Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
5  *
6  * Portions of this file are derived from the ipw3945 project, as well
7  * as portions of the ieee80211 subsystem header files.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called LICENSE.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  *****************************************************************************/
30 #include <linux/sched.h>
31 #include <linux/wait.h>
32 #include <linux/gfp.h>
33
34 #include "iwl-prph.h"
35 #include "iwl-io.h"
36 #include "internal.h"
37 #include "iwl-op-mode.h"
38
39 /******************************************************************************
40  *
41  * RX path functions
42  *
43  ******************************************************************************/
44
45 /*
46  * Rx theory of operation
47  *
48  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
49  * each of which point to Receive Buffers to be filled by the NIC.  These get
50  * used not only for Rx frames, but for any command response or notification
51  * from the NIC.  The driver and NIC manage the Rx buffers by means
52  * of indexes into the circular buffer.
53  *
54  * Rx Queue Indexes
55  * The host/firmware share two index registers for managing the Rx buffers.
56  *
57  * The READ index maps to the first position that the firmware may be writing
58  * to -- the driver can read up to (but not including) this position and get
59  * good data.
60  * The READ index is managed by the firmware once the card is enabled.
61  *
62  * The WRITE index maps to the last position the driver has read from -- the
63  * position preceding WRITE is the last slot the firmware can place a packet.
64  *
65  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
66  * WRITE = READ.
67  *
68  * During initialization, the host sets up the READ queue position to the first
69  * INDEX position, and WRITE to the last (READ - 1 wrapped)
70  *
71  * When the firmware places a packet in a buffer, it will advance the READ index
72  * and fire the RX interrupt.  The driver can then query the READ index and
73  * process as many packets as possible, moving the WRITE index forward as it
74  * resets the Rx queue buffers with new memory.
75  *
76  * The management in the driver is as follows:
77  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
78  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
79  *   to replenish the iwl->rxq->rx_free.
80  * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
81  *   iwl->rxq is replenished and the READ INDEX is updated (updating the
82  *   'processed' and 'read' driver indexes as well)
83  * + A received packet is processed and handed to the kernel network stack,
84  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
85  * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
86  *   rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
87  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
88  *   If there were enough free buffers and RX_STALLED is set it is cleared.
89  *
90  *
91  * Driver sequence:
92  *
93  * iwl_rxq_alloc()            Allocates rx_free
94  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
95  *                            iwl_pcie_rxq_restock
96  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
97  *                            queue, updates firmware pointers, and updates
98  *                            the WRITE index.  If insufficient rx_free buffers
99  *                            are available, schedules iwl_pcie_rx_replenish
100  *
101  * -- enable interrupts --
102  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
103  *                            READ INDEX, detaching the SKB from the pool.
104  *                            Moves the packet buffer from queue to rx_used.
105  *                            Calls iwl_pcie_rxq_restock to refill any empty
106  *                            slots.
107  * ...
108  *
109  */
110
111 /*
112  * iwl_rxq_space - Return number of free slots available in queue.
113  */
114 static int iwl_rxq_space(const struct iwl_rxq *rxq)
115 {
116         /* Make sure RX_QUEUE_SIZE is a power of 2 */
117         BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
118
119         /*
120          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
121          * between empty and completely full queues.
122          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
123          * defined for negative dividends.
124          */
125         return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
126 }
127
128 /*
129  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
130  */
131 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
132 {
133         return cpu_to_le32((u32)(dma_addr >> 8));
134 }
135
136 /*
137  * iwl_pcie_rx_stop - stops the Rx DMA
138  */
139 int iwl_pcie_rx_stop(struct iwl_trans *trans)
140 {
141         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
142         return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
143                                    FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
144 }
145
146 /*
147  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
148  */
149 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans)
150 {
151         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
152         struct iwl_rxq *rxq = &trans_pcie->rxq;
153         u32 reg;
154
155         lockdep_assert_held(&rxq->lock);
156
157         /*
158          * explicitly wake up the NIC if:
159          * 1. shadow registers aren't enabled
160          * 2. there is a chance that the NIC is asleep
161          */
162         if (!trans->cfg->base_params->shadow_reg_enable &&
163             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
164                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
165
166                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
167                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
168                                        reg);
169                         iwl_set_bit(trans, CSR_GP_CNTRL,
170                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
171                         rxq->need_update = true;
172                         return;
173                 }
174         }
175
176         rxq->write_actual = round_down(rxq->write, 8);
177         iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
178 }
179
180 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
181 {
182         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
183         struct iwl_rxq *rxq = &trans_pcie->rxq;
184
185         spin_lock(&rxq->lock);
186
187         if (!rxq->need_update)
188                 goto exit_unlock;
189
190         iwl_pcie_rxq_inc_wr_ptr(trans);
191         rxq->need_update = false;
192
193  exit_unlock:
194         spin_unlock(&rxq->lock);
195 }
196
197 /*
198  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
199  *
200  * If there are slots in the RX queue that need to be restocked,
201  * and we have free pre-allocated buffers, fill the ranks as much
202  * as we can, pulling from rx_free.
203  *
204  * This moves the 'write' index forward to catch up with 'processed', and
205  * also updates the memory address in the firmware to reference the new
206  * target buffer.
207  */
208 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
209 {
210         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
211         struct iwl_rxq *rxq = &trans_pcie->rxq;
212         struct iwl_rx_mem_buffer *rxb;
213
214         /*
215          * If the device isn't enabled - not need to try to add buffers...
216          * This can happen when we stop the device and still have an interrupt
217          * pending. We stop the APM before we sync the interrupts because we
218          * have to (see comment there). On the other hand, since the APM is
219          * stopped, we cannot access the HW (in particular not prph).
220          * So don't try to restock if the APM has been already stopped.
221          */
222         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
223                 return;
224
225         spin_lock(&rxq->lock);
226         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
227                 /* The overwritten rxb must be a used one */
228                 rxb = rxq->queue[rxq->write];
229                 BUG_ON(rxb && rxb->page);
230
231                 /* Get next free Rx buffer, remove from free list */
232                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
233                                        list);
234                 list_del(&rxb->list);
235
236                 /* Point to Rx buffer via next RBD in circular buffer */
237                 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
238                 rxq->queue[rxq->write] = rxb;
239                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
240                 rxq->free_count--;
241         }
242         spin_unlock(&rxq->lock);
243         /* If the pre-allocated buffer pool is dropping low, schedule to
244          * refill it */
245         if (rxq->free_count <= RX_LOW_WATERMARK)
246                 schedule_work(&trans_pcie->rx_replenish);
247
248         /* If we've added more space for the firmware to place data, tell it.
249          * Increment device's write pointer in multiples of 8. */
250         if (rxq->write_actual != (rxq->write & ~0x7)) {
251                 spin_lock(&rxq->lock);
252                 iwl_pcie_rxq_inc_wr_ptr(trans);
253                 spin_unlock(&rxq->lock);
254         }
255 }
256
257 /*
258  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
259  *
260  * A used RBD is an Rx buffer that has been given to the stack. To use it again
261  * a page must be allocated and the RBD must point to the page. This function
262  * doesn't change the HW pointer but handles the list of pages that is used by
263  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
264  * allocated buffers.
265  */
266 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
267 {
268         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
269         struct iwl_rxq *rxq = &trans_pcie->rxq;
270         struct iwl_rx_mem_buffer *rxb;
271         struct page *page;
272         gfp_t gfp_mask = priority;
273
274         while (1) {
275                 spin_lock(&rxq->lock);
276                 if (list_empty(&rxq->rx_used)) {
277                         spin_unlock(&rxq->lock);
278                         return;
279                 }
280                 spin_unlock(&rxq->lock);
281
282                 if (rxq->free_count > RX_LOW_WATERMARK)
283                         gfp_mask |= __GFP_NOWARN;
284
285                 if (trans_pcie->rx_page_order > 0)
286                         gfp_mask |= __GFP_COMP;
287
288                 /* Alloc a new receive buffer */
289                 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
290                 if (!page) {
291                         if (net_ratelimit())
292                                 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
293                                            "order: %d\n",
294                                            trans_pcie->rx_page_order);
295
296                         if ((rxq->free_count <= RX_LOW_WATERMARK) &&
297                             net_ratelimit())
298                                 IWL_CRIT(trans, "Failed to alloc_pages with %s."
299                                          "Only %u free buffers remaining.\n",
300                                          priority == GFP_ATOMIC ?
301                                          "GFP_ATOMIC" : "GFP_KERNEL",
302                                          rxq->free_count);
303                         /* We don't reschedule replenish work here -- we will
304                          * call the restock method and if it still needs
305                          * more buffers it will schedule replenish */
306                         return;
307                 }
308
309                 spin_lock(&rxq->lock);
310
311                 if (list_empty(&rxq->rx_used)) {
312                         spin_unlock(&rxq->lock);
313                         __free_pages(page, trans_pcie->rx_page_order);
314                         return;
315                 }
316                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
317                                        list);
318                 list_del(&rxb->list);
319                 spin_unlock(&rxq->lock);
320
321                 BUG_ON(rxb->page);
322                 rxb->page = page;
323                 /* Get physical address of the RB */
324                 rxb->page_dma =
325                         dma_map_page(trans->dev, page, 0,
326                                      PAGE_SIZE << trans_pcie->rx_page_order,
327                                      DMA_FROM_DEVICE);
328                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
329                         rxb->page = NULL;
330                         spin_lock(&rxq->lock);
331                         list_add(&rxb->list, &rxq->rx_used);
332                         spin_unlock(&rxq->lock);
333                         __free_pages(page, trans_pcie->rx_page_order);
334                         return;
335                 }
336                 /* dma address must be no more than 36 bits */
337                 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
338                 /* and also 256 byte aligned! */
339                 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
340
341                 spin_lock(&rxq->lock);
342
343                 list_add_tail(&rxb->list, &rxq->rx_free);
344                 rxq->free_count++;
345
346                 spin_unlock(&rxq->lock);
347         }
348 }
349
350 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
351 {
352         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
353         struct iwl_rxq *rxq = &trans_pcie->rxq;
354         int i;
355
356         lockdep_assert_held(&rxq->lock);
357
358         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
359                 if (!rxq->pool[i].page)
360                         continue;
361                 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
362                                PAGE_SIZE << trans_pcie->rx_page_order,
363                                DMA_FROM_DEVICE);
364                 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
365                 rxq->pool[i].page = NULL;
366         }
367 }
368
369 /*
370  * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
371  *
372  * When moving to rx_free an page is allocated for the slot.
373  *
374  * Also restock the Rx queue via iwl_pcie_rxq_restock.
375  * This is called as a scheduled work item (except for during initialization)
376  */
377 static void iwl_pcie_rx_replenish(struct iwl_trans *trans, gfp_t gfp)
378 {
379         iwl_pcie_rxq_alloc_rbs(trans, gfp);
380
381         iwl_pcie_rxq_restock(trans);
382 }
383
384 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
385 {
386         struct iwl_trans_pcie *trans_pcie =
387             container_of(data, struct iwl_trans_pcie, rx_replenish);
388
389         iwl_pcie_rx_replenish(trans_pcie->trans, GFP_KERNEL);
390 }
391
392 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
393 {
394         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
395         struct iwl_rxq *rxq = &trans_pcie->rxq;
396         struct device *dev = trans->dev;
397
398         memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
399
400         spin_lock_init(&rxq->lock);
401
402         if (WARN_ON(rxq->bd || rxq->rb_stts))
403                 return -EINVAL;
404
405         /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
406         rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
407                                       &rxq->bd_dma, GFP_KERNEL);
408         if (!rxq->bd)
409                 goto err_bd;
410
411         /*Allocate the driver's pointer to receive buffer status */
412         rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
413                                            &rxq->rb_stts_dma, GFP_KERNEL);
414         if (!rxq->rb_stts)
415                 goto err_rb_stts;
416
417         return 0;
418
419 err_rb_stts:
420         dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
421                           rxq->bd, rxq->bd_dma);
422         rxq->bd_dma = 0;
423         rxq->bd = NULL;
424 err_bd:
425         return -ENOMEM;
426 }
427
428 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
429 {
430         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
431         u32 rb_size;
432         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
433
434         if (trans_pcie->rx_buf_size_8k)
435                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
436         else
437                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
438
439         /* Stop Rx DMA */
440         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
441         /* reset and flush pointers */
442         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
443         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
444         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
445
446         /* Reset driver's Rx queue write index */
447         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
448
449         /* Tell device where to find RBD circular buffer in DRAM */
450         iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
451                            (u32)(rxq->bd_dma >> 8));
452
453         /* Tell device where in DRAM to update its Rx status */
454         iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
455                            rxq->rb_stts_dma >> 4);
456
457         /* Enable Rx DMA
458          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
459          *      the credit mechanism in 5000 HW RX FIFO
460          * Direct rx interrupts to hosts
461          * Rx buffer size 4 or 8k
462          * RB timeout 0x10
463          * 256 RBDs
464          */
465         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
466                            FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
467                            FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
468                            FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
469                            rb_size|
470                            (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
471                            (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
472
473         /* Set interrupt coalescing timer to default (2048 usecs) */
474         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
475
476         /* W/A for interrupt coalescing bug in 7260 and 3160 */
477         if (trans->cfg->host_interrupt_operation_mode)
478                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
479 }
480
481 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
482 {
483         int i;
484
485         lockdep_assert_held(&rxq->lock);
486
487         INIT_LIST_HEAD(&rxq->rx_free);
488         INIT_LIST_HEAD(&rxq->rx_used);
489         rxq->free_count = 0;
490
491         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
492                 list_add(&rxq->pool[i].list, &rxq->rx_used);
493 }
494
495 int iwl_pcie_rx_init(struct iwl_trans *trans)
496 {
497         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
498         struct iwl_rxq *rxq = &trans_pcie->rxq;
499         int i, err;
500
501         if (!rxq->bd) {
502                 err = iwl_pcie_rx_alloc(trans);
503                 if (err)
504                         return err;
505         }
506
507         spin_lock(&rxq->lock);
508
509         INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
510
511         /* free all first - we might be reconfigured for a different size */
512         iwl_pcie_rxq_free_rbs(trans);
513         iwl_pcie_rx_init_rxb_lists(rxq);
514
515         for (i = 0; i < RX_QUEUE_SIZE; i++)
516                 rxq->queue[i] = NULL;
517
518         /* Set us so that we have processed and used all buffers, but have
519          * not restocked the Rx queue with fresh buffers */
520         rxq->read = rxq->write = 0;
521         rxq->write_actual = 0;
522         memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
523         spin_unlock(&rxq->lock);
524
525         iwl_pcie_rx_replenish(trans, GFP_KERNEL);
526
527         iwl_pcie_rx_hw_init(trans, rxq);
528
529         spin_lock(&rxq->lock);
530         iwl_pcie_rxq_inc_wr_ptr(trans);
531         spin_unlock(&rxq->lock);
532
533         return 0;
534 }
535
536 void iwl_pcie_rx_free(struct iwl_trans *trans)
537 {
538         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
539         struct iwl_rxq *rxq = &trans_pcie->rxq;
540
541         /*if rxq->bd is NULL, it means that nothing has been allocated,
542          * exit now */
543         if (!rxq->bd) {
544                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
545                 return;
546         }
547
548         cancel_work_sync(&trans_pcie->rx_replenish);
549
550         spin_lock(&rxq->lock);
551         iwl_pcie_rxq_free_rbs(trans);
552         spin_unlock(&rxq->lock);
553
554         dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
555                           rxq->bd, rxq->bd_dma);
556         rxq->bd_dma = 0;
557         rxq->bd = NULL;
558
559         if (rxq->rb_stts)
560                 dma_free_coherent(trans->dev,
561                                   sizeof(struct iwl_rb_status),
562                                   rxq->rb_stts, rxq->rb_stts_dma);
563         else
564                 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
565         rxq->rb_stts_dma = 0;
566         rxq->rb_stts = NULL;
567 }
568
569 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
570                                 struct iwl_rx_mem_buffer *rxb)
571 {
572         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
573         struct iwl_rxq *rxq = &trans_pcie->rxq;
574         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
575         bool page_stolen = false;
576         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
577         u32 offset = 0;
578
579         if (WARN_ON(!rxb))
580                 return;
581
582         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
583
584         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
585                 struct iwl_rx_packet *pkt;
586                 struct iwl_device_cmd *cmd;
587                 u16 sequence;
588                 bool reclaim;
589                 int index, cmd_index, err, len;
590                 struct iwl_rx_cmd_buffer rxcb = {
591                         ._offset = offset,
592                         ._rx_page_order = trans_pcie->rx_page_order,
593                         ._page = rxb->page,
594                         ._page_stolen = false,
595                         .truesize = max_len,
596                 };
597
598                 pkt = rxb_addr(&rxcb);
599
600                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
601                         break;
602
603                 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
604                         rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd),
605                         pkt->hdr.cmd);
606
607                 len = iwl_rx_packet_len(pkt);
608                 len += sizeof(u32); /* account for status word */
609                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
610                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
611
612                 /* Reclaim a command buffer only if this packet is a response
613                  *   to a (driver-originated) command.
614                  * If the packet (e.g. Rx frame) originated from uCode,
615                  *   there is no command buffer to reclaim.
616                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
617                  *   but apparently a few don't get set; catch them here. */
618                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
619                 if (reclaim) {
620                         int i;
621
622                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
623                                 if (trans_pcie->no_reclaim_cmds[i] ==
624                                                         pkt->hdr.cmd) {
625                                         reclaim = false;
626                                         break;
627                                 }
628                         }
629                 }
630
631                 sequence = le16_to_cpu(pkt->hdr.sequence);
632                 index = SEQ_TO_INDEX(sequence);
633                 cmd_index = get_cmd_index(&txq->q, index);
634
635                 if (reclaim)
636                         cmd = txq->entries[cmd_index].cmd;
637                 else
638                         cmd = NULL;
639
640                 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
641
642                 if (reclaim) {
643                         kzfree(txq->entries[cmd_index].free_buf);
644                         txq->entries[cmd_index].free_buf = NULL;
645                 }
646
647                 /*
648                  * After here, we should always check rxcb._page_stolen,
649                  * if it is true then one of the handlers took the page.
650                  */
651
652                 if (reclaim) {
653                         /* Invoke any callbacks, transfer the buffer to caller,
654                          * and fire off the (possibly) blocking
655                          * iwl_trans_send_cmd()
656                          * as we reclaim the driver command queue */
657                         if (!rxcb._page_stolen)
658                                 iwl_pcie_hcmd_complete(trans, &rxcb, err);
659                         else
660                                 IWL_WARN(trans, "Claim null rxb?\n");
661                 }
662
663                 page_stolen |= rxcb._page_stolen;
664                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
665         }
666
667         /* page was stolen from us -- free our reference */
668         if (page_stolen) {
669                 __free_pages(rxb->page, trans_pcie->rx_page_order);
670                 rxb->page = NULL;
671         }
672
673         /* Reuse the page if possible. For notification packets and
674          * SKBs that fail to Rx correctly, add them back into the
675          * rx_free list for reuse later. */
676         if (rxb->page != NULL) {
677                 rxb->page_dma =
678                         dma_map_page(trans->dev, rxb->page, 0,
679                                      PAGE_SIZE << trans_pcie->rx_page_order,
680                                      DMA_FROM_DEVICE);
681                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
682                         /*
683                          * free the page(s) as well to not break
684                          * the invariant that the items on the used
685                          * list have no page(s)
686                          */
687                         __free_pages(rxb->page, trans_pcie->rx_page_order);
688                         rxb->page = NULL;
689                         list_add_tail(&rxb->list, &rxq->rx_used);
690                 } else {
691                         list_add_tail(&rxb->list, &rxq->rx_free);
692                         rxq->free_count++;
693                 }
694         } else
695                 list_add_tail(&rxb->list, &rxq->rx_used);
696 }
697
698 /*
699  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
700  */
701 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
702 {
703         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
704         struct iwl_rxq *rxq = &trans_pcie->rxq;
705         u32 r, i;
706         u8 fill_rx = 0;
707         u32 count = 8;
708         int total_empty;
709
710 restart:
711         spin_lock(&rxq->lock);
712         /* uCode's read index (stored in shared DRAM) indicates the last Rx
713          * buffer that the driver may process (last buffer filled by ucode). */
714         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
715         i = rxq->read;
716
717         /* Rx interrupt, but nothing sent from uCode */
718         if (i == r)
719                 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
720
721         /* calculate total frames need to be restock after handling RX */
722         total_empty = r - rxq->write_actual;
723         if (total_empty < 0)
724                 total_empty += RX_QUEUE_SIZE;
725
726         if (total_empty > (RX_QUEUE_SIZE / 2))
727                 fill_rx = 1;
728
729         while (i != r) {
730                 struct iwl_rx_mem_buffer *rxb;
731
732                 rxb = rxq->queue[i];
733                 rxq->queue[i] = NULL;
734
735                 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
736                              r, i, rxb);
737                 iwl_pcie_rx_handle_rb(trans, rxb);
738
739                 i = (i + 1) & RX_QUEUE_MASK;
740                 /* If there are a lot of unused frames,
741                  * restock the Rx queue so ucode wont assert. */
742                 if (fill_rx) {
743                         count++;
744                         if (count >= 8) {
745                                 rxq->read = i;
746                                 spin_unlock(&rxq->lock);
747                                 iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
748                                 count = 0;
749                                 goto restart;
750                         }
751                 }
752         }
753
754         /* Backtrack one entry */
755         rxq->read = i;
756         spin_unlock(&rxq->lock);
757
758         if (fill_rx)
759                 iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
760         else
761                 iwl_pcie_rxq_restock(trans);
762
763         if (trans_pcie->napi.poll)
764                 napi_gro_flush(&trans_pcie->napi, false);
765 }
766
767 /*
768  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
769  */
770 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
771 {
772         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
773
774         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
775         if (trans->cfg->internal_wimax_coex &&
776             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
777                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
778              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
779                             APMG_PS_CTRL_VAL_RESET_REQ))) {
780                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
781                 iwl_op_mode_wimax_active(trans->op_mode);
782                 wake_up(&trans_pcie->wait_command_queue);
783                 return;
784         }
785
786         iwl_pcie_dump_csr(trans);
787         iwl_dump_fh(trans, NULL);
788
789         local_bh_disable();
790         /* The STATUS_FW_ERROR bit is set in this function. This must happen
791          * before we wake up the command caller, to ensure a proper cleanup. */
792         iwl_trans_fw_error(trans);
793         local_bh_enable();
794
795         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
796         wake_up(&trans_pcie->wait_command_queue);
797 }
798
799 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
800 {
801         u32 inta;
802
803         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
804
805         trace_iwlwifi_dev_irq(trans->dev);
806
807         /* Discover which interrupts are active/pending */
808         inta = iwl_read32(trans, CSR_INT);
809
810         /* the thread will service interrupts and re-enable them */
811         return inta;
812 }
813
814 /* a device (PCI-E) page is 4096 bytes long */
815 #define ICT_SHIFT       12
816 #define ICT_SIZE        (1 << ICT_SHIFT)
817 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
818
819 /* interrupt handler using ict table, with this interrupt driver will
820  * stop using INTA register to get device's interrupt, reading this register
821  * is expensive, device will write interrupts in ICT dram table, increment
822  * index then will fire interrupt to driver, driver will OR all ICT table
823  * entries from current index up to table entry with 0 value. the result is
824  * the interrupt we need to service, driver will set the entries back to 0 and
825  * set index.
826  */
827 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
828 {
829         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
830         u32 inta;
831         u32 val = 0;
832         u32 read;
833
834         trace_iwlwifi_dev_irq(trans->dev);
835
836         /* Ignore interrupt if there's nothing in NIC to service.
837          * This may be due to IRQ shared with another device,
838          * or due to sporadic interrupts thrown from our NIC. */
839         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
840         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
841         if (!read)
842                 return 0;
843
844         /*
845          * Collect all entries up to the first 0, starting from ict_index;
846          * note we already read at ict_index.
847          */
848         do {
849                 val |= read;
850                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
851                                 trans_pcie->ict_index, read);
852                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
853                 trans_pcie->ict_index =
854                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
855
856                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
857                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
858                                            read);
859         } while (read);
860
861         /* We should not get this value, just ignore it. */
862         if (val == 0xffffffff)
863                 val = 0;
864
865         /*
866          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
867          * (bit 15 before shifting it to 31) to clear when using interrupt
868          * coalescing. fortunately, bits 18 and 19 stay set when this happens
869          * so we use them to decide on the real state of the Rx bit.
870          * In order words, bit 15 is set if bit 18 or bit 19 are set.
871          */
872         if (val & 0xC0000)
873                 val |= 0x8000;
874
875         inta = (0xff & val) | ((0xff00 & val) << 16);
876         return inta;
877 }
878
879 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
880 {
881         struct iwl_trans *trans = dev_id;
882         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
883         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
884         u32 inta = 0;
885         u32 handled = 0;
886
887         lock_map_acquire(&trans->sync_cmd_lockdep_map);
888
889         spin_lock(&trans_pcie->irq_lock);
890
891         /* dram interrupt table not set yet,
892          * use legacy interrupt.
893          */
894         if (likely(trans_pcie->use_ict))
895                 inta = iwl_pcie_int_cause_ict(trans);
896         else
897                 inta = iwl_pcie_int_cause_non_ict(trans);
898
899         if (iwl_have_debug_level(IWL_DL_ISR)) {
900                 IWL_DEBUG_ISR(trans,
901                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
902                               inta, trans_pcie->inta_mask,
903                               iwl_read32(trans, CSR_INT_MASK),
904                               iwl_read32(trans, CSR_FH_INT_STATUS));
905                 if (inta & (~trans_pcie->inta_mask))
906                         IWL_DEBUG_ISR(trans,
907                                       "We got a masked interrupt (0x%08x)\n",
908                                       inta & (~trans_pcie->inta_mask));
909         }
910
911         inta &= trans_pcie->inta_mask;
912
913         /*
914          * Ignore interrupt if there's nothing in NIC to service.
915          * This may be due to IRQ shared with another device,
916          * or due to sporadic interrupts thrown from our NIC.
917          */
918         if (unlikely(!inta)) {
919                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
920                 /*
921                  * Re-enable interrupts here since we don't
922                  * have anything to service
923                  */
924                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
925                         iwl_enable_interrupts(trans);
926                 spin_unlock(&trans_pcie->irq_lock);
927                 lock_map_release(&trans->sync_cmd_lockdep_map);
928                 return IRQ_NONE;
929         }
930
931         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
932                 /*
933                  * Hardware disappeared. It might have
934                  * already raised an interrupt.
935                  */
936                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
937                 spin_unlock(&trans_pcie->irq_lock);
938                 goto out;
939         }
940
941         /* Ack/clear/reset pending uCode interrupts.
942          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
943          */
944         /* There is a hardware bug in the interrupt mask function that some
945          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
946          * they are disabled in the CSR_INT_MASK register. Furthermore the
947          * ICT interrupt handling mechanism has another bug that might cause
948          * these unmasked interrupts fail to be detected. We workaround the
949          * hardware bugs here by ACKing all the possible interrupts so that
950          * interrupt coalescing can still be achieved.
951          */
952         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
953
954         if (iwl_have_debug_level(IWL_DL_ISR))
955                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
956                               inta, iwl_read32(trans, CSR_INT_MASK));
957
958         spin_unlock(&trans_pcie->irq_lock);
959
960         /* Now service all interrupt bits discovered above. */
961         if (inta & CSR_INT_BIT_HW_ERR) {
962                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
963
964                 /* Tell the device to stop sending interrupts */
965                 iwl_disable_interrupts(trans);
966
967                 isr_stats->hw++;
968                 iwl_pcie_irq_handle_error(trans);
969
970                 handled |= CSR_INT_BIT_HW_ERR;
971
972                 goto out;
973         }
974
975         if (iwl_have_debug_level(IWL_DL_ISR)) {
976                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
977                 if (inta & CSR_INT_BIT_SCD) {
978                         IWL_DEBUG_ISR(trans,
979                                       "Scheduler finished to transmit the frame/frames.\n");
980                         isr_stats->sch++;
981                 }
982
983                 /* Alive notification via Rx interrupt will do the real work */
984                 if (inta & CSR_INT_BIT_ALIVE) {
985                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
986                         isr_stats->alive++;
987                 }
988         }
989
990         /* Safely ignore these bits for debug checks below */
991         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
992
993         /* HW RF KILL switch toggled */
994         if (inta & CSR_INT_BIT_RF_KILL) {
995                 bool hw_rfkill;
996
997                 hw_rfkill = iwl_is_rfkill_set(trans);
998                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
999                          hw_rfkill ? "disable radio" : "enable radio");
1000
1001                 isr_stats->rfkill++;
1002
1003                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1004                 if (hw_rfkill) {
1005                         set_bit(STATUS_RFKILL, &trans->status);
1006                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1007                                                &trans->status))
1008                                 IWL_DEBUG_RF_KILL(trans,
1009                                                   "Rfkill while SYNC HCMD in flight\n");
1010                         wake_up(&trans_pcie->wait_command_queue);
1011                 } else {
1012                         clear_bit(STATUS_RFKILL, &trans->status);
1013                 }
1014
1015                 handled |= CSR_INT_BIT_RF_KILL;
1016         }
1017
1018         /* Chip got too hot and stopped itself */
1019         if (inta & CSR_INT_BIT_CT_KILL) {
1020                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1021                 isr_stats->ctkill++;
1022                 handled |= CSR_INT_BIT_CT_KILL;
1023         }
1024
1025         /* Error detected by uCode */
1026         if (inta & CSR_INT_BIT_SW_ERR) {
1027                 IWL_ERR(trans, "Microcode SW error detected. "
1028                         " Restarting 0x%X.\n", inta);
1029                 isr_stats->sw++;
1030                 iwl_pcie_irq_handle_error(trans);
1031                 handled |= CSR_INT_BIT_SW_ERR;
1032         }
1033
1034         /* uCode wakes up after power-down sleep */
1035         if (inta & CSR_INT_BIT_WAKEUP) {
1036                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1037                 iwl_pcie_rxq_check_wrptr(trans);
1038                 iwl_pcie_txq_check_wrptrs(trans);
1039
1040                 isr_stats->wakeup++;
1041
1042                 handled |= CSR_INT_BIT_WAKEUP;
1043         }
1044
1045         /* All uCode command responses, including Tx command responses,
1046          * Rx "responses" (frame-received notification), and other
1047          * notifications from uCode come through here*/
1048         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1049                     CSR_INT_BIT_RX_PERIODIC)) {
1050                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1051                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1052                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1053                         iwl_write32(trans, CSR_FH_INT_STATUS,
1054                                         CSR_FH_INT_RX_MASK);
1055                 }
1056                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1057                         handled |= CSR_INT_BIT_RX_PERIODIC;
1058                         iwl_write32(trans,
1059                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1060                 }
1061                 /* Sending RX interrupt require many steps to be done in the
1062                  * the device:
1063                  * 1- write interrupt to current index in ICT table.
1064                  * 2- dma RX frame.
1065                  * 3- update RX shared data to indicate last write index.
1066                  * 4- send interrupt.
1067                  * This could lead to RX race, driver could receive RX interrupt
1068                  * but the shared data changes does not reflect this;
1069                  * periodic interrupt will detect any dangling Rx activity.
1070                  */
1071
1072                 /* Disable periodic interrupt; we use it as just a one-shot. */
1073                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1074                             CSR_INT_PERIODIC_DIS);
1075
1076                 /*
1077                  * Enable periodic interrupt in 8 msec only if we received
1078                  * real RX interrupt (instead of just periodic int), to catch
1079                  * any dangling Rx interrupt.  If it was just the periodic
1080                  * interrupt, there was no dangling Rx activity, and no need
1081                  * to extend the periodic interrupt; one-shot is enough.
1082                  */
1083                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1084                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1085                                    CSR_INT_PERIODIC_ENA);
1086
1087                 isr_stats->rx++;
1088
1089                 local_bh_disable();
1090                 iwl_pcie_rx_handle(trans);
1091                 local_bh_enable();
1092         }
1093
1094         /* This "Tx" DMA channel is used only for loading uCode */
1095         if (inta & CSR_INT_BIT_FH_TX) {
1096                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1097                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1098                 isr_stats->tx++;
1099                 handled |= CSR_INT_BIT_FH_TX;
1100                 /* Wake up uCode load routine, now that load is complete */
1101                 trans_pcie->ucode_write_complete = true;
1102                 wake_up(&trans_pcie->ucode_write_waitq);
1103         }
1104
1105         if (inta & ~handled) {
1106                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1107                 isr_stats->unhandled++;
1108         }
1109
1110         if (inta & ~(trans_pcie->inta_mask)) {
1111                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1112                          inta & ~trans_pcie->inta_mask);
1113         }
1114
1115         /* Re-enable all interrupts */
1116         /* only Re-enable if disabled by irq */
1117         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1118                 iwl_enable_interrupts(trans);
1119         /* Re-enable RF_KILL if it occurred */
1120         else if (handled & CSR_INT_BIT_RF_KILL)
1121                 iwl_enable_rfkill_int(trans);
1122
1123 out:
1124         lock_map_release(&trans->sync_cmd_lockdep_map);
1125         return IRQ_HANDLED;
1126 }
1127
1128 /******************************************************************************
1129  *
1130  * ICT functions
1131  *
1132  ******************************************************************************/
1133
1134 /* Free dram table */
1135 void iwl_pcie_free_ict(struct iwl_trans *trans)
1136 {
1137         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1138
1139         if (trans_pcie->ict_tbl) {
1140                 dma_free_coherent(trans->dev, ICT_SIZE,
1141                                   trans_pcie->ict_tbl,
1142                                   trans_pcie->ict_tbl_dma);
1143                 trans_pcie->ict_tbl = NULL;
1144                 trans_pcie->ict_tbl_dma = 0;
1145         }
1146 }
1147
1148 /*
1149  * allocate dram shared table, it is an aligned memory
1150  * block of ICT_SIZE.
1151  * also reset all data related to ICT table interrupt.
1152  */
1153 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1154 {
1155         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1156
1157         trans_pcie->ict_tbl =
1158                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1159                                    &trans_pcie->ict_tbl_dma,
1160                                    GFP_KERNEL);
1161         if (!trans_pcie->ict_tbl)
1162                 return -ENOMEM;
1163
1164         /* just an API sanity check ... it is guaranteed to be aligned */
1165         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1166                 iwl_pcie_free_ict(trans);
1167                 return -EINVAL;
1168         }
1169
1170         IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1171                       (unsigned long long)trans_pcie->ict_tbl_dma,
1172                       trans_pcie->ict_tbl);
1173
1174         return 0;
1175 }
1176
1177 /* Device is going up inform it about using ICT interrupt table,
1178  * also we need to tell the driver to start using ICT interrupt.
1179  */
1180 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1181 {
1182         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1183         u32 val;
1184
1185         if (!trans_pcie->ict_tbl)
1186                 return;
1187
1188         spin_lock(&trans_pcie->irq_lock);
1189         iwl_disable_interrupts(trans);
1190
1191         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1192
1193         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1194
1195         val |= CSR_DRAM_INT_TBL_ENABLE;
1196         val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1197
1198         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1199
1200         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1201         trans_pcie->use_ict = true;
1202         trans_pcie->ict_index = 0;
1203         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1204         iwl_enable_interrupts(trans);
1205         spin_unlock(&trans_pcie->irq_lock);
1206 }
1207
1208 /* Device is going down disable ict interrupt usage */
1209 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1210 {
1211         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1212
1213         spin_lock(&trans_pcie->irq_lock);
1214         trans_pcie->use_ict = false;
1215         spin_unlock(&trans_pcie->irq_lock);
1216 }
1217
1218 irqreturn_t iwl_pcie_isr(int irq, void *data)
1219 {
1220         struct iwl_trans *trans = data;
1221
1222         if (!trans)
1223                 return IRQ_NONE;
1224
1225         /* Disable (but don't clear!) interrupts here to avoid
1226          * back-to-back ISRs and sporadic interrupts from our NIC.
1227          * If we have something to service, the tasklet will re-enable ints.
1228          * If we *don't* have something, we'll re-enable before leaving here.
1229          */
1230         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1231
1232         return IRQ_WAKE_THREAD;
1233 }