPU
514                  * (including clflush). On the write path, we only require
515                  * that it hits memory in an orderly fashion and place
516                  * mb barriers at the start and end of the relocation phase
517                  * to ensure ordering of clflush wrt to the system.
518                  */
519                 if (flushes & CLFLUSH_AFTER)
520                         clflushopt(addr);
521         } else
522                 *addr = value;
523 }
524
525 static int
526 relocate_entry(struct drm_i915_gem_object *obj,
527                const struct drm_i915_gem_relocation_entry *reloc,
528                struct reloc_cache *cache,
529                u64 target_offset)
530 {
531         u64 offset = reloc->offset;
532         bool wide = cache->use_64bit_reloc;
533         void *vaddr;
534
535         target_offset = relocation_target(reloc, target_offset);
536 repeat:
537         vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
538         if (IS_ERR(vaddr))
539                 return PTR_ERR(vaddr);
540
541         clflush_write32(vaddr + offset_in_page(offset),
542                         lower_32_bits(target_offset),
543                         cache->vaddr);
544
545         if (wide) {
546                 offset += sizeof(u32);
547                 target_offset >>= 32;
548                 wide = false;
549                 goto repeat;
550         }
551
552         return 0;
553 }
554
555 static bool object_is_idle(struct drm_i915_gem_object *obj)
556 {
557         unsigned long active = i915_gem_object_get_active(obj);
558         int idx;
559
560         for_each_active(active, idx) {
561                 if (!i915_gem_active_is_idle(&obj->last_read[idx],
562                                              &obj->base.dev->struct_mutex))
563                         return false;
564         }
565
566         return true;
567 }
568
569 static int
570 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
571                                    struct eb_vmas *eb,
572                                    struct drm_i915_gem_relocation_entry *reloc,
573                                    struct reloc_cache *cache)
574 {
575         struct drm_device *dev = obj->base.dev;
576         struct drm_gem_object *target_obj;
577         struct drm_i915_gem_object *target_i915_obj;
578         struct i915_vma *target_vma;
579         uint64_t target_offset;
580         int ret;
581
582         /* we've already hold a reference to all valid objects */
583         target_vma = eb_get_vma(eb, reloc->target_handle);
584         if (unlikely(target_vma == NULL))
585                 return -ENOENT;
586         target_i915_obj = target_vma->obj;
587         target_obj = &target_vma->obj->base;
588
589         target_offset = gen8_canonical_addr(target_vma->node.start);
590
591         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
592          * pipe_control writes because the gpu doesn't properly redirect them
593          * through the ppgtt for non_secure batchbuffers. */
594         if (unlikely(IS_GEN6(dev) &&
595             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
596                 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
597                                     PIN_GLOBAL);
598                 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
599                         return ret;
600         }
601
602         /* Validate that the target is in a valid r/w GPU domain */
603         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
604                 DRM_DEBUG("reloc with multiple write domains: "
605                           "obj %p target %d offset %d "
606                           "read %08x write %08x",
607                           obj, reloc->target_handle,
608                           (int) reloc->offset,
609                           reloc->read_domains,
610                           reloc->write_domain);
611                 return -EINVAL;
612         }
613         if (unlikely((reloc->write_domain | reloc->read_domains)
614                      & ~I915_GEM_GPU_DOMAINS)) {
615                 DRM_DEBUG("reloc with read/write non-GPU domains: "
616                           "obj %p target %d offset %d "
617                           "read %08x write %08x",
618                           obj, reloc->target_handle,
619                           (int) reloc->offset,
620                           reloc->read_domains,
621                           reloc->write_domain);
622                 return -EINVAL;
623         }
624
625         target_obj->pending_read_domains |= reloc->read_domains;
626         target_obj->pending_write_domain |= reloc->write_domain;
627
628         /* If the relocation already has the right value in it, no
629          * more work needs to be done.
630          */
631         if (target_offset == reloc->presumed_offset)
632                 return 0;
633
634         /* Check that the relocation address is valid... */
635         if (unlikely(reloc->offset >
636                      obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
637                 DRM_DEBUG("Relocation beyond object bounds: "
638                           "obj %p target %d offset %d size %d.\n",
639                           obj, reloc->target_handle,
640                           (int) reloc->offset,
641                           (int) obj->base.size);
642                 return -EINVAL;
643         }
644         if (unlikely(reloc->offset & 3)) {
645                 DRM_DEBUG("Relocation not 4-byte aligned: "
646                           "obj %p target %d offset %d.\n",
647                           obj, reloc->target_handle,
648                           (int) reloc->offset);
649                 return -EINVAL;
650         }
651
652         /* We can't wait for rendering with pagefaults disabled */
653         if (pagefault_disabled() && !object_is_idle(obj))
654                 return -EFAULT;
655
656         ret = relocate_entry(obj, reloc, cache, target_offset);
657         if (ret)
658                 return ret;
659
660         /* and update the user's relocation entry */
661         reloc->presumed_offset = target_offset;
662         return 0;
663 }
664
665 static int
666 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
667                                  struct eb_vmas *eb)
668 {
669 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
670         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
671         struct drm_i915_gem_relocation_entry __user *user_relocs;
672         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
673         struct reloc_cache cache;
674         int remain, ret = 0;
675
676         user_relocs = u64_to_user_ptr(entry->relocs_ptr);
677         reloc_cache_init(&cache, eb->i915);
678
679         remain = entry->relocation_count;
680         while (remain) {
681                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
682                 int count = remain;
683                 if (count > ARRAY_SIZE(stack_reloc))
684                         count = ARRAY_SIZE(stack_reloc);
685                 remain -= count;
686
687                 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]))) {
688                         ret = -EFAULT;
689                         goto out;
690                 }
691
692                 do {
693                         u64 offset = r->presumed_offset;
694
695                         ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
696                         if (ret)
697                                 goto out;
698
699                         if (r->presumed_offset != offset &&
700                             __put_user(r->presumed_offset,
701                                        &user_relocs->presumed_offset)) {
702                                 ret = -EFAULT;
703                                 goto out;
704                         }
705
706                         user_relocs++;
707                         r++;
708                 } while (--count);
709         }
710
711 out:
712         reloc_cache_fini(&cache);
713         return ret;
714 #undef N_RELOC
715 }
716
717 static int
718 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
719                                       struct eb_vmas *eb,
720                                       struct drm_i915_gem_relocation_entry *relocs)
721 {
722         const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
723         struct reloc_cache cache;
724         int i, ret = 0;
725
726         reloc_cache_init(&cache, eb->i915);
727         for (i = 0; i < entry->relocation_count; i++) {
728                 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
729                 if (ret)
730                         break;
731         }
732         reloc_cache_fini(&cache);
733
734         return ret;
735 }
736
737 static int
738 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
739 {
740         struct i915_vma *vma;
741         int ret = 0;
742
743         /* This is the fast path and we cannot handle a pagefault whilst
744          * holding the struct mutex lest the user pass in the relocations
745          * contained within a mmaped bo. For in such a case we, the page
746          * fault handler would call i915_gem_fault() and we would try to
747          * acquire the struct mutex again. Obviously this is bad and so
748          * lockdep complains vehemently.
749          */
750         pagefault_disable();
751         list_for_each_entry(vma, &eb->vmas, exec_list) {
752                 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
753                 if (ret)
754                         break;
755         }
756         pagefault_enable();
757
758         return ret;
759 }
760
761 static bool only_mappable_for_reloc(unsigned int flags)
762 {
763         return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
764                 __EXEC_OBJECT_NEEDS_MAP;
765 }
766
767 static int
768 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
769                                 struct intel_engine_cs *engine,
770                                 bool *need_reloc)
771 {
772         struct drm_i915_gem_object *obj = vma->obj;
773         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
774         uint64_t flags;
775         int ret;
776
777         flags = PIN_USER;
778         if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
779                 flags |= PIN_GLOBAL;
780
781         if (!drm_mm_node_allocated(&vma->node)) {
782                 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
783                  * limit address to the first 4GBs for unflagged objects.
784                  */
785                 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
786                         flags |= PIN_ZONE_4G;
787                 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
788                         flags |= PIN_GLOBAL | PIN_MAPPABLE;
789                 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
790                         flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
791                 if (entry->flags & EXEC_OBJECT_PINNED)
792                         flags |= entry->offset | PIN_OFFSET_FIXED;
793                 if ((flags & PIN_MAPPABLE) == 0)
794                         flags |= PIN_HIGH;
795         }
796
797         ret = i915_vma_pin(vma,
798                            entry->pad_to_size,
799                            entry->alignment,
800                            flags);
801         if ((ret == -ENOSPC || ret == -E2BIG) &&
802             only_mappable_for_reloc(entry->flags))
803                 ret = i915_vma_pin(vma,
804                                    entry->pad_to_size,
805                                    entry->alignment,
806                                    flags & ~PIN_MAPPABLE);
807         if (ret)
808                 return ret;
809
810         entry->flags |= __EXEC_OBJECT_HAS_PIN;
811
812         if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
813                 ret = i915_vma_get_fence(vma);
814                 if (ret)
815                         return ret;
816
817                 if (i915_vma_pin_fence(vma))
818                         entry->flags |= __EXEC_OBJECT_HAS_FENCE;
819         }
820
821         if (entry->offset != vma->node.start) {
822                 entry->offset = vma->node.start;
823                 *need_reloc = true;
824         }
825
826         if (entry->flags & EXEC_OBJECT_WRITE) {
827                 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
828                 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
829         }
830
831         return 0;
832 }
833
834 static bool
835 need_reloc_mappable(struct i915_vma *vma)
836 {
837         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
838
839         if (entry->relocation_count == 0)
840                 return false;
841
842         if (!i915_vma_is_ggtt(vma))
843                 return false;
844
845         /* See also use_cpu_reloc() */
846         if (HAS_LLC(vma->obj->base.dev))
847                 return false;
848
849         if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
850                 return false;
851
852         return true;
853 }
854
855 static bool
856 eb_vma_misplaced(struct i915_vma *vma)
857 {
858         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
859
860         WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
861                 !i915_vma_is_ggtt(vma));
862
863         if (entry->alignment &&
864             vma->node.start & (entry->alignment - 1))
865                 return true;
866
867         if (vma->node.size < entry->pad_to_size)
868                 return true;
869
870         if (entry->flags & EXEC_OBJECT_PINNED &&
871             vma->node.start != entry->offset)
872                 return true;
873
874         if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
875             vma->node.start < BATCH_OFFSET_BIAS)
876                 return true;
877
878         /* avoid costly ping-pong once a batch bo ended up non-mappable */
879         if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
880             !i915_vma_is_map_and_fenceable(vma))
881                 return !only_mappable_for_reloc(entry->flags);
882
883         if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
884             (vma->node.start + vma->node.size - 1) >> 32)
885                 return true;
886
887         return false;
888 }
889
890 static int
891 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
892                             struct list_head *vmas,
893                             struct i915_gem_context *ctx,
894                             bool *need_relocs)
895 {
896         struct drm_i915_gem_object *obj;
897         struct i915_vma *vma;
898         struct i915_address_space *vm;
899         struct list_head ordered_vmas;
900         struct list_head pinned_vmas;
901         bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
902         int retry;
903
904         vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
905
906         INIT_LIST_HEAD(&ordered_vmas);
907         INIT_LIST_HEAD(&pinned_vmas);
908         while (!list_empty(vmas)) {
909                 struct drm_i915_gem_exec_object2 *entry;
910                 bool need_fence, need_mappable;
911
912                 vma = list_first_entry(vmas, struct i915_vma, exec_list);
913                 obj = vma->obj;
914                 entry = vma->exec_entry;
915
916                 if (ctx->flags & CONTEXT_NO_ZEROMAP)
917                         entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
918
919                 if (!has_fenced_gpu_access)
920                         entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
921                 need_fence =
922                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
923                         i915_gem_object_is_tiled(obj);
924                 need_mappable = need_fence || need_reloc_mappable(vma);
925
926                 if (entry->flags & EXEC_OBJECT_PINNED)
927                         list_move_tail(&vma->exec_list, &pinned_vmas);
928                 else if (need_mappable) {
929                         entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
930                         list_move(&vma->exec_list, &ordered_vmas);
931                 } else
932                         list_move_tail(&vma->exec_list, &ordered_vmas);
933
934                 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
935                 obj->base.pending_write_domain = 0;
936         }
937         list_splice(&ordered_vmas, vmas);
938         list_splice(&pinned_vmas, vmas);
939
940         /* Attempt to pin all of the buffers into the GTT.
941          * This is done in 3 phases:
942          *
943          * 1a. Unbind all objects that do not match the GTT constraints for
944          *     the execbuffer (fenceable, mappable, alignment etc).
945          * 1b. Increment pin count for already bound objects.
946          * 2.  Bind new objects.
947          * 3.  Decrement pin count.
948          *
949          * This avoid unnecessary unbinding of later objects in order to make
950          * room for the earlier objects *unless* we need to defragment.
951          */
952         retry = 0;
953         do {
954                 int ret = 0;
955
956                 /* Unbind any ill-fitting objects or pin. */
957                 list_for_each_entry(vma, vmas, exec_list) {
958                         if (!drm_mm_node_allocated(&vma->node))
959                                 continue;
960
961                         if (eb_vma_misplaced(vma))
962                                 ret = i915_vma_unbind(vma);
963                         else
964                                 ret = i915_gem_execbuffer_reserve_vma(vma,
965                                                                       engine,
966                                                                       need_relocs);
967                         if (ret)
968                                 goto err;
969                 }
970
971                 /* Bind fresh objects */
972                 list_for_each_entry(vma, vmas, exec_list) {
973                         if (drm_mm_node_allocated(&vma->node))
974                                 continue;
975
976                         ret = i915_gem_execbuffer_reserve_vma(vma, engine,
977                                                               need_relocs);
978                         if (ret)
979                                 goto err;
980                 }
981
982 err:
983                 if (ret != -ENOSPC || retry++)
984                         return ret;
985
986                 /* Decrement pin count for bound objects */
987                 list_for_each_entry(vma, vmas, exec_list)
988                         i915_gem_execbuffer_unreserve_vma(vma);
989
990                 ret = i915_gem_evict_vm(vm, true);
991                 if (ret)
992                         return ret;
993         } while (1);
994 }
995
996 static int
997 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
998                                   struct drm_i915_gem_execbuffer2 *args,
999                                   struct drm_file *file,
1000                                   struct intel_engine_cs *engine,
1001                                   struct eb_vmas *eb,
1002                                   struct drm_i915_gem_exec_object2 *exec,
1003                                   struct i915_gem_context *ctx)
1004 {
1005         struct drm_i915_gem_relocation_entry *reloc;
1006         struct i915_address_space *vm;
1007         struct i915_vma *vma;
1008         bool need_relocs;
1009         int *reloc_offset;
1010         int i, total, ret;
1011         unsigned count = args->buffer_count;
1012
1013         vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1014
1015         /* We may process another execbuffer during the unlock... */
1016         while (!list_empty(&eb->vmas)) {
1017                 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1018                 list_del_init(&vma->exec_list);
1019                 i915_gem_execbuffer_unreserve_vma(vma);
1020                 i915_vma_put(vma);
1021         }
1022
1023         mutex_unlock(&dev->struct_mutex);
1024
1025         total = 0;
1026         for (i = 0; i < count; i++)
1027                 total += exec[i].relocation_count;
1028
1029         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1030         reloc = drm_malloc_ab(total, sizeof(*reloc));
1031         if (reloc == NULL || reloc_offset == NULL) {
1032                 drm_free_large(reloc);
1033                 drm_free_large(reloc_offset);
1034                 mutex_lock(&dev->struct_mutex);
1035                 return -ENOMEM;
1036         }
1037
1038         total = 0;
1039         for (i = 0; i < count; i++) {
1040                 struct drm_i915_gem_relocation_entry __user *user_relocs;
1041                 u64 invalid_offset = (u64)-1;
1042                 int j;
1043
1044                 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1045
1046                 if (copy_from_user(reloc+total, user_relocs,
1047                                    exec[i].relocation_count * sizeof(*reloc))) {
1048                         ret = -EFAULT;
1049                         mutex_lock(&dev->struct_mutex);
1050                         goto err;
1051                 }
1052
1053                 /* As we do not update the known relocation offsets after
1054                  * relocating (due to the complexities in lock handling),
1055                  * we need to mark them as invalid now so that we force the
1056                  * relocation processing next time. Just in case the target
1057                  * object is evicted and then rebound into its old
1058                  * presumed_offset before the next execbuffer - if that
1059                  * happened we would make the mistake of assuming that the
1060                  * relocations were valid.
1061                  */
1062                 for (j = 0; j < exec[i].relocation_count; j++) {
1063                         if (__copy_to_user(&user_relocs[j].presumed_offset,
1064                                            &invalid_offset,
1065                                            sizeof(invalid_offset))) {
1066                                 ret = -EFAULT;
1067                                 mutex_lock(&dev->struct_mutex);
1068                                 goto err;
1069                         }
1070                 }
1071
1072                 reloc_offset[i] = total;
1073                 total += exec[i].relocation_count;
1074         }
1075
1076         ret = i915_mutex_lock_interruptible(dev);
1077         if (ret) {
1078                 mutex_lock(&dev->struct_mutex);
1079                 goto err;
1080         }
1081
1082         /* reacquire the objects */
1083         eb_reset(eb);
1084         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1085         if (ret)
1086                 goto err;
1087
1088         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1089         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1090                                           &need_relocs);
1091         if (ret)
1092                 goto err;
1093
1094         list_for_each_entry(vma, &eb->vmas, exec_list) {
1095                 int offset = vma->exec_entry - exec;
1096                 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1097                                                             reloc + reloc_offset[offset]);
1098                 if (ret)
1099                         goto err;
1100         }
1101
1102         /* Leave the user relocations as are, this is the painfully slow path,
1103          * and we want to avoid the complication of dropping the lock whilst
1104          * having buffers reserved in the aperture and so causing spurious
1105          * ENOSPC for random operations.
1106          */
1107
1108 err:
1109         drm_free_large(reloc);
1110         drm_free_large(reloc_offset);
1111         return ret;
1112 }
1113
1114 static unsigned int eb_other_engines(struct drm_i915_gem_request *req)
1115 {
1116         unsigned int mask;
1117
1118         mask = ~intel_engine_flag(req->engine) & I915_BO_ACTIVE_MASK;
1119         mask <<= I915_BO_ACTIVE_SHIFT;
1120
1121         return mask;
1122 }
1123
1124 static int
1125 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1126                                 struct list_head *vmas)
1127 {
1128         const unsigned int other_rings = eb_other_engines(req);
1129         struct i915_vma *vma;
1130         int ret;
1131
1132         list_for_each_entry(vma, vmas, exec_list) {
1133                 struct drm_i915_gem_object *obj = vma->obj;
1134                 struct reservation_object *resv;
1135
1136                 if (obj->flags & other_rings) {
1137                         ret = i915_gem_request_await_object
1138                                 (req, obj, obj->base.pending_write_domain);
1139                         if (ret)
1140                                 return ret;
1141                 }
1142
1143                 resv = i915_gem_object_get_dmabuf_resv(obj);
1144                 if (resv) {
1145                         ret = i915_sw_fence_await_reservation
1146                                 (&req->submit, resv, &i915_fence_ops,
1147                                  obj->base.pending_write_domain, 10*HZ,
1148                                  GFP_KERNEL | __GFP_NOWARN);
1149                         if (ret < 0)
1150                                 return ret;
1151                 }
1152
1153                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1154                         i915_gem_clflush_object(obj, false);
1155         }
1156
1157         /* Unconditionally flush any chipset caches (for streaming writes). */
1158         i915_gem_chipset_flush(req->engine->i915);
1159
1160         /* Unconditionally invalidate GPU caches and TLBs. */
1161         return req->engine->emit_flush(req, EMIT_INVALIDATE);
1162 }
1163
1164 static bool
1165 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1166 {
1167         if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1168                 return false;
1169
1170         /* Kernel clipping was a DRI1 misfeature */
1171         if (exec->num_cliprects || exec->cliprects_ptr)
1172                 return false;
1173
1174         if (exec->DR4 == 0xffffffff) {
1175                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1176                 exec->DR4 = 0;
1177         }
1178         if (exec->DR1 || exec->DR4)
1179                 return false;
1180
1181         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1182                 return false;
1183
1184         return true;
1185 }
1186
1187 static int
1188 validate_exec_list(struct drm_device *dev,
1189                    struct drm_i915_gem_exec_object2 *exec,
1190                    int count)
1191 {
1192         unsigned relocs_total = 0;
1193         unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1194         unsigned invalid_flags;
1195         int i;
1196
1197         /* INTERNAL flags must not overlap with external ones */
1198         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1199
1200         invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1201         if (USES_FULL_PPGTT(dev))
1202                 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1203
1204         for (i = 0; i < count; i++) {
1205                 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1206                 int length; /* limited by fault_in_pages_readable() */
1207
1208                 if (exec[i].flags & invalid_flags)
1209                         return -EINVAL;
1210
1211                 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1212                  * any non-page-aligned or non-canonical addresses.
1213                  */
1214                 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1215                         if (exec[i].offset !=
1216                             gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1217                                 return -EINVAL;
1218
1219                         /* From drm_mm perspective address space is continuous,
1220                          * so from this point we're always using non-canonical
1221                          * form internally.
1222                          */
1223                         exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1224                 }
1225
1226                 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1227                         return -EINVAL;
1228
1229                 /* pad_to_size was once a reserved field, so sanitize it */
1230                 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1231                         if (offset_in_page(exec[i].pad_to_size))
1232                                 return -EINVAL;
1233                 } else {
1234                         exec[i].pad_to_size = 0;
1235                 }
1236
1237                 /* First check for malicious input causing overflow in
1238                  * the worst case where we need to allocate the entire
1239                  * relocation tree as a single array.
1240                  */
1241                 if (exec[i].relocation_count > relocs_max - relocs_total)
1242                         return -EINVAL;
1243                 relocs_total += exec[i].relocation_count;
1244
1245                 length = exec[i].relocation_count *
1246                         sizeof(struct drm_i915_gem_relocation_entry);
1247                 /*
1248                  * We must check that the entire relocation array is safe
1249                  * to read, but since we may need to update the presumed
1250                  * offsets during execution, check for full write access.
1251                  */
1252                 if (!access_ok(VERIFY_WRITE, ptr, length))
1253                         return -EFAULT;
1254
1255                 if (likely(!i915.prefault_disable)) {
1256                         if (fault_in_pages_readable(ptr, length))
1257                                 return -EFAULT;
1258                 }
1259         }
1260
1261         return 0;
1262 }
1263
1264 static struct i915_gem_context *
1265 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1266                           struct intel_engine_cs *engine, const u32 ctx_id)
1267 {
1268         struct i915_gem_context *ctx;
1269         struct i915_ctx_hang_stats *hs;
1270
1271         ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1272         if (IS_ERR(ctx))
1273                 return ctx;
1274
1275         hs = &ctx->hang_stats;
1276         if (hs->banned) {
1277                 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1278                 return ERR_PTR(-EIO);
1279         }
1280
1281         return ctx;
1282 }
1283
1284 void i915_vma_move_to_active(struct i915_vma *vma,
1285                              struct drm_i915_gem_request *req,
1286                              unsigned int flags)
1287 {
1288         struct drm_i915_gem_object *obj = vma->obj;
1289         const unsigned int idx = req->engine->id;
1290
1291         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1292
1293         obj->dirty = 1; /* be paranoid  */
1294
1295         /* Add a reference if we're newly entering the active list.
1296          * The order in which we add operations to the retirement queue is
1297          * vital here: mark_active adds to the start of the callback list,
1298          * such that subsequent callbacks are called first. Therefore we
1299          * add the active reference first and queue for it to be dropped
1300          * *last*.
1301          */
1302         if (!i915_gem_object_is_active(obj))
1303                 i915_gem_object_get(obj);
1304         i915_gem_object_set_active(obj, idx);
1305         i915_gem_active_set(&obj->last_read[idx], req);
1306
1307         if (flags & EXEC_OBJECT_WRITE) {
1308                 i915_gem_active_set(&obj->last_write, req);
1309
1310                 intel_fb_obj_invalidate(obj, ORIGIN_CS);
1311
1312                 /* update for the implicit flush after a batch */
1313                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1314         }
1315
1316         if (flags & EXEC_OBJECT_NEEDS_FENCE)
1317                 i915_gem_active_set(&vma->last_fence, req);
1318
1319         i915_vma_set_active(vma, idx);
1320         i915_gem_active_set(&vma->last_read[idx], req);
1321         list_move_tail(&vma->vm_link, &vma->vm->active_list);
1322 }
1323
1324 static void eb_export_fence(struct drm_i915_gem_object *obj,
1325                             struct drm_i915_gem_request *req,
1326                             unsigned int flags)
1327 {
1328         struct reservation_object *resv;
1329
1330         resv = i915_gem_object_get_dmabuf_resv(obj);
1331         if (!resv)
1332                 return;
1333
1334         /* Ignore errors from failing to allocate the new fence, we can't
1335          * handle an error right now. Worst case should be missed
1336          * synchronisation leading to rendering corruption.
1337          */
1338         ww_mutex_lock(&resv->lock, NULL);
1339         if (flags & EXEC_OBJECT_WRITE)
1340                 reservation_object_add_excl_fence(resv, &req->fence);
1341         else if (reservation_object_reserve_shared(resv) == 0)
1342                 reservation_object_add_shared_fence(resv, &req->fence);
1343         ww_mutex_unlock(&resv->lock);
1344 }
1345
1346 static void
1347 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1348                                    struct drm_i915_gem_request *req)
1349 {
1350         struct i915_vma *vma;
1351
1352         list_for_each_entry(vma, vmas, exec_list) {
1353                 struct drm_i915_gem_object *obj = vma->obj;
1354                 u32 old_read = obj->base.read_domains;
1355                 u32 old_write = obj->base.write_domain;
1356
1357                 obj->base.write_domain = obj->base.pending_write_domain;
1358                 if (obj->base.write_domain)
1359                         vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1360                 else
1361                         obj->base.pending_read_domains |= obj->base.read_domains;
1362                 obj->base.read_domains = obj->base.pending_read_domains;
1363
1364                 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1365                 eb_export_fence(obj, req, vma->exec_entry->flags);
1366                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1367         }
1368 }
1369
1370 static int
1371 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1372 {
1373         struct intel_ring *ring = req->ring;
1374         int ret, i;
1375
1376         if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1377                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1378                 return -EINVAL;
1379         }
1380
1381         ret = intel_ring_begin(req, 4 * 3);
1382         if (ret)
1383                 return ret;
1384
1385         for (i = 0; i < 4; i++) {
1386                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1387                 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1388                 intel_ring_emit(ring, 0);
1389         }
1390
1391         intel_ring_advance(ring);
1392
1393         return 0;
1394 }
1395
1396 static struct i915_vma *
1397 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1398                           struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1399                           struct drm_i915_gem_object *batch_obj,
1400                           struct eb_vmas *eb,
1401                           u32 batch_start_offset,
1402                           u32 batch_len,
1403                           bool is_master)
1404 {
1405         struct drm_i915_gem_object *shadow_batch_obj;
1406         struct i915_vma *vma;
1407         int ret;
1408
1409         shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1410                                                    PAGE_ALIGN(batch_len));
1411         if (IS_ERR(shadow_batch_obj))
1412                 return ERR_CAST(shadow_batch_obj);
1413
1414         ret = intel_engine_cmd_parser(engine,
1415                                       batch_obj,
1416                                       shadow_batch_obj,
1417                                       batch_start_offset,
1418                                       batch_len,
1419                                       is_master);
1420         if (ret) {
1421                 if (ret == -EACCES) /* unhandled chained batch */
1422                         vma = NULL;
1423                 else
1424                         vma = ERR_PTR(ret);
1425                 goto out;
1426         }
1427
1428         vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1429         if (IS_ERR(vma))
1430                 goto out;
1431
1432         memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1433
1434         vma->exec_entry = shadow_exec_entry;
1435         vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1436         i915_gem_object_get(shadow_batch_obj);
1437         list_add_tail(&vma->exec_list, &eb->vmas);
1438
1439 out:
1440         i915_gem_object_unpin_pages(shadow_batch_obj);
1441         return vma;
1442 }
1443
1444 static int
1445 execbuf_submit(struct i915_execbuffer_params *params,
1446                struct drm_i915_gem_execbuffer2 *args,
1447                struct list_head *vmas)
1448 {
1449         struct drm_i915_private *dev_priv = params->request->i915;
1450         u64 exec_start, exec_len;
1451         int instp_mode;
1452         u32 instp_mask;
1453         int ret;
1454
1455         ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1456         if (ret)
1457                 return ret;
1458
1459         ret = i915_switch_context(params->request);
1460         if (ret)
1461                 return ret;
1462
1463         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1464         instp_mask = I915_EXEC_CONSTANTS_MASK;
1465         switch (instp_mode) {
1466         case I915_EXEC_CONSTANTS_REL_GENERAL:
1467         case I915_EXEC_CONSTANTS_ABSOLUTE:
1468         case I915_EXEC_CONSTANTS_REL_SURFACE:
1469                 if (instp_mode != 0 && params->engine->id != RCS) {
1470                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1471                         return -EINVAL;
1472                 }
1473
1474                 if (instp_mode != dev_priv->relative_constants_mode) {
1475                         if (INTEL_INFO(dev_priv)->gen < 4) {
1476                                 DRM_DEBUG("no rel constants on pre-gen4\n");
1477                                 return -EINVAL;
1478                         }
1479
1480                         if (INTEL_INFO(dev_priv)->gen > 5 &&
1481                             instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1482                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1483                                 return -EINVAL;
1484                         }
1485
1486                         /* The HW changed the meaning on this bit on gen6 */
1487                         if (INTEL_INFO(dev_priv)->gen >= 6)
1488                                 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1489                 }
1490                 break;
1491         default:
1492                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1493                 return -EINVAL;
1494         }
1495
1496         if (params->engine->id == RCS &&
1497             instp_mode != dev_priv->relative_constants_mode) {
1498                 struct intel_ring *ring = params->request->ring;
1499
1500                 ret = intel_ring_begin(params->request, 4);
1501                 if (ret)
1502                         return ret;
1503
1504                 intel_ring_emit(ring, MI_NOOP);
1505                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1506                 intel_ring_emit_reg(ring, INSTPM);
1507                 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1508                 intel_ring_advance(ring);
1509
1510                 dev_priv->relative_constants_mode = instp_mode;
1511         }
1512
1513         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1514                 ret = i915_reset_gen7_sol_offsets(params->request);
1515                 if (ret)
1516                         return ret;
1517         }
1518
1519         exec_len   = args->batch_len;
1520         exec_start = params->batch->node.start +
1521                      params->args_batch_start_offset;
1522
1523         if (exec_len == 0)
1524                 exec_len = params->batch->size - params->args_batch_start_offset;
1525
1526         ret = params->engine->emit_bb_start(params->request,
1527                                             exec_start, exec_len,
1528                                             params->dispatch_flags);
1529         if (ret)
1530                 return ret;
1531
1532         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1533
1534         i915_gem_execbuffer_move_to_active(vmas, params->request);
1535
1536         return 0;
1537 }
1538
1539 /**
1540  * Find one BSD ring to dispatch the corresponding BSD command.
1541  * The engine index is returned.
1542  */
1543 static unsigned int
1544 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1545                          struct drm_file *file)
1546 {
1547         struct drm_i915_file_private *file_priv = file->driver_priv;
1548
1549         /* Check whether the file_priv has already selected one ring. */
1550         if ((int)file_priv->bsd_engine < 0)
1551                 file_priv->bsd_engine = atomic_fetch_xor(1,
1552                          &dev_priv->mm.bsd_engine_dispatch_index);
1553
1554         return file_priv->bsd_engine;
1555 }
1556
1557 #define I915_USER_RINGS (4)
1558
1559 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1560         [I915_EXEC_DEFAULT]     = RCS,
1561         [I915_EXEC_RENDER]      = RCS,
1562         [I915_EXEC_BLT]         = BCS,
1563         [I915_EXEC_BSD]         = VCS,
1564         [I915_EXEC_VEBOX]       = VECS
1565 };
1566
1567 static struct intel_engine_cs *
1568 eb_select_engine(struct drm_i915_private *dev_priv,
1569                  struct drm_file *file,
1570                  struct drm_i915_gem_execbuffer2 *args)
1571 {
1572         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1573         struct intel_engine_cs *engine;
1574
1575         if (user_ring_id > I915_USER_RINGS) {
1576                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1577                 return NULL;
1578         }
1579
1580         if ((user_ring_id != I915_EXEC_BSD) &&
1581             ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1582                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1583                           "bsd dispatch flags: %d\n", (int)(args->flags));
1584                 return NULL;
1585         }
1586
1587         if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1588                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1589
1590                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1591                         bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1592                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1593                            bsd_idx <= I915_EXEC_BSD_RING2) {
1594                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
1595                         bsd_idx--;
1596                 } else {
1597                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1598                                   bsd_idx);
1599                         return NULL;
1600                 }
1601
1602                 engine = &dev_priv->engine[_VCS(bsd_idx)];
1603         } else {
1604                 engine = &dev_priv->engine[user_ring_map[user_ring_id]];
1605         }
1606
1607         if (!intel_engine_initialized(engine)) {
1608                 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1609                 return NULL;
1610         }
1611
1612         return engine;
1613 }
1614
1615 static int
1616 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1617                        struct drm_file *file,
1618                        struct drm_i915_gem_execbuffer2 *args,
1619                        struct drm_i915_gem_exec_object2 *exec)
1620 {
1621         struct drm_i915_private *dev_priv = to_i915(dev);
1622         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1623         struct eb_vmas *eb;
1624         struct drm_i915_gem_exec_object2 shadow_exec_entry;
1625         struct intel_engine_cs *engine;
1626         struct i915_gem_context *ctx;
1627         struct i915_address_space *vm;
1628         struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1629         struct i915_execbuffer_params *params = &params_master;
1630         const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1631         u32 dispatch_flags;
1632         int ret;
1633         bool need_relocs;
1634
1635         if (!i915_gem_check_execbuffer(args))
1636                 return -EINVAL;
1637
1638         ret = validate_exec_list(dev, exec, args->buffer_count);
1639         if (ret)
1640                 return ret;
1641
1642         dispatch_flags = 0;
1643         if (args->flags & I915_EXEC_SECURE) {
1644                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1645                     return -EPERM;
1646
1647                 dispatch_flags |= I915_DISPATCH_SECURE;
1648         }
1649         if (args->flags & I915_EXEC_IS_PINNED)
1650                 dispatch_flags |= I915_DISPATCH_PINNED;
1651
1652         engine = eb_select_engine(dev_priv, file, args);
1653         if (!engine)
1654                 return -EINVAL;
1655
1656         if (args->buffer_count < 1) {
1657                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1658                 return -EINVAL;
1659         }
1660
1661         if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1662                 if (!HAS_RESOURCE_STREAMER(dev)) {
1663                         DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1664                         return -EINVAL;
1665                 }
1666                 if (engine->id != RCS) {
1667                         DRM_DEBUG("RS is not available on %s\n",
1668                                  engine->name);
1669                         return -EINVAL;
1670                 }
1671
1672                 dispatch_flags |= I915_DISPATCH_RS;
1673         }
1674
1675         /* Take a local wakeref for preparing to dispatch the execbuf as
1676          * we expect to access the hardware fairly frequently in the
1677          * process. Upon first dispatch, we acquire another prolonged
1678          * wakeref that we hold until the GPU has been idle for at least
1679          * 100ms.
1680          */
1681         intel_runtime_pm_get(dev_priv);
1682
1683         ret = i915_mutex_lock_interruptible(dev);
1684         if (ret)
1685                 goto pre_mutex_err;
1686
1687         ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1688         if (IS_ERR(ctx)) {
1689                 mutex_unlock(&dev->struct_mutex);
1690                 ret = PTR_ERR(ctx);
1691                 goto pre_mutex_err;
1692         }
1693
1694         i915_gem_context_get(ctx);
1695
1696         if (ctx->ppgtt)
1697                 vm = &ctx->ppgtt->base;
1698         else
1699                 vm = &ggtt->base;
1700
1701         memset(&params_master, 0x00, sizeof(params_master));
1702
1703         eb = eb_create(dev_priv, args);
1704         if (eb == NULL) {
1705                 i915_gem_context_put(ctx);
1706                 mutex_unlock(&dev->struct_mutex);
1707                 ret = -ENOMEM;
1708                 goto pre_mutex_err;
1709         }
1710
1711         /* Look up object handles */
1712         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1713         if (ret)
1714                 goto err;
1715
1716         /* take note of the batch buffer before we might reorder the lists */
1717         params->batch = eb_get_batch(eb);
1718
1719         /* Move the objects en-masse into the GTT, evicting if necessary. */
1720         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1721         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1722                                           &need_relocs);
1723         if (ret)
1724                 goto err;
1725
1726         /* The objects are in their final locations, apply the relocations. */
1727         if (need_relocs)
1728                 ret = i915_gem_execbuffer_relocate(eb);
1729         if (ret) {
1730                 if (ret == -EFAULT) {
1731                         ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1732                                                                 engine,
1733                                                                 eb, exec, ctx);
1734                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1735                 }
1736                 if (ret)
1737                         goto err;
1738         }
1739
1740         /* Set the pending read domains for the batch buffer to COMMAND */
1741         if (params->batch->obj->base.pending_write_domain) {
1742                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1743                 ret = -EINVAL;
1744                 goto err;
1745         }
1746         if (args->batch_start_offset > params->batch->size ||
1747             args->batch_len > params->batch->size - args->batch_start_offset) {
1748                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1749                 ret = -EINVAL;
1750                 goto err;
1751         }
1752
1753         params->args_batch_start_offset = args->batch_start_offset;
1754         if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1755                 struct i915_vma *vma;
1756
1757                 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1758                                                 params->batch->obj,
1759                                                 eb,
1760                                                 args->batch_start_offset,
1761                                                 args->batch_len,
1762                                                 drm_is_current_master(file));
1763                 if (IS_ERR(vma)) {
1764                         ret = PTR_ERR(vma);
1765                         goto err;
1766                 }
1767
1768                 if (vma) {
1769                         /*
1770                          * Batch parsed and accepted:
1771                          *
1772                          * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1773                          * bit from MI_BATCH_BUFFER_START commands issued in
1774                          * the dispatch_execbuffer implementations. We
1775                          * specifically don't want that set on batches the
1776                          * command parser has accepted.
1777                          */
1778                         dispatch_flags |= I915_DISPATCH_SECURE;
1779                         params->args_batch_start_offset = 0;
1780                         params->batch = vma;
1781                 }
1782         }
1783
1784         params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1785
1786         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1787          * batch" bit. Hence we need to pin secure batches into the global gtt.
1788          * hsw should have this fixed, but bdw mucks it up again. */
1789         if (dispatch_flags & I915_DISPATCH_SECURE) {
1790                 struct drm_i915_gem_object *obj = params->batch->obj;
1791                 struct i915_vma *vma;
1792
1793                 /*
1794                  * So on first glance it looks freaky that we pin the batch here
1795                  * outside of the reservation loop. But:
1796                  * - The batch is already pinned into the relevant ppgtt, so we
1797                  *   already have the backing storage fully allocated.
1798                  * - No other BO uses the global gtt (well contexts, but meh),
1799                  *   so we don't really have issues with multiple objects not
1800                  *   fitting due to fragmentation.
1801                  * So this is actually safe.
1802                  */
1803                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1804                 if (IS_ERR(vma)) {
1805                         ret = PTR_ERR(vma);
1806                         goto err;
1807                 }
1808
1809                 params->batch = vma;
1810         }
1811
1812         /* Allocate a request for this batch buffer nice and early. */
1813         params->request = i915_gem_request_alloc(engine, ctx);
1814         if (IS_ERR(params->request)) {
1815                 ret = PTR_ERR(params->request);
1816                 goto err_batch_unpin;
1817         }
1818
1819         /* Whilst this request exists, batch_obj will be on the
1820          * active_list, and so will hold the active reference. Only when this
1821          * request is retired will the the batch_obj be moved onto the
1822          * inactive_list and lose its active reference. Hence we do not need
1823          * to explicitly hold another reference here.
1824          */
1825         params->request->batch = params->batch;
1826
1827         ret = i915_gem_request_add_to_client(params->request, file);
1828         if (ret)
1829                 goto err_request;
1830
1831         /*
1832          * Save assorted stuff away to pass through to *_submission().
1833          * NB: This data should be 'persistent' and not local as it will
1834          * kept around beyond the duration of the IOCTL once the GPU
1835          * scheduler arrives.
1836          */
1837         params->dev                     = dev;
1838         params->file                    = file;
1839         params->engine                    = engine;
1840         params->dispatch_flags          = dispatch_flags;
1841         params->ctx                     = ctx;
1842
1843         ret = execbuf_submit(params, args, &eb->vmas);
1844 err_request:
1845         __i915_add_request(params->request, ret == 0);
1846
1847 err_batch_unpin:
1848         /*
1849          * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1850          * batch vma for correctness. For less ugly and less fragility this
1851          * needs to be adjusted to also track the ggtt batch vma properly as
1852          * active.
1853          */
1854         if (dispatch_flags & I915_DISPATCH_SECURE)
1855                 i915_vma_unpin(params->batch);
1856 err:
1857         /* the request owns the ref now */
1858         i915_gem_context_put(ctx);
1859         eb_destroy(eb);
1860
1861         mutex_unlock(&dev->struct_mutex);
1862
1863 pre_mutex_err:
1864         /* intel_gpu_busy should also get a ref, so it will free when the device
1865          * is really idle. */
1866         intel_runtime_pm_put(dev_priv);
1867         return ret;
1868 }
1869
1870 /*
1871  * Legacy execbuffer just creates an exec2 list from the original exec object
1872  * list array and passes it to the real function.
1873  */
1874 int
1875 i915_gem_execbuffer(struct drm_device *dev, void *data,
1876                     struct drm_file *file)
1877 {
1878         struct drm_i915_gem_execbuffer *args = data;
1879         struct drm_i915_gem_execbuffer2 exec2;
1880         struct drm_i915_gem_exec_object *exec_list = NULL;
1881         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1882         int ret, i;
1883
1884         if (args->buffer_count < 1) {
1885                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1886                 return -EINVAL;
1887         }
1888
1889         /* Copy in the exec list from userland */
1890         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1891         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1892         if (exec_list == NULL || exec2_list == NULL) {
1893                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1894                           args->buffer_count);
1895                 drm_free_large(exec_list);
1896                 drm_free_large(exec2_list);
1897                 return -ENOMEM;
1898         }
1899         ret = copy_from_user(exec_list,
1900                              u64_to_user_ptr(args->buffers_ptr),
1901                              sizeof(*exec_list) * args->buffer_count);
1902         if (ret != 0) {
1903                 DRM_DEBUG("copy %d exec entries failed %d\n",
1904                           args->buffer_count, ret);
1905                 drm_free_large(exec_list);
1906                 drm_free_large(exec2_list);
1907                 return -EFAULT;
1908         }
1909
1910         for (i = 0; i < args->buffer_count; i++) {
1911                 exec2_list[i].handle = exec_list[i].handle;
1912                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1913                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1914                 exec2_list[i].alignment = exec_list[i].alignment;
1915                 exec2_list[i].offset = exec_list[i].offset;
1916                 if (INTEL_INFO(dev)->gen < 4)
1917                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1918                 else
1919                         exec2_list[i].flags = 0;
1920         }
1921
1922         exec2.buffers_ptr = args->buffers_ptr;
1923         exec2.buffer_count = args->buffer_count;
1924         exec2.batch_start_offset = args->batch_start_offset;
1925         exec2.batch_len = args->batch_len;
1926         exec2.DR1 = args->DR1;
1927         exec2.DR4 = args->DR4;
1928         exec2.num_cliprects = args->num_cliprects;
1929         exec2.cliprects_ptr = args->cliprects_ptr;
1930         exec2.flags = I915_EXEC_RENDER;
1931         i915_execbuffer2_set_context_id(exec2, 0);
1932
1933         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1934         if (!ret) {
1935                 struct drm_i915_gem_exec_object __user *user_exec_list =
1936                         u64_to_user_ptr(args->buffers_ptr);
1937
1938                 /* Copy the new buffer offsets back to the user's exec list. */
1939                 for (i = 0; i < args->buffer_count; i++) {
1940                         exec2_list[i].offset =
1941                                 gen8_canonical_addr(exec2_list[i].offset);
1942                         ret = __copy_to_user(&user_exec_list[i].offset,
1943                                              &exec2_list[i].offset,
1944                                              sizeof(user_exec_list[i].offset));
1945                         if (ret) {
1946                                 ret = -EFAULT;
1947                                 DRM_DEBUG("failed to copy %d exec entries "
1948                                           "back to user (%d)\n",
1949                                           args->buffer_count, ret);
1950                                 break;
1951                         }
1952                 }
1953         }
1954
1955         drm_free_large(exec_list);
1956         drm_free_large(exec2_list);
1957         return ret;
1958 }
1959
1960 int
1961 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1962                      struct drm_file *file)
1963 {
1964         struct drm_i915_gem_execbuffer2 *args = data;
1965         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1966         int ret;
1967
1968         if (args->buffer_count < 1 ||
1969             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1970                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1971                 return -EINVAL;
1972         }
1973
1974         if (args->rsvd2 != 0) {
1975                 DRM_DEBUG("dirty rvsd2 field\n");
1976                 return -EINVAL;
1977         }
1978
1979         exec2_list = drm_malloc_gfp(args->buffer_count,
1980                                     sizeof(*exec2_list),
1981                                     GFP_TEMPORARY);
1982         if (exec2_list == NULL) {
1983                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1984                           args->buffer_count);
1985                 return -ENOMEM;
1986         }
1987         ret = copy_from_user(exec2_list,
1988                              u64_to_user_ptr(args->buffers_ptr),
1989                              sizeof(*exec2_list) * args->buffer_count);
1990         if (ret != 0) {
1991                 DRM_DEBUG("copy %d exec entries failed %d\n",
1992                           args->buffer_count, ret);
1993                 drm_free_large(exec2_list);
1994                 return -EFAULT;
1995         }
1996
1997         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1998         if (!ret) {
1999                 /* Copy the new buffer offsets back to the user's exec list. */
2000                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2001                                    u64_to_user_ptr(args->buffers_ptr);
2002                 int i;
2003
2004                 for (i = 0; i < args->buffer_count; i++) {
2005                         exec2_list[i].offset =
2006                                 gen8_canonical_addr(exec2_list[i].offset);
2007                         ret = __copy_to_user(&user_exec_list[i].offset,
2008                                              &exec2_list[i].offset,
2009                                              sizeof(user_exec_list[i].offset));
2010                         if (ret) {
2011                                 ret = -EFAULT;
2012                                 DRM_DEBUG("failed to copy %d exec entries "
2013                                           "back to user\n",
2014                                           args->buffer_count);
2015                                 break;
2016                         }
2017                 }
2018         }
2019
2020         drm_free_large(exec2_list);
2021         return ret;
2022 }