Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[cascardo/linux.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46
47 struct t4_status_page {
48         __be32 rsvd1;   /* flit 0 - hw owns */
49         __be16 rsvd2;
50         __be16 qid;
51         __be16 cidx;
52         __be16 pidx;
53         u8 qp_err;      /* flit 1 - sw owns */
54         u8 db_off;
55         u8 pad;
56         u16 host_wq_pidx;
57         u16 host_cidx;
58         u16 host_pidx;
59 };
60
61 #define T4_EQ_ENTRY_SIZE 64
62
63 #define T4_SQ_NUM_SLOTS 5
64 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
65 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
66                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
67 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
68                         sizeof(struct fw_ri_immd)))
69 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
70                         sizeof(struct fw_ri_rdma_write_wr) - \
71                         sizeof(struct fw_ri_immd)))
72 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
73                         sizeof(struct fw_ri_rdma_write_wr) - \
74                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
75 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
76                         sizeof(struct fw_ri_immd)) & ~31UL)
77 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
78 #define T4_MAX_FR_DSGL 1024
79 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
80
81 static inline int t4_max_fr_depth(int use_dsgl)
82 {
83         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
84 }
85
86 #define T4_RQ_NUM_SLOTS 2
87 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
88 #define T4_MAX_RECV_SGE 4
89
90 union t4_wr {
91         struct fw_ri_res_wr res;
92         struct fw_ri_wr ri;
93         struct fw_ri_rdma_write_wr write;
94         struct fw_ri_send_wr send;
95         struct fw_ri_rdma_read_wr read;
96         struct fw_ri_bind_mw_wr bind;
97         struct fw_ri_fr_nsmr_wr fr;
98         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
99         struct fw_ri_inv_lstag_wr inv;
100         struct t4_status_page status;
101         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
102 };
103
104 union t4_recv_wr {
105         struct fw_ri_recv_wr recv;
106         struct t4_status_page status;
107         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
108 };
109
110 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
111                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
112 {
113         wqe->send.opcode = (u8)opcode;
114         wqe->send.flags = flags;
115         wqe->send.wrid = wrid;
116         wqe->send.r1[0] = 0;
117         wqe->send.r1[1] = 0;
118         wqe->send.r1[2] = 0;
119         wqe->send.len16 = len16;
120 }
121
122 /* CQE/AE status codes */
123 #define T4_ERR_SUCCESS                     0x0
124 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
125                                                 /* STAG is offlimt, being 0, */
126                                                 /* or STAG_key mismatch */
127 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
128 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
129 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
130 #define T4_ERR_WRAP                        0x5  /* Wrap error */
131 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
132 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
133                                                 /* shared memory region */
134 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
135                                                 /* shared memory region */
136 #define T4_ERR_ECC                         0x9  /* ECC error detected */
137 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
138                                                 /* reading PSTAG for a MW  */
139                                                 /* Invalidate */
140 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
141                                                 /* software error */
142 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
143 #define T4_ERR_CRC                         0x10 /* CRC error */
144 #define T4_ERR_MARKER                      0x11 /* Marker error */
145 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
146 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
147 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
148 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
149 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
150 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
151 #define T4_ERR_MSN                         0x18 /* MSN error */
152 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
153 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
154                                                 /* or READ_REQ */
155 #define T4_ERR_MSN_GAP                     0x1B
156 #define T4_ERR_MSN_RANGE                   0x1C
157 #define T4_ERR_IRD_OVERFLOW                0x1D
158 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
159                                                 /* software error */
160 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
161                                                 /* mismatch) */
162 /*
163  * CQE defs
164  */
165 struct t4_cqe {
166         __be32 header;
167         __be32 len;
168         union {
169                 struct {
170                         __be32 stag;
171                         __be32 msn;
172                 } rcqe;
173                 struct {
174                         u32 stag;
175                         u16 nada2;
176                         u16 cidx;
177                 } scqe;
178                 struct {
179                         __be32 wrid_hi;
180                         __be32 wrid_low;
181                 } gen;
182         } u;
183         __be64 reserved;
184         __be64 bits_type_ts;
185 };
186
187 /* macros for flit 0 of the cqe */
188
189 #define CQE_QPID_S        12
190 #define CQE_QPID_M        0xFFFFF
191 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
192 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
193
194 #define CQE_SWCQE_S       11
195 #define CQE_SWCQE_M       0x1
196 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
197 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
198
199 #define CQE_STATUS_S      5
200 #define CQE_STATUS_M      0x1F
201 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
202 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
203
204 #define CQE_TYPE_S        4
205 #define CQE_TYPE_M        0x1
206 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
207 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
208
209 #define CQE_OPCODE_S      0
210 #define CQE_OPCODE_M      0xF
211 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
212 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
213
214 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
215 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
216 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
217 #define SQ_TYPE(x)        (CQE_TYPE((x)))
218 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
219 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
220 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
221
222 #define CQE_SEND_OPCODE(x)( \
223         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
224         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
225         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
226         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
227
228 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
229
230 /* used for RQ completion processing */
231 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
232 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
233
234 /* used for SQ completion processing */
235 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
236 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
237
238 /* generic accessor macros */
239 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
240 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
241
242 /* macros for flit 3 of the cqe */
243 #define CQE_GENBIT_S    63
244 #define CQE_GENBIT_M    0x1
245 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
246 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
247
248 #define CQE_OVFBIT_S    62
249 #define CQE_OVFBIT_M    0x1
250 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
251
252 #define CQE_IQTYPE_S    60
253 #define CQE_IQTYPE_M    0x3
254 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
255
256 #define CQE_TS_M        0x0fffffffffffffffULL
257 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
258
259 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
260 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
261 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
262
263 struct t4_swsqe {
264         u64                     wr_id;
265         struct t4_cqe           cqe;
266         int                     read_len;
267         int                     opcode;
268         int                     complete;
269         int                     signaled;
270         u16                     idx;
271         int                     flushed;
272         struct timespec         host_ts;
273         u64                     sge_ts;
274 };
275
276 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
277 {
278 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
279         return pgprot_writecombine(prot);
280 #else
281         return pgprot_noncached(prot);
282 #endif
283 }
284
285 enum {
286         T4_SQ_ONCHIP = (1<<0),
287 };
288
289 struct t4_sq {
290         union t4_wr *queue;
291         dma_addr_t dma_addr;
292         DEFINE_DMA_UNMAP_ADDR(mapping);
293         unsigned long phys_addr;
294         struct t4_swsqe *sw_sq;
295         struct t4_swsqe *oldest_read;
296         void __iomem *bar2_va;
297         u64 bar2_pa;
298         size_t memsize;
299         u32 bar2_qid;
300         u32 qid;
301         u16 in_use;
302         u16 size;
303         u16 cidx;
304         u16 pidx;
305         u16 wq_pidx;
306         u16 wq_pidx_inc;
307         u16 flags;
308         short flush_cidx;
309 };
310
311 struct t4_swrqe {
312         u64 wr_id;
313         struct timespec host_ts;
314         u64 sge_ts;
315 };
316
317 struct t4_rq {
318         union  t4_recv_wr *queue;
319         dma_addr_t dma_addr;
320         DEFINE_DMA_UNMAP_ADDR(mapping);
321         struct t4_swrqe *sw_rq;
322         void __iomem *bar2_va;
323         u64 bar2_pa;
324         size_t memsize;
325         u32 bar2_qid;
326         u32 qid;
327         u32 msn;
328         u32 rqt_hwaddr;
329         u16 rqt_size;
330         u16 in_use;
331         u16 size;
332         u16 cidx;
333         u16 pidx;
334         u16 wq_pidx;
335         u16 wq_pidx_inc;
336 };
337
338 struct t4_wq {
339         struct t4_sq sq;
340         struct t4_rq rq;
341         void __iomem *db;
342         struct c4iw_rdev *rdev;
343         int flushed;
344 };
345
346 static inline int t4_rqes_posted(struct t4_wq *wq)
347 {
348         return wq->rq.in_use;
349 }
350
351 static inline int t4_rq_empty(struct t4_wq *wq)
352 {
353         return wq->rq.in_use == 0;
354 }
355
356 static inline int t4_rq_full(struct t4_wq *wq)
357 {
358         return wq->rq.in_use == (wq->rq.size - 1);
359 }
360
361 static inline u32 t4_rq_avail(struct t4_wq *wq)
362 {
363         return wq->rq.size - 1 - wq->rq.in_use;
364 }
365
366 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
367 {
368         wq->rq.in_use++;
369         if (++wq->rq.pidx == wq->rq.size)
370                 wq->rq.pidx = 0;
371         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
372         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
373                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
374 }
375
376 static inline void t4_rq_consume(struct t4_wq *wq)
377 {
378         wq->rq.in_use--;
379         wq->rq.msn++;
380         if (++wq->rq.cidx == wq->rq.size)
381                 wq->rq.cidx = 0;
382 }
383
384 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
385 {
386         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
387 }
388
389 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
390 {
391                 return wq->rq.size * T4_RQ_NUM_SLOTS;
392 }
393
394 static inline int t4_sq_onchip(struct t4_sq *sq)
395 {
396         return sq->flags & T4_SQ_ONCHIP;
397 }
398
399 static inline int t4_sq_empty(struct t4_wq *wq)
400 {
401         return wq->sq.in_use == 0;
402 }
403
404 static inline int t4_sq_full(struct t4_wq *wq)
405 {
406         return wq->sq.in_use == (wq->sq.size - 1);
407 }
408
409 static inline u32 t4_sq_avail(struct t4_wq *wq)
410 {
411         return wq->sq.size - 1 - wq->sq.in_use;
412 }
413
414 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
415 {
416         wq->sq.in_use++;
417         if (++wq->sq.pidx == wq->sq.size)
418                 wq->sq.pidx = 0;
419         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
420         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
421                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
422 }
423
424 static inline void t4_sq_consume(struct t4_wq *wq)
425 {
426         BUG_ON(wq->sq.in_use < 1);
427         if (wq->sq.cidx == wq->sq.flush_cidx)
428                 wq->sq.flush_cidx = -1;
429         wq->sq.in_use--;
430         if (++wq->sq.cidx == wq->sq.size)
431                 wq->sq.cidx = 0;
432 }
433
434 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
435 {
436         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
437 }
438
439 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
440 {
441                 return wq->sq.size * T4_SQ_NUM_SLOTS;
442 }
443
444 /* This function copies 64 byte coalesced work request to memory
445  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
446  * from the FIFO instead of from Host.
447  */
448 static inline void pio_copy(u64 __iomem *dst, u64 *src)
449 {
450         int count = 8;
451
452         while (count) {
453                 writeq(*src, dst);
454                 src++;
455                 dst++;
456                 count--;
457         }
458 }
459
460 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
461 {
462
463         /* Flush host queue memory writes. */
464         wmb();
465         if (wq->sq.bar2_va) {
466                 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
467                         PDBG("%s: WC wq->sq.pidx = %d\n",
468                              __func__, wq->sq.pidx);
469                         pio_copy((u64 __iomem *)
470                                  (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
471                                  (u64 *)wqe);
472                 } else {
473                         PDBG("%s: DB wq->sq.pidx = %d\n",
474                              __func__, wq->sq.pidx);
475                         writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
476                                wq->sq.bar2_va + SGE_UDB_KDOORBELL);
477                 }
478
479                 /* Flush user doorbell area writes. */
480                 wmb();
481                 return;
482         }
483         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
484 }
485
486 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
487                                  union t4_recv_wr *wqe)
488 {
489
490         /* Flush host queue memory writes. */
491         wmb();
492         if (wq->rq.bar2_va) {
493                 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
494                         PDBG("%s: WC wq->rq.pidx = %d\n",
495                              __func__, wq->rq.pidx);
496                         pio_copy((u64 __iomem *)
497                                  (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
498                                  (void *)wqe);
499                 } else {
500                         PDBG("%s: DB wq->rq.pidx = %d\n",
501                              __func__, wq->rq.pidx);
502                         writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
503                                wq->rq.bar2_va + SGE_UDB_KDOORBELL);
504                 }
505
506                 /* Flush user doorbell area writes. */
507                 wmb();
508                 return;
509         }
510         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
511 }
512
513 static inline int t4_wq_in_error(struct t4_wq *wq)
514 {
515         return wq->rq.queue[wq->rq.size].status.qp_err;
516 }
517
518 static inline void t4_set_wq_in_error(struct t4_wq *wq)
519 {
520         wq->rq.queue[wq->rq.size].status.qp_err = 1;
521 }
522
523 static inline void t4_disable_wq_db(struct t4_wq *wq)
524 {
525         wq->rq.queue[wq->rq.size].status.db_off = 1;
526 }
527
528 static inline void t4_enable_wq_db(struct t4_wq *wq)
529 {
530         wq->rq.queue[wq->rq.size].status.db_off = 0;
531 }
532
533 static inline int t4_wq_db_enabled(struct t4_wq *wq)
534 {
535         return !wq->rq.queue[wq->rq.size].status.db_off;
536 }
537
538 enum t4_cq_flags {
539         CQ_ARMED        = 1,
540 };
541
542 struct t4_cq {
543         struct t4_cqe *queue;
544         dma_addr_t dma_addr;
545         DEFINE_DMA_UNMAP_ADDR(mapping);
546         struct t4_cqe *sw_queue;
547         void __iomem *gts;
548         void __iomem *bar2_va;
549         u64 bar2_pa;
550         u32 bar2_qid;
551         struct c4iw_rdev *rdev;
552         size_t memsize;
553         __be64 bits_type_ts;
554         u32 cqid;
555         u32 qid_mask;
556         int vector;
557         u16 size; /* including status page */
558         u16 cidx;
559         u16 sw_pidx;
560         u16 sw_cidx;
561         u16 sw_in_use;
562         u16 cidx_inc;
563         u8 gen;
564         u8 error;
565         unsigned long flags;
566 };
567
568 static inline void write_gts(struct t4_cq *cq, u32 val)
569 {
570         if (cq->bar2_va)
571                 writel(val | INGRESSQID_V(cq->bar2_qid),
572                        cq->bar2_va + SGE_UDB_GTS);
573         else
574                 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
575 }
576
577 static inline int t4_clear_cq_armed(struct t4_cq *cq)
578 {
579         return test_and_clear_bit(CQ_ARMED, &cq->flags);
580 }
581
582 static inline int t4_arm_cq(struct t4_cq *cq, int se)
583 {
584         u32 val;
585
586         set_bit(CQ_ARMED, &cq->flags);
587         while (cq->cidx_inc > CIDXINC_M) {
588                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
589                 write_gts(cq, val);
590                 cq->cidx_inc -= CIDXINC_M;
591         }
592         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
593         write_gts(cq, val);
594         cq->cidx_inc = 0;
595         return 0;
596 }
597
598 static inline void t4_swcq_produce(struct t4_cq *cq)
599 {
600         cq->sw_in_use++;
601         if (cq->sw_in_use == cq->size) {
602                 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
603                 cq->error = 1;
604                 BUG_ON(1);
605         }
606         if (++cq->sw_pidx == cq->size)
607                 cq->sw_pidx = 0;
608 }
609
610 static inline void t4_swcq_consume(struct t4_cq *cq)
611 {
612         BUG_ON(cq->sw_in_use < 1);
613         cq->sw_in_use--;
614         if (++cq->sw_cidx == cq->size)
615                 cq->sw_cidx = 0;
616 }
617
618 static inline void t4_hwcq_consume(struct t4_cq *cq)
619 {
620         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
621         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
622                 u32 val;
623
624                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
625                 write_gts(cq, val);
626                 cq->cidx_inc = 0;
627         }
628         if (++cq->cidx == cq->size) {
629                 cq->cidx = 0;
630                 cq->gen ^= 1;
631         }
632 }
633
634 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
635 {
636         return (CQE_GENBIT(cqe) == cq->gen);
637 }
638
639 static inline int t4_cq_notempty(struct t4_cq *cq)
640 {
641         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
642 }
643
644 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
645 {
646         int ret;
647         u16 prev_cidx;
648
649         if (cq->cidx == 0)
650                 prev_cidx = cq->size - 1;
651         else
652                 prev_cidx = cq->cidx - 1;
653
654         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
655                 ret = -EOVERFLOW;
656                 cq->error = 1;
657                 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
658                 BUG_ON(1);
659         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
660
661                 /* Ensure CQE is flushed to memory */
662                 rmb();
663                 *cqe = &cq->queue[cq->cidx];
664                 ret = 0;
665         } else
666                 ret = -ENODATA;
667         return ret;
668 }
669
670 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
671 {
672         if (cq->sw_in_use == cq->size) {
673                 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
674                 cq->error = 1;
675                 BUG_ON(1);
676                 return NULL;
677         }
678         if (cq->sw_in_use)
679                 return &cq->sw_queue[cq->sw_cidx];
680         return NULL;
681 }
682
683 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
684 {
685         int ret = 0;
686
687         if (cq->error)
688                 ret = -ENODATA;
689         else if (cq->sw_in_use)
690                 *cqe = &cq->sw_queue[cq->sw_cidx];
691         else
692                 ret = t4_next_hw_cqe(cq, cqe);
693         return ret;
694 }
695
696 static inline int t4_cq_in_error(struct t4_cq *cq)
697 {
698         return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
699 }
700
701 static inline void t4_set_cq_in_error(struct t4_cq *cq)
702 {
703         ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
704 }
705 #endif
706
707 struct t4_dev_status_page {
708         u8 db_off;
709         u8 pad1;
710         u16 pad2;
711         u32 pad3;
712         u64 qp_start;
713         u64 qp_size;
714         u64 cq_start;
715         u64 cq_size;
716 };