Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[cascardo/linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66                    S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73                  "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82                  "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 32768;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103                  "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107                    uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109                  "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135         struct sdma_txreq *cookie,
136         int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139                     struct send_context *sc,
140                     struct hfi1_pkt_state *ps,
141                     u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155         unsigned long *entries;
156         atomic_t total_count;
157         atomic_t clean_counter;
158         atomic_t clean_entry;
159
160         int threshold;
161         int num_entries;
162         long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169         long llc_size;
170         long llc_bits;
171         long table_size;
172         long table_bits;
173
174         /* check for a valid percent range - default to 80 if none or invalid */
175         if (wss_threshold < 1 || wss_threshold > 100)
176                 wss_threshold = 80;
177         /* reject a wildly large period */
178         if (wss_clean_period > 1000000)
179                 wss_clean_period = 256;
180         /* reject a zero period */
181         if (wss_clean_period == 0)
182                 wss_clean_period = 1;
183
184         /*
185          * Calculate the table size - the next power of 2 larger than the
186          * LLC size.  LLC size is in KiB.
187          */
188         llc_size = wss_llc_size() * 1024;
189         table_size = roundup_pow_of_two(llc_size);
190
191         /* one bit per page in rounded up table */
192         llc_bits = llc_size / PAGE_SIZE;
193         table_bits = table_size / PAGE_SIZE;
194         wss.pages_mask = table_bits - 1;
195         wss.num_entries = table_bits / BITS_PER_LONG;
196
197         wss.threshold = (llc_bits * wss_threshold) / 100;
198         if (wss.threshold == 0)
199                 wss.threshold = 1;
200
201         atomic_set(&wss.clean_counter, wss_clean_period);
202
203         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204                               GFP_KERNEL);
205         if (!wss.entries) {
206                 hfi1_wss_exit();
207                 return -ENOMEM;
208         }
209
210         return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215         /* coded to handle partially initialized and repeat callers */
216         kfree(wss.entries);
217         wss.entries = NULL;
218 }
219
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237         int entry;
238         int weight;
239         unsigned long bits;
240
241         /* become the cleaner if we decrement the counter to zero */
242         if (atomic_dec_and_test(&wss.clean_counter)) {
243                 /*
244                  * Set, not add, the clean period.  This avoids an issue
245                  * where the counter could decrement below the clean period.
246                  * Doing a set can result in lost decrements, slowing the
247                  * clean advance.  Since this a heuristic, this possible
248                  * slowdown is OK.
249                  *
250                  * An alternative is to loop, advancing the counter by a
251                  * clean period until the result is > 0. However, this could
252                  * lead to several threads keeping another in the clean loop.
253                  * This could be mitigated by limiting the number of times
254                  * we stay in the loop.
255                  */
256                 atomic_set(&wss.clean_counter, wss_clean_period);
257
258                 /*
259                  * Uniquely grab the entry to clean and move to next.
260                  * The current entry is always the lower bits of
261                  * wss.clean_entry.  The table size, wss.num_entries,
262                  * is always a power-of-2.
263                  */
264                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265                         & (wss.num_entries - 1);
266
267                 /* clear the entry and count the bits */
268                 bits = xchg(&wss.entries[entry], 0);
269                 weight = hweight64((u64)bits);
270                 /* only adjust the contended total count if needed */
271                 if (weight)
272                         atomic_sub(weight, &wss.total_count);
273         }
274 }
275
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283         u32 nr = page & (BITS_PER_LONG - 1);
284
285         if (!test_and_set_bit(nr, &wss.entries[entry]))
286                 atomic_inc(&wss.total_count);
287
288         wss_advance_clean_counter();
289 }
290
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296         return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305         [IB_WR_SEND] = IB_WC_SEND,
306         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
310         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
311         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
312         [IB_WR_REG_MR] = IB_WC_REG_MR
313 };
314
315 /*
316  * Length of header by opcode, 0 --> not supported
317  */
318 const u8 hdr_len_by_opcode[256] = {
319         /* RC */
320         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
321         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
322         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
323         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
324         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
325         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
326         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
327         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
328         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
329         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
331         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
332         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
333         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
334         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
335         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
336         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
337         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
338         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
339         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
340         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
341         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
342         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
343         /* UC */
344         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
345         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
346         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
347         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
348         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
349         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
350         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
351         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
352         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
353         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
355         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
356         /* UD */
357         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
358         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
359 };
360
361 static const opcode_handler opcode_handler_tbl[256] = {
362         /* RC */
363         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
381         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
382         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
383         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
384         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
385         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
386         /* UC */
387         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
388         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
389         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
394         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
395         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
396         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
398         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399         /* UD */
400         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
401         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
402         /* CNP */
403         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
404 };
405
406 #define OPMASK 0x1f
407
408 static const u32 pio_opmask[BIT(3)] = {
409         /* RC */
410         [IB_OPCODE_RC >> 5] =
411                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
412                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
413                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
414                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
415                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
416                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
417                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
418                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
419                 BIT(RC_OP(FETCH_ADD) & OPMASK),
420         /* UC */
421         [IB_OPCODE_UC >> 5] =
422                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
423                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
424                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
425                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
426 };
427
428 /*
429  * System image GUID.
430  */
431 __be64 ib_hfi1_sys_image_guid;
432
433 /**
434  * hfi1_copy_sge - copy data to SGE memory
435  * @ss: the SGE state
436  * @data: the data to copy
437  * @length: the length of the data
438  * @copy_last: do a separate copy of the last 8 bytes
439  */
440 void hfi1_copy_sge(
441         struct rvt_sge_state *ss,
442         void *data, u32 length,
443         int release,
444         int copy_last)
445 {
446         struct rvt_sge *sge = &ss->sge;
447         int in_last = 0;
448         int i;
449         int cacheless_copy = 0;
450
451         if (sge_copy_mode == COPY_CACHELESS) {
452                 cacheless_copy = length >= PAGE_SIZE;
453         } else if (sge_copy_mode == COPY_ADAPTIVE) {
454                 if (length >= PAGE_SIZE) {
455                         /*
456                          * NOTE: this *assumes*:
457                          * o The first vaddr is the dest.
458                          * o If multiple pages, then vaddr is sequential.
459                          */
460                         wss_insert(sge->vaddr);
461                         if (length >= (2 * PAGE_SIZE))
462                                 wss_insert(sge->vaddr + PAGE_SIZE);
463
464                         cacheless_copy = wss_exceeds_threshold();
465                 } else {
466                         wss_advance_clean_counter();
467                 }
468         }
469         if (copy_last) {
470                 if (length > 8) {
471                         length -= 8;
472                 } else {
473                         copy_last = 0;
474                         in_last = 1;
475                 }
476         }
477
478 again:
479         while (length) {
480                 u32 len = sge->length;
481
482                 if (len > length)
483                         len = length;
484                 if (len > sge->sge_length)
485                         len = sge->sge_length;
486                 WARN_ON_ONCE(len == 0);
487                 if (unlikely(in_last)) {
488                         /* enforce byte transfer ordering */
489                         for (i = 0; i < len; i++)
490                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
491                 } else if (cacheless_copy) {
492                         cacheless_memcpy(sge->vaddr, data, len);
493                 } else {
494                         memcpy(sge->vaddr, data, len);
495                 }
496                 sge->vaddr += len;
497                 sge->length -= len;
498                 sge->sge_length -= len;
499                 if (sge->sge_length == 0) {
500                         if (release)
501                                 rvt_put_mr(sge->mr);
502                         if (--ss->num_sge)
503                                 *sge = *ss->sg_list++;
504                 } else if (sge->length == 0 && sge->mr->lkey) {
505                         if (++sge->n >= RVT_SEGSZ) {
506                                 if (++sge->m >= sge->mr->mapsz)
507                                         break;
508                                 sge->n = 0;
509                         }
510                         sge->vaddr =
511                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
512                         sge->length =
513                                 sge->mr->map[sge->m]->segs[sge->n].length;
514                 }
515                 data += len;
516                 length -= len;
517         }
518
519         if (copy_last) {
520                 copy_last = 0;
521                 in_last = 1;
522                 length = 8;
523                 goto again;
524         }
525 }
526
527 /**
528  * hfi1_skip_sge - skip over SGE memory
529  * @ss: the SGE state
530  * @length: the number of bytes to skip
531  */
532 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
533 {
534         struct rvt_sge *sge = &ss->sge;
535
536         while (length) {
537                 u32 len = sge->length;
538
539                 if (len > length)
540                         len = length;
541                 if (len > sge->sge_length)
542                         len = sge->sge_length;
543                 WARN_ON_ONCE(len == 0);
544                 sge->vaddr += len;
545                 sge->length -= len;
546                 sge->sge_length -= len;
547                 if (sge->sge_length == 0) {
548                         if (release)
549                                 rvt_put_mr(sge->mr);
550                         if (--ss->num_sge)
551                                 *sge = *ss->sg_list++;
552                 } else if (sge->length == 0 && sge->mr->lkey) {
553                         if (++sge->n >= RVT_SEGSZ) {
554                                 if (++sge->m >= sge->mr->mapsz)
555                                         break;
556                                 sge->n = 0;
557                         }
558                         sge->vaddr =
559                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
560                         sge->length =
561                                 sge->mr->map[sge->m]->segs[sge->n].length;
562                 }
563                 length -= len;
564         }
565 }
566
567 /*
568  * Make sure the QP is ready and able to accept the given opcode.
569  */
570 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
571 {
572         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
573                 return NULL;
574         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
575             (opcode == IB_OPCODE_CNP))
576                 return opcode_handler_tbl[opcode];
577
578         return NULL;
579 }
580
581 /**
582  * hfi1_ib_rcv - process an incoming packet
583  * @packet: data packet information
584  *
585  * This is called to process an incoming packet at interrupt level.
586  *
587  * Tlen is the length of the header + data + CRC in bytes.
588  */
589 void hfi1_ib_rcv(struct hfi1_packet *packet)
590 {
591         struct hfi1_ctxtdata *rcd = packet->rcd;
592         struct ib_header *hdr = packet->hdr;
593         u32 tlen = packet->tlen;
594         struct hfi1_pportdata *ppd = rcd->ppd;
595         struct hfi1_ibport *ibp = &ppd->ibport_data;
596         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
597         opcode_handler packet_handler;
598         unsigned long flags;
599         u32 qp_num;
600         int lnh;
601         u8 opcode;
602         u16 lid;
603
604         /* Check for GRH */
605         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
606         if (lnh == HFI1_LRH_BTH) {
607                 packet->ohdr = &hdr->u.oth;
608         } else if (lnh == HFI1_LRH_GRH) {
609                 u32 vtf;
610
611                 packet->ohdr = &hdr->u.l.oth;
612                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
613                         goto drop;
614                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
615                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
616                         goto drop;
617                 packet->rcv_flags |= HFI1_HAS_GRH;
618         } else {
619                 goto drop;
620         }
621
622         trace_input_ibhdr(rcd->dd, hdr);
623
624         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
625         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
626
627         /* Get the destination QP number. */
628         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
629         lid = be16_to_cpu(hdr->lrh[1]);
630         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
631                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
632                 struct rvt_mcast *mcast;
633                 struct rvt_mcast_qp *p;
634
635                 if (lnh != HFI1_LRH_GRH)
636                         goto drop;
637                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
638                 if (!mcast)
639                         goto drop;
640                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
641                         packet->qp = p->qp;
642                         spin_lock_irqsave(&packet->qp->r_lock, flags);
643                         packet_handler = qp_ok(opcode, packet);
644                         if (likely(packet_handler))
645                                 packet_handler(packet);
646                         else
647                                 ibp->rvp.n_pkt_drops++;
648                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
649                 }
650                 /*
651                  * Notify rvt_multicast_detach() if it is waiting for us
652                  * to finish.
653                  */
654                 if (atomic_dec_return(&mcast->refcount) <= 1)
655                         wake_up(&mcast->wait);
656         } else {
657                 rcu_read_lock();
658                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
659                 if (!packet->qp) {
660                         rcu_read_unlock();
661                         goto drop;
662                 }
663                 spin_lock_irqsave(&packet->qp->r_lock, flags);
664                 packet_handler = qp_ok(opcode, packet);
665                 if (likely(packet_handler))
666                         packet_handler(packet);
667                 else
668                         ibp->rvp.n_pkt_drops++;
669                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
670                 rcu_read_unlock();
671         }
672         return;
673
674 drop:
675         ibp->rvp.n_pkt_drops++;
676 }
677
678 /*
679  * This is called from a timer to check for QPs
680  * which need kernel memory in order to send a packet.
681  */
682 static void mem_timer(unsigned long data)
683 {
684         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
685         struct list_head *list = &dev->memwait;
686         struct rvt_qp *qp = NULL;
687         struct iowait *wait;
688         unsigned long flags;
689         struct hfi1_qp_priv *priv;
690
691         write_seqlock_irqsave(&dev->iowait_lock, flags);
692         if (!list_empty(list)) {
693                 wait = list_first_entry(list, struct iowait, list);
694                 qp = iowait_to_qp(wait);
695                 priv = qp->priv;
696                 list_del_init(&priv->s_iowait.list);
697                 /* refcount held until actual wake up */
698                 if (!list_empty(list))
699                         mod_timer(&dev->mem_timer, jiffies + 1);
700         }
701         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
702
703         if (qp)
704                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
705 }
706
707 void update_sge(struct rvt_sge_state *ss, u32 length)
708 {
709         struct rvt_sge *sge = &ss->sge;
710
711         sge->vaddr += length;
712         sge->length -= length;
713         sge->sge_length -= length;
714         if (sge->sge_length == 0) {
715                 if (--ss->num_sge)
716                         *sge = *ss->sg_list++;
717         } else if (sge->length == 0 && sge->mr->lkey) {
718                 if (++sge->n >= RVT_SEGSZ) {
719                         if (++sge->m >= sge->mr->mapsz)
720                                 return;
721                         sge->n = 0;
722                 }
723                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
724                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
725         }
726 }
727
728 /*
729  * This is called with progress side lock held.
730  */
731 /* New API */
732 static void verbs_sdma_complete(
733         struct sdma_txreq *cookie,
734         int status)
735 {
736         struct verbs_txreq *tx =
737                 container_of(cookie, struct verbs_txreq, txreq);
738         struct rvt_qp *qp = tx->qp;
739
740         spin_lock(&qp->s_lock);
741         if (tx->wqe) {
742                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
743         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
744                 struct ib_header *hdr;
745
746                 hdr = &tx->phdr.hdr;
747                 hfi1_rc_send_complete(qp, hdr);
748         }
749         spin_unlock(&qp->s_lock);
750
751         hfi1_put_txreq(tx);
752 }
753
754 static int wait_kmem(struct hfi1_ibdev *dev,
755                      struct rvt_qp *qp,
756                      struct hfi1_pkt_state *ps)
757 {
758         struct hfi1_qp_priv *priv = qp->priv;
759         unsigned long flags;
760         int ret = 0;
761
762         spin_lock_irqsave(&qp->s_lock, flags);
763         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
764                 write_seqlock(&dev->iowait_lock);
765                 list_add_tail(&ps->s_txreq->txreq.list,
766                               &priv->s_iowait.tx_head);
767                 if (list_empty(&priv->s_iowait.list)) {
768                         if (list_empty(&dev->memwait))
769                                 mod_timer(&dev->mem_timer, jiffies + 1);
770                         qp->s_flags |= RVT_S_WAIT_KMEM;
771                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
772                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
773                         rvt_get_qp(qp);
774                 }
775                 write_sequnlock(&dev->iowait_lock);
776                 qp->s_flags &= ~RVT_S_BUSY;
777                 ret = -EBUSY;
778         }
779         spin_unlock_irqrestore(&qp->s_lock, flags);
780
781         return ret;
782 }
783
784 /*
785  * This routine calls txadds for each sg entry.
786  *
787  * Add failures will revert the sge cursor
788  */
789 static noinline int build_verbs_ulp_payload(
790         struct sdma_engine *sde,
791         struct rvt_sge_state *ss,
792         u32 length,
793         struct verbs_txreq *tx)
794 {
795         struct rvt_sge *sg_list = ss->sg_list;
796         struct rvt_sge sge = ss->sge;
797         u8 num_sge = ss->num_sge;
798         u32 len;
799         int ret = 0;
800
801         while (length) {
802                 len = ss->sge.length;
803                 if (len > length)
804                         len = length;
805                 if (len > ss->sge.sge_length)
806                         len = ss->sge.sge_length;
807                 WARN_ON_ONCE(len == 0);
808                 ret = sdma_txadd_kvaddr(
809                         sde->dd,
810                         &tx->txreq,
811                         ss->sge.vaddr,
812                         len);
813                 if (ret)
814                         goto bail_txadd;
815                 update_sge(ss, len);
816                 length -= len;
817         }
818         return ret;
819 bail_txadd:
820         /* unwind cursor */
821         ss->sge = sge;
822         ss->num_sge = num_sge;
823         ss->sg_list = sg_list;
824         return ret;
825 }
826
827 /*
828  * Build the number of DMA descriptors needed to send length bytes of data.
829  *
830  * NOTE: DMA mapping is held in the tx until completed in the ring or
831  *       the tx desc is freed without having been submitted to the ring
832  *
833  * This routine ensures all the helper routine calls succeed.
834  */
835 /* New API */
836 static int build_verbs_tx_desc(
837         struct sdma_engine *sde,
838         struct rvt_sge_state *ss,
839         u32 length,
840         struct verbs_txreq *tx,
841         struct hfi1_ahg_info *ahg_info,
842         u64 pbc)
843 {
844         int ret = 0;
845         struct hfi1_sdma_header *phdr = &tx->phdr;
846         u16 hdrbytes = tx->hdr_dwords << 2;
847
848         if (!ahg_info->ahgcount) {
849                 ret = sdma_txinit_ahg(
850                         &tx->txreq,
851                         ahg_info->tx_flags,
852                         hdrbytes + length,
853                         ahg_info->ahgidx,
854                         0,
855                         NULL,
856                         0,
857                         verbs_sdma_complete);
858                 if (ret)
859                         goto bail_txadd;
860                 phdr->pbc = cpu_to_le64(pbc);
861                 ret = sdma_txadd_kvaddr(
862                         sde->dd,
863                         &tx->txreq,
864                         phdr,
865                         hdrbytes);
866                 if (ret)
867                         goto bail_txadd;
868         } else {
869                 ret = sdma_txinit_ahg(
870                         &tx->txreq,
871                         ahg_info->tx_flags,
872                         length,
873                         ahg_info->ahgidx,
874                         ahg_info->ahgcount,
875                         ahg_info->ahgdesc,
876                         hdrbytes,
877                         verbs_sdma_complete);
878                 if (ret)
879                         goto bail_txadd;
880         }
881
882         /* add the ulp payload - if any.  ss can be NULL for acks */
883         if (ss)
884                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
885 bail_txadd:
886         return ret;
887 }
888
889 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
890                         u64 pbc)
891 {
892         struct hfi1_qp_priv *priv = qp->priv;
893         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
894         u32 hdrwords = qp->s_hdrwords;
895         struct rvt_sge_state *ss = qp->s_cur_sge;
896         u32 len = qp->s_cur_size;
897         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
898         struct hfi1_ibdev *dev = ps->dev;
899         struct hfi1_pportdata *ppd = ps->ppd;
900         struct verbs_txreq *tx;
901         u64 pbc_flags = 0;
902         u8 sc5 = priv->s_sc;
903
904         int ret;
905
906         tx = ps->s_txreq;
907         if (!sdma_txreq_built(&tx->txreq)) {
908                 if (likely(pbc == 0)) {
909                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
910                         /* No vl15 here */
911                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
912                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
913
914                         pbc = create_pbc(ppd,
915                                          pbc_flags,
916                                          qp->srate_mbps,
917                                          vl,
918                                          plen);
919                 }
920                 tx->wqe = qp->s_wqe;
921                 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
922                 if (unlikely(ret))
923                         goto bail_build;
924         }
925         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
926         if (unlikely(ret < 0)) {
927                 if (ret == -ECOMM)
928                         goto bail_ecomm;
929                 return ret;
930         }
931         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
932                                 &ps->s_txreq->phdr.hdr);
933         return ret;
934
935 bail_ecomm:
936         /* The current one got "sent" */
937         return 0;
938 bail_build:
939         ret = wait_kmem(dev, qp, ps);
940         if (!ret) {
941                 /* free txreq - bad state */
942                 hfi1_put_txreq(ps->s_txreq);
943                 ps->s_txreq = NULL;
944         }
945         return ret;
946 }
947
948 /*
949  * If we are now in the error state, return zero to flush the
950  * send work request.
951  */
952 static int pio_wait(struct rvt_qp *qp,
953                     struct send_context *sc,
954                     struct hfi1_pkt_state *ps,
955                     u32 flag)
956 {
957         struct hfi1_qp_priv *priv = qp->priv;
958         struct hfi1_devdata *dd = sc->dd;
959         struct hfi1_ibdev *dev = &dd->verbs_dev;
960         unsigned long flags;
961         int ret = 0;
962
963         /*
964          * Note that as soon as want_buffer() is called and
965          * possibly before it returns, sc_piobufavail()
966          * could be called. Therefore, put QP on the I/O wait list before
967          * enabling the PIO avail interrupt.
968          */
969         spin_lock_irqsave(&qp->s_lock, flags);
970         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
971                 write_seqlock(&dev->iowait_lock);
972                 list_add_tail(&ps->s_txreq->txreq.list,
973                               &priv->s_iowait.tx_head);
974                 if (list_empty(&priv->s_iowait.list)) {
975                         struct hfi1_ibdev *dev = &dd->verbs_dev;
976                         int was_empty;
977
978                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
979                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
980                         qp->s_flags |= flag;
981                         was_empty = list_empty(&sc->piowait);
982                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
983                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
984                         rvt_get_qp(qp);
985                         /* counting: only call wantpiobuf_intr if first user */
986                         if (was_empty)
987                                 hfi1_sc_wantpiobuf_intr(sc, 1);
988                 }
989                 write_sequnlock(&dev->iowait_lock);
990                 qp->s_flags &= ~RVT_S_BUSY;
991                 ret = -EBUSY;
992         }
993         spin_unlock_irqrestore(&qp->s_lock, flags);
994         return ret;
995 }
996
997 static void verbs_pio_complete(void *arg, int code)
998 {
999         struct rvt_qp *qp = (struct rvt_qp *)arg;
1000         struct hfi1_qp_priv *priv = qp->priv;
1001
1002         if (iowait_pio_dec(&priv->s_iowait))
1003                 iowait_drain_wakeup(&priv->s_iowait);
1004 }
1005
1006 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1007                         u64 pbc)
1008 {
1009         struct hfi1_qp_priv *priv = qp->priv;
1010         u32 hdrwords = qp->s_hdrwords;
1011         struct rvt_sge_state *ss = qp->s_cur_sge;
1012         u32 len = qp->s_cur_size;
1013         u32 dwords = (len + 3) >> 2;
1014         u32 plen = hdrwords + dwords + 2; /* includes pbc */
1015         struct hfi1_pportdata *ppd = ps->ppd;
1016         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
1017         u64 pbc_flags = 0;
1018         u8 sc5;
1019         unsigned long flags = 0;
1020         struct send_context *sc;
1021         struct pio_buf *pbuf;
1022         int wc_status = IB_WC_SUCCESS;
1023         int ret = 0;
1024         pio_release_cb cb = NULL;
1025
1026         /* only RC/UC use complete */
1027         switch (qp->ibqp.qp_type) {
1028         case IB_QPT_RC:
1029         case IB_QPT_UC:
1030                 cb = verbs_pio_complete;
1031                 break;
1032         default:
1033                 break;
1034         }
1035
1036         /* vl15 special case taken care of in ud.c */
1037         sc5 = priv->s_sc;
1038         sc = ps->s_txreq->psc;
1039
1040         if (likely(pbc == 0)) {
1041                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1042                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1043                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1044                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1045         }
1046         if (cb)
1047                 iowait_pio_inc(&priv->s_iowait);
1048         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1049         if (unlikely(!pbuf)) {
1050                 if (cb)
1051                         verbs_pio_complete(qp, 0);
1052                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1053                         /*
1054                          * If we have filled the PIO buffers to capacity and are
1055                          * not in an active state this request is not going to
1056                          * go out to so just complete it with an error or else a
1057                          * ULP or the core may be stuck waiting.
1058                          */
1059                         hfi1_cdbg(
1060                                 PIO,
1061                                 "alloc failed. state not active, completing");
1062                         wc_status = IB_WC_GENERAL_ERR;
1063                         goto pio_bail;
1064                 } else {
1065                         /*
1066                          * This is a normal occurrence. The PIO buffs are full
1067                          * up but we are still happily sending, well we could be
1068                          * so lets continue to queue the request.
1069                          */
1070                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1071                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1072                         if (!ret)
1073                                 /* txreq not queued - free */
1074                                 goto bail;
1075                         /* tx consumed in wait */
1076                         return ret;
1077                 }
1078         }
1079
1080         if (len == 0) {
1081                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1082         } else {
1083                 if (ss) {
1084                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1085                         while (len) {
1086                                 void *addr = ss->sge.vaddr;
1087                                 u32 slen = ss->sge.length;
1088
1089                                 if (slen > len)
1090                                         slen = len;
1091                                 update_sge(ss, slen);
1092                                 seg_pio_copy_mid(pbuf, addr, slen);
1093                                 len -= slen;
1094                         }
1095                         seg_pio_copy_end(pbuf);
1096                 }
1097         }
1098
1099         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100                                &ps->s_txreq->phdr.hdr);
1101
1102 pio_bail:
1103         if (qp->s_wqe) {
1104                 spin_lock_irqsave(&qp->s_lock, flags);
1105                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1106                 spin_unlock_irqrestore(&qp->s_lock, flags);
1107         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1108                 spin_lock_irqsave(&qp->s_lock, flags);
1109                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110                 spin_unlock_irqrestore(&qp->s_lock, flags);
1111         }
1112
1113         ret = 0;
1114
1115 bail:
1116         hfi1_put_txreq(ps->s_txreq);
1117         return ret;
1118 }
1119
1120 /*
1121  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122  * being an entry from the partition key table), return 0
1123  * otherwise. Use the matching criteria for egress partition keys
1124  * specified in the OPAv1 spec., section 9.1l.7.
1125  */
1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127 {
1128         u16 mkey = pkey & PKEY_LOW_15_MASK;
1129         u16 mentry = ent & PKEY_LOW_15_MASK;
1130
1131         if (mkey == mentry) {
1132                 /*
1133                  * If pkey[15] is set (full partition member),
1134                  * is bit 15 in the corresponding table element
1135                  * clear (limited member)?
1136                  */
1137                 if (pkey & PKEY_MEMBER_MASK)
1138                         return !!(ent & PKEY_MEMBER_MASK);
1139                 return 1;
1140         }
1141         return 0;
1142 }
1143
1144 /**
1145  * egress_pkey_check - check P_KEY of a packet
1146  * @ppd:    Physical IB port data
1147  * @lrh: Local route header
1148  * @bth: Base transport header
1149  * @sc5:    SC for packet
1150  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151  * only. If it is negative value, then it means user contexts is calling this
1152  * function.
1153  *
1154  * It checks if hdr's pkey is valid.
1155  *
1156  * Return: 0 on success, otherwise, 1
1157  */
1158 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1159                       u8 sc5, int8_t s_pkey_index)
1160 {
1161         struct hfi1_devdata *dd;
1162         int i;
1163         u16 pkey;
1164         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1165
1166         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1167                 return 0;
1168
1169         pkey = (u16)be32_to_cpu(bth[0]);
1170
1171         /* If SC15, pkey[0:14] must be 0x7fff */
1172         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1173                 goto bad;
1174
1175         /* Is the pkey = 0x0, or 0x8000? */
1176         if ((pkey & PKEY_LOW_15_MASK) == 0)
1177                 goto bad;
1178
1179         /*
1180          * For the kernel contexts only, if a qp is passed into the function,
1181          * the most likely matching pkey has index qp->s_pkey_index
1182          */
1183         if (!is_user_ctxt_mechanism &&
1184             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1185                 return 0;
1186         }
1187
1188         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1189                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1190                         return 0;
1191         }
1192 bad:
1193         /*
1194          * For the user-context mechanism, the P_KEY check would only happen
1195          * once per SDMA request, not once per packet.  Therefore, there's no
1196          * need to increment the counter for the user-context mechanism.
1197          */
1198         if (!is_user_ctxt_mechanism) {
1199                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1200                 dd = ppd->dd;
1201                 if (!(dd->err_info_xmit_constraint.status &
1202                       OPA_EI_STATUS_SMASK)) {
1203                         u16 slid = be16_to_cpu(lrh[3]);
1204
1205                         dd->err_info_xmit_constraint.status |=
1206                                 OPA_EI_STATUS_SMASK;
1207                         dd->err_info_xmit_constraint.slid = slid;
1208                         dd->err_info_xmit_constraint.pkey = pkey;
1209                 }
1210         }
1211         return 1;
1212 }
1213
1214 /**
1215  * get_send_routine - choose an egress routine
1216  *
1217  * Choose an egress routine based on QP type
1218  * and size
1219  */
1220 static inline send_routine get_send_routine(struct rvt_qp *qp,
1221                                             struct verbs_txreq *tx)
1222 {
1223         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1224         struct hfi1_qp_priv *priv = qp->priv;
1225         struct ib_header *h = &tx->phdr.hdr;
1226
1227         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1228                 return dd->process_pio_send;
1229         switch (qp->ibqp.qp_type) {
1230         case IB_QPT_SMI:
1231                 return dd->process_pio_send;
1232         case IB_QPT_GSI:
1233         case IB_QPT_UD:
1234                 break;
1235         case IB_QPT_UC:
1236         case IB_QPT_RC: {
1237                 u8 op = get_opcode(h);
1238
1239                 if (piothreshold &&
1240                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1241                     (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1242                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1243                     !sdma_txreq_built(&tx->txreq))
1244                         return dd->process_pio_send;
1245                 break;
1246         }
1247         default:
1248                 break;
1249         }
1250         return dd->process_dma_send;
1251 }
1252
1253 /**
1254  * hfi1_verbs_send - send a packet
1255  * @qp: the QP to send on
1256  * @ps: the state of the packet to send
1257  *
1258  * Return zero if packet is sent or queued OK.
1259  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1260  */
1261 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1262 {
1263         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1264         struct hfi1_qp_priv *priv = qp->priv;
1265         struct ib_other_headers *ohdr;
1266         struct ib_header *hdr;
1267         send_routine sr;
1268         int ret;
1269         u8 lnh;
1270
1271         hdr = &ps->s_txreq->phdr.hdr;
1272         /* locate the pkey within the headers */
1273         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1274         if (lnh == HFI1_LRH_GRH)
1275                 ohdr = &hdr->u.l.oth;
1276         else
1277                 ohdr = &hdr->u.oth;
1278
1279         sr = get_send_routine(qp, ps->s_txreq);
1280         ret = egress_pkey_check(dd->pport,
1281                                 hdr->lrh,
1282                                 ohdr->bth,
1283                                 priv->s_sc,
1284                                 qp->s_pkey_index);
1285         if (unlikely(ret)) {
1286                 /*
1287                  * The value we are returning here does not get propagated to
1288                  * the verbs caller. Thus we need to complete the request with
1289                  * error otherwise the caller could be sitting waiting on the
1290                  * completion event. Only do this for PIO. SDMA has its own
1291                  * mechanism for handling the errors. So for SDMA we can just
1292                  * return.
1293                  */
1294                 if (sr == dd->process_pio_send) {
1295                         unsigned long flags;
1296
1297                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1298                                   __func__);
1299                         spin_lock_irqsave(&qp->s_lock, flags);
1300                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1301                         spin_unlock_irqrestore(&qp->s_lock, flags);
1302                 }
1303                 return -EINVAL;
1304         }
1305         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1306                 return pio_wait(qp,
1307                                 ps->s_txreq->psc,
1308                                 ps,
1309                                 RVT_S_WAIT_PIO_DRAIN);
1310         return sr(qp, ps, 0);
1311 }
1312
1313 /**
1314  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1315  * @dd: the device data structure
1316  */
1317 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1318 {
1319         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1320         u16 ver = dd->dc8051_ver;
1321
1322         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1323
1324         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1325                                     (u64)dc8051_ver_min(ver);
1326         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1327                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1328                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1329                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1330                         IB_DEVICE_MEM_MGT_EXTENSIONS;
1331         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1332         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1333         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1334         rdi->dparms.props.hw_ver = dd->minrev;
1335         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1336         rdi->dparms.props.max_mr_size = U64_MAX;
1337         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1338         rdi->dparms.props.max_qp = hfi1_max_qps;
1339         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1340         rdi->dparms.props.max_sge = hfi1_max_sges;
1341         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1342         rdi->dparms.props.max_cq = hfi1_max_cqs;
1343         rdi->dparms.props.max_ah = hfi1_max_ahs;
1344         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1345         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1346         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1347         rdi->dparms.props.max_map_per_fmr = 32767;
1348         rdi->dparms.props.max_pd = hfi1_max_pds;
1349         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1350         rdi->dparms.props.max_qp_init_rd_atom = 255;
1351         rdi->dparms.props.max_srq = hfi1_max_srqs;
1352         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1353         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1354         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1355         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1356         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1357         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1358         rdi->dparms.props.max_total_mcast_qp_attach =
1359                                         rdi->dparms.props.max_mcast_qp_attach *
1360                                         rdi->dparms.props.max_mcast_grp;
1361 }
1362
1363 static inline u16 opa_speed_to_ib(u16 in)
1364 {
1365         u16 out = 0;
1366
1367         if (in & OPA_LINK_SPEED_25G)
1368                 out |= IB_SPEED_EDR;
1369         if (in & OPA_LINK_SPEED_12_5G)
1370                 out |= IB_SPEED_FDR;
1371
1372         return out;
1373 }
1374
1375 /*
1376  * Convert a single OPA link width (no multiple flags) to an IB value.
1377  * A zero OPA link width means link down, which means the IB width value
1378  * is a don't care.
1379  */
1380 static inline u16 opa_width_to_ib(u16 in)
1381 {
1382         switch (in) {
1383         case OPA_LINK_WIDTH_1X:
1384         /* map 2x and 3x to 1x as they don't exist in IB */
1385         case OPA_LINK_WIDTH_2X:
1386         case OPA_LINK_WIDTH_3X:
1387                 return IB_WIDTH_1X;
1388         default: /* link down or unknown, return our largest width */
1389         case OPA_LINK_WIDTH_4X:
1390                 return IB_WIDTH_4X;
1391         }
1392 }
1393
1394 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1395                       struct ib_port_attr *props)
1396 {
1397         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1398         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1399         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1400         u16 lid = ppd->lid;
1401
1402         props->lid = lid ? lid : 0;
1403         props->lmc = ppd->lmc;
1404         /* OPA logical states match IB logical states */
1405         props->state = driver_lstate(ppd);
1406         props->phys_state = hfi1_ibphys_portstate(ppd);
1407         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1408         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1409         /* see rate_show() in ib core/sysfs.c */
1410         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1411         props->max_vl_num = ppd->vls_supported;
1412
1413         /* Once we are a "first class" citizen and have added the OPA MTUs to
1414          * the core we can advertise the larger MTU enum to the ULPs, for now
1415          * advertise only 4K.
1416          *
1417          * Those applications which are either OPA aware or pass the MTU enum
1418          * from the Path Records to us will get the new 8k MTU.  Those that
1419          * attempt to process the MTU enum may fail in various ways.
1420          */
1421         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1422                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1423         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1424                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1425
1426         return 0;
1427 }
1428
1429 static int modify_device(struct ib_device *device,
1430                          int device_modify_mask,
1431                          struct ib_device_modify *device_modify)
1432 {
1433         struct hfi1_devdata *dd = dd_from_ibdev(device);
1434         unsigned i;
1435         int ret;
1436
1437         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1438                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1439                 ret = -EOPNOTSUPP;
1440                 goto bail;
1441         }
1442
1443         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1444                 memcpy(device->node_desc, device_modify->node_desc,
1445                        IB_DEVICE_NODE_DESC_MAX);
1446                 for (i = 0; i < dd->num_pports; i++) {
1447                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1448
1449                         hfi1_node_desc_chg(ibp);
1450                 }
1451         }
1452
1453         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1454                 ib_hfi1_sys_image_guid =
1455                         cpu_to_be64(device_modify->sys_image_guid);
1456                 for (i = 0; i < dd->num_pports; i++) {
1457                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1458
1459                         hfi1_sys_guid_chg(ibp);
1460                 }
1461         }
1462
1463         ret = 0;
1464
1465 bail:
1466         return ret;
1467 }
1468
1469 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1470 {
1471         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1472         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1473         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1474         int ret;
1475
1476         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1477                              OPA_LINKDOWN_REASON_UNKNOWN);
1478         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1479         return ret;
1480 }
1481
1482 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1483                             int guid_index, __be64 *guid)
1484 {
1485         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1486         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1487
1488         if (guid_index == 0)
1489                 *guid = cpu_to_be64(ppd->guid);
1490         else if (guid_index < HFI1_GUIDS_PER_PORT)
1491                 *guid = ibp->guids[guid_index - 1];
1492         else
1493                 return -EINVAL;
1494
1495         return 0;
1496 }
1497
1498 /*
1499  * convert ah port,sl to sc
1500  */
1501 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1502 {
1503         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1504
1505         return ibp->sl_to_sc[ah->sl];
1506 }
1507
1508 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1509 {
1510         struct hfi1_ibport *ibp;
1511         struct hfi1_pportdata *ppd;
1512         struct hfi1_devdata *dd;
1513         u8 sc5;
1514
1515         /* test the mapping for validity */
1516         ibp = to_iport(ibdev, ah_attr->port_num);
1517         ppd = ppd_from_ibp(ibp);
1518         sc5 = ibp->sl_to_sc[ah_attr->sl];
1519         dd = dd_from_ppd(ppd);
1520         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1521                 return -EINVAL;
1522         return 0;
1523 }
1524
1525 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1526                                struct ib_ah_attr *ah_attr,
1527                                struct rvt_ah *ah)
1528 {
1529         struct hfi1_ibport *ibp;
1530         struct hfi1_pportdata *ppd;
1531         struct hfi1_devdata *dd;
1532         u8 sc5;
1533
1534         /*
1535          * Do not trust reading anything from rvt_ah at this point as it is not
1536          * done being setup. We can however modify things which we need to set.
1537          */
1538
1539         ibp = to_iport(ibdev, ah_attr->port_num);
1540         ppd = ppd_from_ibp(ibp);
1541         sc5 = ibp->sl_to_sc[ah->attr.sl];
1542         dd = dd_from_ppd(ppd);
1543         ah->vl = sc_to_vlt(dd, sc5);
1544         if (ah->vl < num_vls || ah->vl == 15)
1545                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1546 }
1547
1548 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1549 {
1550         struct ib_ah_attr attr;
1551         struct ib_ah *ah = ERR_PTR(-EINVAL);
1552         struct rvt_qp *qp0;
1553
1554         memset(&attr, 0, sizeof(attr));
1555         attr.dlid = dlid;
1556         attr.port_num = ppd_from_ibp(ibp)->port;
1557         rcu_read_lock();
1558         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1559         if (qp0)
1560                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1561         rcu_read_unlock();
1562         return ah;
1563 }
1564
1565 /**
1566  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1567  * @dd: the hfi1_ib device
1568  */
1569 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1570 {
1571         return ARRAY_SIZE(dd->pport[0].pkeys);
1572 }
1573
1574 static void init_ibport(struct hfi1_pportdata *ppd)
1575 {
1576         struct hfi1_ibport *ibp = &ppd->ibport_data;
1577         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1578         int i;
1579
1580         for (i = 0; i < sz; i++) {
1581                 ibp->sl_to_sc[i] = i;
1582                 ibp->sc_to_sl[i] = i;
1583         }
1584
1585         spin_lock_init(&ibp->rvp.lock);
1586         /* Set the prefix to the default value (see ch. 4.1.1) */
1587         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1588         ibp->rvp.sm_lid = 0;
1589         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1590         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1591                 IB_PORT_CAP_MASK_NOTICE_SUP;
1592         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1593         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1594         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1595         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1596         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1597
1598         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1599         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1600 }
1601
1602 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1603                                 size_t str_len)
1604 {
1605         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1606         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1607         u16 ver = dd_from_dev(dev)->dc8051_ver;
1608
1609         snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1610                  dc8051_ver_min(ver));
1611 }
1612
1613 /**
1614  * hfi1_register_ib_device - register our device with the infiniband core
1615  * @dd: the device data structure
1616  * Return 0 if successful, errno if unsuccessful.
1617  */
1618 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1619 {
1620         struct hfi1_ibdev *dev = &dd->verbs_dev;
1621         struct ib_device *ibdev = &dev->rdi.ibdev;
1622         struct hfi1_pportdata *ppd = dd->pport;
1623         unsigned i;
1624         int ret;
1625         size_t lcpysz = IB_DEVICE_NAME_MAX;
1626
1627         for (i = 0; i < dd->num_pports; i++)
1628                 init_ibport(ppd + i);
1629
1630         /* Only need to initialize non-zero fields. */
1631
1632         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1633
1634         seqlock_init(&dev->iowait_lock);
1635         INIT_LIST_HEAD(&dev->txwait);
1636         INIT_LIST_HEAD(&dev->memwait);
1637
1638         ret = verbs_txreq_init(dev);
1639         if (ret)
1640                 goto err_verbs_txreq;
1641
1642         /*
1643          * The system image GUID is supposed to be the same for all
1644          * HFIs in a single system but since there can be other
1645          * device types in the system, we can't be sure this is unique.
1646          */
1647         if (!ib_hfi1_sys_image_guid)
1648                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1649         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1650         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1651         ibdev->owner = THIS_MODULE;
1652         ibdev->node_guid = cpu_to_be64(ppd->guid);
1653         ibdev->phys_port_cnt = dd->num_pports;
1654         ibdev->dma_device = &dd->pcidev->dev;
1655         ibdev->modify_device = modify_device;
1656
1657         /* keep process mad in the driver */
1658         ibdev->process_mad = hfi1_process_mad;
1659         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1660
1661         strncpy(ibdev->node_desc, init_utsname()->nodename,
1662                 sizeof(ibdev->node_desc));
1663
1664         /*
1665          * Fill in rvt info object.
1666          */
1667         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1668         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1669         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1670         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1671         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1672         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1673         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1674         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1675         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1676         /*
1677          * Fill in rvt info device attributes.
1678          */
1679         hfi1_fill_device_attr(dd);
1680
1681         /* queue pair */
1682         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1683         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1684         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1685         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1686         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1687         dd->verbs_dev.rdi.dparms.qpn_res_end =
1688         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1689         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1690         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1691         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1692         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1693         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1694         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1695
1696         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1697         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1698         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1699         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1700         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1701         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1702         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1703         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1704         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1705         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1706         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1707         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1708         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1709         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1710         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1711         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1712         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1713         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1714
1715         /* completeion queue */
1716         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1717                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1718                  "hfi1_cq%d", dd->unit);
1719         dd->verbs_dev.rdi.dparms.node = dd->node;
1720
1721         /* misc settings */
1722         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1723         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1724         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1725         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1726
1727         /* post send table */
1728         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1729
1730         ppd = dd->pport;
1731         for (i = 0; i < dd->num_pports; i++, ppd++)
1732                 rvt_init_port(&dd->verbs_dev.rdi,
1733                               &ppd->ibport_data.rvp,
1734                               i,
1735                               ppd->pkeys);
1736
1737         ret = rvt_register_device(&dd->verbs_dev.rdi);
1738         if (ret)
1739                 goto err_verbs_txreq;
1740
1741         ret = hfi1_verbs_register_sysfs(dd);
1742         if (ret)
1743                 goto err_class;
1744
1745         return ret;
1746
1747 err_class:
1748         rvt_unregister_device(&dd->verbs_dev.rdi);
1749 err_verbs_txreq:
1750         verbs_txreq_exit(dev);
1751         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1752         return ret;
1753 }
1754
1755 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1756 {
1757         struct hfi1_ibdev *dev = &dd->verbs_dev;
1758
1759         hfi1_verbs_unregister_sysfs(dd);
1760
1761         rvt_unregister_device(&dd->verbs_dev.rdi);
1762
1763         if (!list_empty(&dev->txwait))
1764                 dd_dev_err(dd, "txwait list not empty!\n");
1765         if (!list_empty(&dev->memwait))
1766                 dd_dev_err(dd, "memwait list not empty!\n");
1767
1768         del_timer_sync(&dev->mem_timer);
1769         verbs_txreq_exit(dev);
1770 }
1771
1772 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1773 {
1774         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1775         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1776         struct ib_header *hdr = packet->hdr;
1777         struct rvt_qp *qp = packet->qp;
1778         u32 lqpn, rqpn = 0;
1779         u16 rlid = 0;
1780         u8 sl, sc5, svc_type;
1781
1782         switch (packet->qp->ibqp.qp_type) {
1783         case IB_QPT_UC:
1784                 rlid = qp->remote_ah_attr.dlid;
1785                 rqpn = qp->remote_qpn;
1786                 svc_type = IB_CC_SVCTYPE_UC;
1787                 break;
1788         case IB_QPT_RC:
1789                 rlid = qp->remote_ah_attr.dlid;
1790                 rqpn = qp->remote_qpn;
1791                 svc_type = IB_CC_SVCTYPE_RC;
1792                 break;
1793         case IB_QPT_SMI:
1794         case IB_QPT_GSI:
1795         case IB_QPT_UD:
1796                 svc_type = IB_CC_SVCTYPE_UD;
1797                 break;
1798         default:
1799                 ibp->rvp.n_pkt_drops++;
1800                 return;
1801         }
1802
1803         sc5 = hdr2sc(hdr, packet->rhf);
1804         sl = ibp->sc_to_sl[sc5];
1805         lqpn = qp->ibqp.qp_num;
1806
1807         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1808 }