Merge branch 'for-4.9/block-irq' of git://git.kernel.dk/linux-block
[cascardo/linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53                 
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         struct nvme_ctrl ctrl;
103         struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108         return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116         struct device *q_dmadev;
117         struct nvme_dev *dev;
118         char irqname[24];       /* nvme4294967295-65535\0 */
119         spinlock_t q_lock;
120         struct nvme_command *sq_cmds;
121         struct nvme_command __iomem *sq_cmds_io;
122         volatile struct nvme_completion *cqes;
123         struct blk_mq_tags **tags;
124         dma_addr_t sq_dma_addr;
125         dma_addr_t cq_dma_addr;
126         u32 __iomem *q_db;
127         u16 q_depth;
128         s16 cq_vector;
129         u16 sq_tail;
130         u16 cq_head;
131         u16 qid;
132         u8 cq_phase;
133         u8 cqe_seen;
134 };
135
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143         struct nvme_queue *nvmeq;
144         int aborted;
145         int npages;             /* In the PRP list. 0 means small pool in use */
146         int nents;              /* Used in scatterlist */
147         int length;             /* Of data, in bytes */
148         dma_addr_t first_dma;
149         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150         struct scatterlist *sg;
151         struct scatterlist inline_sg[0];
152 };
153
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES          2
177 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187                                       dev->ctrl.page_size);
188         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192                 unsigned int size, unsigned int nseg)
193 {
194         return sizeof(__le64 *) * nvme_npages(size, dev) +
195                         sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200         return sizeof(struct nvme_iod) +
201                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvmeq_irq(struct nvme_queue *nvmeq)
205 {
206         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
207 }
208
209 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
210                                 unsigned int hctx_idx)
211 {
212         struct nvme_dev *dev = data;
213         struct nvme_queue *nvmeq = dev->queues[0];
214
215         WARN_ON(hctx_idx != 0);
216         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
217         WARN_ON(nvmeq->tags);
218
219         hctx->driver_data = nvmeq;
220         nvmeq->tags = &dev->admin_tagset.tags[0];
221         return 0;
222 }
223
224 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
225 {
226         struct nvme_queue *nvmeq = hctx->driver_data;
227
228         nvmeq->tags = NULL;
229 }
230
231 static int nvme_admin_init_request(void *data, struct request *req,
232                                 unsigned int hctx_idx, unsigned int rq_idx,
233                                 unsigned int numa_node)
234 {
235         struct nvme_dev *dev = data;
236         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
237         struct nvme_queue *nvmeq = dev->queues[0];
238
239         BUG_ON(!nvmeq);
240         iod->nvmeq = nvmeq;
241         return 0;
242 }
243
244 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
245                           unsigned int hctx_idx)
246 {
247         struct nvme_dev *dev = data;
248         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
249
250         if (!nvmeq->tags)
251                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
252
253         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
254         hctx->driver_data = nvmeq;
255         return 0;
256 }
257
258 static int nvme_init_request(void *data, struct request *req,
259                                 unsigned int hctx_idx, unsigned int rq_idx,
260                                 unsigned int numa_node)
261 {
262         struct nvme_dev *dev = data;
263         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
264         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
265
266         BUG_ON(!nvmeq);
267         iod->nvmeq = nvmeq;
268         return 0;
269 }
270
271 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
272 {
273         struct nvme_dev *dev = set->driver_data;
274
275         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
276 }
277
278 /**
279  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
280  * @nvmeq: The queue to use
281  * @cmd: The command to send
282  *
283  * Safe to use from interrupt context
284  */
285 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
286                                                 struct nvme_command *cmd)
287 {
288         u16 tail = nvmeq->sq_tail;
289
290         if (nvmeq->sq_cmds_io)
291                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
292         else
293                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
294
295         if (++tail == nvmeq->q_depth)
296                 tail = 0;
297         writel(tail, nvmeq->q_db);
298         nvmeq->sq_tail = tail;
299 }
300
301 static __le64 **iod_list(struct request *req)
302 {
303         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
304         return (__le64 **)(iod->sg + req->nr_phys_segments);
305 }
306
307 static int nvme_init_iod(struct request *rq, unsigned size,
308                 struct nvme_dev *dev)
309 {
310         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
311         int nseg = rq->nr_phys_segments;
312
313         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
314                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
315                 if (!iod->sg)
316                         return BLK_MQ_RQ_QUEUE_BUSY;
317         } else {
318                 iod->sg = iod->inline_sg;
319         }
320
321         iod->aborted = 0;
322         iod->npages = -1;
323         iod->nents = 0;
324         iod->length = size;
325
326         if (!(rq->cmd_flags & REQ_DONTPREP)) {
327                 rq->retries = 0;
328                 rq->cmd_flags |= REQ_DONTPREP;
329         }
330         return 0;
331 }
332
333 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
334 {
335         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
336         const int last_prp = dev->ctrl.page_size / 8 - 1;
337         int i;
338         __le64 **list = iod_list(req);
339         dma_addr_t prp_dma = iod->first_dma;
340
341         nvme_cleanup_cmd(req);
342
343         if (iod->npages == 0)
344                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345         for (i = 0; i < iod->npages; i++) {
346                 __le64 *prp_list = list[i];
347                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349                 prp_dma = next_prp_dma;
350         }
351
352         if (iod->sg != iod->inline_sg)
353                 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359         if (be32_to_cpu(pi->ref_tag) == v)
360                 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365         if (be32_to_cpu(pi->ref_tag) == p)
366                 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382         struct nvme_ns *ns = req->rq_disk->private_data;
383         struct bio_integrity_payload *bip;
384         struct t10_pi_tuple *pi;
385         void *p, *pmap;
386         u32 i, nlb, ts, phys, virt;
387
388         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389                 return;
390
391         bip = bio_integrity(req->bio);
392         if (!bip)
393                 return;
394
395         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397         p = pmap;
398         virt = bip_get_seed(bip);
399         phys = nvme_block_nr(ns, blk_rq_pos(req));
400         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401         ts = ns->disk->queue->integrity.tuple_size;
402
403         for (i = 0; i < nlb; i++, virt++, phys++) {
404                 pi = (struct t10_pi_tuple *)p;
405                 dif_swap(phys, virt, pi);
406                 p += ts;
407         }
408         kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424                 int total_len)
425 {
426         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427         struct dma_pool *pool;
428         int length = total_len;
429         struct scatterlist *sg = iod->sg;
430         int dma_len = sg_dma_len(sg);
431         u64 dma_addr = sg_dma_address(sg);
432         u32 page_size = dev->ctrl.page_size;
433         int offset = dma_addr & (page_size - 1);
434         __le64 *prp_list;
435         __le64 **list = iod_list(req);
436         dma_addr_t prp_dma;
437         int nprps, i;
438
439         length -= (page_size - offset);
440         if (length <= 0)
441                 return true;
442
443         dma_len -= (page_size - offset);
444         if (dma_len) {
445                 dma_addr += (page_size - offset);
446         } else {
447                 sg = sg_next(sg);
448                 dma_addr = sg_dma_address(sg);
449                 dma_len = sg_dma_len(sg);
450         }
451
452         if (length <= page_size) {
453                 iod->first_dma = dma_addr;
454                 return true;
455         }
456
457         nprps = DIV_ROUND_UP(length, page_size);
458         if (nprps <= (256 / 8)) {
459                 pool = dev->prp_small_pool;
460                 iod->npages = 0;
461         } else {
462                 pool = dev->prp_page_pool;
463                 iod->npages = 1;
464         }
465
466         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467         if (!prp_list) {
468                 iod->first_dma = dma_addr;
469                 iod->npages = -1;
470                 return false;
471         }
472         list[0] = prp_list;
473         iod->first_dma = prp_dma;
474         i = 0;
475         for (;;) {
476                 if (i == page_size >> 3) {
477                         __le64 *old_prp_list = prp_list;
478                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479                         if (!prp_list)
480                                 return false;
481                         list[iod->npages++] = prp_list;
482                         prp_list[0] = old_prp_list[i - 1];
483                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484                         i = 1;
485                 }
486                 prp_list[i++] = cpu_to_le64(dma_addr);
487                 dma_len -= page_size;
488                 dma_addr += page_size;
489                 length -= page_size;
490                 if (length <= 0)
491                         break;
492                 if (dma_len > 0)
493                         continue;
494                 BUG_ON(dma_len < 0);
495                 sg = sg_next(sg);
496                 dma_addr = sg_dma_address(sg);
497                 dma_len = sg_dma_len(sg);
498         }
499
500         return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504                 unsigned size, struct nvme_command *cmnd)
505 {
506         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507         struct request_queue *q = req->q;
508         enum dma_data_direction dma_dir = rq_data_dir(req) ?
509                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
510         int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512         sg_init_table(iod->sg, req->nr_phys_segments);
513         iod->nents = blk_rq_map_sg(q, req, iod->sg);
514         if (!iod->nents)
515                 goto out;
516
517         ret = BLK_MQ_RQ_QUEUE_BUSY;
518         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
519                 goto out;
520
521         if (!nvme_setup_prps(dev, req, size))
522                 goto out_unmap;
523
524         ret = BLK_MQ_RQ_QUEUE_ERROR;
525         if (blk_integrity_rq(req)) {
526                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527                         goto out_unmap;
528
529                 sg_init_table(&iod->meta_sg, 1);
530                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531                         goto out_unmap;
532
533                 if (rq_data_dir(req))
534                         nvme_dif_remap(req, nvme_dif_prep);
535
536                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537                         goto out_unmap;
538         }
539
540         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542         if (blk_integrity_rq(req))
543                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544         return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549         return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555         enum dma_data_direction dma_dir = rq_data_dir(req) ?
556                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558         if (iod->nents) {
559                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560                 if (blk_integrity_rq(req)) {
561                         if (!rq_data_dir(req))
562                                 nvme_dif_remap(req, nvme_dif_complete);
563                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564                 }
565         }
566
567         nvme_free_iod(dev, req);
568 }
569
570 /*
571  * NOTE: ns is NULL when called on the admin queue.
572  */
573 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
574                          const struct blk_mq_queue_data *bd)
575 {
576         struct nvme_ns *ns = hctx->queue->queuedata;
577         struct nvme_queue *nvmeq = hctx->driver_data;
578         struct nvme_dev *dev = nvmeq->dev;
579         struct request *req = bd->rq;
580         struct nvme_command cmnd;
581         unsigned map_len;
582         int ret = BLK_MQ_RQ_QUEUE_OK;
583
584         /*
585          * If formated with metadata, require the block layer provide a buffer
586          * unless this namespace is formated such that the metadata can be
587          * stripped/generated by the controller with PRACT=1.
588          */
589         if (ns && ns->ms && !blk_integrity_rq(req)) {
590                 if (!(ns->pi_type && ns->ms == 8) &&
591                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
592                         blk_mq_end_request(req, -EFAULT);
593                         return BLK_MQ_RQ_QUEUE_OK;
594                 }
595         }
596
597         map_len = nvme_map_len(req);
598         ret = nvme_init_iod(req, map_len, dev);
599         if (ret)
600                 return ret;
601
602         ret = nvme_setup_cmd(ns, req, &cmnd);
603         if (ret)
604                 goto out;
605
606         if (req->nr_phys_segments)
607                 ret = nvme_map_data(dev, req, map_len, &cmnd);
608
609         if (ret)
610                 goto out;
611
612         cmnd.common.command_id = req->tag;
613         blk_mq_start_request(req);
614
615         spin_lock_irq(&nvmeq->q_lock);
616         if (unlikely(nvmeq->cq_vector < 0)) {
617                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
618                         ret = BLK_MQ_RQ_QUEUE_BUSY;
619                 else
620                         ret = BLK_MQ_RQ_QUEUE_ERROR;
621                 spin_unlock_irq(&nvmeq->q_lock);
622                 goto out;
623         }
624         __nvme_submit_cmd(nvmeq, &cmnd);
625         nvme_process_cq(nvmeq);
626         spin_unlock_irq(&nvmeq->q_lock);
627         return BLK_MQ_RQ_QUEUE_OK;
628 out:
629         nvme_free_iod(dev, req);
630         return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636         struct nvme_dev *dev = iod->nvmeq->dev;
637         int error = 0;
638
639         nvme_unmap_data(dev, req);
640
641         if (unlikely(req->errors)) {
642                 if (nvme_req_needs_retry(req, req->errors)) {
643                         req->retries++;
644                         nvme_requeue_req(req);
645                         return;
646                 }
647
648                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649                         error = req->errors;
650                 else
651                         error = nvme_error_status(req->errors);
652         }
653
654         if (unlikely(iod->aborted)) {
655                 dev_warn(dev->ctrl.device,
656                         "completing aborted command with status: %04x\n",
657                         req->errors);
658         }
659
660         blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665                 u16 phase)
666 {
667         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672         u16 head, phase;
673
674         head = nvmeq->cq_head;
675         phase = nvmeq->cq_phase;
676
677         while (nvme_cqe_valid(nvmeq, head, phase)) {
678                 struct nvme_completion cqe = nvmeq->cqes[head];
679                 struct request *req;
680
681                 if (++head == nvmeq->q_depth) {
682                         head = 0;
683                         phase = !phase;
684                 }
685
686                 if (tag && *tag == cqe.command_id)
687                         *tag = -1;
688
689                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690                         dev_warn(nvmeq->dev->ctrl.device,
691                                 "invalid id %d completed on queue %d\n",
692                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
693                         continue;
694                 }
695
696                 /*
697                  * AEN requests are special as they don't time out and can
698                  * survive any kind of queue freeze and often don't respond to
699                  * aborts.  We don't even bother to allocate a struct request
700                  * for them but rather special case them here.
701                  */
702                 if (unlikely(nvmeq->qid == 0 &&
703                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704                         nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
705                         continue;
706                 }
707
708                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
709                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
710                         memcpy(req->special, &cqe, sizeof(cqe));
711                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712
713         }
714
715         /* If the controller ignores the cq head doorbell and continuously
716          * writes to the queue, it is theoretically possible to wrap around
717          * the queue twice and mistakenly return IRQ_NONE.  Linux only
718          * requires that 0.1% of your interrupts are handled, so this isn't
719          * a big problem.
720          */
721         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
722                 return;
723
724         if (likely(nvmeq->cq_vector >= 0))
725                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
726         nvmeq->cq_head = head;
727         nvmeq->cq_phase = phase;
728
729         nvmeq->cqe_seen = 1;
730 }
731
732 static void nvme_process_cq(struct nvme_queue *nvmeq)
733 {
734         __nvme_process_cq(nvmeq, NULL);
735 }
736
737 static irqreturn_t nvme_irq(int irq, void *data)
738 {
739         irqreturn_t result;
740         struct nvme_queue *nvmeq = data;
741         spin_lock(&nvmeq->q_lock);
742         nvme_process_cq(nvmeq);
743         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
744         nvmeq->cqe_seen = 0;
745         spin_unlock(&nvmeq->q_lock);
746         return result;
747 }
748
749 static irqreturn_t nvme_irq_check(int irq, void *data)
750 {
751         struct nvme_queue *nvmeq = data;
752         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
753                 return IRQ_WAKE_THREAD;
754         return IRQ_NONE;
755 }
756
757 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
758 {
759         struct nvme_queue *nvmeq = hctx->driver_data;
760
761         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
762                 spin_lock_irq(&nvmeq->q_lock);
763                 __nvme_process_cq(nvmeq, &tag);
764                 spin_unlock_irq(&nvmeq->q_lock);
765
766                 if (tag == -1)
767                         return 1;
768         }
769
770         return 0;
771 }
772
773 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
774 {
775         struct nvme_dev *dev = to_nvme_dev(ctrl);
776         struct nvme_queue *nvmeq = dev->queues[0];
777         struct nvme_command c;
778
779         memset(&c, 0, sizeof(c));
780         c.common.opcode = nvme_admin_async_event;
781         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
782
783         spin_lock_irq(&nvmeq->q_lock);
784         __nvme_submit_cmd(nvmeq, &c);
785         spin_unlock_irq(&nvmeq->q_lock);
786 }
787
788 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
789 {
790         struct nvme_command c;
791
792         memset(&c, 0, sizeof(c));
793         c.delete_queue.opcode = opcode;
794         c.delete_queue.qid = cpu_to_le16(id);
795
796         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
797 }
798
799 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
800                                                 struct nvme_queue *nvmeq)
801 {
802         struct nvme_command c;
803         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
804
805         /*
806          * Note: we (ab)use the fact the the prp fields survive if no data
807          * is attached to the request.
808          */
809         memset(&c, 0, sizeof(c));
810         c.create_cq.opcode = nvme_admin_create_cq;
811         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
812         c.create_cq.cqid = cpu_to_le16(qid);
813         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
814         c.create_cq.cq_flags = cpu_to_le16(flags);
815         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
816
817         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
818 }
819
820 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
821                                                 struct nvme_queue *nvmeq)
822 {
823         struct nvme_command c;
824         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
825
826         /*
827          * Note: we (ab)use the fact the the prp fields survive if no data
828          * is attached to the request.
829          */
830         memset(&c, 0, sizeof(c));
831         c.create_sq.opcode = nvme_admin_create_sq;
832         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
833         c.create_sq.sqid = cpu_to_le16(qid);
834         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
835         c.create_sq.sq_flags = cpu_to_le16(flags);
836         c.create_sq.cqid = cpu_to_le16(qid);
837
838         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
839 }
840
841 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
842 {
843         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
844 }
845
846 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
847 {
848         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
849 }
850
851 static void abort_endio(struct request *req, int error)
852 {
853         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
854         struct nvme_queue *nvmeq = iod->nvmeq;
855         u16 status = req->errors;
856
857         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
858         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
859         blk_mq_free_request(req);
860 }
861
862 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
863 {
864         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
865         struct nvme_queue *nvmeq = iod->nvmeq;
866         struct nvme_dev *dev = nvmeq->dev;
867         struct request *abort_req;
868         struct nvme_command cmd;
869
870         /*
871          * Shutdown immediately if controller times out while starting. The
872          * reset work will see the pci device disabled when it gets the forced
873          * cancellation error. All outstanding requests are completed on
874          * shutdown, so we return BLK_EH_HANDLED.
875          */
876         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
877                 dev_warn(dev->ctrl.device,
878                          "I/O %d QID %d timeout, disable controller\n",
879                          req->tag, nvmeq->qid);
880                 nvme_dev_disable(dev, false);
881                 req->errors = NVME_SC_CANCELLED;
882                 return BLK_EH_HANDLED;
883         }
884
885         /*
886          * Shutdown the controller immediately and schedule a reset if the
887          * command was already aborted once before and still hasn't been
888          * returned to the driver, or if this is the admin queue.
889          */
890         if (!nvmeq->qid || iod->aborted) {
891                 dev_warn(dev->ctrl.device,
892                          "I/O %d QID %d timeout, reset controller\n",
893                          req->tag, nvmeq->qid);
894                 nvme_dev_disable(dev, false);
895                 queue_work(nvme_workq, &dev->reset_work);
896
897                 /*
898                  * Mark the request as handled, since the inline shutdown
899                  * forces all outstanding requests to complete.
900                  */
901                 req->errors = NVME_SC_CANCELLED;
902                 return BLK_EH_HANDLED;
903         }
904
905         iod->aborted = 1;
906
907         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
908                 atomic_inc(&dev->ctrl.abort_limit);
909                 return BLK_EH_RESET_TIMER;
910         }
911
912         memset(&cmd, 0, sizeof(cmd));
913         cmd.abort.opcode = nvme_admin_abort_cmd;
914         cmd.abort.cid = req->tag;
915         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
916
917         dev_warn(nvmeq->dev->ctrl.device,
918                 "I/O %d QID %d timeout, aborting\n",
919                  req->tag, nvmeq->qid);
920
921         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
922                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
923         if (IS_ERR(abort_req)) {
924                 atomic_inc(&dev->ctrl.abort_limit);
925                 return BLK_EH_RESET_TIMER;
926         }
927
928         abort_req->timeout = ADMIN_TIMEOUT;
929         abort_req->end_io_data = NULL;
930         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
931
932         /*
933          * The aborted req will be completed on receiving the abort req.
934          * We enable the timer again. If hit twice, it'll cause a device reset,
935          * as the device then is in a faulty state.
936          */
937         return BLK_EH_RESET_TIMER;
938 }
939
940 static void nvme_free_queue(struct nvme_queue *nvmeq)
941 {
942         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
943                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
944         if (nvmeq->sq_cmds)
945                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
946                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
947         kfree(nvmeq);
948 }
949
950 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
951 {
952         int i;
953
954         for (i = dev->queue_count - 1; i >= lowest; i--) {
955                 struct nvme_queue *nvmeq = dev->queues[i];
956                 dev->queue_count--;
957                 dev->queues[i] = NULL;
958                 nvme_free_queue(nvmeq);
959         }
960 }
961
962 /**
963  * nvme_suspend_queue - put queue into suspended state
964  * @nvmeq - queue to suspend
965  */
966 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
967 {
968         int vector;
969
970         spin_lock_irq(&nvmeq->q_lock);
971         if (nvmeq->cq_vector == -1) {
972                 spin_unlock_irq(&nvmeq->q_lock);
973                 return 1;
974         }
975         vector = nvmeq_irq(nvmeq);
976         nvmeq->dev->online_queues--;
977         nvmeq->cq_vector = -1;
978         spin_unlock_irq(&nvmeq->q_lock);
979
980         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
981                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
982
983         free_irq(vector, nvmeq);
984
985         return 0;
986 }
987
988 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
989 {
990         struct nvme_queue *nvmeq = dev->queues[0];
991
992         if (!nvmeq)
993                 return;
994         if (nvme_suspend_queue(nvmeq))
995                 return;
996
997         if (shutdown)
998                 nvme_shutdown_ctrl(&dev->ctrl);
999         else
1000                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1001                                                 dev->bar + NVME_REG_CAP));
1002
1003         spin_lock_irq(&nvmeq->q_lock);
1004         nvme_process_cq(nvmeq);
1005         spin_unlock_irq(&nvmeq->q_lock);
1006 }
1007
1008 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1009                                 int entry_size)
1010 {
1011         int q_depth = dev->q_depth;
1012         unsigned q_size_aligned = roundup(q_depth * entry_size,
1013                                           dev->ctrl.page_size);
1014
1015         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1016                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1017                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1018                 q_depth = div_u64(mem_per_q, entry_size);
1019
1020                 /*
1021                  * Ensure the reduced q_depth is above some threshold where it
1022                  * would be better to map queues in system memory with the
1023                  * original depth
1024                  */
1025                 if (q_depth < 64)
1026                         return -ENOMEM;
1027         }
1028
1029         return q_depth;
1030 }
1031
1032 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1033                                 int qid, int depth)
1034 {
1035         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1036                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1037                                                       dev->ctrl.page_size);
1038                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1039                 nvmeq->sq_cmds_io = dev->cmb + offset;
1040         } else {
1041                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1042                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1043                 if (!nvmeq->sq_cmds)
1044                         return -ENOMEM;
1045         }
1046
1047         return 0;
1048 }
1049
1050 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1051                                                         int depth)
1052 {
1053         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1054         if (!nvmeq)
1055                 return NULL;
1056
1057         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1058                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1059         if (!nvmeq->cqes)
1060                 goto free_nvmeq;
1061
1062         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1063                 goto free_cqdma;
1064
1065         nvmeq->q_dmadev = dev->dev;
1066         nvmeq->dev = dev;
1067         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1068                         dev->ctrl.instance, qid);
1069         spin_lock_init(&nvmeq->q_lock);
1070         nvmeq->cq_head = 0;
1071         nvmeq->cq_phase = 1;
1072         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1073         nvmeq->q_depth = depth;
1074         nvmeq->qid = qid;
1075         nvmeq->cq_vector = -1;
1076         dev->queues[qid] = nvmeq;
1077         dev->queue_count++;
1078
1079         return nvmeq;
1080
1081  free_cqdma:
1082         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1083                                                         nvmeq->cq_dma_addr);
1084  free_nvmeq:
1085         kfree(nvmeq);
1086         return NULL;
1087 }
1088
1089 static int queue_request_irq(struct nvme_queue *nvmeq)
1090 {
1091         if (use_threaded_interrupts)
1092                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1093                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1094         else
1095                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1096                                 nvmeq->irqname, nvmeq);
1097 }
1098
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100 {
1101         struct nvme_dev *dev = nvmeq->dev;
1102
1103         spin_lock_irq(&nvmeq->q_lock);
1104         nvmeq->sq_tail = 0;
1105         nvmeq->cq_head = 0;
1106         nvmeq->cq_phase = 1;
1107         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109         dev->online_queues++;
1110         spin_unlock_irq(&nvmeq->q_lock);
1111 }
1112
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114 {
1115         struct nvme_dev *dev = nvmeq->dev;
1116         int result;
1117
1118         nvmeq->cq_vector = qid - 1;
1119         result = adapter_alloc_cq(dev, qid, nvmeq);
1120         if (result < 0)
1121                 return result;
1122
1123         result = adapter_alloc_sq(dev, qid, nvmeq);
1124         if (result < 0)
1125                 goto release_cq;
1126
1127         result = queue_request_irq(nvmeq);
1128         if (result < 0)
1129                 goto release_sq;
1130
1131         nvme_init_queue(nvmeq, qid);
1132         return result;
1133
1134  release_sq:
1135         adapter_delete_sq(dev, qid);
1136  release_cq:
1137         adapter_delete_cq(dev, qid);
1138         return result;
1139 }
1140
1141 static struct blk_mq_ops nvme_mq_admin_ops = {
1142         .queue_rq       = nvme_queue_rq,
1143         .complete       = nvme_complete_rq,
1144         .init_hctx      = nvme_admin_init_hctx,
1145         .exit_hctx      = nvme_admin_exit_hctx,
1146         .init_request   = nvme_admin_init_request,
1147         .timeout        = nvme_timeout,
1148 };
1149
1150 static struct blk_mq_ops nvme_mq_ops = {
1151         .queue_rq       = nvme_queue_rq,
1152         .complete       = nvme_complete_rq,
1153         .init_hctx      = nvme_init_hctx,
1154         .init_request   = nvme_init_request,
1155         .map_queues     = nvme_pci_map_queues,
1156         .timeout        = nvme_timeout,
1157         .poll           = nvme_poll,
1158 };
1159
1160 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1161 {
1162         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1163                 /*
1164                  * If the controller was reset during removal, it's possible
1165                  * user requests may be waiting on a stopped queue. Start the
1166                  * queue to flush these to completion.
1167                  */
1168                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1169                 blk_cleanup_queue(dev->ctrl.admin_q);
1170                 blk_mq_free_tag_set(&dev->admin_tagset);
1171         }
1172 }
1173
1174 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1175 {
1176         if (!dev->ctrl.admin_q) {
1177                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1178                 dev->admin_tagset.nr_hw_queues = 1;
1179
1180                 /*
1181                  * Subtract one to leave an empty queue entry for 'Full Queue'
1182                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1183                  */
1184                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1185                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1186                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1187                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1188                 dev->admin_tagset.driver_data = dev;
1189
1190                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1191                         return -ENOMEM;
1192
1193                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1194                 if (IS_ERR(dev->ctrl.admin_q)) {
1195                         blk_mq_free_tag_set(&dev->admin_tagset);
1196                         return -ENOMEM;
1197                 }
1198                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1199                         nvme_dev_remove_admin(dev);
1200                         dev->ctrl.admin_q = NULL;
1201                         return -ENODEV;
1202                 }
1203         } else
1204                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1205
1206         return 0;
1207 }
1208
1209 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1210 {
1211         int result;
1212         u32 aqa;
1213         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1214         struct nvme_queue *nvmeq;
1215
1216         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1217                                                 NVME_CAP_NSSRC(cap) : 0;
1218
1219         if (dev->subsystem &&
1220             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1221                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1222
1223         result = nvme_disable_ctrl(&dev->ctrl, cap);
1224         if (result < 0)
1225                 return result;
1226
1227         nvmeq = dev->queues[0];
1228         if (!nvmeq) {
1229                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1230                 if (!nvmeq)
1231                         return -ENOMEM;
1232         }
1233
1234         aqa = nvmeq->q_depth - 1;
1235         aqa |= aqa << 16;
1236
1237         writel(aqa, dev->bar + NVME_REG_AQA);
1238         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1239         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1240
1241         result = nvme_enable_ctrl(&dev->ctrl, cap);
1242         if (result)
1243                 goto free_nvmeq;
1244
1245         nvmeq->cq_vector = 0;
1246         result = queue_request_irq(nvmeq);
1247         if (result) {
1248                 nvmeq->cq_vector = -1;
1249                 goto free_nvmeq;
1250         }
1251
1252         return result;
1253
1254  free_nvmeq:
1255         nvme_free_queues(dev, 0);
1256         return result;
1257 }
1258
1259 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1260 {
1261
1262         /* If true, indicates loss of adapter communication, possibly by a
1263          * NVMe Subsystem reset.
1264          */
1265         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1266
1267         /* If there is a reset ongoing, we shouldn't reset again. */
1268         if (work_busy(&dev->reset_work))
1269                 return false;
1270
1271         /* We shouldn't reset unless the controller is on fatal error state
1272          * _or_ if we lost the communication with it.
1273          */
1274         if (!(csts & NVME_CSTS_CFS) && !nssro)
1275                 return false;
1276
1277         /* If PCI error recovery process is happening, we cannot reset or
1278          * the recovery mechanism will surely fail.
1279          */
1280         if (pci_channel_offline(to_pci_dev(dev->dev)))
1281                 return false;
1282
1283         return true;
1284 }
1285
1286 static void nvme_watchdog_timer(unsigned long data)
1287 {
1288         struct nvme_dev *dev = (struct nvme_dev *)data;
1289         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1290
1291         /* Skip controllers under certain specific conditions. */
1292         if (nvme_should_reset(dev, csts)) {
1293                 if (queue_work(nvme_workq, &dev->reset_work))
1294                         dev_warn(dev->dev,
1295                                 "Failed status: 0x%x, reset controller.\n",
1296                                 csts);
1297                 return;
1298         }
1299
1300         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1301 }
1302
1303 static int nvme_create_io_queues(struct nvme_dev *dev)
1304 {
1305         unsigned i, max;
1306         int ret = 0;
1307
1308         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1309                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1310                         ret = -ENOMEM;
1311                         break;
1312                 }
1313         }
1314
1315         max = min(dev->max_qid, dev->queue_count - 1);
1316         for (i = dev->online_queues; i <= max; i++) {
1317                 ret = nvme_create_queue(dev->queues[i], i);
1318                 if (ret) {
1319                         nvme_free_queues(dev, i);
1320                         break;
1321                 }
1322         }
1323
1324         /*
1325          * Ignore failing Create SQ/CQ commands, we can continue with less
1326          * than the desired aount of queues, and even a controller without
1327          * I/O queues an still be used to issue admin commands.  This might
1328          * be useful to upgrade a buggy firmware for example.
1329          */
1330         return ret >= 0 ? 0 : ret;
1331 }
1332
1333 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1334 {
1335         u64 szu, size, offset;
1336         u32 cmbloc;
1337         resource_size_t bar_size;
1338         struct pci_dev *pdev = to_pci_dev(dev->dev);
1339         void __iomem *cmb;
1340         dma_addr_t dma_addr;
1341
1342         if (!use_cmb_sqes)
1343                 return NULL;
1344
1345         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1346         if (!(NVME_CMB_SZ(dev->cmbsz)))
1347                 return NULL;
1348
1349         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1350
1351         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1352         size = szu * NVME_CMB_SZ(dev->cmbsz);
1353         offset = szu * NVME_CMB_OFST(cmbloc);
1354         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1355
1356         if (offset > bar_size)
1357                 return NULL;
1358
1359         /*
1360          * Controllers may support a CMB size larger than their BAR,
1361          * for example, due to being behind a bridge. Reduce the CMB to
1362          * the reported size of the BAR
1363          */
1364         if (size > bar_size - offset)
1365                 size = bar_size - offset;
1366
1367         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1368         cmb = ioremap_wc(dma_addr, size);
1369         if (!cmb)
1370                 return NULL;
1371
1372         dev->cmb_dma_addr = dma_addr;
1373         dev->cmb_size = size;
1374         return cmb;
1375 }
1376
1377 static inline void nvme_release_cmb(struct nvme_dev *dev)
1378 {
1379         if (dev->cmb) {
1380                 iounmap(dev->cmb);
1381                 dev->cmb = NULL;
1382         }
1383 }
1384
1385 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1386 {
1387         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1388 }
1389
1390 static int nvme_setup_io_queues(struct nvme_dev *dev)
1391 {
1392         struct nvme_queue *adminq = dev->queues[0];
1393         struct pci_dev *pdev = to_pci_dev(dev->dev);
1394         int result, nr_io_queues, size;
1395
1396         nr_io_queues = num_online_cpus();
1397         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1398         if (result < 0)
1399                 return result;
1400
1401         if (nr_io_queues == 0)
1402                 return 0;
1403
1404         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1405                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1406                                 sizeof(struct nvme_command));
1407                 if (result > 0)
1408                         dev->q_depth = result;
1409                 else
1410                         nvme_release_cmb(dev);
1411         }
1412
1413         size = db_bar_size(dev, nr_io_queues);
1414         if (size > 8192) {
1415                 iounmap(dev->bar);
1416                 do {
1417                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1418                         if (dev->bar)
1419                                 break;
1420                         if (!--nr_io_queues)
1421                                 return -ENOMEM;
1422                         size = db_bar_size(dev, nr_io_queues);
1423                 } while (1);
1424                 dev->dbs = dev->bar + 4096;
1425                 adminq->q_db = dev->dbs;
1426         }
1427
1428         /* Deregister the admin queue's interrupt */
1429         free_irq(pci_irq_vector(pdev, 0), adminq);
1430
1431         /*
1432          * If we enable msix early due to not intx, disable it again before
1433          * setting up the full range we need.
1434          */
1435         pci_free_irq_vectors(pdev);
1436         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1437                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1438         if (nr_io_queues <= 0)
1439                 return -EIO;
1440         dev->max_qid = nr_io_queues;
1441
1442         /*
1443          * Should investigate if there's a performance win from allocating
1444          * more queues than interrupt vectors; it might allow the submission
1445          * path to scale better, even if the receive path is limited by the
1446          * number of interrupts.
1447          */
1448
1449         result = queue_request_irq(adminq);
1450         if (result) {
1451                 adminq->cq_vector = -1;
1452                 goto free_queues;
1453         }
1454         return nvme_create_io_queues(dev);
1455
1456  free_queues:
1457         nvme_free_queues(dev, 1);
1458         return result;
1459 }
1460
1461 static void nvme_del_queue_end(struct request *req, int error)
1462 {
1463         struct nvme_queue *nvmeq = req->end_io_data;
1464
1465         blk_mq_free_request(req);
1466         complete(&nvmeq->dev->ioq_wait);
1467 }
1468
1469 static void nvme_del_cq_end(struct request *req, int error)
1470 {
1471         struct nvme_queue *nvmeq = req->end_io_data;
1472
1473         if (!error) {
1474                 unsigned long flags;
1475
1476                 /*
1477                  * We might be called with the AQ q_lock held
1478                  * and the I/O queue q_lock should always
1479                  * nest inside the AQ one.
1480                  */
1481                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1482                                         SINGLE_DEPTH_NESTING);
1483                 nvme_process_cq(nvmeq);
1484                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1485         }
1486
1487         nvme_del_queue_end(req, error);
1488 }
1489
1490 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1491 {
1492         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1493         struct request *req;
1494         struct nvme_command cmd;
1495
1496         memset(&cmd, 0, sizeof(cmd));
1497         cmd.delete_queue.opcode = opcode;
1498         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1499
1500         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1501         if (IS_ERR(req))
1502                 return PTR_ERR(req);
1503
1504         req->timeout = ADMIN_TIMEOUT;
1505         req->end_io_data = nvmeq;
1506
1507         blk_execute_rq_nowait(q, NULL, req, false,
1508                         opcode == nvme_admin_delete_cq ?
1509                                 nvme_del_cq_end : nvme_del_queue_end);
1510         return 0;
1511 }
1512
1513 static void nvme_disable_io_queues(struct nvme_dev *dev)
1514 {
1515         int pass, queues = dev->online_queues - 1;
1516         unsigned long timeout;
1517         u8 opcode = nvme_admin_delete_sq;
1518
1519         for (pass = 0; pass < 2; pass++) {
1520                 int sent = 0, i = queues;
1521
1522                 reinit_completion(&dev->ioq_wait);
1523  retry:
1524                 timeout = ADMIN_TIMEOUT;
1525                 for (; i > 0; i--, sent++)
1526                         if (nvme_delete_queue(dev->queues[i], opcode))
1527                                 break;
1528
1529                 while (sent--) {
1530                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1531                         if (timeout == 0)
1532                                 return;
1533                         if (i)
1534                                 goto retry;
1535                 }
1536                 opcode = nvme_admin_delete_cq;
1537         }
1538 }
1539
1540 /*
1541  * Return: error value if an error occurred setting up the queues or calling
1542  * Identify Device.  0 if these succeeded, even if adding some of the
1543  * namespaces failed.  At the moment, these failures are silent.  TBD which
1544  * failures should be reported.
1545  */
1546 static int nvme_dev_add(struct nvme_dev *dev)
1547 {
1548         if (!dev->ctrl.tagset) {
1549                 dev->tagset.ops = &nvme_mq_ops;
1550                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1551                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1552                 dev->tagset.numa_node = dev_to_node(dev->dev);
1553                 dev->tagset.queue_depth =
1554                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1555                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1556                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1557                 dev->tagset.driver_data = dev;
1558
1559                 if (blk_mq_alloc_tag_set(&dev->tagset))
1560                         return 0;
1561                 dev->ctrl.tagset = &dev->tagset;
1562         } else {
1563                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1564
1565                 /* Free previously allocated queues that are no longer usable */
1566                 nvme_free_queues(dev, dev->online_queues);
1567         }
1568
1569         return 0;
1570 }
1571
1572 static int nvme_pci_enable(struct nvme_dev *dev)
1573 {
1574         u64 cap;
1575         int result = -ENOMEM;
1576         struct pci_dev *pdev = to_pci_dev(dev->dev);
1577
1578         if (pci_enable_device_mem(pdev))
1579                 return result;
1580
1581         pci_set_master(pdev);
1582
1583         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1584             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1585                 goto disable;
1586
1587         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1588                 result = -ENODEV;
1589                 goto disable;
1590         }
1591
1592         /*
1593          * Some devices and/or platforms don't advertise or work with INTx
1594          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1595          * adjust this later.
1596          */
1597         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1598         if (result < 0)
1599                 return result;
1600
1601         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1602
1603         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1604         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1605         dev->dbs = dev->bar + 4096;
1606
1607         /*
1608          * Temporary fix for the Apple controller found in the MacBook8,1 and
1609          * some MacBook7,1 to avoid controller resets and data loss.
1610          */
1611         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1612                 dev->q_depth = 2;
1613                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1614                         "queue depth=%u to work around controller resets\n",
1615                         dev->q_depth);
1616         }
1617
1618         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1619                 dev->cmb = nvme_map_cmb(dev);
1620
1621         pci_enable_pcie_error_reporting(pdev);
1622         pci_save_state(pdev);
1623         return 0;
1624
1625  disable:
1626         pci_disable_device(pdev);
1627         return result;
1628 }
1629
1630 static void nvme_dev_unmap(struct nvme_dev *dev)
1631 {
1632         if (dev->bar)
1633                 iounmap(dev->bar);
1634         pci_release_mem_regions(to_pci_dev(dev->dev));
1635 }
1636
1637 static void nvme_pci_disable(struct nvme_dev *dev)
1638 {
1639         struct pci_dev *pdev = to_pci_dev(dev->dev);
1640
1641         pci_free_irq_vectors(pdev);
1642
1643         if (pci_is_enabled(pdev)) {
1644                 pci_disable_pcie_error_reporting(pdev);
1645                 pci_disable_device(pdev);
1646         }
1647 }
1648
1649 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1650 {
1651         int i;
1652         u32 csts = -1;
1653
1654         del_timer_sync(&dev->watchdog_timer);
1655
1656         mutex_lock(&dev->shutdown_lock);
1657         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1658                 nvme_stop_queues(&dev->ctrl);
1659                 csts = readl(dev->bar + NVME_REG_CSTS);
1660         }
1661
1662         for (i = dev->queue_count - 1; i > 0; i--)
1663                 nvme_suspend_queue(dev->queues[i]);
1664
1665         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1666                 /* A device might become IO incapable very soon during
1667                  * probe, before the admin queue is configured. Thus,
1668                  * queue_count can be 0 here.
1669                  */
1670                 if (dev->queue_count)
1671                         nvme_suspend_queue(dev->queues[0]);
1672         } else {
1673                 nvme_disable_io_queues(dev);
1674                 nvme_disable_admin_queue(dev, shutdown);
1675         }
1676         nvme_pci_disable(dev);
1677
1678         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1679         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1680         mutex_unlock(&dev->shutdown_lock);
1681 }
1682
1683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1684 {
1685         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1686                                                 PAGE_SIZE, PAGE_SIZE, 0);
1687         if (!dev->prp_page_pool)
1688                 return -ENOMEM;
1689
1690         /* Optimisation for I/Os between 4k and 128k */
1691         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1692                                                 256, 256, 0);
1693         if (!dev->prp_small_pool) {
1694                 dma_pool_destroy(dev->prp_page_pool);
1695                 return -ENOMEM;
1696         }
1697         return 0;
1698 }
1699
1700 static void nvme_release_prp_pools(struct nvme_dev *dev)
1701 {
1702         dma_pool_destroy(dev->prp_page_pool);
1703         dma_pool_destroy(dev->prp_small_pool);
1704 }
1705
1706 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1707 {
1708         struct nvme_dev *dev = to_nvme_dev(ctrl);
1709
1710         put_device(dev->dev);
1711         if (dev->tagset.tags)
1712                 blk_mq_free_tag_set(&dev->tagset);
1713         if (dev->ctrl.admin_q)
1714                 blk_put_queue(dev->ctrl.admin_q);
1715         kfree(dev->queues);
1716         kfree(dev);
1717 }
1718
1719 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1720 {
1721         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1722
1723         kref_get(&dev->ctrl.kref);
1724         nvme_dev_disable(dev, false);
1725         if (!schedule_work(&dev->remove_work))
1726                 nvme_put_ctrl(&dev->ctrl);
1727 }
1728
1729 static void nvme_reset_work(struct work_struct *work)
1730 {
1731         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1732         int result = -ENODEV;
1733
1734         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1735                 goto out;
1736
1737         /*
1738          * If we're called to reset a live controller first shut it down before
1739          * moving on.
1740          */
1741         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1742                 nvme_dev_disable(dev, false);
1743
1744         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1745                 goto out;
1746
1747         result = nvme_pci_enable(dev);
1748         if (result)
1749                 goto out;
1750
1751         result = nvme_configure_admin_queue(dev);
1752         if (result)
1753                 goto out;
1754
1755         nvme_init_queue(dev->queues[0], 0);
1756         result = nvme_alloc_admin_tags(dev);
1757         if (result)
1758                 goto out;
1759
1760         result = nvme_init_identify(&dev->ctrl);
1761         if (result)
1762                 goto out;
1763
1764         result = nvme_setup_io_queues(dev);
1765         if (result)
1766                 goto out;
1767
1768         /*
1769          * A controller that can not execute IO typically requires user
1770          * intervention to correct. For such degraded controllers, the driver
1771          * should not submit commands the user did not request, so skip
1772          * registering for asynchronous event notification on this condition.
1773          */
1774         if (dev->online_queues > 1)
1775                 nvme_queue_async_events(&dev->ctrl);
1776
1777         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1778
1779         /*
1780          * Keep the controller around but remove all namespaces if we don't have
1781          * any working I/O queue.
1782          */
1783         if (dev->online_queues < 2) {
1784                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1785                 nvme_kill_queues(&dev->ctrl);
1786                 nvme_remove_namespaces(&dev->ctrl);
1787         } else {
1788                 nvme_start_queues(&dev->ctrl);
1789                 nvme_dev_add(dev);
1790         }
1791
1792         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1793                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1794                 goto out;
1795         }
1796
1797         if (dev->online_queues > 1)
1798                 nvme_queue_scan(&dev->ctrl);
1799         return;
1800
1801  out:
1802         nvme_remove_dead_ctrl(dev, result);
1803 }
1804
1805 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1806 {
1807         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1808         struct pci_dev *pdev = to_pci_dev(dev->dev);
1809
1810         nvme_kill_queues(&dev->ctrl);
1811         if (pci_get_drvdata(pdev))
1812                 device_release_driver(&pdev->dev);
1813         nvme_put_ctrl(&dev->ctrl);
1814 }
1815
1816 static int nvme_reset(struct nvme_dev *dev)
1817 {
1818         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1819                 return -ENODEV;
1820
1821         if (!queue_work(nvme_workq, &dev->reset_work))
1822                 return -EBUSY;
1823
1824         flush_work(&dev->reset_work);
1825         return 0;
1826 }
1827
1828 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1829 {
1830         *val = readl(to_nvme_dev(ctrl)->bar + off);
1831         return 0;
1832 }
1833
1834 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1835 {
1836         writel(val, to_nvme_dev(ctrl)->bar + off);
1837         return 0;
1838 }
1839
1840 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1841 {
1842         *val = readq(to_nvme_dev(ctrl)->bar + off);
1843         return 0;
1844 }
1845
1846 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1847 {
1848         return nvme_reset(to_nvme_dev(ctrl));
1849 }
1850
1851 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1852         .name                   = "pcie",
1853         .module                 = THIS_MODULE,
1854         .reg_read32             = nvme_pci_reg_read32,
1855         .reg_write32            = nvme_pci_reg_write32,
1856         .reg_read64             = nvme_pci_reg_read64,
1857         .reset_ctrl             = nvme_pci_reset_ctrl,
1858         .free_ctrl              = nvme_pci_free_ctrl,
1859         .submit_async_event     = nvme_pci_submit_async_event,
1860 };
1861
1862 static int nvme_dev_map(struct nvme_dev *dev)
1863 {
1864         struct pci_dev *pdev = to_pci_dev(dev->dev);
1865
1866         if (pci_request_mem_regions(pdev, "nvme"))
1867                 return -ENODEV;
1868
1869         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1870         if (!dev->bar)
1871                 goto release;
1872
1873        return 0;
1874   release:
1875        pci_release_mem_regions(pdev);
1876        return -ENODEV;
1877 }
1878
1879 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1880 {
1881         int node, result = -ENOMEM;
1882         struct nvme_dev *dev;
1883
1884         node = dev_to_node(&pdev->dev);
1885         if (node == NUMA_NO_NODE)
1886                 set_dev_node(&pdev->dev, first_memory_node);
1887
1888         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1889         if (!dev)
1890                 return -ENOMEM;
1891         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1892                                                         GFP_KERNEL, node);
1893         if (!dev->queues)
1894                 goto free;
1895
1896         dev->dev = get_device(&pdev->dev);
1897         pci_set_drvdata(pdev, dev);
1898
1899         result = nvme_dev_map(dev);
1900         if (result)
1901                 goto free;
1902
1903         INIT_WORK(&dev->reset_work, nvme_reset_work);
1904         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1905         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1906                 (unsigned long)dev);
1907         mutex_init(&dev->shutdown_lock);
1908         init_completion(&dev->ioq_wait);
1909
1910         result = nvme_setup_prp_pools(dev);
1911         if (result)
1912                 goto put_pci;
1913
1914         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1915                         id->driver_data);
1916         if (result)
1917                 goto release_pools;
1918
1919         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1920
1921         queue_work(nvme_workq, &dev->reset_work);
1922         return 0;
1923
1924  release_pools:
1925         nvme_release_prp_pools(dev);
1926  put_pci:
1927         put_device(dev->dev);
1928         nvme_dev_unmap(dev);
1929  free:
1930         kfree(dev->queues);
1931         kfree(dev);
1932         return result;
1933 }
1934
1935 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1936 {
1937         struct nvme_dev *dev = pci_get_drvdata(pdev);
1938
1939         if (prepare)
1940                 nvme_dev_disable(dev, false);
1941         else
1942                 queue_work(nvme_workq, &dev->reset_work);
1943 }
1944
1945 static void nvme_shutdown(struct pci_dev *pdev)
1946 {
1947         struct nvme_dev *dev = pci_get_drvdata(pdev);
1948         nvme_dev_disable(dev, true);
1949 }
1950
1951 /*
1952  * The driver's remove may be called on a device in a partially initialized
1953  * state. This function must not have any dependencies on the device state in
1954  * order to proceed.
1955  */
1956 static void nvme_remove(struct pci_dev *pdev)
1957 {
1958         struct nvme_dev *dev = pci_get_drvdata(pdev);
1959
1960         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1961
1962         pci_set_drvdata(pdev, NULL);
1963
1964         if (!pci_device_is_present(pdev))
1965                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1966
1967         flush_work(&dev->reset_work);
1968         nvme_uninit_ctrl(&dev->ctrl);
1969         nvme_dev_disable(dev, true);
1970         nvme_dev_remove_admin(dev);
1971         nvme_free_queues(dev, 0);
1972         nvme_release_cmb(dev);
1973         nvme_release_prp_pools(dev);
1974         nvme_dev_unmap(dev);
1975         nvme_put_ctrl(&dev->ctrl);
1976 }
1977
1978 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
1979 {
1980         int ret = 0;
1981
1982         if (numvfs == 0) {
1983                 if (pci_vfs_assigned(pdev)) {
1984                         dev_warn(&pdev->dev,
1985                                 "Cannot disable SR-IOV VFs while assigned\n");
1986                         return -EPERM;
1987                 }
1988                 pci_disable_sriov(pdev);
1989                 return 0;
1990         }
1991
1992         ret = pci_enable_sriov(pdev, numvfs);
1993         return ret ? ret : numvfs;
1994 }
1995
1996 #ifdef CONFIG_PM_SLEEP
1997 static int nvme_suspend(struct device *dev)
1998 {
1999         struct pci_dev *pdev = to_pci_dev(dev);
2000         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2001
2002         nvme_dev_disable(ndev, true);
2003         return 0;
2004 }
2005
2006 static int nvme_resume(struct device *dev)
2007 {
2008         struct pci_dev *pdev = to_pci_dev(dev);
2009         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2010
2011         queue_work(nvme_workq, &ndev->reset_work);
2012         return 0;
2013 }
2014 #endif
2015
2016 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2017
2018 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2019                                                 pci_channel_state_t state)
2020 {
2021         struct nvme_dev *dev = pci_get_drvdata(pdev);
2022
2023         /*
2024          * A frozen channel requires a reset. When detected, this method will
2025          * shutdown the controller to quiesce. The controller will be restarted
2026          * after the slot reset through driver's slot_reset callback.
2027          */
2028         switch (state) {
2029         case pci_channel_io_normal:
2030                 return PCI_ERS_RESULT_CAN_RECOVER;
2031         case pci_channel_io_frozen:
2032                 dev_warn(dev->ctrl.device,
2033                         "frozen state error detected, reset controller\n");
2034                 nvme_dev_disable(dev, false);
2035                 return PCI_ERS_RESULT_NEED_RESET;
2036         case pci_channel_io_perm_failure:
2037                 dev_warn(dev->ctrl.device,
2038                         "failure state error detected, request disconnect\n");
2039                 return PCI_ERS_RESULT_DISCONNECT;
2040         }
2041         return PCI_ERS_RESULT_NEED_RESET;
2042 }
2043
2044 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2045 {
2046         struct nvme_dev *dev = pci_get_drvdata(pdev);
2047
2048         dev_info(dev->ctrl.device, "restart after slot reset\n");
2049         pci_restore_state(pdev);
2050         queue_work(nvme_workq, &dev->reset_work);
2051         return PCI_ERS_RESULT_RECOVERED;
2052 }
2053
2054 static void nvme_error_resume(struct pci_dev *pdev)
2055 {
2056         pci_cleanup_aer_uncorrect_error_status(pdev);
2057 }
2058
2059 static const struct pci_error_handlers nvme_err_handler = {
2060         .error_detected = nvme_error_detected,
2061         .slot_reset     = nvme_slot_reset,
2062         .resume         = nvme_error_resume,
2063         .reset_notify   = nvme_reset_notify,
2064 };
2065
2066 /* Move to pci_ids.h later */
2067 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2068
2069 static const struct pci_device_id nvme_id_table[] = {
2070         { PCI_VDEVICE(INTEL, 0x0953),
2071                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2072                                 NVME_QUIRK_DISCARD_ZEROES, },
2073         { PCI_VDEVICE(INTEL, 0x0a53),
2074                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2075                                 NVME_QUIRK_DISCARD_ZEROES, },
2076         { PCI_VDEVICE(INTEL, 0x0a54),
2077                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2078                                 NVME_QUIRK_DISCARD_ZEROES, },
2079         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2080                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2081         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2082                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2083         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2084                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2085         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2087         { 0, }
2088 };
2089 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2090
2091 static struct pci_driver nvme_driver = {
2092         .name           = "nvme",
2093         .id_table       = nvme_id_table,
2094         .probe          = nvme_probe,
2095         .remove         = nvme_remove,
2096         .shutdown       = nvme_shutdown,
2097         .driver         = {
2098                 .pm     = &nvme_dev_pm_ops,
2099         },
2100         .sriov_configure = nvme_pci_sriov_configure,
2101         .err_handler    = &nvme_err_handler,
2102 };
2103
2104 static int __init nvme_init(void)
2105 {
2106         int result;
2107
2108         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2109         if (!nvme_workq)
2110                 return -ENOMEM;
2111
2112         result = pci_register_driver(&nvme_driver);
2113         if (result)
2114                 destroy_workqueue(nvme_workq);
2115         return result;
2116 }
2117
2118 static void __exit nvme_exit(void)
2119 {
2120         pci_unregister_driver(&nvme_driver);
2121         destroy_workqueue(nvme_workq);
2122         _nvme_check_size();
2123 }
2124
2125 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2126 MODULE_LICENSE("GPL");
2127 MODULE_VERSION("1.0");
2128 module_init(nvme_init);
2129 module_exit(nvme_exit);