Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_root *root,
138                                 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148         return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153         struct btrfs_fs_devices *fs_devs;
154
155         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156         if (!fs_devs)
157                 return ERR_PTR(-ENOMEM);
158
159         mutex_init(&fs_devs->device_list_mutex);
160
161         INIT_LIST_HEAD(&fs_devs->devices);
162         INIT_LIST_HEAD(&fs_devs->resized_devices);
163         INIT_LIST_HEAD(&fs_devs->alloc_list);
164         INIT_LIST_HEAD(&fs_devs->list);
165
166         return fs_devs;
167 }
168
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
172  *              generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180         struct btrfs_fs_devices *fs_devs;
181
182         fs_devs = __alloc_fs_devices();
183         if (IS_ERR(fs_devs))
184                 return fs_devs;
185
186         if (fsid)
187                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188         else
189                 generate_random_uuid(fs_devs->fsid);
190
191         return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196         struct btrfs_device *device;
197         WARN_ON(fs_devices->opened);
198         while (!list_empty(&fs_devices->devices)) {
199                 device = list_entry(fs_devices->devices.next,
200                                     struct btrfs_device, dev_list);
201                 list_del(&device->dev_list);
202                 rcu_string_free(device->name);
203                 kfree(device);
204         }
205         kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209                                  enum kobject_action action)
210 {
211         int ret;
212
213         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214         if (ret)
215                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216                         action,
217                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218                         &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223         struct btrfs_fs_devices *fs_devices;
224
225         while (!list_empty(&fs_uuids)) {
226                 fs_devices = list_entry(fs_uuids.next,
227                                         struct btrfs_fs_devices, list);
228                 list_del(&fs_devices->list);
229                 free_fs_devices(fs_devices);
230         }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235         struct btrfs_device *dev;
236
237         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238         if (!dev)
239                 return ERR_PTR(-ENOMEM);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258                                                    u64 devid, u8 *uuid)
259 {
260         struct btrfs_device *dev;
261
262         list_for_each_entry(dev, head, dev_list) {
263                 if (dev->devid == devid &&
264                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265                         return dev;
266                 }
267         }
268         return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273         struct btrfs_fs_devices *fs_devices;
274
275         list_for_each_entry(fs_devices, &fs_uuids, list) {
276                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277                         return fs_devices;
278         }
279         return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284                       int flush, struct block_device **bdev,
285                       struct buffer_head **bh)
286 {
287         int ret;
288
289         *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291         if (IS_ERR(*bdev)) {
292                 ret = PTR_ERR(*bdev);
293                 goto error;
294         }
295
296         if (flush)
297                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298         ret = set_blocksize(*bdev, 4096);
299         if (ret) {
300                 blkdev_put(*bdev, flags);
301                 goto error;
302         }
303         invalidate_bdev(*bdev);
304         *bh = btrfs_read_dev_super(*bdev);
305         if (IS_ERR(*bh)) {
306                 ret = PTR_ERR(*bh);
307                 blkdev_put(*bdev, flags);
308                 goto error;
309         }
310
311         return 0;
312
313 error:
314         *bdev = NULL;
315         *bh = NULL;
316         return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320                         struct bio *head, struct bio *tail)
321 {
322
323         struct bio *old_head;
324
325         old_head = pending_bios->head;
326         pending_bios->head = head;
327         if (pending_bios->tail)
328                 tail->bi_next = old_head;
329         else
330                 pending_bios->tail = tail;
331 }
332
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346         struct bio *pending;
347         struct backing_dev_info *bdi;
348         struct btrfs_fs_info *fs_info;
349         struct btrfs_pending_bios *pending_bios;
350         struct bio *tail;
351         struct bio *cur;
352         int again = 0;
353         unsigned long num_run;
354         unsigned long batch_run = 0;
355         unsigned long limit;
356         unsigned long last_waited = 0;
357         int force_reg = 0;
358         int sync_pending = 0;
359         struct blk_plug plug;
360
361         /*
362          * this function runs all the bios we've collected for
363          * a particular device.  We don't want to wander off to
364          * another device without first sending all of these down.
365          * So, setup a plug here and finish it off before we return
366          */
367         blk_start_plug(&plug);
368
369         bdi = blk_get_backing_dev_info(device->bdev);
370         fs_info = device->dev_root->fs_info;
371         limit = btrfs_async_submit_limit(fs_info);
372         limit = limit * 2 / 3;
373
374 loop:
375         spin_lock(&device->io_lock);
376
377 loop_lock:
378         num_run = 0;
379
380         /* take all the bios off the list at once and process them
381          * later on (without the lock held).  But, remember the
382          * tail and other pointers so the bios can be properly reinserted
383          * into the list if we hit congestion
384          */
385         if (!force_reg && device->pending_sync_bios.head) {
386                 pending_bios = &device->pending_sync_bios;
387                 force_reg = 1;
388         } else {
389                 pending_bios = &device->pending_bios;
390                 force_reg = 0;
391         }
392
393         pending = pending_bios->head;
394         tail = pending_bios->tail;
395         WARN_ON(pending && !tail);
396
397         /*
398          * if pending was null this time around, no bios need processing
399          * at all and we can stop.  Otherwise it'll loop back up again
400          * and do an additional check so no bios are missed.
401          *
402          * device->running_pending is used to synchronize with the
403          * schedule_bio code.
404          */
405         if (device->pending_sync_bios.head == NULL &&
406             device->pending_bios.head == NULL) {
407                 again = 0;
408                 device->running_pending = 0;
409         } else {
410                 again = 1;
411                 device->running_pending = 1;
412         }
413
414         pending_bios->head = NULL;
415         pending_bios->tail = NULL;
416
417         spin_unlock(&device->io_lock);
418
419         while (pending) {
420
421                 rmb();
422                 /* we want to work on both lists, but do more bios on the
423                  * sync list than the regular list
424                  */
425                 if ((num_run > 32 &&
426                     pending_bios != &device->pending_sync_bios &&
427                     device->pending_sync_bios.head) ||
428                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429                     device->pending_bios.head)) {
430                         spin_lock(&device->io_lock);
431                         requeue_list(pending_bios, pending, tail);
432                         goto loop_lock;
433                 }
434
435                 cur = pending;
436                 pending = pending->bi_next;
437                 cur->bi_next = NULL;
438
439                 /*
440                  * atomic_dec_return implies a barrier for waitqueue_active
441                  */
442                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443                     waitqueue_active(&fs_info->async_submit_wait))
444                         wake_up(&fs_info->async_submit_wait);
445
446                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448                 /*
449                  * if we're doing the sync list, record that our
450                  * plug has some sync requests on it
451                  *
452                  * If we're doing the regular list and there are
453                  * sync requests sitting around, unplug before
454                  * we add more
455                  */
456                 if (pending_bios == &device->pending_sync_bios) {
457                         sync_pending = 1;
458                 } else if (sync_pending) {
459                         blk_finish_plug(&plug);
460                         blk_start_plug(&plug);
461                         sync_pending = 0;
462                 }
463
464                 btrfsic_submit_bio(cur);
465                 num_run++;
466                 batch_run++;
467
468                 cond_resched();
469
470                 /*
471                  * we made progress, there is more work to do and the bdi
472                  * is now congested.  Back off and let other work structs
473                  * run instead
474                  */
475                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476                     fs_info->fs_devices->open_devices > 1) {
477                         struct io_context *ioc;
478
479                         ioc = current->io_context;
480
481                         /*
482                          * the main goal here is that we don't want to
483                          * block if we're going to be able to submit
484                          * more requests without blocking.
485                          *
486                          * This code does two great things, it pokes into
487                          * the elevator code from a filesystem _and_
488                          * it makes assumptions about how batching works.
489                          */
490                         if (ioc && ioc->nr_batch_requests > 0 &&
491                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492                             (last_waited == 0 ||
493                              ioc->last_waited == last_waited)) {
494                                 /*
495                                  * we want to go through our batch of
496                                  * requests and stop.  So, we copy out
497                                  * the ioc->last_waited time and test
498                                  * against it before looping
499                                  */
500                                 last_waited = ioc->last_waited;
501                                 cond_resched();
502                                 continue;
503                         }
504                         spin_lock(&device->io_lock);
505                         requeue_list(pending_bios, pending, tail);
506                         device->running_pending = 1;
507
508                         spin_unlock(&device->io_lock);
509                         btrfs_queue_work(fs_info->submit_workers,
510                                          &device->work);
511                         goto done;
512                 }
513                 /* unplug every 64 requests just for good measure */
514                 if (batch_run % 64 == 0) {
515                         blk_finish_plug(&plug);
516                         blk_start_plug(&plug);
517                         sync_pending = 0;
518                 }
519         }
520
521         cond_resched();
522         if (again)
523                 goto loop;
524
525         spin_lock(&device->io_lock);
526         if (device->pending_bios.head || device->pending_sync_bios.head)
527                 goto loop_lock;
528         spin_unlock(&device->io_lock);
529
530 done:
531         blk_finish_plug(&plug);
532 }
533
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536         struct btrfs_device *device;
537
538         device = container_of(work, struct btrfs_device, work);
539         run_scheduled_bios(device);
540 }
541
542
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545         struct btrfs_fs_devices *fs_devs;
546         struct btrfs_device *dev;
547
548         if (!cur_dev->name)
549                 return;
550
551         list_for_each_entry(fs_devs, &fs_uuids, list) {
552                 int del = 1;
553
554                 if (fs_devs->opened)
555                         continue;
556                 if (fs_devs->seeding)
557                         continue;
558
559                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561                         if (dev == cur_dev)
562                                 continue;
563                         if (!dev->name)
564                                 continue;
565
566                         /*
567                          * Todo: This won't be enough. What if the same device
568                          * comes back (with new uuid and) with its mapper path?
569                          * But for now, this does help as mostly an admin will
570                          * either use mapper or non mapper path throughout.
571                          */
572                         rcu_read_lock();
573                         del = strcmp(rcu_str_deref(dev->name),
574                                                 rcu_str_deref(cur_dev->name));
575                         rcu_read_unlock();
576                         if (!del)
577                                 break;
578                 }
579
580                 if (!del) {
581                         /* delete the stale device */
582                         if (fs_devs->num_devices == 1) {
583                                 btrfs_sysfs_remove_fsid(fs_devs);
584                                 list_del(&fs_devs->list);
585                                 free_fs_devices(fs_devs);
586                         } else {
587                                 fs_devs->num_devices--;
588                                 list_del(&dev->dev_list);
589                                 rcu_string_free(dev->name);
590                                 kfree(dev);
591                         }
592                         break;
593                 }
594         }
595 }
596
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606                            struct btrfs_super_block *disk_super,
607                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609         struct btrfs_device *device;
610         struct btrfs_fs_devices *fs_devices;
611         struct rcu_string *name;
612         int ret = 0;
613         u64 found_transid = btrfs_super_generation(disk_super);
614
615         fs_devices = find_fsid(disk_super->fsid);
616         if (!fs_devices) {
617                 fs_devices = alloc_fs_devices(disk_super->fsid);
618                 if (IS_ERR(fs_devices))
619                         return PTR_ERR(fs_devices);
620
621                 list_add(&fs_devices->list, &fs_uuids);
622
623                 device = NULL;
624         } else {
625                 device = __find_device(&fs_devices->devices, devid,
626                                        disk_super->dev_item.uuid);
627         }
628
629         if (!device) {
630                 if (fs_devices->opened)
631                         return -EBUSY;
632
633                 device = btrfs_alloc_device(NULL, &devid,
634                                             disk_super->dev_item.uuid);
635                 if (IS_ERR(device)) {
636                         /* we can safely leave the fs_devices entry around */
637                         return PTR_ERR(device);
638                 }
639
640                 name = rcu_string_strdup(path, GFP_NOFS);
641                 if (!name) {
642                         kfree(device);
643                         return -ENOMEM;
644                 }
645                 rcu_assign_pointer(device->name, name);
646
647                 mutex_lock(&fs_devices->device_list_mutex);
648                 list_add_rcu(&device->dev_list, &fs_devices->devices);
649                 fs_devices->num_devices++;
650                 mutex_unlock(&fs_devices->device_list_mutex);
651
652                 ret = 1;
653                 device->fs_devices = fs_devices;
654         } else if (!device->name || strcmp(device->name->str, path)) {
655                 /*
656                  * When FS is already mounted.
657                  * 1. If you are here and if the device->name is NULL that
658                  *    means this device was missing at time of FS mount.
659                  * 2. If you are here and if the device->name is different
660                  *    from 'path' that means either
661                  *      a. The same device disappeared and reappeared with
662                  *         different name. or
663                  *      b. The missing-disk-which-was-replaced, has
664                  *         reappeared now.
665                  *
666                  * We must allow 1 and 2a above. But 2b would be a spurious
667                  * and unintentional.
668                  *
669                  * Further in case of 1 and 2a above, the disk at 'path'
670                  * would have missed some transaction when it was away and
671                  * in case of 2a the stale bdev has to be updated as well.
672                  * 2b must not be allowed at all time.
673                  */
674
675                 /*
676                  * For now, we do allow update to btrfs_fs_device through the
677                  * btrfs dev scan cli after FS has been mounted.  We're still
678                  * tracking a problem where systems fail mount by subvolume id
679                  * when we reject replacement on a mounted FS.
680                  */
681                 if (!fs_devices->opened && found_transid < device->generation) {
682                         /*
683                          * That is if the FS is _not_ mounted and if you
684                          * are here, that means there is more than one
685                          * disk with same uuid and devid.We keep the one
686                          * with larger generation number or the last-in if
687                          * generation are equal.
688                          */
689                         return -EEXIST;
690                 }
691
692                 name = rcu_string_strdup(path, GFP_NOFS);
693                 if (!name)
694                         return -ENOMEM;
695                 rcu_string_free(device->name);
696                 rcu_assign_pointer(device->name, name);
697                 if (device->missing) {
698                         fs_devices->missing_devices--;
699                         device->missing = 0;
700                 }
701         }
702
703         /*
704          * Unmount does not free the btrfs_device struct but would zero
705          * generation along with most of the other members. So just update
706          * it back. We need it to pick the disk with largest generation
707          * (as above).
708          */
709         if (!fs_devices->opened)
710                 device->generation = found_transid;
711
712         /*
713          * if there is new btrfs on an already registered device,
714          * then remove the stale device entry.
715          */
716         if (ret > 0)
717                 btrfs_free_stale_device(device);
718
719         *fs_devices_ret = fs_devices;
720
721         return ret;
722 }
723
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726         struct btrfs_fs_devices *fs_devices;
727         struct btrfs_device *device;
728         struct btrfs_device *orig_dev;
729
730         fs_devices = alloc_fs_devices(orig->fsid);
731         if (IS_ERR(fs_devices))
732                 return fs_devices;
733
734         mutex_lock(&orig->device_list_mutex);
735         fs_devices->total_devices = orig->total_devices;
736
737         /* We have held the volume lock, it is safe to get the devices. */
738         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739                 struct rcu_string *name;
740
741                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742                                             orig_dev->uuid);
743                 if (IS_ERR(device))
744                         goto error;
745
746                 /*
747                  * This is ok to do without rcu read locked because we hold the
748                  * uuid mutex so nothing we touch in here is going to disappear.
749                  */
750                 if (orig_dev->name) {
751                         name = rcu_string_strdup(orig_dev->name->str,
752                                         GFP_KERNEL);
753                         if (!name) {
754                                 kfree(device);
755                                 goto error;
756                         }
757                         rcu_assign_pointer(device->name, name);
758                 }
759
760                 list_add(&device->dev_list, &fs_devices->devices);
761                 device->fs_devices = fs_devices;
762                 fs_devices->num_devices++;
763         }
764         mutex_unlock(&orig->device_list_mutex);
765         return fs_devices;
766 error:
767         mutex_unlock(&orig->device_list_mutex);
768         free_fs_devices(fs_devices);
769         return ERR_PTR(-ENOMEM);
770 }
771
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774         struct btrfs_device *device, *next;
775         struct btrfs_device *latest_dev = NULL;
776
777         mutex_lock(&uuid_mutex);
778 again:
779         /* This is the initialized path, it is safe to release the devices. */
780         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781                 if (device->in_fs_metadata) {
782                         if (!device->is_tgtdev_for_dev_replace &&
783                             (!latest_dev ||
784                              device->generation > latest_dev->generation)) {
785                                 latest_dev = device;
786                         }
787                         continue;
788                 }
789
790                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791                         /*
792                          * In the first step, keep the device which has
793                          * the correct fsid and the devid that is used
794                          * for the dev_replace procedure.
795                          * In the second step, the dev_replace state is
796                          * read from the device tree and it is known
797                          * whether the procedure is really active or
798                          * not, which means whether this device is
799                          * used or whether it should be removed.
800                          */
801                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
802                                 continue;
803                         }
804                 }
805                 if (device->bdev) {
806                         blkdev_put(device->bdev, device->mode);
807                         device->bdev = NULL;
808                         fs_devices->open_devices--;
809                 }
810                 if (device->writeable) {
811                         list_del_init(&device->dev_alloc_list);
812                         device->writeable = 0;
813                         if (!device->is_tgtdev_for_dev_replace)
814                                 fs_devices->rw_devices--;
815                 }
816                 list_del_init(&device->dev_list);
817                 fs_devices->num_devices--;
818                 rcu_string_free(device->name);
819                 kfree(device);
820         }
821
822         if (fs_devices->seed) {
823                 fs_devices = fs_devices->seed;
824                 goto again;
825         }
826
827         fs_devices->latest_bdev = latest_dev->bdev;
828
829         mutex_unlock(&uuid_mutex);
830 }
831
832 static void __free_device(struct work_struct *work)
833 {
834         struct btrfs_device *device;
835
836         device = container_of(work, struct btrfs_device, rcu_work);
837         rcu_string_free(device->name);
838         kfree(device);
839 }
840
841 static void free_device(struct rcu_head *head)
842 {
843         struct btrfs_device *device;
844
845         device = container_of(head, struct btrfs_device, rcu);
846
847         INIT_WORK(&device->rcu_work, __free_device);
848         schedule_work(&device->rcu_work);
849 }
850
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853         if (device->bdev && device->writeable) {
854                 sync_blockdev(device->bdev);
855                 invalidate_bdev(device->bdev);
856         }
857
858         if (device->bdev)
859                 blkdev_put(device->bdev, device->mode);
860 }
861
862 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
863 {
864         struct btrfs_fs_devices *fs_devices = device->fs_devices;
865         struct btrfs_device *new_device;
866         struct rcu_string *name;
867
868         if (device->bdev)
869                 fs_devices->open_devices--;
870
871         if (device->writeable &&
872             device->devid != BTRFS_DEV_REPLACE_DEVID) {
873                 list_del_init(&device->dev_alloc_list);
874                 fs_devices->rw_devices--;
875         }
876
877         if (device->missing)
878                 fs_devices->missing_devices--;
879
880         new_device = btrfs_alloc_device(NULL, &device->devid,
881                                         device->uuid);
882         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
883
884         /* Safe because we are under uuid_mutex */
885         if (device->name) {
886                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
887                 BUG_ON(!name); /* -ENOMEM */
888                 rcu_assign_pointer(new_device->name, name);
889         }
890
891         list_replace_rcu(&device->dev_list, &new_device->dev_list);
892         new_device->fs_devices = device->fs_devices;
893 }
894
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
896 {
897         struct btrfs_device *device, *tmp;
898         struct list_head pending_put;
899
900         INIT_LIST_HEAD(&pending_put);
901
902         if (--fs_devices->opened > 0)
903                 return 0;
904
905         mutex_lock(&fs_devices->device_list_mutex);
906         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
907                 btrfs_prepare_close_one_device(device);
908                 list_add(&device->dev_list, &pending_put);
909         }
910         mutex_unlock(&fs_devices->device_list_mutex);
911
912         /*
913          * btrfs_show_devname() is using the device_list_mutex,
914          * sometimes call to blkdev_put() leads vfs calling
915          * into this func. So do put outside of device_list_mutex,
916          * as of now.
917          */
918         while (!list_empty(&pending_put)) {
919                 device = list_first_entry(&pending_put,
920                                 struct btrfs_device, dev_list);
921                 list_del(&device->dev_list);
922                 btrfs_close_bdev(device);
923                 call_rcu(&device->rcu, free_device);
924         }
925
926         WARN_ON(fs_devices->open_devices);
927         WARN_ON(fs_devices->rw_devices);
928         fs_devices->opened = 0;
929         fs_devices->seeding = 0;
930
931         return 0;
932 }
933
934 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
935 {
936         struct btrfs_fs_devices *seed_devices = NULL;
937         int ret;
938
939         mutex_lock(&uuid_mutex);
940         ret = __btrfs_close_devices(fs_devices);
941         if (!fs_devices->opened) {
942                 seed_devices = fs_devices->seed;
943                 fs_devices->seed = NULL;
944         }
945         mutex_unlock(&uuid_mutex);
946
947         while (seed_devices) {
948                 fs_devices = seed_devices;
949                 seed_devices = fs_devices->seed;
950                 __btrfs_close_devices(fs_devices);
951                 free_fs_devices(fs_devices);
952         }
953         /*
954          * Wait for rcu kworkers under __btrfs_close_devices
955          * to finish all blkdev_puts so device is really
956          * free when umount is done.
957          */
958         rcu_barrier();
959         return ret;
960 }
961
962 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
963                                 fmode_t flags, void *holder)
964 {
965         struct request_queue *q;
966         struct block_device *bdev;
967         struct list_head *head = &fs_devices->devices;
968         struct btrfs_device *device;
969         struct btrfs_device *latest_dev = NULL;
970         struct buffer_head *bh;
971         struct btrfs_super_block *disk_super;
972         u64 devid;
973         int seeding = 1;
974         int ret = 0;
975
976         flags |= FMODE_EXCL;
977
978         list_for_each_entry(device, head, dev_list) {
979                 if (device->bdev)
980                         continue;
981                 if (!device->name)
982                         continue;
983
984                 /* Just open everything we can; ignore failures here */
985                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
986                                             &bdev, &bh))
987                         continue;
988
989                 disk_super = (struct btrfs_super_block *)bh->b_data;
990                 devid = btrfs_stack_device_id(&disk_super->dev_item);
991                 if (devid != device->devid)
992                         goto error_brelse;
993
994                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
995                            BTRFS_UUID_SIZE))
996                         goto error_brelse;
997
998                 device->generation = btrfs_super_generation(disk_super);
999                 if (!latest_dev ||
1000                     device->generation > latest_dev->generation)
1001                         latest_dev = device;
1002
1003                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1004                         device->writeable = 0;
1005                 } else {
1006                         device->writeable = !bdev_read_only(bdev);
1007                         seeding = 0;
1008                 }
1009
1010                 q = bdev_get_queue(bdev);
1011                 if (blk_queue_discard(q))
1012                         device->can_discard = 1;
1013
1014                 device->bdev = bdev;
1015                 device->in_fs_metadata = 0;
1016                 device->mode = flags;
1017
1018                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1019                         fs_devices->rotating = 1;
1020
1021                 fs_devices->open_devices++;
1022                 if (device->writeable &&
1023                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1024                         fs_devices->rw_devices++;
1025                         list_add(&device->dev_alloc_list,
1026                                  &fs_devices->alloc_list);
1027                 }
1028                 brelse(bh);
1029                 continue;
1030
1031 error_brelse:
1032                 brelse(bh);
1033                 blkdev_put(bdev, flags);
1034                 continue;
1035         }
1036         if (fs_devices->open_devices == 0) {
1037                 ret = -EINVAL;
1038                 goto out;
1039         }
1040         fs_devices->seeding = seeding;
1041         fs_devices->opened = 1;
1042         fs_devices->latest_bdev = latest_dev->bdev;
1043         fs_devices->total_rw_bytes = 0;
1044 out:
1045         return ret;
1046 }
1047
1048 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1049                        fmode_t flags, void *holder)
1050 {
1051         int ret;
1052
1053         mutex_lock(&uuid_mutex);
1054         if (fs_devices->opened) {
1055                 fs_devices->opened++;
1056                 ret = 0;
1057         } else {
1058                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1059         }
1060         mutex_unlock(&uuid_mutex);
1061         return ret;
1062 }
1063
1064 void btrfs_release_disk_super(struct page *page)
1065 {
1066         kunmap(page);
1067         put_page(page);
1068 }
1069
1070 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1071                 struct page **page, struct btrfs_super_block **disk_super)
1072 {
1073         void *p;
1074         pgoff_t index;
1075
1076         /* make sure our super fits in the device */
1077         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1078                 return 1;
1079
1080         /* make sure our super fits in the page */
1081         if (sizeof(**disk_super) > PAGE_SIZE)
1082                 return 1;
1083
1084         /* make sure our super doesn't straddle pages on disk */
1085         index = bytenr >> PAGE_SHIFT;
1086         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1087                 return 1;
1088
1089         /* pull in the page with our super */
1090         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1091                                    index, GFP_KERNEL);
1092
1093         if (IS_ERR_OR_NULL(*page))
1094                 return 1;
1095
1096         p = kmap(*page);
1097
1098         /* align our pointer to the offset of the super block */
1099         *disk_super = p + (bytenr & ~PAGE_MASK);
1100
1101         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1102             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1103                 btrfs_release_disk_super(*page);
1104                 return 1;
1105         }
1106
1107         if ((*disk_super)->label[0] &&
1108                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1109                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Look for a btrfs signature on a device. This may be called out of the mount path
1116  * and we are not allowed to call set_blocksize during the scan. The superblock
1117  * is read via pagecache
1118  */
1119 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1120                           struct btrfs_fs_devices **fs_devices_ret)
1121 {
1122         struct btrfs_super_block *disk_super;
1123         struct block_device *bdev;
1124         struct page *page;
1125         int ret = -EINVAL;
1126         u64 devid;
1127         u64 transid;
1128         u64 total_devices;
1129         u64 bytenr;
1130
1131         /*
1132          * we would like to check all the supers, but that would make
1133          * a btrfs mount succeed after a mkfs from a different FS.
1134          * So, we need to add a special mount option to scan for
1135          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136          */
1137         bytenr = btrfs_sb_offset(0);
1138         flags |= FMODE_EXCL;
1139         mutex_lock(&uuid_mutex);
1140
1141         bdev = blkdev_get_by_path(path, flags, holder);
1142         if (IS_ERR(bdev)) {
1143                 ret = PTR_ERR(bdev);
1144                 goto error;
1145         }
1146
1147         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1148                 goto error_bdev_put;
1149
1150         devid = btrfs_stack_device_id(&disk_super->dev_item);
1151         transid = btrfs_super_generation(disk_super);
1152         total_devices = btrfs_super_num_devices(disk_super);
1153
1154         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1155         if (ret > 0) {
1156                 if (disk_super->label[0]) {
1157                         pr_info("BTRFS: device label %s ", disk_super->label);
1158                 } else {
1159                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1160                 }
1161
1162                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1163                 ret = 0;
1164         }
1165         if (!ret && fs_devices_ret)
1166                 (*fs_devices_ret)->total_devices = total_devices;
1167
1168         btrfs_release_disk_super(page);
1169
1170 error_bdev_put:
1171         blkdev_put(bdev, flags);
1172 error:
1173         mutex_unlock(&uuid_mutex);
1174         return ret;
1175 }
1176
1177 /* helper to account the used device space in the range */
1178 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1179                                    u64 end, u64 *length)
1180 {
1181         struct btrfs_key key;
1182         struct btrfs_root *root = device->dev_root;
1183         struct btrfs_dev_extent *dev_extent;
1184         struct btrfs_path *path;
1185         u64 extent_end;
1186         int ret;
1187         int slot;
1188         struct extent_buffer *l;
1189
1190         *length = 0;
1191
1192         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1193                 return 0;
1194
1195         path = btrfs_alloc_path();
1196         if (!path)
1197                 return -ENOMEM;
1198         path->reada = READA_FORWARD;
1199
1200         key.objectid = device->devid;
1201         key.offset = start;
1202         key.type = BTRFS_DEV_EXTENT_KEY;
1203
1204         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205         if (ret < 0)
1206                 goto out;
1207         if (ret > 0) {
1208                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1209                 if (ret < 0)
1210                         goto out;
1211         }
1212
1213         while (1) {
1214                 l = path->nodes[0];
1215                 slot = path->slots[0];
1216                 if (slot >= btrfs_header_nritems(l)) {
1217                         ret = btrfs_next_leaf(root, path);
1218                         if (ret == 0)
1219                                 continue;
1220                         if (ret < 0)
1221                                 goto out;
1222
1223                         break;
1224                 }
1225                 btrfs_item_key_to_cpu(l, &key, slot);
1226
1227                 if (key.objectid < device->devid)
1228                         goto next;
1229
1230                 if (key.objectid > device->devid)
1231                         break;
1232
1233                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1234                         goto next;
1235
1236                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1237                 extent_end = key.offset + btrfs_dev_extent_length(l,
1238                                                                   dev_extent);
1239                 if (key.offset <= start && extent_end > end) {
1240                         *length = end - start + 1;
1241                         break;
1242                 } else if (key.offset <= start && extent_end > start)
1243                         *length += extent_end - start;
1244                 else if (key.offset > start && extent_end <= end)
1245                         *length += extent_end - key.offset;
1246                 else if (key.offset > start && key.offset <= end) {
1247                         *length += end - key.offset + 1;
1248                         break;
1249                 } else if (key.offset > end)
1250                         break;
1251
1252 next:
1253                 path->slots[0]++;
1254         }
1255         ret = 0;
1256 out:
1257         btrfs_free_path(path);
1258         return ret;
1259 }
1260
1261 static int contains_pending_extent(struct btrfs_transaction *transaction,
1262                                    struct btrfs_device *device,
1263                                    u64 *start, u64 len)
1264 {
1265         struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1266         struct extent_map *em;
1267         struct list_head *search_list = &fs_info->pinned_chunks;
1268         int ret = 0;
1269         u64 physical_start = *start;
1270
1271         if (transaction)
1272                 search_list = &transaction->pending_chunks;
1273 again:
1274         list_for_each_entry(em, search_list, list) {
1275                 struct map_lookup *map;
1276                 int i;
1277
1278                 map = em->map_lookup;
1279                 for (i = 0; i < map->num_stripes; i++) {
1280                         u64 end;
1281
1282                         if (map->stripes[i].dev != device)
1283                                 continue;
1284                         if (map->stripes[i].physical >= physical_start + len ||
1285                             map->stripes[i].physical + em->orig_block_len <=
1286                             physical_start)
1287                                 continue;
1288                         /*
1289                          * Make sure that while processing the pinned list we do
1290                          * not override our *start with a lower value, because
1291                          * we can have pinned chunks that fall within this
1292                          * device hole and that have lower physical addresses
1293                          * than the pending chunks we processed before. If we
1294                          * do not take this special care we can end up getting
1295                          * 2 pending chunks that start at the same physical
1296                          * device offsets because the end offset of a pinned
1297                          * chunk can be equal to the start offset of some
1298                          * pending chunk.
1299                          */
1300                         end = map->stripes[i].physical + em->orig_block_len;
1301                         if (end > *start) {
1302                                 *start = end;
1303                                 ret = 1;
1304                         }
1305                 }
1306         }
1307         if (search_list != &fs_info->pinned_chunks) {
1308                 search_list = &fs_info->pinned_chunks;
1309                 goto again;
1310         }
1311
1312         return ret;
1313 }
1314
1315
1316 /*
1317  * find_free_dev_extent_start - find free space in the specified device
1318  * @device:       the device which we search the free space in
1319  * @num_bytes:    the size of the free space that we need
1320  * @search_start: the position from which to begin the search
1321  * @start:        store the start of the free space.
1322  * @len:          the size of the free space. that we find, or the size
1323  *                of the max free space if we don't find suitable free space
1324  *
1325  * this uses a pretty simple search, the expectation is that it is
1326  * called very infrequently and that a given device has a small number
1327  * of extents
1328  *
1329  * @start is used to store the start of the free space if we find. But if we
1330  * don't find suitable free space, it will be used to store the start position
1331  * of the max free space.
1332  *
1333  * @len is used to store the size of the free space that we find.
1334  * But if we don't find suitable free space, it is used to store the size of
1335  * the max free space.
1336  */
1337 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1338                                struct btrfs_device *device, u64 num_bytes,
1339                                u64 search_start, u64 *start, u64 *len)
1340 {
1341         struct btrfs_key key;
1342         struct btrfs_root *root = device->dev_root;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353         u64 min_search_start;
1354
1355         /*
1356          * We don't want to overwrite the superblock on the drive nor any area
1357          * used by the boot loader (grub for example), so we make sure to start
1358          * at an offset of at least 1MB.
1359          */
1360         min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361         search_start = max(search_start, min_search_start);
1362
1363         path = btrfs_alloc_path();
1364         if (!path)
1365                 return -ENOMEM;
1366
1367         max_hole_start = search_start;
1368         max_hole_size = 0;
1369
1370 again:
1371         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372                 ret = -ENOSPC;
1373                 goto out;
1374         }
1375
1376         path->reada = READA_FORWARD;
1377         path->search_commit_root = 1;
1378         path->skip_locking = 1;
1379
1380         key.objectid = device->devid;
1381         key.offset = search_start;
1382         key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385         if (ret < 0)
1386                 goto out;
1387         if (ret > 0) {
1388                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389                 if (ret < 0)
1390                         goto out;
1391         }
1392
1393         while (1) {
1394                 l = path->nodes[0];
1395                 slot = path->slots[0];
1396                 if (slot >= btrfs_header_nritems(l)) {
1397                         ret = btrfs_next_leaf(root, path);
1398                         if (ret == 0)
1399                                 continue;
1400                         if (ret < 0)
1401                                 goto out;
1402
1403                         break;
1404                 }
1405                 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407                 if (key.objectid < device->devid)
1408                         goto next;
1409
1410                 if (key.objectid > device->devid)
1411                         break;
1412
1413                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414                         goto next;
1415
1416                 if (key.offset > search_start) {
1417                         hole_size = key.offset - search_start;
1418
1419                         /*
1420                          * Have to check before we set max_hole_start, otherwise
1421                          * we could end up sending back this offset anyway.
1422                          */
1423                         if (contains_pending_extent(transaction, device,
1424                                                     &search_start,
1425                                                     hole_size)) {
1426                                 if (key.offset >= search_start) {
1427                                         hole_size = key.offset - search_start;
1428                                 } else {
1429                                         WARN_ON_ONCE(1);
1430                                         hole_size = 0;
1431                                 }
1432                         }
1433
1434                         if (hole_size > max_hole_size) {
1435                                 max_hole_start = search_start;
1436                                 max_hole_size = hole_size;
1437                         }
1438
1439                         /*
1440                          * If this free space is greater than which we need,
1441                          * it must be the max free space that we have found
1442                          * until now, so max_hole_start must point to the start
1443                          * of this free space and the length of this free space
1444                          * is stored in max_hole_size. Thus, we return
1445                          * max_hole_start and max_hole_size and go back to the
1446                          * caller.
1447                          */
1448                         if (hole_size >= num_bytes) {
1449                                 ret = 0;
1450                                 goto out;
1451                         }
1452                 }
1453
1454                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455                 extent_end = key.offset + btrfs_dev_extent_length(l,
1456                                                                   dev_extent);
1457                 if (extent_end > search_start)
1458                         search_start = extent_end;
1459 next:
1460                 path->slots[0]++;
1461                 cond_resched();
1462         }
1463
1464         /*
1465          * At this point, search_start should be the end of
1466          * allocated dev extents, and when shrinking the device,
1467          * search_end may be smaller than search_start.
1468          */
1469         if (search_end > search_start) {
1470                 hole_size = search_end - search_start;
1471
1472                 if (contains_pending_extent(transaction, device, &search_start,
1473                                             hole_size)) {
1474                         btrfs_release_path(path);
1475                         goto again;
1476                 }
1477
1478                 if (hole_size > max_hole_size) {
1479                         max_hole_start = search_start;
1480                         max_hole_size = hole_size;
1481                 }
1482         }
1483
1484         /* See above. */
1485         if (max_hole_size < num_bytes)
1486                 ret = -ENOSPC;
1487         else
1488                 ret = 0;
1489
1490 out:
1491         btrfs_free_path(path);
1492         *start = max_hole_start;
1493         if (len)
1494                 *len = max_hole_size;
1495         return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499                          struct btrfs_device *device, u64 num_bytes,
1500                          u64 *start, u64 *len)
1501 {
1502         /* FIXME use last free of some kind */
1503         return find_free_dev_extent_start(trans->transaction, device,
1504                                           num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508                           struct btrfs_device *device,
1509                           u64 start, u64 *dev_extent_len)
1510 {
1511         int ret;
1512         struct btrfs_path *path;
1513         struct btrfs_root *root = device->dev_root;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(root->fs_info, ret,
1556                             "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_tree, u64 chunk_objectid,
1568                                   u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570         int ret;
1571         struct btrfs_path *path;
1572         struct btrfs_root *root = device->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!device->in_fs_metadata);
1578         WARN_ON(device->is_tgtdev_for_dev_replace);
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1595         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1596         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1597
1598         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1599                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1600
1601         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602         btrfs_mark_buffer_dirty(leaf);
1603 out:
1604         btrfs_free_path(path);
1605         return ret;
1606 }
1607
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610         struct extent_map_tree *em_tree;
1611         struct extent_map *em;
1612         struct rb_node *n;
1613         u64 ret = 0;
1614
1615         em_tree = &fs_info->mapping_tree.map_tree;
1616         read_lock(&em_tree->lock);
1617         n = rb_last(&em_tree->map);
1618         if (n) {
1619                 em = rb_entry(n, struct extent_map, rb_node);
1620                 ret = em->start + em->len;
1621         }
1622         read_unlock(&em_tree->lock);
1623
1624         return ret;
1625 }
1626
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628                                     u64 *devid_ret)
1629 {
1630         int ret;
1631         struct btrfs_key key;
1632         struct btrfs_key found_key;
1633         struct btrfs_path *path;
1634
1635         path = btrfs_alloc_path();
1636         if (!path)
1637                 return -ENOMEM;
1638
1639         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640         key.type = BTRFS_DEV_ITEM_KEY;
1641         key.offset = (u64)-1;
1642
1643         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644         if (ret < 0)
1645                 goto error;
1646
1647         BUG_ON(ret == 0); /* Corruption */
1648
1649         ret = btrfs_previous_item(fs_info->chunk_root, path,
1650                                   BTRFS_DEV_ITEMS_OBJECTID,
1651                                   BTRFS_DEV_ITEM_KEY);
1652         if (ret) {
1653                 *devid_ret = 1;
1654         } else {
1655                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656                                       path->slots[0]);
1657                 *devid_ret = found_key.offset + 1;
1658         }
1659         ret = 0;
1660 error:
1661         btrfs_free_path(path);
1662         return ret;
1663 }
1664
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670                             struct btrfs_root *root,
1671                             struct btrfs_device *device)
1672 {
1673         int ret;
1674         struct btrfs_path *path;
1675         struct btrfs_dev_item *dev_item;
1676         struct extent_buffer *leaf;
1677         struct btrfs_key key;
1678         unsigned long ptr;
1679
1680         root = root->fs_info->chunk_root;
1681
1682         path = btrfs_alloc_path();
1683         if (!path)
1684                 return -ENOMEM;
1685
1686         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687         key.type = BTRFS_DEV_ITEM_KEY;
1688         key.offset = device->devid;
1689
1690         ret = btrfs_insert_empty_item(trans, root, path, &key,
1691                                       sizeof(*dev_item));
1692         if (ret)
1693                 goto out;
1694
1695         leaf = path->nodes[0];
1696         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698         btrfs_set_device_id(leaf, dev_item, device->devid);
1699         btrfs_set_device_generation(leaf, dev_item, 0);
1700         btrfs_set_device_type(leaf, dev_item, device->type);
1701         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704         btrfs_set_device_total_bytes(leaf, dev_item,
1705                                      btrfs_device_get_disk_total_bytes(device));
1706         btrfs_set_device_bytes_used(leaf, dev_item,
1707                                     btrfs_device_get_bytes_used(device));
1708         btrfs_set_device_group(leaf, dev_item, 0);
1709         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711         btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713         ptr = btrfs_device_uuid(dev_item);
1714         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715         ptr = btrfs_device_fsid(dev_item);
1716         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717         btrfs_mark_buffer_dirty(leaf);
1718
1719         ret = 0;
1720 out:
1721         btrfs_free_path(path);
1722         return ret;
1723 }
1724
1725 /*
1726  * Function to update ctime/mtime for a given device path.
1727  * Mainly used for ctime/mtime based probe like libblkid.
1728  */
1729 static void update_dev_time(char *path_name)
1730 {
1731         struct file *filp;
1732
1733         filp = filp_open(path_name, O_RDWR, 0);
1734         if (IS_ERR(filp))
1735                 return;
1736         file_update_time(filp);
1737         filp_close(filp, NULL);
1738 }
1739
1740 static int btrfs_rm_dev_item(struct btrfs_root *root,
1741                              struct btrfs_device *device)
1742 {
1743         int ret;
1744         struct btrfs_path *path;
1745         struct btrfs_key key;
1746         struct btrfs_trans_handle *trans;
1747
1748         root = root->fs_info->chunk_root;
1749
1750         path = btrfs_alloc_path();
1751         if (!path)
1752                 return -ENOMEM;
1753
1754         trans = btrfs_start_transaction(root, 0);
1755         if (IS_ERR(trans)) {
1756                 btrfs_free_path(path);
1757                 return PTR_ERR(trans);
1758         }
1759         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760         key.type = BTRFS_DEV_ITEM_KEY;
1761         key.offset = device->devid;
1762
1763         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1764         if (ret < 0)
1765                 goto out;
1766
1767         if (ret > 0) {
1768                 ret = -ENOENT;
1769                 goto out;
1770         }
1771
1772         ret = btrfs_del_item(trans, root, path);
1773         if (ret)
1774                 goto out;
1775 out:
1776         btrfs_free_path(path);
1777         btrfs_commit_transaction(trans, root);
1778         return ret;
1779 }
1780
1781 /*
1782  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1783  * filesystem. It's up to the caller to adjust that number regarding eg. device
1784  * replace.
1785  */
1786 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1787                 u64 num_devices)
1788 {
1789         u64 all_avail;
1790         unsigned seq;
1791         int i;
1792
1793         do {
1794                 seq = read_seqbegin(&fs_info->profiles_lock);
1795
1796                 all_avail = fs_info->avail_data_alloc_bits |
1797                             fs_info->avail_system_alloc_bits |
1798                             fs_info->avail_metadata_alloc_bits;
1799         } while (read_seqretry(&fs_info->profiles_lock, seq));
1800
1801         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1802                 if (!(all_avail & btrfs_raid_group[i]))
1803                         continue;
1804
1805                 if (num_devices < btrfs_raid_array[i].devs_min) {
1806                         int ret = btrfs_raid_mindev_error[i];
1807
1808                         if (ret)
1809                                 return ret;
1810                 }
1811         }
1812
1813         return 0;
1814 }
1815
1816 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1817                                         struct btrfs_device *device)
1818 {
1819         struct btrfs_device *next_device;
1820
1821         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1822                 if (next_device != device &&
1823                         !next_device->missing && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1837                 struct btrfs_device *device, struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_device *next_device;
1840
1841         if (this_dev)
1842                 next_device = this_dev;
1843         else
1844                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1845                                                                 device);
1846         ASSERT(next_device);
1847
1848         if (fs_info->sb->s_bdev &&
1849                         (fs_info->sb->s_bdev == device->bdev))
1850                 fs_info->sb->s_bdev = next_device->bdev;
1851
1852         if (fs_info->fs_devices->latest_bdev == device->bdev)
1853                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1854 }
1855
1856 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1857 {
1858         struct btrfs_device *device;
1859         struct btrfs_fs_devices *cur_devices;
1860         u64 num_devices;
1861         int ret = 0;
1862         bool clear_super = false;
1863
1864         mutex_lock(&uuid_mutex);
1865
1866         num_devices = root->fs_info->fs_devices->num_devices;
1867         btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1868         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1869                 WARN_ON(num_devices < 1);
1870                 num_devices--;
1871         }
1872         btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1873
1874         ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1875         if (ret)
1876                 goto out;
1877
1878         ret = btrfs_find_device_by_devspec(root, devid, device_path,
1879                                 &device);
1880         if (ret)
1881                 goto out;
1882
1883         if (device->is_tgtdev_for_dev_replace) {
1884                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1885                 goto out;
1886         }
1887
1888         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1889                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1890                 goto out;
1891         }
1892
1893         if (device->writeable) {
1894                 lock_chunks(root);
1895                 list_del_init(&device->dev_alloc_list);
1896                 device->fs_devices->rw_devices--;
1897                 unlock_chunks(root);
1898                 clear_super = true;
1899         }
1900
1901         mutex_unlock(&uuid_mutex);
1902         ret = btrfs_shrink_device(device, 0);
1903         mutex_lock(&uuid_mutex);
1904         if (ret)
1905                 goto error_undo;
1906
1907         /*
1908          * TODO: the superblock still includes this device in its num_devices
1909          * counter although write_all_supers() is not locked out. This
1910          * could give a filesystem state which requires a degraded mount.
1911          */
1912         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1913         if (ret)
1914                 goto error_undo;
1915
1916         device->in_fs_metadata = 0;
1917         btrfs_scrub_cancel_dev(root->fs_info, device);
1918
1919         /*
1920          * the device list mutex makes sure that we don't change
1921          * the device list while someone else is writing out all
1922          * the device supers. Whoever is writing all supers, should
1923          * lock the device list mutex before getting the number of
1924          * devices in the super block (super_copy). Conversely,
1925          * whoever updates the number of devices in the super block
1926          * (super_copy) should hold the device list mutex.
1927          */
1928
1929         cur_devices = device->fs_devices;
1930         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1931         list_del_rcu(&device->dev_list);
1932
1933         device->fs_devices->num_devices--;
1934         device->fs_devices->total_devices--;
1935
1936         if (device->missing)
1937                 device->fs_devices->missing_devices--;
1938
1939         btrfs_assign_next_active_device(root->fs_info, device, NULL);
1940
1941         if (device->bdev) {
1942                 device->fs_devices->open_devices--;
1943                 /* remove sysfs entry */
1944                 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1945         }
1946
1947         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1948         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1949         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1950
1951         /*
1952          * at this point, the device is zero sized and detached from
1953          * the devices list.  All that's left is to zero out the old
1954          * supers and free the device.
1955          */
1956         if (device->writeable)
1957                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1958
1959         btrfs_close_bdev(device);
1960         call_rcu(&device->rcu, free_device);
1961
1962         if (cur_devices->open_devices == 0) {
1963                 struct btrfs_fs_devices *fs_devices;
1964                 fs_devices = root->fs_info->fs_devices;
1965                 while (fs_devices) {
1966                         if (fs_devices->seed == cur_devices) {
1967                                 fs_devices->seed = cur_devices->seed;
1968                                 break;
1969                         }
1970                         fs_devices = fs_devices->seed;
1971                 }
1972                 cur_devices->seed = NULL;
1973                 __btrfs_close_devices(cur_devices);
1974                 free_fs_devices(cur_devices);
1975         }
1976
1977         root->fs_info->num_tolerated_disk_barrier_failures =
1978                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1979
1980 out:
1981         mutex_unlock(&uuid_mutex);
1982         return ret;
1983
1984 error_undo:
1985         if (device->writeable) {
1986                 lock_chunks(root);
1987                 list_add(&device->dev_alloc_list,
1988                          &root->fs_info->fs_devices->alloc_list);
1989                 device->fs_devices->rw_devices++;
1990                 unlock_chunks(root);
1991         }
1992         goto out;
1993 }
1994
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996                                         struct btrfs_device *srcdev)
1997 {
1998         struct btrfs_fs_devices *fs_devices;
1999
2000         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001
2002         /*
2003          * in case of fs with no seed, srcdev->fs_devices will point
2004          * to fs_devices of fs_info. However when the dev being replaced is
2005          * a seed dev it will point to the seed's local fs_devices. In short
2006          * srcdev will have its correct fs_devices in both the cases.
2007          */
2008         fs_devices = srcdev->fs_devices;
2009
2010         list_del_rcu(&srcdev->dev_list);
2011         list_del_rcu(&srcdev->dev_alloc_list);
2012         fs_devices->num_devices--;
2013         if (srcdev->missing)
2014                 fs_devices->missing_devices--;
2015
2016         if (srcdev->writeable)
2017                 fs_devices->rw_devices--;
2018
2019         if (srcdev->bdev)
2020                 fs_devices->open_devices--;
2021 }
2022
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024                                       struct btrfs_device *srcdev)
2025 {
2026         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027
2028         if (srcdev->writeable) {
2029                 /* zero out the old super if it is writable */
2030                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031         }
2032
2033         btrfs_close_bdev(srcdev);
2034
2035         call_rcu(&srcdev->rcu, free_device);
2036
2037         /*
2038          * unless fs_devices is seed fs, num_devices shouldn't go
2039          * zero
2040          */
2041         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043         /* if this is no devs we rather delete the fs_devices */
2044         if (!fs_devices->num_devices) {
2045                 struct btrfs_fs_devices *tmp_fs_devices;
2046
2047                 tmp_fs_devices = fs_info->fs_devices;
2048                 while (tmp_fs_devices) {
2049                         if (tmp_fs_devices->seed == fs_devices) {
2050                                 tmp_fs_devices->seed = fs_devices->seed;
2051                                 break;
2052                         }
2053                         tmp_fs_devices = tmp_fs_devices->seed;
2054                 }
2055                 fs_devices->seed = NULL;
2056                 __btrfs_close_devices(fs_devices);
2057                 free_fs_devices(fs_devices);
2058         }
2059 }
2060
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062                                       struct btrfs_device *tgtdev)
2063 {
2064         mutex_lock(&uuid_mutex);
2065         WARN_ON(!tgtdev);
2066         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067
2068         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069
2070         if (tgtdev->bdev)
2071                 fs_info->fs_devices->open_devices--;
2072
2073         fs_info->fs_devices->num_devices--;
2074
2075         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076
2077         list_del_rcu(&tgtdev->dev_list);
2078
2079         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080         mutex_unlock(&uuid_mutex);
2081
2082         /*
2083          * The update_dev_time() with in btrfs_scratch_superblocks()
2084          * may lead to a call to btrfs_show_devname() which will try
2085          * to hold device_list_mutex. And here this device
2086          * is already out of device list, so we don't have to hold
2087          * the device_list_mutex lock.
2088          */
2089         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090
2091         btrfs_close_bdev(tgtdev);
2092         call_rcu(&tgtdev->rcu, free_device);
2093 }
2094
2095 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096                                      struct btrfs_device **device)
2097 {
2098         int ret = 0;
2099         struct btrfs_super_block *disk_super;
2100         u64 devid;
2101         u8 *dev_uuid;
2102         struct block_device *bdev;
2103         struct buffer_head *bh;
2104
2105         *device = NULL;
2106         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2108         if (ret)
2109                 return ret;
2110         disk_super = (struct btrfs_super_block *)bh->b_data;
2111         devid = btrfs_stack_device_id(&disk_super->dev_item);
2112         dev_uuid = disk_super->dev_item.uuid;
2113         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2114                                     disk_super->fsid);
2115         brelse(bh);
2116         if (!*device)
2117                 ret = -ENOENT;
2118         blkdev_put(bdev, FMODE_READ);
2119         return ret;
2120 }
2121
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123                                          char *device_path,
2124                                          struct btrfs_device **device)
2125 {
2126         *device = NULL;
2127         if (strcmp(device_path, "missing") == 0) {
2128                 struct list_head *devices;
2129                 struct btrfs_device *tmp;
2130
2131                 devices = &root->fs_info->fs_devices->devices;
2132                 /*
2133                  * It is safe to read the devices since the volume_mutex
2134                  * is held by the caller.
2135                  */
2136                 list_for_each_entry(tmp, devices, dev_list) {
2137                         if (tmp->in_fs_metadata && !tmp->bdev) {
2138                                 *device = tmp;
2139                                 break;
2140                         }
2141                 }
2142
2143                 if (!*device)
2144                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145
2146                 return 0;
2147         } else {
2148                 return btrfs_find_device_by_path(root, device_path, device);
2149         }
2150 }
2151
2152 /*
2153  * Lookup a device given by device id, or the path if the id is 0.
2154  */
2155 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2156                                          char *devpath,
2157                                          struct btrfs_device **device)
2158 {
2159         int ret;
2160
2161         if (devid) {
2162                 ret = 0;
2163                 *device = btrfs_find_device(root->fs_info, devid, NULL,
2164                                             NULL);
2165                 if (!*device)
2166                         ret = -ENOENT;
2167         } else {
2168                 if (!devpath || !devpath[0])
2169                         return -EINVAL;
2170
2171                 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2172                                                            device);
2173         }
2174         return ret;
2175 }
2176
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_root *root)
2181 {
2182         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2183         struct btrfs_fs_devices *old_devices;
2184         struct btrfs_fs_devices *seed_devices;
2185         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2186         struct btrfs_device *device;
2187         u64 super_flags;
2188
2189         BUG_ON(!mutex_is_locked(&uuid_mutex));
2190         if (!fs_devices->seeding)
2191                 return -EINVAL;
2192
2193         seed_devices = __alloc_fs_devices();
2194         if (IS_ERR(seed_devices))
2195                 return PTR_ERR(seed_devices);
2196
2197         old_devices = clone_fs_devices(fs_devices);
2198         if (IS_ERR(old_devices)) {
2199                 kfree(seed_devices);
2200                 return PTR_ERR(old_devices);
2201         }
2202
2203         list_add(&old_devices->list, &fs_uuids);
2204
2205         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206         seed_devices->opened = 1;
2207         INIT_LIST_HEAD(&seed_devices->devices);
2208         INIT_LIST_HEAD(&seed_devices->alloc_list);
2209         mutex_init(&seed_devices->device_list_mutex);
2210
2211         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2212         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213                               synchronize_rcu);
2214         list_for_each_entry(device, &seed_devices->devices, dev_list)
2215                 device->fs_devices = seed_devices;
2216
2217         lock_chunks(root);
2218         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219         unlock_chunks(root);
2220
2221         fs_devices->seeding = 0;
2222         fs_devices->num_devices = 0;
2223         fs_devices->open_devices = 0;
2224         fs_devices->missing_devices = 0;
2225         fs_devices->rotating = 0;
2226         fs_devices->seed = seed_devices;
2227
2228         generate_random_uuid(fs_devices->fsid);
2229         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2232
2233         super_flags = btrfs_super_flags(disk_super) &
2234                       ~BTRFS_SUPER_FLAG_SEEDING;
2235         btrfs_set_super_flags(disk_super, super_flags);
2236
2237         return 0;
2238 }
2239
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244                                struct btrfs_root *root)
2245 {
2246         struct btrfs_path *path;
2247         struct extent_buffer *leaf;
2248         struct btrfs_dev_item *dev_item;
2249         struct btrfs_device *device;
2250         struct btrfs_key key;
2251         u8 fs_uuid[BTRFS_UUID_SIZE];
2252         u8 dev_uuid[BTRFS_UUID_SIZE];
2253         u64 devid;
2254         int ret;
2255
2256         path = btrfs_alloc_path();
2257         if (!path)
2258                 return -ENOMEM;
2259
2260         root = root->fs_info->chunk_root;
2261         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262         key.offset = 0;
2263         key.type = BTRFS_DEV_ITEM_KEY;
2264
2265         while (1) {
2266                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267                 if (ret < 0)
2268                         goto error;
2269
2270                 leaf = path->nodes[0];
2271 next_slot:
2272                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273                         ret = btrfs_next_leaf(root, path);
2274                         if (ret > 0)
2275                                 break;
2276                         if (ret < 0)
2277                                 goto error;
2278                         leaf = path->nodes[0];
2279                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280                         btrfs_release_path(path);
2281                         continue;
2282                 }
2283
2284                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286                     key.type != BTRFS_DEV_ITEM_KEY)
2287                         break;
2288
2289                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290                                           struct btrfs_dev_item);
2291                 devid = btrfs_device_id(leaf, dev_item);
2292                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293                                    BTRFS_UUID_SIZE);
2294                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295                                    BTRFS_UUID_SIZE);
2296                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2297                                            fs_uuid);
2298                 BUG_ON(!device); /* Logic error */
2299
2300                 if (device->fs_devices->seeding) {
2301                         btrfs_set_device_generation(leaf, dev_item,
2302                                                     device->generation);
2303                         btrfs_mark_buffer_dirty(leaf);
2304                 }
2305
2306                 path->slots[0]++;
2307                 goto next_slot;
2308         }
2309         ret = 0;
2310 error:
2311         btrfs_free_path(path);
2312         return ret;
2313 }
2314
2315 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2316 {
2317         struct request_queue *q;
2318         struct btrfs_trans_handle *trans;
2319         struct btrfs_device *device;
2320         struct block_device *bdev;
2321         struct list_head *devices;
2322         struct super_block *sb = root->fs_info->sb;
2323         struct rcu_string *name;
2324         u64 tmp;
2325         int seeding_dev = 0;
2326         int ret = 0;
2327
2328         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2329                 return -EROFS;
2330
2331         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2332                                   root->fs_info->bdev_holder);
2333         if (IS_ERR(bdev))
2334                 return PTR_ERR(bdev);
2335
2336         if (root->fs_info->fs_devices->seeding) {
2337                 seeding_dev = 1;
2338                 down_write(&sb->s_umount);
2339                 mutex_lock(&uuid_mutex);
2340         }
2341
2342         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343
2344         devices = &root->fs_info->fs_devices->devices;
2345
2346         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2347         list_for_each_entry(device, devices, dev_list) {
2348                 if (device->bdev == bdev) {
2349                         ret = -EEXIST;
2350                         mutex_unlock(
2351                                 &root->fs_info->fs_devices->device_list_mutex);
2352                         goto error;
2353                 }
2354         }
2355         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2356
2357         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2358         if (IS_ERR(device)) {
2359                 /* we can safely leave the fs_devices entry around */
2360                 ret = PTR_ERR(device);
2361                 goto error;
2362         }
2363
2364         name = rcu_string_strdup(device_path, GFP_KERNEL);
2365         if (!name) {
2366                 kfree(device);
2367                 ret = -ENOMEM;
2368                 goto error;
2369         }
2370         rcu_assign_pointer(device->name, name);
2371
2372         trans = btrfs_start_transaction(root, 0);
2373         if (IS_ERR(trans)) {
2374                 rcu_string_free(device->name);
2375                 kfree(device);
2376                 ret = PTR_ERR(trans);
2377                 goto error;
2378         }
2379
2380         q = bdev_get_queue(bdev);
2381         if (blk_queue_discard(q))
2382                 device->can_discard = 1;
2383         device->writeable = 1;
2384         device->generation = trans->transid;
2385         device->io_width = root->sectorsize;
2386         device->io_align = root->sectorsize;
2387         device->sector_size = root->sectorsize;
2388         device->total_bytes = i_size_read(bdev->bd_inode);
2389         device->disk_total_bytes = device->total_bytes;
2390         device->commit_total_bytes = device->total_bytes;
2391         device->dev_root = root->fs_info->dev_root;
2392         device->bdev = bdev;
2393         device->in_fs_metadata = 1;
2394         device->is_tgtdev_for_dev_replace = 0;
2395         device->mode = FMODE_EXCL;
2396         device->dev_stats_valid = 1;
2397         set_blocksize(device->bdev, 4096);
2398
2399         if (seeding_dev) {
2400                 sb->s_flags &= ~MS_RDONLY;
2401                 ret = btrfs_prepare_sprout(root);
2402                 BUG_ON(ret); /* -ENOMEM */
2403         }
2404
2405         device->fs_devices = root->fs_info->fs_devices;
2406
2407         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2408         lock_chunks(root);
2409         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2410         list_add(&device->dev_alloc_list,
2411                  &root->fs_info->fs_devices->alloc_list);
2412         root->fs_info->fs_devices->num_devices++;
2413         root->fs_info->fs_devices->open_devices++;
2414         root->fs_info->fs_devices->rw_devices++;
2415         root->fs_info->fs_devices->total_devices++;
2416         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417
2418         spin_lock(&root->fs_info->free_chunk_lock);
2419         root->fs_info->free_chunk_space += device->total_bytes;
2420         spin_unlock(&root->fs_info->free_chunk_lock);
2421
2422         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2423                 root->fs_info->fs_devices->rotating = 1;
2424
2425         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2426         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2427                                     tmp + device->total_bytes);
2428
2429         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2430         btrfs_set_super_num_devices(root->fs_info->super_copy,
2431                                     tmp + 1);
2432
2433         /* add sysfs device entry */
2434         btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2435
2436         /*
2437          * we've got more storage, clear any full flags on the space
2438          * infos
2439          */
2440         btrfs_clear_space_info_full(root->fs_info);
2441
2442         unlock_chunks(root);
2443         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2444
2445         if (seeding_dev) {
2446                 lock_chunks(root);
2447                 ret = init_first_rw_device(trans, root, device);
2448                 unlock_chunks(root);
2449                 if (ret) {
2450                         btrfs_abort_transaction(trans, ret);
2451                         goto error_trans;
2452                 }
2453         }
2454
2455         ret = btrfs_add_device(trans, root, device);
2456         if (ret) {
2457                 btrfs_abort_transaction(trans, ret);
2458                 goto error_trans;
2459         }
2460
2461         if (seeding_dev) {
2462                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2463
2464                 ret = btrfs_finish_sprout(trans, root);
2465                 if (ret) {
2466                         btrfs_abort_transaction(trans, ret);
2467                         goto error_trans;
2468                 }
2469
2470                 /* Sprouting would change fsid of the mounted root,
2471                  * so rename the fsid on the sysfs
2472                  */
2473                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2474                                                 root->fs_info->fsid);
2475                 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2476                                                                 fsid_buf))
2477                         btrfs_warn(root->fs_info,
2478                                 "sysfs: failed to create fsid for sprout");
2479         }
2480
2481         root->fs_info->num_tolerated_disk_barrier_failures =
2482                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2483         ret = btrfs_commit_transaction(trans, root);
2484
2485         if (seeding_dev) {
2486                 mutex_unlock(&uuid_mutex);
2487                 up_write(&sb->s_umount);
2488
2489                 if (ret) /* transaction commit */
2490                         return ret;
2491
2492                 ret = btrfs_relocate_sys_chunks(root);
2493                 if (ret < 0)
2494                         btrfs_handle_fs_error(root->fs_info, ret,
2495                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496                 trans = btrfs_attach_transaction(root);
2497                 if (IS_ERR(trans)) {
2498                         if (PTR_ERR(trans) == -ENOENT)
2499                                 return 0;
2500                         return PTR_ERR(trans);
2501                 }
2502                 ret = btrfs_commit_transaction(trans, root);
2503         }
2504
2505         /* Update ctime/mtime for libblkid */
2506         update_dev_time(device_path);
2507         return ret;
2508
2509 error_trans:
2510         btrfs_end_transaction(trans, root);
2511         rcu_string_free(device->name);
2512         btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2513         kfree(device);
2514 error:
2515         blkdev_put(bdev, FMODE_EXCL);
2516         if (seeding_dev) {
2517                 mutex_unlock(&uuid_mutex);
2518                 up_write(&sb->s_umount);
2519         }
2520         return ret;
2521 }
2522
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2524                                   struct btrfs_device *srcdev,
2525                                   struct btrfs_device **device_out)
2526 {
2527         struct request_queue *q;
2528         struct btrfs_device *device;
2529         struct block_device *bdev;
2530         struct btrfs_fs_info *fs_info = root->fs_info;
2531         struct list_head *devices;
2532         struct rcu_string *name;
2533         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534         int ret = 0;
2535
2536         *device_out = NULL;
2537         if (fs_info->fs_devices->seeding) {
2538                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539                 return -EINVAL;
2540         }
2541
2542         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543                                   fs_info->bdev_holder);
2544         if (IS_ERR(bdev)) {
2545                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546                 return PTR_ERR(bdev);
2547         }
2548
2549         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551         devices = &fs_info->fs_devices->devices;
2552         list_for_each_entry(device, devices, dev_list) {
2553                 if (device->bdev == bdev) {
2554                         btrfs_err(fs_info,
2555                                   "target device is in the filesystem!");
2556                         ret = -EEXIST;
2557                         goto error;
2558                 }
2559         }
2560
2561
2562         if (i_size_read(bdev->bd_inode) <
2563             btrfs_device_get_total_bytes(srcdev)) {
2564                 btrfs_err(fs_info,
2565                           "target device is smaller than source device!");
2566                 ret = -EINVAL;
2567                 goto error;
2568         }
2569
2570
2571         device = btrfs_alloc_device(NULL, &devid, NULL);
2572         if (IS_ERR(device)) {
2573                 ret = PTR_ERR(device);
2574                 goto error;
2575         }
2576
2577         name = rcu_string_strdup(device_path, GFP_NOFS);
2578         if (!name) {
2579                 kfree(device);
2580                 ret = -ENOMEM;
2581                 goto error;
2582         }
2583         rcu_assign_pointer(device->name, name);
2584
2585         q = bdev_get_queue(bdev);
2586         if (blk_queue_discard(q))
2587                 device->can_discard = 1;
2588         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2589         device->writeable = 1;
2590         device->generation = 0;
2591         device->io_width = root->sectorsize;
2592         device->io_align = root->sectorsize;
2593         device->sector_size = root->sectorsize;
2594         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597         ASSERT(list_empty(&srcdev->resized_list));
2598         device->commit_total_bytes = srcdev->commit_total_bytes;
2599         device->commit_bytes_used = device->bytes_used;
2600         device->dev_root = fs_info->dev_root;
2601         device->bdev = bdev;
2602         device->in_fs_metadata = 1;
2603         device->is_tgtdev_for_dev_replace = 1;
2604         device->mode = FMODE_EXCL;
2605         device->dev_stats_valid = 1;
2606         set_blocksize(device->bdev, 4096);
2607         device->fs_devices = fs_info->fs_devices;
2608         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609         fs_info->fs_devices->num_devices++;
2610         fs_info->fs_devices->open_devices++;
2611         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2612
2613         *device_out = device;
2614         return ret;
2615
2616 error:
2617         blkdev_put(bdev, FMODE_EXCL);
2618         return ret;
2619 }
2620
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622                                               struct btrfs_device *tgtdev)
2623 {
2624         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2625         tgtdev->io_width = fs_info->dev_root->sectorsize;
2626         tgtdev->io_align = fs_info->dev_root->sectorsize;
2627         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2628         tgtdev->dev_root = fs_info->dev_root;
2629         tgtdev->in_fs_metadata = 1;
2630 }
2631
2632 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2633                                         struct btrfs_device *device)
2634 {
2635         int ret;
2636         struct btrfs_path *path;
2637         struct btrfs_root *root;
2638         struct btrfs_dev_item *dev_item;
2639         struct extent_buffer *leaf;
2640         struct btrfs_key key;
2641
2642         root = device->dev_root->fs_info->chunk_root;
2643
2644         path = btrfs_alloc_path();
2645         if (!path)
2646                 return -ENOMEM;
2647
2648         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649         key.type = BTRFS_DEV_ITEM_KEY;
2650         key.offset = device->devid;
2651
2652         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653         if (ret < 0)
2654                 goto out;
2655
2656         if (ret > 0) {
2657                 ret = -ENOENT;
2658                 goto out;
2659         }
2660
2661         leaf = path->nodes[0];
2662         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664         btrfs_set_device_id(leaf, dev_item, device->devid);
2665         btrfs_set_device_type(leaf, dev_item, device->type);
2666         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669         btrfs_set_device_total_bytes(leaf, dev_item,
2670                                      btrfs_device_get_disk_total_bytes(device));
2671         btrfs_set_device_bytes_used(leaf, dev_item,
2672                                     btrfs_device_get_bytes_used(device));
2673         btrfs_mark_buffer_dirty(leaf);
2674
2675 out:
2676         btrfs_free_path(path);
2677         return ret;
2678 }
2679
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681                       struct btrfs_device *device, u64 new_size)
2682 {
2683         struct btrfs_super_block *super_copy =
2684                 device->dev_root->fs_info->super_copy;
2685         struct btrfs_fs_devices *fs_devices;
2686         u64 old_total;
2687         u64 diff;
2688
2689         if (!device->writeable)
2690                 return -EACCES;
2691
2692         lock_chunks(device->dev_root);
2693         old_total = btrfs_super_total_bytes(super_copy);
2694         diff = new_size - device->total_bytes;
2695
2696         if (new_size <= device->total_bytes ||
2697             device->is_tgtdev_for_dev_replace) {
2698                 unlock_chunks(device->dev_root);
2699                 return -EINVAL;
2700         }
2701
2702         fs_devices = device->dev_root->fs_info->fs_devices;
2703
2704         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705         device->fs_devices->total_rw_bytes += diff;
2706
2707         btrfs_device_set_total_bytes(device, new_size);
2708         btrfs_device_set_disk_total_bytes(device, new_size);
2709         btrfs_clear_space_info_full(device->dev_root->fs_info);
2710         if (list_empty(&device->resized_list))
2711                 list_add_tail(&device->resized_list,
2712                               &fs_devices->resized_devices);
2713         unlock_chunks(device->dev_root);
2714
2715         return btrfs_update_device(trans, device);
2716 }
2717
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719                             struct btrfs_root *root, u64 chunk_objectid,
2720                             u64 chunk_offset)
2721 {
2722         int ret;
2723         struct btrfs_path *path;
2724         struct btrfs_key key;
2725
2726         root = root->fs_info->chunk_root;
2727         path = btrfs_alloc_path();
2728         if (!path)
2729                 return -ENOMEM;
2730
2731         key.objectid = chunk_objectid;
2732         key.offset = chunk_offset;
2733         key.type = BTRFS_CHUNK_ITEM_KEY;
2734
2735         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736         if (ret < 0)
2737                 goto out;
2738         else if (ret > 0) { /* Logic error or corruption */
2739                 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2740                             "Failed lookup while freeing chunk.");
2741                 ret = -ENOENT;
2742                 goto out;
2743         }
2744
2745         ret = btrfs_del_item(trans, root, path);
2746         if (ret < 0)
2747                 btrfs_handle_fs_error(root->fs_info, ret,
2748                             "Failed to delete chunk item.");
2749 out:
2750         btrfs_free_path(path);
2751         return ret;
2752 }
2753
2754 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2755                         chunk_offset)
2756 {
2757         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2758         struct btrfs_disk_key *disk_key;
2759         struct btrfs_chunk *chunk;
2760         u8 *ptr;
2761         int ret = 0;
2762         u32 num_stripes;
2763         u32 array_size;
2764         u32 len = 0;
2765         u32 cur;
2766         struct btrfs_key key;
2767
2768         lock_chunks(root);
2769         array_size = btrfs_super_sys_array_size(super_copy);
2770
2771         ptr = super_copy->sys_chunk_array;
2772         cur = 0;
2773
2774         while (cur < array_size) {
2775                 disk_key = (struct btrfs_disk_key *)ptr;
2776                 btrfs_disk_key_to_cpu(&key, disk_key);
2777
2778                 len = sizeof(*disk_key);
2779
2780                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781                         chunk = (struct btrfs_chunk *)(ptr + len);
2782                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783                         len += btrfs_chunk_item_size(num_stripes);
2784                 } else {
2785                         ret = -EIO;
2786                         break;
2787                 }
2788                 if (key.objectid == chunk_objectid &&
2789                     key.offset == chunk_offset) {
2790                         memmove(ptr, ptr + len, array_size - (cur + len));
2791                         array_size -= len;
2792                         btrfs_set_super_sys_array_size(super_copy, array_size);
2793                 } else {
2794                         ptr += len;
2795                         cur += len;
2796                 }
2797         }
2798         unlock_chunks(root);
2799         return ret;
2800 }
2801
2802 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2803                        struct btrfs_root *root, u64 chunk_offset)
2804 {
2805         struct extent_map_tree *em_tree;
2806         struct extent_map *em;
2807         struct btrfs_root *extent_root = root->fs_info->extent_root;
2808         struct map_lookup *map;
2809         u64 dev_extent_len = 0;
2810         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2811         int i, ret = 0;
2812         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2813
2814         /* Just in case */
2815         root = root->fs_info->chunk_root;
2816         em_tree = &root->fs_info->mapping_tree.map_tree;
2817
2818         read_lock(&em_tree->lock);
2819         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2820         read_unlock(&em_tree->lock);
2821
2822         if (!em || em->start > chunk_offset ||
2823             em->start + em->len < chunk_offset) {
2824                 /*
2825                  * This is a logic error, but we don't want to just rely on the
2826                  * user having built with ASSERT enabled, so if ASSERT doesn't
2827                  * do anything we still error out.
2828                  */
2829                 ASSERT(0);
2830                 if (em)
2831                         free_extent_map(em);
2832                 return -EINVAL;
2833         }
2834         map = em->map_lookup;
2835         lock_chunks(root->fs_info->chunk_root);
2836         check_system_chunk(trans, extent_root, map->type);
2837         unlock_chunks(root->fs_info->chunk_root);
2838
2839         /*
2840          * Take the device list mutex to prevent races with the final phase of
2841          * a device replace operation that replaces the device object associated
2842          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2843          */
2844         mutex_lock(&fs_devices->device_list_mutex);
2845         for (i = 0; i < map->num_stripes; i++) {
2846                 struct btrfs_device *device = map->stripes[i].dev;
2847                 ret = btrfs_free_dev_extent(trans, device,
2848                                             map->stripes[i].physical,
2849                                             &dev_extent_len);
2850                 if (ret) {
2851                         mutex_unlock(&fs_devices->device_list_mutex);
2852                         btrfs_abort_transaction(trans, ret);
2853                         goto out;
2854                 }
2855
2856                 if (device->bytes_used > 0) {
2857                         lock_chunks(root);
2858                         btrfs_device_set_bytes_used(device,
2859                                         device->bytes_used - dev_extent_len);
2860                         spin_lock(&root->fs_info->free_chunk_lock);
2861                         root->fs_info->free_chunk_space += dev_extent_len;
2862                         spin_unlock(&root->fs_info->free_chunk_lock);
2863                         btrfs_clear_space_info_full(root->fs_info);
2864                         unlock_chunks(root);
2865                 }
2866
2867                 if (map->stripes[i].dev) {
2868                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2869                         if (ret) {
2870                                 mutex_unlock(&fs_devices->device_list_mutex);
2871                                 btrfs_abort_transaction(trans, ret);
2872                                 goto out;
2873                         }
2874                 }
2875         }
2876         mutex_unlock(&fs_devices->device_list_mutex);
2877
2878         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2879         if (ret) {
2880                 btrfs_abort_transaction(trans, ret);
2881                 goto out;
2882         }
2883
2884         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2885
2886         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2887                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2888                 if (ret) {
2889                         btrfs_abort_transaction(trans, ret);
2890                         goto out;
2891                 }
2892         }
2893
2894         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2895         if (ret) {
2896                 btrfs_abort_transaction(trans, ret);
2897                 goto out;
2898         }
2899
2900 out:
2901         /* once for us */
2902         free_extent_map(em);
2903         return ret;
2904 }
2905
2906 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2907 {
2908         struct btrfs_root *extent_root;
2909         struct btrfs_trans_handle *trans;
2910         int ret;
2911
2912         root = root->fs_info->chunk_root;
2913         extent_root = root->fs_info->extent_root;
2914
2915         /*
2916          * Prevent races with automatic removal of unused block groups.
2917          * After we relocate and before we remove the chunk with offset
2918          * chunk_offset, automatic removal of the block group can kick in,
2919          * resulting in a failure when calling btrfs_remove_chunk() below.
2920          *
2921          * Make sure to acquire this mutex before doing a tree search (dev
2922          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924          * we release the path used to search the chunk/dev tree and before
2925          * the current task acquires this mutex and calls us.
2926          */
2927         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2928
2929         ret = btrfs_can_relocate(extent_root, chunk_offset);
2930         if (ret)
2931                 return -ENOSPC;
2932
2933         /* step one, relocate all the extents inside this chunk */
2934         btrfs_scrub_pause(root);
2935         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2936         btrfs_scrub_continue(root);
2937         if (ret)
2938                 return ret;
2939
2940         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2941                                                      chunk_offset);
2942         if (IS_ERR(trans)) {
2943                 ret = PTR_ERR(trans);
2944                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2945                 return ret;
2946         }
2947
2948         /*
2949          * step two, delete the device extents and the
2950          * chunk tree entries
2951          */
2952         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2953         btrfs_end_transaction(trans, extent_root);
2954         return ret;
2955 }
2956
2957 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2958 {
2959         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2960         struct btrfs_path *path;
2961         struct extent_buffer *leaf;
2962         struct btrfs_chunk *chunk;
2963         struct btrfs_key key;
2964         struct btrfs_key found_key;
2965         u64 chunk_type;
2966         bool retried = false;
2967         int failed = 0;
2968         int ret;
2969
2970         path = btrfs_alloc_path();
2971         if (!path)
2972                 return -ENOMEM;
2973
2974 again:
2975         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2976         key.offset = (u64)-1;
2977         key.type = BTRFS_CHUNK_ITEM_KEY;
2978
2979         while (1) {
2980                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2981                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982                 if (ret < 0) {
2983                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2984                         goto error;
2985                 }
2986                 BUG_ON(ret == 0); /* Corruption */
2987
2988                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2989                                           key.type);
2990                 if (ret)
2991                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2992                 if (ret < 0)
2993                         goto error;
2994                 if (ret > 0)
2995                         break;
2996
2997                 leaf = path->nodes[0];
2998                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999
3000                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3001                                        struct btrfs_chunk);
3002                 chunk_type = btrfs_chunk_type(leaf, chunk);
3003                 btrfs_release_path(path);
3004
3005                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3006                         ret = btrfs_relocate_chunk(chunk_root,
3007                                                    found_key.offset);
3008                         if (ret == -ENOSPC)
3009                                 failed++;
3010                         else
3011                                 BUG_ON(ret);
3012                 }
3013                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3014
3015                 if (found_key.offset == 0)
3016                         break;
3017                 key.offset = found_key.offset - 1;
3018         }
3019         ret = 0;
3020         if (failed && !retried) {
3021                 failed = 0;
3022                 retried = true;
3023                 goto again;
3024         } else if (WARN_ON(failed && retried)) {
3025                 ret = -ENOSPC;
3026         }
3027 error:
3028         btrfs_free_path(path);
3029         return ret;
3030 }
3031
3032 static int insert_balance_item(struct btrfs_root *root,
3033                                struct btrfs_balance_control *bctl)
3034 {
3035         struct btrfs_trans_handle *trans;
3036         struct btrfs_balance_item *item;
3037         struct btrfs_disk_balance_args disk_bargs;
3038         struct btrfs_path *path;
3039         struct extent_buffer *leaf;
3040         struct btrfs_key key;
3041         int ret, err;
3042
3043         path = btrfs_alloc_path();
3044         if (!path)
3045                 return -ENOMEM;
3046
3047         trans = btrfs_start_transaction(root, 0);
3048         if (IS_ERR(trans)) {
3049                 btrfs_free_path(path);
3050                 return PTR_ERR(trans);
3051         }
3052
3053         key.objectid = BTRFS_BALANCE_OBJECTID;
3054         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3055         key.offset = 0;
3056
3057         ret = btrfs_insert_empty_item(trans, root, path, &key,
3058                                       sizeof(*item));
3059         if (ret)
3060                 goto out;
3061
3062         leaf = path->nodes[0];
3063         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3064
3065         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3066
3067         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3068         btrfs_set_balance_data(leaf, item, &disk_bargs);
3069         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3070         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3071         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3072         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3073
3074         btrfs_set_balance_flags(leaf, item, bctl->flags);
3075
3076         btrfs_mark_buffer_dirty(leaf);
3077 out:
3078         btrfs_free_path(path);
3079         err = btrfs_commit_transaction(trans, root);
3080         if (err && !ret)
3081                 ret = err;
3082         return ret;
3083 }
3084
3085 static int del_balance_item(struct btrfs_root *root)
3086 {
3087         struct btrfs_trans_handle *trans;
3088         struct btrfs_path *path;
3089         struct btrfs_key key;
3090         int ret, err;
3091
3092         path = btrfs_alloc_path();
3093         if (!path)
3094                 return -ENOMEM;
3095
3096         trans = btrfs_start_transaction(root, 0);
3097         if (IS_ERR(trans)) {
3098                 btrfs_free_path(path);
3099                 return PTR_ERR(trans);
3100         }
3101
3102         key.objectid = BTRFS_BALANCE_OBJECTID;
3103         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3104         key.offset = 0;
3105
3106         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107         if (ret < 0)
3108                 goto out;
3109         if (ret > 0) {
3110                 ret = -ENOENT;
3111                 goto out;
3112         }
3113
3114         ret = btrfs_del_item(trans, root, path);
3115 out:
3116         btrfs_free_path(path);
3117         err = btrfs_commit_transaction(trans, root);
3118         if (err && !ret)
3119                 ret = err;
3120         return ret;
3121 }
3122
3123 /*
3124  * This is a heuristic used to reduce the number of chunks balanced on
3125  * resume after balance was interrupted.
3126  */
3127 static void update_balance_args(struct btrfs_balance_control *bctl)
3128 {
3129         /*
3130          * Turn on soft mode for chunk types that were being converted.
3131          */
3132         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138
3139         /*
3140          * Turn on usage filter if is not already used.  The idea is
3141          * that chunks that we have already balanced should be
3142          * reasonably full.  Don't do it for chunks that are being
3143          * converted - that will keep us from relocating unconverted
3144          * (albeit full) chunks.
3145          */
3146         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3147             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3148             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150                 bctl->data.usage = 90;
3151         }
3152         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3153             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3154             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156                 bctl->sys.usage = 90;
3157         }
3158         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3159             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3160             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162                 bctl->meta.usage = 90;
3163         }
3164 }
3165
3166 /*
3167  * Should be called with both balance and volume mutexes held to
3168  * serialize other volume operations (add_dev/rm_dev/resize) with
3169  * restriper.  Same goes for unset_balance_control.
3170  */
3171 static void set_balance_control(struct btrfs_balance_control *bctl)
3172 {
3173         struct btrfs_fs_info *fs_info = bctl->fs_info;
3174
3175         BUG_ON(fs_info->balance_ctl);
3176
3177         spin_lock(&fs_info->balance_lock);
3178         fs_info->balance_ctl = bctl;
3179         spin_unlock(&fs_info->balance_lock);
3180 }
3181
3182 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3183 {
3184         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3185
3186         BUG_ON(!fs_info->balance_ctl);
3187
3188         spin_lock(&fs_info->balance_lock);
3189         fs_info->balance_ctl = NULL;
3190         spin_unlock(&fs_info->balance_lock);
3191
3192         kfree(bctl);
3193 }
3194
3195 /*
3196  * Balance filters.  Return 1 if chunk should be filtered out
3197  * (should not be balanced).
3198  */
3199 static int chunk_profiles_filter(u64 chunk_type,
3200                                  struct btrfs_balance_args *bargs)
3201 {
3202         chunk_type = chunk_to_extended(chunk_type) &
3203                                 BTRFS_EXTENDED_PROFILE_MASK;
3204
3205         if (bargs->profiles & chunk_type)
3206                 return 0;
3207
3208         return 1;
3209 }
3210
3211 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3212                               struct btrfs_balance_args *bargs)
3213 {
3214         struct btrfs_block_group_cache *cache;
3215         u64 chunk_used;
3216         u64 user_thresh_min;
3217         u64 user_thresh_max;
3218         int ret = 1;
3219
3220         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3221         chunk_used = btrfs_block_group_used(&cache->item);
3222
3223         if (bargs->usage_min == 0)
3224                 user_thresh_min = 0;
3225         else
3226                 user_thresh_min = div_factor_fine(cache->key.offset,
3227                                         bargs->usage_min);
3228
3229         if (bargs->usage_max == 0)
3230                 user_thresh_max = 1;
3231         else if (bargs->usage_max > 100)
3232                 user_thresh_max = cache->key.offset;
3233         else
3234                 user_thresh_max = div_factor_fine(cache->key.offset,
3235                                         bargs->usage_max);
3236
3237         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3238                 ret = 0;
3239
3240         btrfs_put_block_group(cache);
3241         return ret;
3242 }
3243
3244 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3245                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3246 {
3247         struct btrfs_block_group_cache *cache;
3248         u64 chunk_used, user_thresh;
3249         int ret = 1;
3250
3251         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3252         chunk_used = btrfs_block_group_used(&cache->item);
3253
3254         if (bargs->usage_min == 0)
3255                 user_thresh = 1;
3256         else if (bargs->usage > 100)
3257                 user_thresh = cache->key.offset;
3258         else
3259                 user_thresh = div_factor_fine(cache->key.offset,
3260                                               bargs->usage);
3261
3262         if (chunk_used < user_thresh)
3263                 ret = 0;
3264
3265         btrfs_put_block_group(cache);
3266         return ret;
3267 }
3268
3269 static int chunk_devid_filter(struct extent_buffer *leaf,
3270                               struct btrfs_chunk *chunk,
3271                               struct btrfs_balance_args *bargs)
3272 {
3273         struct btrfs_stripe *stripe;
3274         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275         int i;
3276
3277         for (i = 0; i < num_stripes; i++) {
3278                 stripe = btrfs_stripe_nr(chunk, i);
3279                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3280                         return 0;
3281         }
3282
3283         return 1;
3284 }
3285
3286 /* [pstart, pend) */
3287 static int chunk_drange_filter(struct extent_buffer *leaf,
3288                                struct btrfs_chunk *chunk,
3289                                u64 chunk_offset,
3290                                struct btrfs_balance_args *bargs)
3291 {
3292         struct btrfs_stripe *stripe;
3293         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294         u64 stripe_offset;
3295         u64 stripe_length;
3296         int factor;
3297         int i;
3298
3299         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300                 return 0;
3301
3302         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304                 factor = num_stripes / 2;
3305         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306                 factor = num_stripes - 1;
3307         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308                 factor = num_stripes - 2;
3309         } else {
3310                 factor = num_stripes;
3311         }
3312
3313         for (i = 0; i < num_stripes; i++) {
3314                 stripe = btrfs_stripe_nr(chunk, i);
3315                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316                         continue;
3317
3318                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319                 stripe_length = btrfs_chunk_length(leaf, chunk);
3320                 stripe_length = div_u64(stripe_length, factor);
3321
3322                 if (stripe_offset < bargs->pend &&
3323                     stripe_offset + stripe_length > bargs->pstart)
3324                         return 0;
3325         }
3326
3327         return 1;
3328 }
3329
3330 /* [vstart, vend) */
3331 static int chunk_vrange_filter(struct extent_buffer *leaf,
3332                                struct btrfs_chunk *chunk,
3333                                u64 chunk_offset,
3334                                struct btrfs_balance_args *bargs)
3335 {
3336         if (chunk_offset < bargs->vend &&
3337             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338                 /* at least part of the chunk is inside this vrange */
3339                 return 0;
3340
3341         return 1;
3342 }
3343
3344 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345                                struct btrfs_chunk *chunk,
3346                                struct btrfs_balance_args *bargs)
3347 {
3348         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350         if (bargs->stripes_min <= num_stripes
3351                         && num_stripes <= bargs->stripes_max)
3352                 return 0;
3353
3354         return 1;
3355 }
3356
3357 static int chunk_soft_convert_filter(u64 chunk_type,
3358                                      struct btrfs_balance_args *bargs)
3359 {
3360         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361                 return 0;
3362
3363         chunk_type = chunk_to_extended(chunk_type) &
3364                                 BTRFS_EXTENDED_PROFILE_MASK;
3365
3366         if (bargs->target == chunk_type)
3367                 return 1;
3368
3369         return 0;
3370 }
3371
3372 static int should_balance_chunk(struct btrfs_root *root,
3373                                 struct extent_buffer *leaf,
3374                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3375 {
3376         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3377         struct btrfs_balance_args *bargs = NULL;
3378         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3379
3380         /* type filter */
3381         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3382               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3383                 return 0;
3384         }
3385
3386         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3387                 bargs = &bctl->data;
3388         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3389                 bargs = &bctl->sys;
3390         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3391                 bargs = &bctl->meta;
3392
3393         /* profiles filter */
3394         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3395             chunk_profiles_filter(chunk_type, bargs)) {
3396                 return 0;
3397         }
3398
3399         /* usage filter */
3400         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3402                 return 0;
3403         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3404             chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3405                 return 0;
3406         }
3407
3408         /* devid filter */
3409         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3410             chunk_devid_filter(leaf, chunk, bargs)) {
3411                 return 0;
3412         }
3413
3414         /* drange filter, makes sense only with devid filter */
3415         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3416             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3417                 return 0;
3418         }
3419
3420         /* vrange filter */
3421         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3422             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3423                 return 0;
3424         }
3425
3426         /* stripes filter */
3427         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3428             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3429                 return 0;
3430         }
3431
3432         /* soft profile changing mode */
3433         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3434             chunk_soft_convert_filter(chunk_type, bargs)) {
3435                 return 0;
3436         }
3437
3438         /*
3439          * limited by count, must be the last filter
3440          */
3441         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3442                 if (bargs->limit == 0)
3443                         return 0;
3444                 else
3445                         bargs->limit--;
3446         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3447                 /*
3448                  * Same logic as the 'limit' filter; the minimum cannot be
3449                  * determined here because we do not have the global information
3450                  * about the count of all chunks that satisfy the filters.
3451                  */
3452                 if (bargs->limit_max == 0)
3453                         return 0;
3454                 else
3455                         bargs->limit_max--;
3456         }
3457
3458         return 1;
3459 }
3460
3461 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3462 {
3463         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464         struct btrfs_root *chunk_root = fs_info->chunk_root;
3465         struct btrfs_root *dev_root = fs_info->dev_root;
3466         struct list_head *devices;
3467         struct btrfs_device *device;
3468         u64 old_size;
3469         u64 size_to_free;
3470         u64 chunk_type;
3471         struct btrfs_chunk *chunk;
3472         struct btrfs_path *path = NULL;
3473         struct btrfs_key key;
3474         struct btrfs_key found_key;
3475         struct btrfs_trans_handle *trans;
3476         struct extent_buffer *leaf;
3477         int slot;
3478         int ret;
3479         int enospc_errors = 0;
3480         bool counting = true;
3481         /* The single value limit and min/max limits use the same bytes in the */
3482         u64 limit_data = bctl->data.limit;
3483         u64 limit_meta = bctl->meta.limit;
3484         u64 limit_sys = bctl->sys.limit;
3485         u32 count_data = 0;
3486         u32 count_meta = 0;
3487         u32 count_sys = 0;
3488         int chunk_reserved = 0;
3489         u64 bytes_used = 0;
3490
3491         /* step one make some room on all the devices */
3492         devices = &fs_info->fs_devices->devices;
3493         list_for_each_entry(device, devices, dev_list) {
3494                 old_size = btrfs_device_get_total_bytes(device);
3495                 size_to_free = div_factor(old_size, 1);
3496                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3497                 if (!device->writeable ||
3498                     btrfs_device_get_total_bytes(device) -
3499                     btrfs_device_get_bytes_used(device) > size_to_free ||
3500                     device->is_tgtdev_for_dev_replace)
3501                         continue;
3502
3503                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3504                 if (ret == -ENOSPC)
3505                         break;
3506                 if (ret) {
3507                         /* btrfs_shrink_device never returns ret > 0 */
3508                         WARN_ON(ret > 0);
3509                         goto error;
3510                 }
3511
3512                 trans = btrfs_start_transaction(dev_root, 0);
3513                 if (IS_ERR(trans)) {
3514                         ret = PTR_ERR(trans);
3515                         btrfs_info_in_rcu(fs_info,
3516                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3517                                           rcu_str_deref(device->name), ret,
3518                                           old_size, old_size - size_to_free);
3519                         goto error;
3520                 }
3521
3522                 ret = btrfs_grow_device(trans, device, old_size);
3523                 if (ret) {
3524                         btrfs_end_transaction(trans, dev_root);
3525                         /* btrfs_grow_device never returns ret > 0 */
3526                         WARN_ON(ret > 0);
3527                         btrfs_info_in_rcu(fs_info,
3528                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3529                                           rcu_str_deref(device->name), ret,
3530                                           old_size, old_size - size_to_free);
3531                         goto error;
3532                 }
3533
3534                 btrfs_end_transaction(trans, dev_root);
3535         }
3536
3537         /* step two, relocate all the chunks */
3538         path = btrfs_alloc_path();
3539         if (!path) {
3540                 ret = -ENOMEM;
3541                 goto error;
3542         }
3543
3544         /* zero out stat counters */
3545         spin_lock(&fs_info->balance_lock);
3546         memset(&bctl->stat, 0, sizeof(bctl->stat));
3547         spin_unlock(&fs_info->balance_lock);
3548 again:
3549         if (!counting) {
3550                 /*
3551                  * The single value limit and min/max limits use the same bytes
3552                  * in the
3553                  */
3554                 bctl->data.limit = limit_data;
3555                 bctl->meta.limit = limit_meta;
3556                 bctl->sys.limit = limit_sys;
3557         }
3558         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3559         key.offset = (u64)-1;
3560         key.type = BTRFS_CHUNK_ITEM_KEY;
3561
3562         while (1) {
3563                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3564                     atomic_read(&fs_info->balance_cancel_req)) {
3565                         ret = -ECANCELED;
3566                         goto error;
3567                 }
3568
3569                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3570                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3571                 if (ret < 0) {
3572                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3573                         goto error;
3574                 }
3575
3576                 /*
3577                  * this shouldn't happen, it means the last relocate
3578                  * failed
3579                  */
3580                 if (ret == 0)
3581                         BUG(); /* FIXME break ? */
3582
3583                 ret = btrfs_previous_item(chunk_root, path, 0,
3584                                           BTRFS_CHUNK_ITEM_KEY);
3585                 if (ret) {
3586                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587                         ret = 0;
3588                         break;
3589                 }
3590
3591                 leaf = path->nodes[0];
3592                 slot = path->slots[0];
3593                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3594
3595                 if (found_key.objectid != key.objectid) {
3596                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597                         break;
3598                 }
3599
3600                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3601                 chunk_type = btrfs_chunk_type(leaf, chunk);
3602
3603                 if (!counting) {
3604                         spin_lock(&fs_info->balance_lock);
3605                         bctl->stat.considered++;
3606                         spin_unlock(&fs_info->balance_lock);
3607                 }
3608
3609                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3610                                            found_key.offset);
3611
3612                 btrfs_release_path(path);
3613                 if (!ret) {
3614                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3615                         goto loop;
3616                 }
3617
3618                 if (counting) {
3619                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620                         spin_lock(&fs_info->balance_lock);
3621                         bctl->stat.expected++;
3622                         spin_unlock(&fs_info->balance_lock);
3623
3624                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625                                 count_data++;
3626                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627                                 count_sys++;
3628                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629                                 count_meta++;
3630
3631                         goto loop;
3632                 }
3633
3634                 /*
3635                  * Apply limit_min filter, no need to check if the LIMITS
3636                  * filter is used, limit_min is 0 by default
3637                  */
3638                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3639                                         count_data < bctl->data.limit_min)
3640                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3641                                         count_meta < bctl->meta.limit_min)
3642                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3643                                         count_sys < bctl->sys.limit_min)) {
3644                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3645                         goto loop;
3646                 }
3647
3648                 ASSERT(fs_info->data_sinfo);
3649                 spin_lock(&fs_info->data_sinfo->lock);
3650                 bytes_used = fs_info->data_sinfo->bytes_used;
3651                 spin_unlock(&fs_info->data_sinfo->lock);
3652
3653                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654                     !chunk_reserved && !bytes_used) {
3655                         trans = btrfs_start_transaction(chunk_root, 0);
3656                         if (IS_ERR(trans)) {
3657                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658                                 ret = PTR_ERR(trans);
3659                                 goto error;
3660                         }
3661
3662                         ret = btrfs_force_chunk_alloc(trans, chunk_root,
3663                                                       BTRFS_BLOCK_GROUP_DATA);
3664                         btrfs_end_transaction(trans, chunk_root);
3665                         if (ret < 0) {
3666                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667                                 goto error;
3668                         }
3669                         chunk_reserved = 1;
3670                 }
3671
3672                 ret = btrfs_relocate_chunk(chunk_root,
3673                                            found_key.offset);
3674                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                 if (ret && ret != -ENOSPC)
3676                         goto error;
3677                 if (ret == -ENOSPC) {
3678                         enospc_errors++;
3679                 } else {
3680                         spin_lock(&fs_info->balance_lock);
3681                         bctl->stat.completed++;
3682                         spin_unlock(&fs_info->balance_lock);
3683                 }
3684 loop:
3685                 if (found_key.offset == 0)
3686                         break;
3687                 key.offset = found_key.offset - 1;
3688         }
3689
3690         if (counting) {
3691                 btrfs_release_path(path);
3692                 counting = false;
3693                 goto again;
3694         }
3695 error:
3696         btrfs_free_path(path);
3697         if (enospc_errors) {
3698                 btrfs_info(fs_info, "%d enospc errors during balance",
3699                            enospc_errors);
3700                 if (!ret)
3701                         ret = -ENOSPC;
3702         }
3703
3704         return ret;
3705 }
3706
3707 /**
3708  * alloc_profile_is_valid - see if a given profile is valid and reduced
3709  * @flags: profile to validate
3710  * @extended: if true @flags is treated as an extended profile
3711  */
3712 static int alloc_profile_is_valid(u64 flags, int extended)
3713 {
3714         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716
3717         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718
3719         /* 1) check that all other bits are zeroed */
3720         if (flags & ~mask)
3721                 return 0;
3722
3723         /* 2) see if profile is reduced */
3724         if (flags == 0)
3725                 return !extended; /* "0" is valid for usual profiles */
3726
3727         /* true if exactly one bit set */
3728         return (flags & (flags - 1)) == 0;
3729 }
3730
3731 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732 {
3733         /* cancel requested || normal exit path */
3734         return atomic_read(&fs_info->balance_cancel_req) ||
3735                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3736                  atomic_read(&fs_info->balance_cancel_req) == 0);
3737 }
3738
3739 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740 {
3741         int ret;
3742
3743         unset_balance_control(fs_info);
3744         ret = del_balance_item(fs_info->tree_root);
3745         if (ret)
3746                 btrfs_handle_fs_error(fs_info, ret, NULL);
3747
3748         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3749 }
3750
3751 /* Non-zero return value signifies invalidity */
3752 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753                 u64 allowed)
3754 {
3755         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757                  (bctl_arg->target & ~allowed)));
3758 }
3759
3760 /*
3761  * Should be called with both balance and volume mutexes held
3762  */
3763 int btrfs_balance(struct btrfs_balance_control *bctl,
3764                   struct btrfs_ioctl_balance_args *bargs)
3765 {
3766         struct btrfs_fs_info *fs_info = bctl->fs_info;
3767         u64 allowed;
3768         int mixed = 0;
3769         int ret;
3770         u64 num_devices;
3771         unsigned seq;
3772
3773         if (btrfs_fs_closing(fs_info) ||
3774             atomic_read(&fs_info->balance_pause_req) ||
3775             atomic_read(&fs_info->balance_cancel_req)) {
3776                 ret = -EINVAL;
3777                 goto out;
3778         }
3779
3780         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782                 mixed = 1;
3783
3784         /*
3785          * In case of mixed groups both data and meta should be picked,
3786          * and identical options should be given for both of them.
3787          */
3788         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789         if (mixed && (bctl->flags & allowed)) {
3790                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3793                         btrfs_err(fs_info,
3794                                   "with mixed groups data and metadata balance options must be the same");
3795                         ret = -EINVAL;
3796                         goto out;
3797                 }
3798         }
3799
3800         num_devices = fs_info->fs_devices->num_devices;
3801         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3802         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803                 BUG_ON(num_devices < 1);
3804                 num_devices--;
3805         }
3806         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3807         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808         if (num_devices > 1)
3809                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3810         if (num_devices > 2)
3811                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812         if (num_devices > 3)
3813                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814                             BTRFS_BLOCK_GROUP_RAID6);
3815         if (validate_convert_profile(&bctl->data, allowed)) {
3816                 btrfs_err(fs_info,
3817                           "unable to start balance with target data profile %llu",
3818                           bctl->data.target);
3819                 ret = -EINVAL;
3820                 goto out;
3821         }
3822         if (validate_convert_profile(&bctl->meta, allowed)) {
3823                 btrfs_err(fs_info,
3824                           "unable to start balance with target metadata profile %llu",
3825                           bctl->meta.target);
3826                 ret = -EINVAL;
3827                 goto out;
3828         }
3829         if (validate_convert_profile(&bctl->sys, allowed)) {
3830                 btrfs_err(fs_info,
3831                           "unable to start balance with target system profile %llu",
3832                           bctl->sys.target);
3833                 ret = -EINVAL;
3834                 goto out;
3835         }
3836
3837         /* allow to reduce meta or sys integrity only if force set */
3838         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3839                         BTRFS_BLOCK_GROUP_RAID10 |
3840                         BTRFS_BLOCK_GROUP_RAID5 |
3841                         BTRFS_BLOCK_GROUP_RAID6;
3842         do {
3843                 seq = read_seqbegin(&fs_info->profiles_lock);
3844
3845                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846                      (fs_info->avail_system_alloc_bits & allowed) &&
3847                      !(bctl->sys.target & allowed)) ||
3848                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3850                      !(bctl->meta.target & allowed))) {
3851                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3852                                 btrfs_info(fs_info,
3853                                            "force reducing metadata integrity");
3854                         } else {
3855                                 btrfs_err(fs_info,
3856                                           "balance will reduce metadata integrity, use force if you want this");
3857                                 ret = -EINVAL;
3858                                 goto out;
3859                         }
3860                 }
3861         } while (read_seqretry(&fs_info->profiles_lock, seq));
3862
3863         if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3864                 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3865                 btrfs_warn(fs_info,
3866                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3867                            bctl->meta.target, bctl->data.target);
3868         }
3869
3870         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3871                 fs_info->num_tolerated_disk_barrier_failures = min(
3872                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3873                         btrfs_get_num_tolerated_disk_barrier_failures(
3874                                 bctl->sys.target));
3875         }
3876
3877         ret = insert_balance_item(fs_info->tree_root, bctl);
3878         if (ret && ret != -EEXIST)
3879                 goto out;
3880
3881         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3882                 BUG_ON(ret == -EEXIST);
3883                 set_balance_control(bctl);
3884         } else {
3885                 BUG_ON(ret != -EEXIST);
3886                 spin_lock(&fs_info->balance_lock);
3887                 update_balance_args(bctl);
3888                 spin_unlock(&fs_info->balance_lock);
3889         }
3890
3891         atomic_inc(&fs_info->balance_running);
3892         mutex_unlock(&fs_info->balance_mutex);
3893
3894         ret = __btrfs_balance(fs_info);
3895
3896         mutex_lock(&fs_info->balance_mutex);
3897         atomic_dec(&fs_info->balance_running);
3898
3899         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900                 fs_info->num_tolerated_disk_barrier_failures =
3901                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3902         }
3903
3904         if (bargs) {
3905                 memset(bargs, 0, sizeof(*bargs));
3906                 update_ioctl_balance_args(fs_info, 0, bargs);
3907         }
3908
3909         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3910             balance_need_close(fs_info)) {
3911                 __cancel_balance(fs_info);
3912         }
3913
3914         wake_up(&fs_info->balance_wait_q);
3915
3916         return ret;
3917 out:
3918         if (bctl->flags & BTRFS_BALANCE_RESUME)
3919                 __cancel_balance(fs_info);
3920         else {
3921                 kfree(bctl);
3922                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3923         }
3924         return ret;
3925 }
3926
3927 static int balance_kthread(void *data)
3928 {
3929         struct btrfs_fs_info *fs_info = data;
3930         int ret = 0;
3931
3932         mutex_lock(&fs_info->volume_mutex);
3933         mutex_lock(&fs_info->balance_mutex);
3934
3935         if (fs_info->balance_ctl) {
3936                 btrfs_info(fs_info, "continuing balance");
3937                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3938         }
3939
3940         mutex_unlock(&fs_info->balance_mutex);
3941         mutex_unlock(&fs_info->volume_mutex);
3942
3943         return ret;
3944 }
3945
3946 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947 {
3948         struct task_struct *tsk;
3949
3950         spin_lock(&fs_info->balance_lock);
3951         if (!fs_info->balance_ctl) {
3952                 spin_unlock(&fs_info->balance_lock);
3953                 return 0;
3954         }
3955         spin_unlock(&fs_info->balance_lock);
3956
3957         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3958                 btrfs_info(fs_info, "force skipping balance");
3959                 return 0;
3960         }
3961
3962         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3963         return PTR_ERR_OR_ZERO(tsk);
3964 }
3965
3966 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3967 {
3968         struct btrfs_balance_control *bctl;
3969         struct btrfs_balance_item *item;
3970         struct btrfs_disk_balance_args disk_bargs;
3971         struct btrfs_path *path;
3972         struct extent_buffer *leaf;
3973         struct btrfs_key key;
3974         int ret;
3975
3976         path = btrfs_alloc_path();
3977         if (!path)
3978                 return -ENOMEM;
3979
3980         key.objectid = BTRFS_BALANCE_OBJECTID;
3981         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3982         key.offset = 0;
3983
3984         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3985         if (ret < 0)
3986                 goto out;
3987         if (ret > 0) { /* ret = -ENOENT; */
3988                 ret = 0;
3989                 goto out;
3990         }
3991
3992         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3993         if (!bctl) {
3994                 ret = -ENOMEM;
3995                 goto out;
3996         }
3997
3998         leaf = path->nodes[0];
3999         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000
4001         bctl->fs_info = fs_info;
4002         bctl->flags = btrfs_balance_flags(leaf, item);
4003         bctl->flags |= BTRFS_BALANCE_RESUME;
4004
4005         btrfs_balance_data(leaf, item, &disk_bargs);
4006         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4007         btrfs_balance_meta(leaf, item, &disk_bargs);
4008         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4009         btrfs_balance_sys(leaf, item, &disk_bargs);
4010         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011
4012         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4013
4014         mutex_lock(&fs_info->volume_mutex);
4015         mutex_lock(&fs_info->balance_mutex);
4016
4017         set_balance_control(bctl);
4018
4019         mutex_unlock(&fs_info->balance_mutex);
4020         mutex_unlock(&fs_info->volume_mutex);
4021 out:
4022         btrfs_free_path(path);
4023         return ret;
4024 }
4025
4026 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027 {
4028         int ret = 0;
4029
4030         mutex_lock(&fs_info->balance_mutex);
4031         if (!fs_info->balance_ctl) {
4032                 mutex_unlock(&fs_info->balance_mutex);
4033                 return -ENOTCONN;
4034         }
4035
4036         if (atomic_read(&fs_info->balance_running)) {
4037                 atomic_inc(&fs_info->balance_pause_req);
4038                 mutex_unlock(&fs_info->balance_mutex);
4039
4040                 wait_event(fs_info->balance_wait_q,
4041                            atomic_read(&fs_info->balance_running) == 0);
4042
4043                 mutex_lock(&fs_info->balance_mutex);
4044                 /* we are good with balance_ctl ripped off from under us */
4045                 BUG_ON(atomic_read(&fs_info->balance_running));
4046                 atomic_dec(&fs_info->balance_pause_req);
4047         } else {
4048                 ret = -ENOTCONN;
4049         }
4050
4051         mutex_unlock(&fs_info->balance_mutex);
4052         return ret;
4053 }
4054
4055 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056 {
4057         if (fs_info->sb->s_flags & MS_RDONLY)
4058                 return -EROFS;
4059
4060         mutex_lock(&fs_info->balance_mutex);
4061         if (!fs_info->balance_ctl) {
4062                 mutex_unlock(&fs_info->balance_mutex);
4063                 return -ENOTCONN;
4064         }
4065
4066         atomic_inc(&fs_info->balance_cancel_req);
4067         /*
4068          * if we are running just wait and return, balance item is
4069          * deleted in btrfs_balance in this case
4070          */
4071         if (atomic_read(&fs_info->balance_running)) {
4072                 mutex_unlock(&fs_info->balance_mutex);
4073                 wait_event(fs_info->balance_wait_q,
4074                            atomic_read(&fs_info->balance_running) == 0);
4075                 mutex_lock(&fs_info->balance_mutex);
4076         } else {
4077                 /* __cancel_balance needs volume_mutex */
4078                 mutex_unlock(&fs_info->balance_mutex);
4079                 mutex_lock(&fs_info->volume_mutex);
4080                 mutex_lock(&fs_info->balance_mutex);
4081
4082                 if (fs_info->balance_ctl)
4083                         __cancel_balance(fs_info);
4084
4085                 mutex_unlock(&fs_info->volume_mutex);
4086         }
4087
4088         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4089         atomic_dec(&fs_info->balance_cancel_req);
4090         mutex_unlock(&fs_info->balance_mutex);
4091         return 0;
4092 }
4093
4094 static int btrfs_uuid_scan_kthread(void *data)
4095 {
4096         struct btrfs_fs_info *fs_info = data;
4097         struct btrfs_root *root = fs_info->tree_root;
4098         struct btrfs_key key;
4099         struct btrfs_key max_key;
4100         struct btrfs_path *path = NULL;
4101         int ret = 0;
4102         struct extent_buffer *eb;
4103         int slot;
4104         struct btrfs_root_item root_item;
4105         u32 item_size;
4106         struct btrfs_trans_handle *trans = NULL;
4107
4108         path = btrfs_alloc_path();
4109         if (!path) {
4110                 ret = -ENOMEM;
4111                 goto out;
4112         }
4113
4114         key.objectid = 0;
4115         key.type = BTRFS_ROOT_ITEM_KEY;
4116         key.offset = 0;
4117
4118         max_key.objectid = (u64)-1;
4119         max_key.type = BTRFS_ROOT_ITEM_KEY;
4120         max_key.offset = (u64)-1;
4121
4122         while (1) {
4123                 ret = btrfs_search_forward(root, &key, path, 0);
4124                 if (ret) {
4125                         if (ret > 0)
4126                                 ret = 0;
4127                         break;
4128                 }
4129
4130                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4131                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4132                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4133                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4134                         goto skip;
4135
4136                 eb = path->nodes[0];
4137                 slot = path->slots[0];
4138                 item_size = btrfs_item_size_nr(eb, slot);
4139                 if (item_size < sizeof(root_item))
4140                         goto skip;
4141
4142                 read_extent_buffer(eb, &root_item,
4143                                    btrfs_item_ptr_offset(eb, slot),
4144                                    (int)sizeof(root_item));
4145                 if (btrfs_root_refs(&root_item) == 0)
4146                         goto skip;
4147
4148                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4149                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4150                         if (trans)
4151                                 goto update_tree;
4152
4153                         btrfs_release_path(path);
4154                         /*
4155                          * 1 - subvol uuid item
4156                          * 1 - received_subvol uuid item
4157                          */
4158                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4159                         if (IS_ERR(trans)) {
4160                                 ret = PTR_ERR(trans);
4161                                 break;
4162                         }
4163                         continue;
4164                 } else {
4165                         goto skip;
4166                 }
4167 update_tree:
4168                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4169                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4170                                                   root_item.uuid,
4171                                                   BTRFS_UUID_KEY_SUBVOL,
4172                                                   key.objectid);
4173                         if (ret < 0) {
4174                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4175                                         ret);
4176                                 break;
4177                         }
4178                 }
4179
4180                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4181                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4182                                                   root_item.received_uuid,
4183                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4184                                                   key.objectid);
4185                         if (ret < 0) {
4186                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4187                                         ret);
4188                                 break;
4189                         }
4190                 }
4191
4192 skip:
4193                 if (trans) {
4194                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4195                         trans = NULL;
4196                         if (ret)
4197                                 break;
4198                 }
4199
4200                 btrfs_release_path(path);
4201                 if (key.offset < (u64)-1) {
4202                         key.offset++;
4203                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4204                         key.offset = 0;
4205                         key.type = BTRFS_ROOT_ITEM_KEY;
4206                 } else if (key.objectid < (u64)-1) {
4207                         key.offset = 0;
4208                         key.type = BTRFS_ROOT_ITEM_KEY;
4209                         key.objectid++;
4210                 } else {
4211                         break;
4212                 }
4213                 cond_resched();
4214         }
4215
4216 out:
4217         btrfs_free_path(path);
4218         if (trans && !IS_ERR(trans))
4219                 btrfs_end_transaction(trans, fs_info->uuid_root);
4220         if (ret)
4221                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4222         else
4223                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4224         up(&fs_info->uuid_tree_rescan_sem);
4225         return 0;
4226 }
4227
4228 /*
4229  * Callback for btrfs_uuid_tree_iterate().
4230  * returns:
4231  * 0    check succeeded, the entry is not outdated.
4232  * < 0  if an error occurred.
4233  * > 0  if the check failed, which means the caller shall remove the entry.
4234  */
4235 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4236                                        u8 *uuid, u8 type, u64 subid)
4237 {
4238         struct btrfs_key key;
4239         int ret = 0;
4240         struct btrfs_root *subvol_root;
4241
4242         if (type != BTRFS_UUID_KEY_SUBVOL &&
4243             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4244                 goto out;
4245
4246         key.objectid = subid;
4247         key.type = BTRFS_ROOT_ITEM_KEY;
4248         key.offset = (u64)-1;
4249         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4250         if (IS_ERR(subvol_root)) {
4251                 ret = PTR_ERR(subvol_root);
4252                 if (ret == -ENOENT)
4253                         ret = 1;
4254                 goto out;
4255         }
4256
4257         switch (type) {
4258         case BTRFS_UUID_KEY_SUBVOL:
4259                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4260                         ret = 1;
4261                 break;
4262         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4263                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264                            BTRFS_UUID_SIZE))
4265                         ret = 1;
4266                 break;
4267         }
4268
4269 out:
4270         return ret;
4271 }
4272
4273 static int btrfs_uuid_rescan_kthread(void *data)
4274 {
4275         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4276         int ret;
4277
4278         /*
4279          * 1st step is to iterate through the existing UUID tree and
4280          * to delete all entries that contain outdated data.
4281          * 2nd step is to add all missing entries to the UUID tree.
4282          */
4283         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4284         if (ret < 0) {
4285                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4286                 up(&fs_info->uuid_tree_rescan_sem);
4287                 return ret;
4288         }
4289         return btrfs_uuid_scan_kthread(data);
4290 }
4291
4292 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4293 {
4294         struct btrfs_trans_handle *trans;
4295         struct btrfs_root *tree_root = fs_info->tree_root;
4296         struct btrfs_root *uuid_root;
4297         struct task_struct *task;
4298         int ret;
4299
4300         /*
4301          * 1 - root node
4302          * 1 - root item
4303          */
4304         trans = btrfs_start_transaction(tree_root, 2);
4305         if (IS_ERR(trans))
4306                 return PTR_ERR(trans);
4307
4308         uuid_root = btrfs_create_tree(trans, fs_info,
4309                                       BTRFS_UUID_TREE_OBJECTID);
4310         if (IS_ERR(uuid_root)) {
4311                 ret = PTR_ERR(uuid_root);
4312                 btrfs_abort_transaction(trans, ret);
4313                 btrfs_end_transaction(trans, tree_root);
4314                 return ret;
4315         }
4316
4317         fs_info->uuid_root = uuid_root;
4318
4319         ret = btrfs_commit_transaction(trans, tree_root);
4320         if (ret)
4321                 return ret;
4322
4323         down(&fs_info->uuid_tree_rescan_sem);
4324         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4325         if (IS_ERR(task)) {
4326                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4327                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4328                 up(&fs_info->uuid_tree_rescan_sem);
4329                 return PTR_ERR(task);
4330         }
4331
4332         return 0;
4333 }
4334
4335 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4336 {
4337         struct task_struct *task;
4338
4339         down(&fs_info->uuid_tree_rescan_sem);
4340         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4341         if (IS_ERR(task)) {
4342                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4343                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4344                 up(&fs_info->uuid_tree_rescan_sem);
4345                 return PTR_ERR(task);
4346         }
4347
4348         return 0;
4349 }
4350
4351 /*
4352  * shrinking a device means finding all of the device extents past
4353  * the new size, and then following the back refs to the chunks.
4354  * The chunk relocation code actually frees the device extent
4355  */
4356 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4357 {
4358         struct btrfs_trans_handle *trans;
4359         struct btrfs_root *root = device->dev_root;
4360         struct btrfs_dev_extent *dev_extent = NULL;
4361         struct btrfs_path *path;
4362         u64 length;
4363         u64 chunk_offset;
4364         int ret;
4365         int slot;
4366         int failed = 0;
4367         bool retried = false;
4368         bool checked_pending_chunks = false;
4369         struct extent_buffer *l;
4370         struct btrfs_key key;
4371         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4372         u64 old_total = btrfs_super_total_bytes(super_copy);
4373         u64 old_size = btrfs_device_get_total_bytes(device);
4374         u64 diff = old_size - new_size;
4375
4376         if (device->is_tgtdev_for_dev_replace)
4377                 return -EINVAL;
4378
4379         path = btrfs_alloc_path();
4380         if (!path)
4381                 return -ENOMEM;
4382
4383         path->reada = READA_FORWARD;
4384
4385         lock_chunks(root);
4386
4387         btrfs_device_set_total_bytes(device, new_size);
4388         if (device->writeable) {
4389                 device->fs_devices->total_rw_bytes -= diff;
4390                 spin_lock(&root->fs_info->free_chunk_lock);
4391                 root->fs_info->free_chunk_space -= diff;
4392                 spin_unlock(&root->fs_info->free_chunk_lock);
4393         }
4394         unlock_chunks(root);
4395
4396 again:
4397         key.objectid = device->devid;
4398         key.offset = (u64)-1;
4399         key.type = BTRFS_DEV_EXTENT_KEY;
4400
4401         do {
4402                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4403                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4404                 if (ret < 0) {
4405                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4406                         goto done;
4407                 }
4408
4409                 ret = btrfs_previous_item(root, path, 0, key.type);
4410                 if (ret)
4411                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4412                 if (ret < 0)
4413                         goto done;
4414                 if (ret) {
4415                         ret = 0;
4416                         btrfs_release_path(path);
4417                         break;
4418                 }
4419
4420                 l = path->nodes[0];
4421                 slot = path->slots[0];
4422                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4423
4424                 if (key.objectid != device->devid) {
4425                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4426                         btrfs_release_path(path);
4427                         break;
4428                 }
4429
4430                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4431                 length = btrfs_dev_extent_length(l, dev_extent);
4432
4433                 if (key.offset + length <= new_size) {
4434                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4435                         btrfs_release_path(path);
4436                         break;
4437                 }
4438
4439                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4440                 btrfs_release_path(path);
4441
4442                 ret = btrfs_relocate_chunk(root, chunk_offset);
4443                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4444                 if (ret && ret != -ENOSPC)
4445                         goto done;
4446                 if (ret == -ENOSPC)
4447                         failed++;
4448         } while (key.offset-- > 0);
4449
4450         if (failed && !retried) {
4451                 failed = 0;
4452                 retried = true;
4453                 goto again;
4454         } else if (failed && retried) {
4455                 ret = -ENOSPC;
4456                 goto done;
4457         }
4458
4459         /* Shrinking succeeded, else we would be at "done". */
4460         trans = btrfs_start_transaction(root, 0);
4461         if (IS_ERR(trans)) {
4462                 ret = PTR_ERR(trans);
4463                 goto done;
4464         }
4465
4466         lock_chunks(root);
4467
4468         /*
4469          * We checked in the above loop all device extents that were already in
4470          * the device tree. However before we have updated the device's
4471          * total_bytes to the new size, we might have had chunk allocations that
4472          * have not complete yet (new block groups attached to transaction
4473          * handles), and therefore their device extents were not yet in the
4474          * device tree and we missed them in the loop above. So if we have any
4475          * pending chunk using a device extent that overlaps the device range
4476          * that we can not use anymore, commit the current transaction and
4477          * repeat the search on the device tree - this way we guarantee we will
4478          * not have chunks using device extents that end beyond 'new_size'.
4479          */
4480         if (!checked_pending_chunks) {
4481                 u64 start = new_size;
4482                 u64 len = old_size - new_size;
4483
4484                 if (contains_pending_extent(trans->transaction, device,
4485                                             &start, len)) {
4486                         unlock_chunks(root);
4487                         checked_pending_chunks = true;
4488                         failed = 0;
4489                         retried = false;
4490                         ret = btrfs_commit_transaction(trans, root);
4491                         if (ret)
4492                                 goto done;
4493                         goto again;
4494                 }
4495         }
4496
4497         btrfs_device_set_disk_total_bytes(device, new_size);
4498         if (list_empty(&device->resized_list))
4499                 list_add_tail(&device->resized_list,
4500                               &root->fs_info->fs_devices->resized_devices);
4501
4502         WARN_ON(diff > old_total);
4503         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4504         unlock_chunks(root);
4505
4506         /* Now btrfs_update_device() will change the on-disk size. */
4507         ret = btrfs_update_device(trans, device);
4508         btrfs_end_transaction(trans, root);
4509 done:
4510         btrfs_free_path(path);
4511         if (ret) {
4512                 lock_chunks(root);
4513                 btrfs_device_set_total_bytes(device, old_size);
4514                 if (device->writeable)
4515                         device->fs_devices->total_rw_bytes += diff;
4516                 spin_lock(&root->fs_info->free_chunk_lock);
4517                 root->fs_info->free_chunk_space += diff;
4518                 spin_unlock(&root->fs_info->free_chunk_lock);
4519                 unlock_chunks(root);
4520         }
4521         return ret;
4522 }
4523
4524 static int btrfs_add_system_chunk(struct btrfs_root *root,
4525                            struct btrfs_key *key,
4526                            struct btrfs_chunk *chunk, int item_size)
4527 {
4528         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4529         struct btrfs_disk_key disk_key;
4530         u32 array_size;
4531         u8 *ptr;
4532
4533         lock_chunks(root);
4534         array_size = btrfs_super_sys_array_size(super_copy);
4535         if (array_size + item_size + sizeof(disk_key)
4536                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4537                 unlock_chunks(root);
4538                 return -EFBIG;
4539         }
4540
4541         ptr = super_copy->sys_chunk_array + array_size;
4542         btrfs_cpu_key_to_disk(&disk_key, key);
4543         memcpy(ptr, &disk_key, sizeof(disk_key));
4544         ptr += sizeof(disk_key);
4545         memcpy(ptr, chunk, item_size);
4546         item_size += sizeof(disk_key);
4547         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4548         unlock_chunks(root);
4549
4550         return 0;
4551 }
4552
4553 /*
4554  * sort the devices in descending order by max_avail, total_avail
4555  */
4556 static int btrfs_cmp_device_info(const void *a, const void *b)
4557 {
4558         const struct btrfs_device_info *di_a = a;
4559         const struct btrfs_device_info *di_b = b;
4560
4561         if (di_a->max_avail > di_b->max_avail)
4562                 return -1;
4563         if (di_a->max_avail < di_b->max_avail)
4564                 return 1;
4565         if (di_a->total_avail > di_b->total_avail)
4566                 return -1;
4567         if (di_a->total_avail < di_b->total_avail)
4568                 return 1;
4569         return 0;
4570 }
4571
4572 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4573 {
4574         /* TODO allow them to set a preferred stripe size */
4575         return SZ_64K;
4576 }
4577
4578 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4579 {
4580         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4581                 return;
4582
4583         btrfs_set_fs_incompat(info, RAID56);
4584 }
4585
4586 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)              \
4587                         - sizeof(struct btrfs_chunk))           \
4588                         / sizeof(struct btrfs_stripe) + 1)
4589
4590 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4591                                 - 2 * sizeof(struct btrfs_disk_key)     \
4592                                 - 2 * sizeof(struct btrfs_chunk))       \
4593                                 / sizeof(struct btrfs_stripe) + 1)
4594
4595 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4596                                struct btrfs_root *extent_root, u64 start,
4597                                u64 type)
4598 {
4599         struct btrfs_fs_info *info = extent_root->fs_info;
4600         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4601         struct list_head *cur;
4602         struct map_lookup *map = NULL;
4603         struct extent_map_tree *em_tree;
4604         struct extent_map *em;
4605         struct btrfs_device_info *devices_info = NULL;
4606         u64 total_avail;
4607         int num_stripes;        /* total number of stripes to allocate */
4608         int data_stripes;       /* number of stripes that count for
4609                                    block group size */
4610         int sub_stripes;        /* sub_stripes info for map */
4611         int dev_stripes;        /* stripes per dev */
4612         int devs_max;           /* max devs to use */
4613         int devs_min;           /* min devs needed */
4614         int devs_increment;     /* ndevs has to be a multiple of this */
4615         int ncopies;            /* how many copies to data has */
4616         int ret;
4617         u64 max_stripe_size;
4618         u64 max_chunk_size;
4619         u64 stripe_size;
4620         u64 num_bytes;
4621         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4622         int ndevs;
4623         int i;
4624         int j;
4625         int index;
4626
4627         BUG_ON(!alloc_profile_is_valid(type, 0));
4628
4629         if (list_empty(&fs_devices->alloc_list))
4630                 return -ENOSPC;
4631
4632         index = __get_raid_index(type);
4633
4634         sub_stripes = btrfs_raid_array[index].sub_stripes;
4635         dev_stripes = btrfs_raid_array[index].dev_stripes;
4636         devs_max = btrfs_raid_array[index].devs_max;
4637         devs_min = btrfs_raid_array[index].devs_min;
4638         devs_increment = btrfs_raid_array[index].devs_increment;
4639         ncopies = btrfs_raid_array[index].ncopies;
4640
4641         if (type & BTRFS_BLOCK_GROUP_DATA) {
4642                 max_stripe_size = SZ_1G;
4643                 max_chunk_size = 10 * max_stripe_size;
4644                 if (!devs_max)
4645                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4646         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4647                 /* for larger filesystems, use larger metadata chunks */
4648                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4649                         max_stripe_size = SZ_1G;
4650                 else
4651                         max_stripe_size = SZ_256M;
4652                 max_chunk_size = max_stripe_size;
4653                 if (!devs_max)
4654                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4655         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4656                 max_stripe_size = SZ_32M;
4657                 max_chunk_size = 2 * max_stripe_size;
4658                 if (!devs_max)
4659                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4660         } else {
4661                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4662                        type);
4663                 BUG_ON(1);
4664         }
4665
4666         /* we don't want a chunk larger than 10% of writeable space */
4667         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4668                              max_chunk_size);
4669
4670         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4671                                GFP_NOFS);
4672         if (!devices_info)
4673                 return -ENOMEM;
4674
4675         cur = fs_devices->alloc_list.next;
4676
4677         /*
4678          * in the first pass through the devices list, we gather information
4679          * about the available holes on each device.
4680          */
4681         ndevs = 0;
4682         while (cur != &fs_devices->alloc_list) {
4683                 struct btrfs_device *device;
4684                 u64 max_avail;
4685                 u64 dev_offset;
4686
4687                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4688
4689                 cur = cur->next;
4690
4691                 if (!device->writeable) {
4692                         WARN(1, KERN_ERR
4693                                "BTRFS: read-only device in alloc_list\n");
4694                         continue;
4695                 }
4696
4697                 if (!device->in_fs_metadata ||
4698                     device->is_tgtdev_for_dev_replace)
4699                         continue;
4700
4701                 if (device->total_bytes > device->bytes_used)
4702                         total_avail = device->total_bytes - device->bytes_used;
4703                 else
4704                         total_avail = 0;
4705
4706                 /* If there is no space on this device, skip it. */
4707                 if (total_avail == 0)
4708                         continue;
4709
4710                 ret = find_free_dev_extent(trans, device,
4711                                            max_stripe_size * dev_stripes,
4712                                            &dev_offset, &max_avail);
4713                 if (ret && ret != -ENOSPC)
4714                         goto error;
4715
4716                 if (ret == 0)
4717                         max_avail = max_stripe_size * dev_stripes;
4718
4719                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4720                         continue;
4721
4722                 if (ndevs == fs_devices->rw_devices) {
4723                         WARN(1, "%s: found more than %llu devices\n",
4724                              __func__, fs_devices->rw_devices);
4725                         break;
4726                 }
4727                 devices_info[ndevs].dev_offset = dev_offset;
4728                 devices_info[ndevs].max_avail = max_avail;
4729                 devices_info[ndevs].total_avail = total_avail;
4730                 devices_info[ndevs].dev = device;
4731                 ++ndevs;
4732         }
4733
4734         /*
4735          * now sort the devices by hole size / available space
4736          */
4737         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4738              btrfs_cmp_device_info, NULL);
4739
4740         /* round down to number of usable stripes */
4741         ndevs -= ndevs % devs_increment;
4742
4743         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4744                 ret = -ENOSPC;
4745                 goto error;
4746         }
4747
4748         if (devs_max && ndevs > devs_max)
4749                 ndevs = devs_max;
4750         /*
4751          * the primary goal is to maximize the number of stripes, so use as many
4752          * devices as possible, even if the stripes are not maximum sized.
4753          */
4754         stripe_size = devices_info[ndevs-1].max_avail;
4755         num_stripes = ndevs * dev_stripes;
4756
4757         /*
4758          * this will have to be fixed for RAID1 and RAID10 over
4759          * more drives
4760          */
4761         data_stripes = num_stripes / ncopies;
4762
4763         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4764                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4765                                                 extent_root->stripesize);
4766                 data_stripes = num_stripes - 1;
4767         }
4768         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4769                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4770                                                 extent_root->stripesize);
4771                 data_stripes = num_stripes - 2;
4772         }
4773
4774         /*
4775          * Use the number of data stripes to figure out how big this chunk
4776          * is really going to be in terms of logical address space,
4777          * and compare that answer with the max chunk size
4778          */
4779         if (stripe_size * data_stripes > max_chunk_size) {
4780                 u64 mask = (1ULL << 24) - 1;
4781
4782                 stripe_size = div_u64(max_chunk_size, data_stripes);
4783
4784                 /* bump the answer up to a 16MB boundary */
4785                 stripe_size = (stripe_size + mask) & ~mask;
4786
4787                 /* but don't go higher than the limits we found
4788                  * while searching for free extents
4789                  */
4790                 if (stripe_size > devices_info[ndevs-1].max_avail)
4791                         stripe_size = devices_info[ndevs-1].max_avail;
4792         }
4793
4794         stripe_size = div_u64(stripe_size, dev_stripes);
4795
4796         /* align to BTRFS_STRIPE_LEN */
4797         stripe_size = div_u64(stripe_size, raid_stripe_len);
4798         stripe_size *= raid_stripe_len;
4799
4800         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4801         if (!map) {
4802                 ret = -ENOMEM;
4803                 goto error;
4804         }
4805         map->num_stripes = num_stripes;
4806
4807         for (i = 0; i < ndevs; ++i) {
4808                 for (j = 0; j < dev_stripes; ++j) {
4809                         int s = i * dev_stripes + j;
4810                         map->stripes[s].dev = devices_info[i].dev;
4811                         map->stripes[s].physical = devices_info[i].dev_offset +
4812                                                    j * stripe_size;
4813                 }
4814         }
4815         map->sector_size = extent_root->sectorsize;
4816         map->stripe_len = raid_stripe_len;
4817         map->io_align = raid_stripe_len;
4818         map->io_width = raid_stripe_len;
4819         map->type = type;
4820         map->sub_stripes = sub_stripes;
4821
4822         num_bytes = stripe_size * data_stripes;
4823
4824         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4825
4826         em = alloc_extent_map();
4827         if (!em) {
4828                 kfree(map);
4829                 ret = -ENOMEM;
4830                 goto error;
4831         }
4832         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4833         em->map_lookup = map;
4834         em->start = start;
4835         em->len = num_bytes;
4836         em->block_start = 0;
4837         em->block_len = em->len;
4838         em->orig_block_len = stripe_size;
4839
4840         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4841         write_lock(&em_tree->lock);
4842         ret = add_extent_mapping(em_tree, em, 0);
4843         if (!ret) {
4844                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4845                 atomic_inc(&em->refs);
4846         }
4847         write_unlock(&em_tree->lock);
4848         if (ret) {
4849                 free_extent_map(em);
4850                 goto error;
4851         }
4852
4853         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4854                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4855                                      start, num_bytes);
4856         if (ret)
4857                 goto error_del_extent;
4858
4859         for (i = 0; i < map->num_stripes; i++) {
4860                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4861                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4862         }
4863
4864         spin_lock(&extent_root->fs_info->free_chunk_lock);
4865         extent_root->fs_info->free_chunk_space -= (stripe_size *
4866                                                    map->num_stripes);
4867         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4868
4869         free_extent_map(em);
4870         check_raid56_incompat_flag(extent_root->fs_info, type);
4871
4872         kfree(devices_info);
4873         return 0;
4874
4875 error_del_extent:
4876         write_lock(&em_tree->lock);
4877         remove_extent_mapping(em_tree, em);
4878         write_unlock(&em_tree->lock);
4879
4880         /* One for our allocation */
4881         free_extent_map(em);
4882         /* One for the tree reference */
4883         free_extent_map(em);
4884         /* One for the pending_chunks list reference */
4885         free_extent_map(em);
4886 error:
4887         kfree(devices_info);
4888         return ret;
4889 }
4890
4891 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4892                                 struct btrfs_root *extent_root,
4893                                 u64 chunk_offset, u64 chunk_size)
4894 {
4895         struct btrfs_key key;
4896         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4897         struct btrfs_device *device;
4898         struct btrfs_chunk *chunk;
4899         struct btrfs_stripe *stripe;
4900         struct extent_map_tree *em_tree;
4901         struct extent_map *em;
4902         struct map_lookup *map;
4903         size_t item_size;
4904         u64 dev_offset;
4905         u64 stripe_size;
4906         int i = 0;
4907         int ret = 0;
4908
4909         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4910         read_lock(&em_tree->lock);
4911         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4912         read_unlock(&em_tree->lock);
4913
4914         if (!em) {
4915                 btrfs_crit(extent_root->fs_info,
4916                            "unable to find logical %Lu len %Lu",
4917                            chunk_offset, chunk_size);
4918                 return -EINVAL;
4919         }
4920
4921         if (em->start != chunk_offset || em->len != chunk_size) {
4922                 btrfs_crit(extent_root->fs_info,
4923                            "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4924                             chunk_offset, chunk_size, em->start, em->len);
4925                 free_extent_map(em);
4926                 return -EINVAL;
4927         }
4928
4929         map = em->map_lookup;
4930         item_size = btrfs_chunk_item_size(map->num_stripes);
4931         stripe_size = em->orig_block_len;
4932
4933         chunk = kzalloc(item_size, GFP_NOFS);
4934         if (!chunk) {
4935                 ret = -ENOMEM;
4936                 goto out;
4937         }
4938
4939         /*
4940          * Take the device list mutex to prevent races with the final phase of
4941          * a device replace operation that replaces the device object associated
4942          * with the map's stripes, because the device object's id can change
4943          * at any time during that final phase of the device replace operation
4944          * (dev-replace.c:btrfs_dev_replace_finishing()).
4945          */
4946         mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4947         for (i = 0; i < map->num_stripes; i++) {
4948                 device = map->stripes[i].dev;
4949                 dev_offset = map->stripes[i].physical;
4950
4951                 ret = btrfs_update_device(trans, device);
4952                 if (ret)
4953                         break;
4954                 ret = btrfs_alloc_dev_extent(trans, device,
4955                                              chunk_root->root_key.objectid,
4956                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4957                                              chunk_offset, dev_offset,
4958                                              stripe_size);
4959                 if (ret)
4960                         break;
4961         }
4962         if (ret) {
4963                 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4964                 goto out;
4965         }
4966
4967         stripe = &chunk->stripe;
4968         for (i = 0; i < map->num_stripes; i++) {
4969                 device = map->stripes[i].dev;
4970                 dev_offset = map->stripes[i].physical;
4971
4972                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4973                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4974                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4975                 stripe++;
4976         }
4977         mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4978
4979         btrfs_set_stack_chunk_length(chunk, chunk_size);
4980         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4981         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4982         btrfs_set_stack_chunk_type(chunk, map->type);
4983         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4984         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4985         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4986         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4987         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4988
4989         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4990         key.type = BTRFS_CHUNK_ITEM_KEY;
4991         key.offset = chunk_offset;
4992
4993         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4994         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995                 /*
4996                  * TODO: Cleanup of inserted chunk root in case of
4997                  * failure.
4998                  */
4999                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5000                                              item_size);
5001         }
5002
5003 out:
5004         kfree(chunk);
5005         free_extent_map(em);
5006         return ret;
5007 }
5008
5009 /*
5010  * Chunk allocation falls into two parts. The first part does works
5011  * that make the new allocated chunk useable, but not do any operation
5012  * that modifies the chunk tree. The second part does the works that
5013  * require modifying the chunk tree. This division is important for the
5014  * bootstrap process of adding storage to a seed btrfs.
5015  */
5016 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5017                       struct btrfs_root *extent_root, u64 type)
5018 {
5019         u64 chunk_offset;
5020
5021         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5022         chunk_offset = find_next_chunk(extent_root->fs_info);
5023         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5024 }
5025
5026 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5027                                          struct btrfs_root *root,
5028                                          struct btrfs_device *device)
5029 {
5030         u64 chunk_offset;
5031         u64 sys_chunk_offset;
5032         u64 alloc_profile;
5033         struct btrfs_fs_info *fs_info = root->fs_info;
5034         struct btrfs_root *extent_root = fs_info->extent_root;
5035         int ret;
5036
5037         chunk_offset = find_next_chunk(fs_info);
5038         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5039         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5040                                   alloc_profile);
5041         if (ret)
5042                 return ret;
5043
5044         sys_chunk_offset = find_next_chunk(root->fs_info);
5045         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5047                                   alloc_profile);
5048         return ret;
5049 }
5050
5051 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052 {
5053         int max_errors;
5054
5055         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056                          BTRFS_BLOCK_GROUP_RAID10 |
5057                          BTRFS_BLOCK_GROUP_RAID5 |
5058                          BTRFS_BLOCK_GROUP_DUP)) {
5059                 max_errors = 1;
5060         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061                 max_errors = 2;
5062         } else {
5063                 max_errors = 0;
5064         }
5065
5066         return max_errors;
5067 }
5068
5069 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5070 {
5071         struct extent_map *em;
5072         struct map_lookup *map;
5073         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5074         int readonly = 0;
5075         int miss_ndevs = 0;
5076         int i;
5077
5078         read_lock(&map_tree->map_tree.lock);
5079         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5080         read_unlock(&map_tree->map_tree.lock);
5081         if (!em)
5082                 return 1;
5083
5084         map = em->map_lookup;
5085         for (i = 0; i < map->num_stripes; i++) {
5086                 if (map->stripes[i].dev->missing) {
5087                         miss_ndevs++;
5088                         continue;
5089                 }
5090
5091                 if (!map->stripes[i].dev->writeable) {
5092                         readonly = 1;
5093                         goto end;
5094                 }
5095         }
5096
5097         /*
5098          * If the number of missing devices is larger than max errors,
5099          * we can not write the data into that chunk successfully, so
5100          * set it readonly.
5101          */
5102         if (miss_ndevs > btrfs_chunk_max_errors(map))
5103                 readonly = 1;
5104 end:
5105         free_extent_map(em);
5106         return readonly;
5107 }
5108
5109 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5110 {
5111         extent_map_tree_init(&tree->map_tree);
5112 }
5113
5114 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5115 {
5116         struct extent_map *em;
5117
5118         while (1) {
5119                 write_lock(&tree->map_tree.lock);
5120                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5121                 if (em)
5122                         remove_extent_mapping(&tree->map_tree, em);
5123                 write_unlock(&tree->map_tree.lock);
5124                 if (!em)
5125                         break;
5126                 /* once for us */
5127                 free_extent_map(em);
5128                 /* once for the tree */
5129                 free_extent_map(em);
5130         }
5131 }
5132
5133 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5134 {
5135         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5136         struct extent_map *em;
5137         struct map_lookup *map;
5138         struct extent_map_tree *em_tree = &map_tree->map_tree;
5139         int ret;
5140
5141         read_lock(&em_tree->lock);
5142         em = lookup_extent_mapping(em_tree, logical, len);
5143         read_unlock(&em_tree->lock);
5144
5145         /*
5146          * We could return errors for these cases, but that could get ugly and
5147          * we'd probably do the same thing which is just not do anything else
5148          * and exit, so return 1 so the callers don't try to use other copies.
5149          */
5150         if (!em) {
5151                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5152                             logical+len);
5153                 return 1;
5154         }
5155
5156         if (em->start > logical || em->start + em->len < logical) {
5157                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5158                            logical, logical+len, em->start,
5159                            em->start + em->len);
5160                 free_extent_map(em);
5161                 return 1;
5162         }
5163
5164         map = em->map_lookup;
5165         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5166                 ret = map->num_stripes;
5167         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5168                 ret = map->sub_stripes;
5169         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5170                 ret = 2;
5171         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5172                 ret = 3;
5173         else
5174                 ret = 1;
5175         free_extent_map(em);
5176
5177         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5178         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5179                 ret++;
5180         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5181
5182         return ret;
5183 }
5184
5185 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5186                                     struct btrfs_mapping_tree *map_tree,
5187                                     u64 logical)
5188 {
5189         struct extent_map *em;
5190         struct map_lookup *map;
5191         struct extent_map_tree *em_tree = &map_tree->map_tree;
5192         unsigned long len = root->sectorsize;
5193
5194         read_lock(&em_tree->lock);
5195         em = lookup_extent_mapping(em_tree, logical, len);
5196         read_unlock(&em_tree->lock);
5197         BUG_ON(!em);
5198
5199         BUG_ON(em->start > logical || em->start + em->len < logical);
5200         map = em->map_lookup;
5201         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5202                 len = map->stripe_len * nr_data_stripes(map);
5203         free_extent_map(em);
5204         return len;
5205 }
5206
5207 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5208                            u64 logical, u64 len, int mirror_num)
5209 {
5210         struct extent_map *em;
5211         struct map_lookup *map;
5212         struct extent_map_tree *em_tree = &map_tree->map_tree;
5213         int ret = 0;
5214
5215         read_lock(&em_tree->lock);
5216         em = lookup_extent_mapping(em_tree, logical, len);
5217         read_unlock(&em_tree->lock);
5218         BUG_ON(!em);
5219
5220         BUG_ON(em->start > logical || em->start + em->len < logical);
5221         map = em->map_lookup;
5222         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223                 ret = 1;
5224         free_extent_map(em);
5225         return ret;
5226 }
5227
5228 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5229                             struct map_lookup *map, int first, int num,
5230                             int optimal, int dev_replace_is_ongoing)
5231 {
5232         int i;
5233         int tolerance;
5234         struct btrfs_device *srcdev;
5235
5236         if (dev_replace_is_ongoing &&
5237             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5238              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5239                 srcdev = fs_info->dev_replace.srcdev;
5240         else
5241                 srcdev = NULL;
5242
5243         /*
5244          * try to avoid the drive that is the source drive for a
5245          * dev-replace procedure, only choose it if no other non-missing
5246          * mirror is available
5247          */
5248         for (tolerance = 0; tolerance < 2; tolerance++) {
5249                 if (map->stripes[optimal].dev->bdev &&
5250                     (tolerance || map->stripes[optimal].dev != srcdev))
5251                         return optimal;
5252                 for (i = first; i < first + num; i++) {
5253                         if (map->stripes[i].dev->bdev &&
5254                             (tolerance || map->stripes[i].dev != srcdev))
5255                                 return i;
5256                 }
5257         }
5258
5259         /* we couldn't find one that doesn't fail.  Just return something
5260          * and the io error handling code will clean up eventually
5261          */
5262         return optimal;
5263 }
5264
5265 static inline int parity_smaller(u64 a, u64 b)
5266 {
5267         return a > b;
5268 }
5269
5270 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5271 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5272 {
5273         struct btrfs_bio_stripe s;
5274         int i;
5275         u64 l;
5276         int again = 1;
5277
5278         while (again) {
5279                 again = 0;
5280                 for (i = 0; i < num_stripes - 1; i++) {
5281                         if (parity_smaller(bbio->raid_map[i],
5282                                            bbio->raid_map[i+1])) {
5283                                 s = bbio->stripes[i];
5284                                 l = bbio->raid_map[i];
5285                                 bbio->stripes[i] = bbio->stripes[i+1];
5286                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5287                                 bbio->stripes[i+1] = s;
5288                                 bbio->raid_map[i+1] = l;
5289
5290                                 again = 1;
5291                         }
5292                 }
5293         }
5294 }
5295
5296 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5297 {
5298         struct btrfs_bio *bbio = kzalloc(
5299                  /* the size of the btrfs_bio */
5300                 sizeof(struct btrfs_bio) +
5301                 /* plus the variable array for the stripes */
5302                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5303                 /* plus the variable array for the tgt dev */
5304                 sizeof(int) * (real_stripes) +
5305                 /*
5306                  * plus the raid_map, which includes both the tgt dev
5307                  * and the stripes
5308                  */
5309                 sizeof(u64) * (total_stripes),
5310                 GFP_NOFS|__GFP_NOFAIL);
5311
5312         atomic_set(&bbio->error, 0);
5313         atomic_set(&bbio->refs, 1);
5314
5315         return bbio;
5316 }
5317
5318 void btrfs_get_bbio(struct btrfs_bio *bbio)
5319 {
5320         WARN_ON(!atomic_read(&bbio->refs));
5321         atomic_inc(&bbio->refs);
5322 }
5323
5324 void btrfs_put_bbio(struct btrfs_bio *bbio)
5325 {
5326         if (!bbio)
5327                 return;
5328         if (atomic_dec_and_test(&bbio->refs))
5329                 kfree(bbio);
5330 }
5331
5332 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5333                              u64 logical, u64 *length,
5334                              struct btrfs_bio **bbio_ret,
5335                              int mirror_num, int need_raid_map)
5336 {
5337         struct extent_map *em;
5338         struct map_lookup *map;
5339         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5340         struct extent_map_tree *em_tree = &map_tree->map_tree;
5341         u64 offset;
5342         u64 stripe_offset;
5343         u64 stripe_end_offset;
5344         u64 stripe_nr;
5345         u64 stripe_nr_orig;
5346         u64 stripe_nr_end;
5347         u64 stripe_len;
5348         u32 stripe_index;
5349         int i;
5350         int ret = 0;
5351         int num_stripes;
5352         int max_errors = 0;
5353         int tgtdev_indexes = 0;
5354         struct btrfs_bio *bbio = NULL;
5355         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5356         int dev_replace_is_ongoing = 0;
5357         int num_alloc_stripes;
5358         int patch_the_first_stripe_for_dev_replace = 0;
5359         u64 physical_to_patch_in_first_stripe = 0;
5360         u64 raid56_full_stripe_start = (u64)-1;
5361
5362         read_lock(&em_tree->lock);
5363         em = lookup_extent_mapping(em_tree, logical, *length);
5364         read_unlock(&em_tree->lock);
5365
5366         if (!em) {
5367                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5368                         logical, *length);
5369                 return -EINVAL;
5370         }
5371
5372         if (em->start > logical || em->start + em->len < logical) {
5373                 btrfs_crit(fs_info,
5374                            "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5375                            logical, em->start, em->start + em->len);
5376                 free_extent_map(em);
5377                 return -EINVAL;
5378         }
5379
5380         map = em->map_lookup;
5381         offset = logical - em->start;
5382
5383         stripe_len = map->stripe_len;
5384         stripe_nr = offset;
5385         /*
5386          * stripe_nr counts the total number of stripes we have to stride
5387          * to get to this block
5388          */
5389         stripe_nr = div64_u64(stripe_nr, stripe_len);
5390
5391         stripe_offset = stripe_nr * stripe_len;
5392         if (offset < stripe_offset) {
5393                 btrfs_crit(fs_info,
5394                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5395                            stripe_offset, offset, em->start, logical,
5396                            stripe_len);
5397                 free_extent_map(em);
5398                 return -EINVAL;
5399         }
5400
5401         /* stripe_offset is the offset of this block in its stripe*/
5402         stripe_offset = offset - stripe_offset;
5403
5404         /* if we're here for raid56, we need to know the stripe aligned start */
5405         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5406                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5407                 raid56_full_stripe_start = offset;
5408
5409                 /* allow a write of a full stripe, but make sure we don't
5410                  * allow straddling of stripes
5411                  */
5412                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5413                                 full_stripe_len);
5414                 raid56_full_stripe_start *= full_stripe_len;
5415         }
5416
5417         if (op == REQ_OP_DISCARD) {
5418                 /* we don't discard raid56 yet */
5419                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5420                         ret = -EOPNOTSUPP;
5421                         goto out;
5422                 }
5423                 *length = min_t(u64, em->len - offset, *length);
5424         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5425                 u64 max_len;
5426                 /* For writes to RAID[56], allow a full stripeset across all disks.
5427                    For other RAID types and for RAID[56] reads, just allow a single
5428                    stripe (on a single disk). */
5429                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5430                     (op == REQ_OP_WRITE)) {
5431                         max_len = stripe_len * nr_data_stripes(map) -
5432                                 (offset - raid56_full_stripe_start);
5433                 } else {
5434                         /* we limit the length of each bio to what fits in a stripe */
5435                         max_len = stripe_len - stripe_offset;
5436                 }
5437                 *length = min_t(u64, em->len - offset, max_len);
5438         } else {
5439                 *length = em->len - offset;
5440         }
5441
5442         /* This is for when we're called from btrfs_merge_bio_hook() and all
5443            it cares about is the length */
5444         if (!bbio_ret)
5445                 goto out;
5446
5447         btrfs_dev_replace_lock(dev_replace, 0);
5448         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5449         if (!dev_replace_is_ongoing)
5450                 btrfs_dev_replace_unlock(dev_replace, 0);
5451         else
5452                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5453
5454         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5455             op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5456             op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5457                 /*
5458                  * in dev-replace case, for repair case (that's the only
5459                  * case where the mirror is selected explicitly when
5460                  * calling btrfs_map_block), blocks left of the left cursor
5461                  * can also be read from the target drive.
5462                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5463                  * the last one to the array of stripes. For READ, it also
5464                  * needs to be supported using the same mirror number.
5465                  * If the requested block is not left of the left cursor,
5466                  * EIO is returned. This can happen because btrfs_num_copies()
5467                  * returns one more in the dev-replace case.
5468                  */
5469                 u64 tmp_length = *length;
5470                 struct btrfs_bio *tmp_bbio = NULL;
5471                 int tmp_num_stripes;
5472                 u64 srcdev_devid = dev_replace->srcdev->devid;
5473                 int index_srcdev = 0;
5474                 int found = 0;
5475                 u64 physical_of_found = 0;
5476
5477                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5478                              logical, &tmp_length, &tmp_bbio, 0, 0);
5479                 if (ret) {
5480                         WARN_ON(tmp_bbio != NULL);
5481                         goto out;
5482                 }
5483
5484                 tmp_num_stripes = tmp_bbio->num_stripes;
5485                 if (mirror_num > tmp_num_stripes) {
5486                         /*
5487                          * REQ_GET_READ_MIRRORS does not contain this
5488                          * mirror, that means that the requested area
5489                          * is not left of the left cursor
5490                          */
5491                         ret = -EIO;
5492                         btrfs_put_bbio(tmp_bbio);
5493                         goto out;
5494                 }
5495
5496                 /*
5497                  * process the rest of the function using the mirror_num
5498                  * of the source drive. Therefore look it up first.
5499                  * At the end, patch the device pointer to the one of the
5500                  * target drive.
5501                  */
5502                 for (i = 0; i < tmp_num_stripes; i++) {
5503                         if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5504                                 continue;
5505
5506                         /*
5507                          * In case of DUP, in order to keep it simple, only add
5508                          * the mirror with the lowest physical address
5509                          */
5510                         if (found &&
5511                             physical_of_found <= tmp_bbio->stripes[i].physical)
5512                                 continue;
5513
5514                         index_srcdev = i;
5515                         found = 1;
5516                         physical_of_found = tmp_bbio->stripes[i].physical;
5517                 }
5518
5519                 btrfs_put_bbio(tmp_bbio);
5520
5521                 if (!found) {
5522                         WARN_ON(1);
5523                         ret = -EIO;
5524                         goto out;
5525                 }
5526
5527                 mirror_num = index_srcdev + 1;
5528                 patch_the_first_stripe_for_dev_replace = 1;
5529                 physical_to_patch_in_first_stripe = physical_of_found;
5530         } else if (mirror_num > map->num_stripes) {
5531                 mirror_num = 0;
5532         }
5533
5534         num_stripes = 1;
5535         stripe_index = 0;
5536         stripe_nr_orig = stripe_nr;
5537         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5538         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5539         stripe_end_offset = stripe_nr_end * map->stripe_len -
5540                             (offset + *length);
5541
5542         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5543                 if (op == REQ_OP_DISCARD)
5544                         num_stripes = min_t(u64, map->num_stripes,
5545                                             stripe_nr_end - stripe_nr_orig);
5546                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5547                                 &stripe_index);
5548                 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5549                     op != REQ_GET_READ_MIRRORS)
5550                         mirror_num = 1;
5551         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5552                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5553                     op == REQ_GET_READ_MIRRORS)
5554                         num_stripes = map->num_stripes;
5555                 else if (mirror_num)
5556                         stripe_index = mirror_num - 1;
5557                 else {
5558                         stripe_index = find_live_mirror(fs_info, map, 0,
5559                                             map->num_stripes,
5560                                             current->pid % map->num_stripes,
5561                                             dev_replace_is_ongoing);
5562                         mirror_num = stripe_index + 1;
5563                 }
5564
5565         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5566                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5567                     op == REQ_GET_READ_MIRRORS) {
5568                         num_stripes = map->num_stripes;
5569                 } else if (mirror_num) {
5570                         stripe_index = mirror_num - 1;
5571                 } else {
5572                         mirror_num = 1;
5573                 }
5574
5575         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5576                 u32 factor = map->num_stripes / map->sub_stripes;
5577
5578                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5579                 stripe_index *= map->sub_stripes;
5580
5581                 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5582                         num_stripes = map->sub_stripes;
5583                 else if (op == REQ_OP_DISCARD)
5584                         num_stripes = min_t(u64, map->sub_stripes *
5585                                             (stripe_nr_end - stripe_nr_orig),
5586                                             map->num_stripes);
5587                 else if (mirror_num)
5588                         stripe_index += mirror_num - 1;
5589                 else {
5590                         int old_stripe_index = stripe_index;
5591                         stripe_index = find_live_mirror(fs_info, map,
5592                                               stripe_index,
5593                                               map->sub_stripes, stripe_index +
5594                                               current->pid % map->sub_stripes,
5595                                               dev_replace_is_ongoing);
5596                         mirror_num = stripe_index - old_stripe_index + 1;
5597                 }
5598
5599         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5600                 if (need_raid_map &&
5601                     (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5602                      mirror_num > 1)) {
5603                         /* push stripe_nr back to the start of the full stripe */
5604                         stripe_nr = div_u64(raid56_full_stripe_start,
5605                                         stripe_len * nr_data_stripes(map));
5606
5607                         /* RAID[56] write or recovery. Return all stripes */
5608                         num_stripes = map->num_stripes;
5609                         max_errors = nr_parity_stripes(map);
5610
5611                         *length = map->stripe_len;
5612                         stripe_index = 0;
5613                         stripe_offset = 0;
5614                 } else {
5615                         /*
5616                          * Mirror #0 or #1 means the original data block.
5617                          * Mirror #2 is RAID5 parity block.
5618                          * Mirror #3 is RAID6 Q block.
5619                          */
5620                         stripe_nr = div_u64_rem(stripe_nr,
5621                                         nr_data_stripes(map), &stripe_index);
5622                         if (mirror_num > 1)
5623                                 stripe_index = nr_data_stripes(map) +
5624                                                 mirror_num - 2;
5625
5626                         /* We distribute the parity blocks across stripes */
5627                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5628                                         &stripe_index);
5629                         if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5630                             op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5631                                 mirror_num = 1;
5632                 }
5633         } else {
5634                 /*
5635                  * after this, stripe_nr is the number of stripes on this
5636                  * device we have to walk to find the data, and stripe_index is
5637                  * the number of our device in the stripe array
5638                  */
5639                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5640                                 &stripe_index);
5641                 mirror_num = stripe_index + 1;
5642         }
5643         if (stripe_index >= map->num_stripes) {
5644                 btrfs_crit(fs_info,
5645                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5646                            stripe_index, map->num_stripes);
5647                 ret = -EINVAL;
5648                 goto out;
5649         }
5650
5651         num_alloc_stripes = num_stripes;
5652         if (dev_replace_is_ongoing) {
5653                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5654                         num_alloc_stripes <<= 1;
5655                 if (op == REQ_GET_READ_MIRRORS)
5656                         num_alloc_stripes++;
5657                 tgtdev_indexes = num_stripes;
5658         }
5659
5660         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5661         if (!bbio) {
5662                 ret = -ENOMEM;
5663                 goto out;
5664         }
5665         if (dev_replace_is_ongoing)
5666                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5667
5668         /* build raid_map */
5669         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5670             need_raid_map &&
5671             ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5672             mirror_num > 1)) {
5673                 u64 tmp;
5674                 unsigned rot;
5675
5676                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5677                                  sizeof(struct btrfs_bio_stripe) *
5678                                  num_alloc_stripes +
5679                                  sizeof(int) * tgtdev_indexes);
5680
5681                 /* Work out the disk rotation on this stripe-set */
5682                 div_u64_rem(stripe_nr, num_stripes, &rot);
5683
5684                 /* Fill in the logical address of each stripe */
5685                 tmp = stripe_nr * nr_data_stripes(map);
5686                 for (i = 0; i < nr_data_stripes(map); i++)
5687                         bbio->raid_map[(i+rot) % num_stripes] =
5688                                 em->start + (tmp + i) * map->stripe_len;
5689
5690                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5691                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5692                         bbio->raid_map[(i+rot+1) % num_stripes] =
5693                                 RAID6_Q_STRIPE;
5694         }
5695
5696         if (op == REQ_OP_DISCARD) {
5697                 u32 factor = 0;
5698                 u32 sub_stripes = 0;
5699                 u64 stripes_per_dev = 0;
5700                 u32 remaining_stripes = 0;
5701                 u32 last_stripe = 0;
5702
5703                 if (map->type &
5704                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5705                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5706                                 sub_stripes = 1;
5707                         else
5708                                 sub_stripes = map->sub_stripes;
5709
5710                         factor = map->num_stripes / sub_stripes;
5711                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5712                                                       stripe_nr_orig,
5713                                                       factor,
5714                                                       &remaining_stripes);
5715                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5716                         last_stripe *= sub_stripes;
5717                 }
5718
5719                 for (i = 0; i < num_stripes; i++) {
5720                         bbio->stripes[i].physical =
5721                                 map->stripes[stripe_index].physical +
5722                                 stripe_offset + stripe_nr * map->stripe_len;
5723                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5724
5725                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5726                                          BTRFS_BLOCK_GROUP_RAID10)) {
5727                                 bbio->stripes[i].length = stripes_per_dev *
5728                                                           map->stripe_len;
5729
5730                                 if (i / sub_stripes < remaining_stripes)
5731                                         bbio->stripes[i].length +=
5732                                                 map->stripe_len;
5733
5734                                 /*
5735                                  * Special for the first stripe and
5736                                  * the last stripe:
5737                                  *
5738                                  * |-------|...|-------|
5739                                  *     |----------|
5740                                  *    off     end_off
5741                                  */
5742                                 if (i < sub_stripes)
5743                                         bbio->stripes[i].length -=
5744                                                 stripe_offset;
5745
5746                                 if (stripe_index >= last_stripe &&
5747                                     stripe_index <= (last_stripe +
5748                                                      sub_stripes - 1))
5749                                         bbio->stripes[i].length -=
5750                                                 stripe_end_offset;
5751
5752                                 if (i == sub_stripes - 1)
5753                                         stripe_offset = 0;
5754                         } else
5755                                 bbio->stripes[i].length = *length;
5756
5757                         stripe_index++;
5758                         if (stripe_index == map->num_stripes) {
5759                                 /* This could only happen for RAID0/10 */
5760                                 stripe_index = 0;
5761                                 stripe_nr++;
5762                         }
5763                 }
5764         } else {
5765                 for (i = 0; i < num_stripes; i++) {
5766                         bbio->stripes[i].physical =
5767                                 map->stripes[stripe_index].physical +
5768                                 stripe_offset +
5769                                 stripe_nr * map->stripe_len;
5770                         bbio->stripes[i].dev =
5771                                 map->stripes[stripe_index].dev;
5772                         stripe_index++;
5773                 }
5774         }
5775
5776         if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5777                 max_errors = btrfs_chunk_max_errors(map);
5778
5779         if (bbio->raid_map)
5780                 sort_parity_stripes(bbio, num_stripes);
5781
5782         tgtdev_indexes = 0;
5783         if (dev_replace_is_ongoing &&
5784            (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5785             dev_replace->tgtdev != NULL) {
5786                 int index_where_to_add;
5787                 u64 srcdev_devid = dev_replace->srcdev->devid;
5788
5789                 /*
5790                  * duplicate the write operations while the dev replace
5791                  * procedure is running. Since the copying of the old disk
5792                  * to the new disk takes place at run time while the
5793                  * filesystem is mounted writable, the regular write
5794                  * operations to the old disk have to be duplicated to go
5795                  * to the new disk as well.
5796                  * Note that device->missing is handled by the caller, and
5797                  * that the write to the old disk is already set up in the
5798                  * stripes array.
5799                  */
5800                 index_where_to_add = num_stripes;
5801                 for (i = 0; i < num_stripes; i++) {
5802                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5803                                 /* write to new disk, too */
5804                                 struct btrfs_bio_stripe *new =
5805                                         bbio->stripes + index_where_to_add;
5806                                 struct btrfs_bio_stripe *old =
5807                                         bbio->stripes + i;
5808
5809                                 new->physical = old->physical;
5810                                 new->length = old->length;
5811                                 new->dev = dev_replace->tgtdev;
5812                                 bbio->tgtdev_map[i] = index_where_to_add;
5813                                 index_where_to_add++;
5814                                 max_errors++;
5815                                 tgtdev_indexes++;
5816                         }
5817                 }
5818                 num_stripes = index_where_to_add;
5819         } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5820                    dev_replace->tgtdev != NULL) {
5821                 u64 srcdev_devid = dev_replace->srcdev->devid;
5822                 int index_srcdev = 0;
5823                 int found = 0;
5824                 u64 physical_of_found = 0;
5825
5826                 /*
5827                  * During the dev-replace procedure, the target drive can
5828                  * also be used to read data in case it is needed to repair
5829                  * a corrupt block elsewhere. This is possible if the
5830                  * requested area is left of the left cursor. In this area,
5831                  * the target drive is a full copy of the source drive.
5832                  */
5833                 for (i = 0; i < num_stripes; i++) {
5834                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5835                                 /*
5836                                  * In case of DUP, in order to keep it
5837                                  * simple, only add the mirror with the
5838                                  * lowest physical address
5839                                  */
5840                                 if (found &&
5841                                     physical_of_found <=
5842                                      bbio->stripes[i].physical)
5843                                         continue;
5844                                 index_srcdev = i;
5845                                 found = 1;
5846                                 physical_of_found = bbio->stripes[i].physical;
5847                         }
5848                 }
5849                 if (found) {
5850                         struct btrfs_bio_stripe *tgtdev_stripe =
5851                                 bbio->stripes + num_stripes;
5852
5853                         tgtdev_stripe->physical = physical_of_found;
5854                         tgtdev_stripe->length =
5855                                 bbio->stripes[index_srcdev].length;
5856                         tgtdev_stripe->dev = dev_replace->tgtdev;
5857                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5858
5859                         tgtdev_indexes++;
5860                         num_stripes++;
5861                 }
5862         }
5863
5864         *bbio_ret = bbio;
5865         bbio->map_type = map->type;
5866         bbio->num_stripes = num_stripes;
5867         bbio->max_errors = max_errors;
5868         bbio->mirror_num = mirror_num;
5869         bbio->num_tgtdevs = tgtdev_indexes;
5870
5871         /*
5872          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5873          * mirror_num == num_stripes + 1 && dev_replace target drive is
5874          * available as a mirror
5875          */
5876         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5877                 WARN_ON(num_stripes > 1);
5878                 bbio->stripes[0].dev = dev_replace->tgtdev;
5879                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5880                 bbio->mirror_num = map->num_stripes + 1;
5881         }
5882 out:
5883         if (dev_replace_is_ongoing) {
5884                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5885                 btrfs_dev_replace_unlock(dev_replace, 0);
5886         }
5887         free_extent_map(em);
5888         return ret;
5889 }
5890
5891 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5892                       u64 logical, u64 *length,
5893                       struct btrfs_bio **bbio_ret, int mirror_num)
5894 {
5895         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5896                                  mirror_num, 0);
5897 }
5898
5899 /* For Scrub/replace */
5900 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5901                      u64 logical, u64 *length,
5902                      struct btrfs_bio **bbio_ret, int mirror_num,
5903                      int need_raid_map)
5904 {
5905         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5906                                  mirror_num, need_raid_map);
5907 }
5908
5909 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5910                      u64 chunk_start, u64 physical, u64 devid,
5911                      u64 **logical, int *naddrs, int *stripe_len)
5912 {
5913         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5914         struct extent_map_tree *em_tree = &map_tree->map_tree;
5915         struct extent_map *em;
5916         struct map_lookup *map;
5917         u64 *buf;
5918         u64 bytenr;
5919         u64 length;
5920         u64 stripe_nr;
5921         u64 rmap_len;
5922         int i, j, nr = 0;
5923
5924         read_lock(&em_tree->lock);
5925         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5926         read_unlock(&em_tree->lock);
5927
5928         if (!em) {
5929                 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5930                         chunk_start);
5931                 return -EIO;
5932         }
5933
5934         if (em->start != chunk_start) {
5935                 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5936                        em->start, chunk_start);
5937                 free_extent_map(em);
5938                 return -EIO;
5939         }
5940         map = em->map_lookup;
5941
5942         length = em->len;
5943         rmap_len = map->stripe_len;
5944
5945         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5946                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5947         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5948                 length = div_u64(length, map->num_stripes);
5949         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5950                 length = div_u64(length, nr_data_stripes(map));
5951                 rmap_len = map->stripe_len * nr_data_stripes(map);
5952         }
5953
5954         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5955         BUG_ON(!buf); /* -ENOMEM */
5956
5957         for (i = 0; i < map->num_stripes; i++) {
5958                 if (devid && map->stripes[i].dev->devid != devid)
5959                         continue;
5960                 if (map->stripes[i].physical > physical ||
5961                     map->stripes[i].physical + length <= physical)
5962                         continue;
5963
5964                 stripe_nr = physical - map->stripes[i].physical;
5965                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5966
5967                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5968                         stripe_nr = stripe_nr * map->num_stripes + i;
5969                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5970                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5971                         stripe_nr = stripe_nr * map->num_stripes + i;
5972                 } /* else if RAID[56], multiply by nr_data_stripes().
5973                    * Alternatively, just use rmap_len below instead of
5974                    * map->stripe_len */
5975
5976                 bytenr = chunk_start + stripe_nr * rmap_len;
5977                 WARN_ON(nr >= map->num_stripes);
5978                 for (j = 0; j < nr; j++) {
5979                         if (buf[j] == bytenr)
5980                                 break;
5981                 }
5982                 if (j == nr) {
5983                         WARN_ON(nr >= map->num_stripes);
5984                         buf[nr++] = bytenr;
5985                 }
5986         }
5987
5988         *logical = buf;
5989         *naddrs = nr;
5990         *stripe_len = rmap_len;
5991
5992         free_extent_map(em);
5993         return 0;
5994 }
5995
5996 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5997 {
5998         bio->bi_private = bbio->private;
5999         bio->bi_end_io = bbio->end_io;
6000         bio_endio(bio);
6001
6002         btrfs_put_bbio(bbio);
6003 }
6004
6005 static void btrfs_end_bio(struct bio *bio)
6006 {
6007         struct btrfs_bio *bbio = bio->bi_private;
6008         int is_orig_bio = 0;
6009
6010         if (bio->bi_error) {
6011                 atomic_inc(&bbio->error);
6012                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6013                         unsigned int stripe_index =
6014                                 btrfs_io_bio(bio)->stripe_index;
6015                         struct btrfs_device *dev;
6016
6017                         BUG_ON(stripe_index >= bbio->num_stripes);
6018                         dev = bbio->stripes[stripe_index].dev;
6019                         if (dev->bdev) {
6020                                 if (bio_op(bio) == REQ_OP_WRITE)
6021                                         btrfs_dev_stat_inc(dev,
6022                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6023                                 else
6024                                         btrfs_dev_stat_inc(dev,
6025                                                 BTRFS_DEV_STAT_READ_ERRS);
6026                                 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6027                                         btrfs_dev_stat_inc(dev,
6028                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6029                                 btrfs_dev_stat_print_on_error(dev);
6030                         }
6031                 }
6032         }
6033
6034         if (bio == bbio->orig_bio)
6035                 is_orig_bio = 1;
6036
6037         btrfs_bio_counter_dec(bbio->fs_info);
6038
6039         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040                 if (!is_orig_bio) {
6041                         bio_put(bio);
6042                         bio = bbio->orig_bio;
6043                 }
6044
6045                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6046                 /* only send an error to the higher layers if it is
6047                  * beyond the tolerance of the btrfs bio
6048                  */
6049                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6050                         bio->bi_error = -EIO;
6051                 } else {
6052                         /*
6053                          * this bio is actually up to date, we didn't
6054                          * go over the max number of errors
6055                          */
6056                         bio->bi_error = 0;
6057                 }
6058
6059                 btrfs_end_bbio(bbio, bio);
6060         } else if (!is_orig_bio) {
6061                 bio_put(bio);
6062         }
6063 }
6064
6065 /*
6066  * see run_scheduled_bios for a description of why bios are collected for
6067  * async submit.
6068  *
6069  * This will add one bio to the pending list for a device and make sure
6070  * the work struct is scheduled.
6071  */
6072 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6073                                         struct btrfs_device *device,
6074                                         struct bio *bio)
6075 {
6076         int should_queue = 1;
6077         struct btrfs_pending_bios *pending_bios;
6078
6079         if (device->missing || !device->bdev) {
6080                 bio_io_error(bio);
6081                 return;
6082         }
6083
6084         /* don't bother with additional async steps for reads, right now */
6085         if (bio_op(bio) == REQ_OP_READ) {
6086                 bio_get(bio);
6087                 btrfsic_submit_bio(bio);
6088                 bio_put(bio);
6089                 return;
6090         }
6091
6092         /*
6093          * nr_async_bios allows us to reliably return congestion to the
6094          * higher layers.  Otherwise, the async bio makes it appear we have
6095          * made progress against dirty pages when we've really just put it
6096          * on a queue for later
6097          */
6098         atomic_inc(&root->fs_info->nr_async_bios);
6099         WARN_ON(bio->bi_next);
6100         bio->bi_next = NULL;
6101
6102         spin_lock(&device->io_lock);
6103         if (bio->bi_opf & REQ_SYNC)
6104                 pending_bios = &device->pending_sync_bios;
6105         else
6106                 pending_bios = &device->pending_bios;
6107
6108         if (pending_bios->tail)
6109                 pending_bios->tail->bi_next = bio;
6110
6111         pending_bios->tail = bio;
6112         if (!pending_bios->head)
6113                 pending_bios->head = bio;
6114         if (device->running_pending)
6115                 should_queue = 0;
6116
6117         spin_unlock(&device->io_lock);
6118
6119         if (should_queue)
6120                 btrfs_queue_work(root->fs_info->submit_workers,
6121                                  &device->work);
6122 }
6123
6124 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6125                               struct bio *bio, u64 physical, int dev_nr,
6126                               int async)
6127 {
6128         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6129
6130         bio->bi_private = bbio;
6131         btrfs_io_bio(bio)->stripe_index = dev_nr;
6132         bio->bi_end_io = btrfs_end_bio;
6133         bio->bi_iter.bi_sector = physical >> 9;
6134 #ifdef DEBUG
6135         {
6136                 struct rcu_string *name;
6137
6138                 rcu_read_lock();
6139                 name = rcu_dereference(dev->name);
6140                 btrfs_debug(fs_info,
6141                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6142                         bio_op(bio), bio->bi_opf,
6143                         (u64)bio->bi_iter.bi_sector,
6144                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6145                         bio->bi_iter.bi_size);
6146                 rcu_read_unlock();
6147         }
6148 #endif
6149         bio->bi_bdev = dev->bdev;
6150
6151         btrfs_bio_counter_inc_noblocked(root->fs_info);
6152
6153         if (async)
6154                 btrfs_schedule_bio(root, dev, bio);
6155         else
6156                 btrfsic_submit_bio(bio);
6157 }
6158
6159 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6160 {
6161         atomic_inc(&bbio->error);
6162         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6163                 /* Should be the original bio. */
6164                 WARN_ON(bio != bbio->orig_bio);
6165
6166                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6167                 bio->bi_iter.bi_sector = logical >> 9;
6168                 bio->bi_error = -EIO;
6169                 btrfs_end_bbio(bbio, bio);
6170         }
6171 }
6172
6173 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6174                   int mirror_num, int async_submit)
6175 {
6176         struct btrfs_device *dev;
6177         struct bio *first_bio = bio;
6178         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6179         u64 length = 0;
6180         u64 map_length;
6181         int ret;
6182         int dev_nr;
6183         int total_devs;
6184         struct btrfs_bio *bbio = NULL;
6185
6186         length = bio->bi_iter.bi_size;
6187         map_length = length;
6188
6189         btrfs_bio_counter_inc_blocked(root->fs_info);
6190         ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6191                                 &map_length, &bbio, mirror_num, 1);
6192         if (ret) {
6193                 btrfs_bio_counter_dec(root->fs_info);
6194                 return ret;
6195         }
6196
6197         total_devs = bbio->num_stripes;
6198         bbio->orig_bio = first_bio;
6199         bbio->private = first_bio->bi_private;
6200         bbio->end_io = first_bio->bi_end_io;
6201         bbio->fs_info = root->fs_info;
6202         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6203
6204         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6205             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6206                 /* In this case, map_length has been set to the length of
6207                    a single stripe; not the whole write */
6208                 if (bio_op(bio) == REQ_OP_WRITE) {
6209                         ret = raid56_parity_write(root, bio, bbio, map_length);
6210                 } else {
6211                         ret = raid56_parity_recover(root, bio, bbio, map_length,
6212                                                     mirror_num, 1);
6213                 }
6214
6215                 btrfs_bio_counter_dec(root->fs_info);
6216                 return ret;
6217         }
6218
6219         if (map_length < length) {
6220                 btrfs_crit(root->fs_info,
6221                            "mapping failed logical %llu bio len %llu len %llu",
6222                            logical, length, map_length);
6223                 BUG();
6224         }
6225
6226         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6227                 dev = bbio->stripes[dev_nr].dev;
6228                 if (!dev || !dev->bdev ||
6229                     (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6230                         bbio_error(bbio, first_bio, logical);
6231                         continue;
6232                 }
6233
6234                 if (dev_nr < total_devs - 1) {
6235                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6236                         BUG_ON(!bio); /* -ENOMEM */
6237                 } else
6238                         bio = first_bio;
6239
6240                 submit_stripe_bio(root, bbio, bio,
6241                                   bbio->stripes[dev_nr].physical, dev_nr,
6242                                   async_submit);
6243         }
6244         btrfs_bio_counter_dec(root->fs_info);
6245         return 0;
6246 }
6247
6248 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6249                                        u8 *uuid, u8 *fsid)
6250 {
6251         struct btrfs_device *device;
6252         struct btrfs_fs_devices *cur_devices;
6253
6254         cur_devices = fs_info->fs_devices;
6255         while (cur_devices) {
6256                 if (!fsid ||
6257                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6258                         device = __find_device(&cur_devices->devices,
6259                                                devid, uuid);
6260                         if (device)
6261                                 return device;
6262                 }
6263                 cur_devices = cur_devices->seed;
6264         }
6265         return NULL;
6266 }
6267
6268 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6269                                             struct btrfs_fs_devices *fs_devices,
6270                                             u64 devid, u8 *dev_uuid)
6271 {
6272         struct btrfs_device *device;
6273
6274         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6275         if (IS_ERR(device))
6276                 return NULL;
6277
6278         list_add(&device->dev_list, &fs_devices->devices);
6279         device->fs_devices = fs_devices;
6280         fs_devices->num_devices++;
6281
6282         device->missing = 1;
6283         fs_devices->missing_devices++;
6284
6285         return device;
6286 }
6287
6288 /**
6289  * btrfs_alloc_device - allocate struct btrfs_device
6290  * @fs_info:    used only for generating a new devid, can be NULL if
6291  *              devid is provided (i.e. @devid != NULL).
6292  * @devid:      a pointer to devid for this device.  If NULL a new devid
6293  *              is generated.
6294  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6295  *              is generated.
6296  *
6297  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6298  * on error.  Returned struct is not linked onto any lists and can be
6299  * destroyed with kfree() right away.
6300  */
6301 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6302                                         const u64 *devid,
6303                                         const u8 *uuid)
6304 {
6305         struct btrfs_device *dev;
6306         u64 tmp;
6307
6308         if (WARN_ON(!devid && !fs_info))
6309                 return ERR_PTR(-EINVAL);
6310
6311         dev = __alloc_device();
6312         if (IS_ERR(dev))
6313                 return dev;
6314
6315         if (devid)
6316                 tmp = *devid;
6317         else {
6318                 int ret;
6319
6320                 ret = find_next_devid(fs_info, &tmp);
6321                 if (ret) {
6322                         kfree(dev);
6323                         return ERR_PTR(ret);
6324                 }
6325         }
6326         dev->devid = tmp;
6327
6328         if (uuid)
6329                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6330         else
6331                 generate_random_uuid(dev->uuid);
6332
6333         btrfs_init_work(&dev->work, btrfs_submit_helper,
6334                         pending_bios_fn, NULL, NULL);
6335
6336         return dev;
6337 }
6338
6339 /* Return -EIO if any error, otherwise return 0. */
6340 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6341                                    struct extent_buffer *leaf,
6342                                    struct btrfs_chunk *chunk, u64 logical)
6343 {
6344         u64 length;
6345         u64 stripe_len;
6346         u16 num_stripes;
6347         u16 sub_stripes;
6348         u64 type;
6349
6350         length = btrfs_chunk_length(leaf, chunk);
6351         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6352         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6353         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6354         type = btrfs_chunk_type(leaf, chunk);
6355
6356         if (!num_stripes) {
6357                 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6358                           num_stripes);
6359                 return -EIO;
6360         }
6361         if (!IS_ALIGNED(logical, root->sectorsize)) {
6362                 btrfs_err(root->fs_info,
6363                           "invalid chunk logical %llu", logical);
6364                 return -EIO;
6365         }
6366         if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6367                 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6368                           btrfs_chunk_sector_size(leaf, chunk));
6369                 return -EIO;
6370         }
6371         if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6372                 btrfs_err(root->fs_info,
6373                         "invalid chunk length %llu", length);
6374                 return -EIO;
6375         }
6376         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6377                 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6378                           stripe_len);
6379                 return -EIO;
6380         }
6381         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6382             type) {
6383                 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6384                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6385                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6386                           btrfs_chunk_type(leaf, chunk));
6387                 return -EIO;
6388         }
6389         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6390             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6391             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6392             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6393             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6394             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6395              num_stripes != 1)) {
6396                 btrfs_err(root->fs_info,
6397                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6398                         num_stripes, sub_stripes,
6399                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6400                 return -EIO;
6401         }
6402
6403         return 0;
6404 }
6405
6406 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6407                           struct extent_buffer *leaf,
6408                           struct btrfs_chunk *chunk)
6409 {
6410         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6411         struct map_lookup *map;
6412         struct extent_map *em;
6413         u64 logical;
6414         u64 length;
6415         u64 stripe_len;
6416         u64 devid;
6417         u8 uuid[BTRFS_UUID_SIZE];
6418         int num_stripes;
6419         int ret;
6420         int i;
6421
6422         logical = key->offset;
6423         length = btrfs_chunk_length(leaf, chunk);
6424         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6425         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6426
6427         ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6428         if (ret)
6429                 return ret;
6430
6431         read_lock(&map_tree->map_tree.lock);
6432         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6433         read_unlock(&map_tree->map_tree.lock);
6434
6435         /* already mapped? */
6436         if (em && em->start <= logical && em->start + em->len > logical) {
6437                 free_extent_map(em);
6438                 return 0;
6439         } else if (em) {
6440                 free_extent_map(em);
6441         }
6442
6443         em = alloc_extent_map();
6444         if (!em)
6445                 return -ENOMEM;
6446         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6447         if (!map) {
6448                 free_extent_map(em);
6449                 return -ENOMEM;
6450         }
6451
6452         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6453         em->map_lookup = map;
6454         em->start = logical;
6455         em->len = length;
6456         em->orig_start = 0;
6457         em->block_start = 0;
6458         em->block_len = em->len;
6459
6460         map->num_stripes = num_stripes;
6461         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6462         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6463         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6464         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6465         map->type = btrfs_chunk_type(leaf, chunk);
6466         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6467         for (i = 0; i < num_stripes; i++) {
6468                 map->stripes[i].physical =
6469                         btrfs_stripe_offset_nr(leaf, chunk, i);
6470                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6471                 read_extent_buffer(leaf, uuid, (unsigned long)
6472                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6473                                    BTRFS_UUID_SIZE);
6474                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6475                                                         uuid, NULL);
6476                 if (!map->stripes[i].dev &&
6477                     !btrfs_test_opt(root->fs_info, DEGRADED)) {
6478                         free_extent_map(em);
6479                         return -EIO;
6480                 }
6481                 if (!map->stripes[i].dev) {
6482                         map->stripes[i].dev =
6483                                 add_missing_dev(root, root->fs_info->fs_devices,
6484                                                 devid, uuid);
6485                         if (!map->stripes[i].dev) {
6486                                 free_extent_map(em);
6487                                 return -EIO;
6488                         }
6489                         btrfs_warn(root->fs_info,
6490                                    "devid %llu uuid %pU is missing",
6491                                    devid, uuid);
6492                 }
6493                 map->stripes[i].dev->in_fs_metadata = 1;
6494         }
6495
6496         write_lock(&map_tree->map_tree.lock);
6497         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6498         write_unlock(&map_tree->map_tree.lock);
6499         BUG_ON(ret); /* Tree corruption */
6500         free_extent_map(em);
6501
6502         return 0;
6503 }
6504
6505 static void fill_device_from_item(struct extent_buffer *leaf,
6506                                  struct btrfs_dev_item *dev_item,
6507                                  struct btrfs_device *device)
6508 {
6509         unsigned long ptr;
6510
6511         device->devid = btrfs_device_id(leaf, dev_item);
6512         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6513         device->total_bytes = device->disk_total_bytes;
6514         device->commit_total_bytes = device->disk_total_bytes;
6515         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6516         device->commit_bytes_used = device->bytes_used;
6517         device->type = btrfs_device_type(leaf, dev_item);
6518         device->io_align = btrfs_device_io_align(leaf, dev_item);
6519         device->io_width = btrfs_device_io_width(leaf, dev_item);
6520         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6521         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6522         device->is_tgtdev_for_dev_replace = 0;
6523
6524         ptr = btrfs_device_uuid(dev_item);
6525         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6526 }
6527
6528 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6529                                                   u8 *fsid)
6530 {
6531         struct btrfs_fs_devices *fs_devices;
6532         int ret;
6533
6534         BUG_ON(!mutex_is_locked(&uuid_mutex));
6535
6536         fs_devices = root->fs_info->fs_devices->seed;
6537         while (fs_devices) {
6538                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6539                         return fs_devices;
6540
6541                 fs_devices = fs_devices->seed;
6542         }
6543
6544         fs_devices = find_fsid(fsid);
6545         if (!fs_devices) {
6546                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6547                         return ERR_PTR(-ENOENT);
6548
6549                 fs_devices = alloc_fs_devices(fsid);
6550                 if (IS_ERR(fs_devices))
6551                         return fs_devices;
6552
6553                 fs_devices->seeding = 1;
6554                 fs_devices->opened = 1;
6555                 return fs_devices;
6556         }
6557
6558         fs_devices = clone_fs_devices(fs_devices);
6559         if (IS_ERR(fs_devices))
6560                 return fs_devices;
6561
6562         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6563                                    root->fs_info->bdev_holder);
6564         if (ret) {
6565                 free_fs_devices(fs_devices);
6566                 fs_devices = ERR_PTR(ret);
6567                 goto out;
6568         }
6569
6570         if (!fs_devices->seeding) {
6571                 __btrfs_close_devices(fs_devices);
6572                 free_fs_devices(fs_devices);
6573                 fs_devices = ERR_PTR(-EINVAL);
6574                 goto out;
6575         }
6576
6577         fs_devices->seed = root->fs_info->fs_devices->seed;
6578         root->fs_info->fs_devices->seed = fs_devices;
6579 out:
6580         return fs_devices;
6581 }
6582
6583 static int read_one_dev(struct btrfs_root *root,
6584                         struct extent_buffer *leaf,
6585                         struct btrfs_dev_item *dev_item)
6586 {
6587         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6588         struct btrfs_device *device;
6589         u64 devid;
6590         int ret;
6591         u8 fs_uuid[BTRFS_UUID_SIZE];
6592         u8 dev_uuid[BTRFS_UUID_SIZE];
6593
6594         devid = btrfs_device_id(leaf, dev_item);
6595         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6596                            BTRFS_UUID_SIZE);
6597         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6598                            BTRFS_UUID_SIZE);
6599
6600         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6601                 fs_devices = open_seed_devices(root, fs_uuid);
6602                 if (IS_ERR(fs_devices))
6603                         return PTR_ERR(fs_devices);
6604         }
6605
6606         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6607         if (!device) {
6608                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6609                         return -EIO;
6610
6611                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6612                 if (!device)
6613                         return -ENOMEM;
6614                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6615                                 devid, dev_uuid);
6616         } else {
6617                 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6618                         return -EIO;
6619
6620                 if(!device->bdev && !device->missing) {
6621                         /*
6622                          * this happens when a device that was properly setup
6623                          * in the device info lists suddenly goes bad.
6624                          * device->bdev is NULL, and so we have to set
6625                          * device->missing to one here
6626                          */
6627                         device->fs_devices->missing_devices++;
6628                         device->missing = 1;
6629                 }
6630
6631                 /* Move the device to its own fs_devices */
6632                 if (device->fs_devices != fs_devices) {
6633                         ASSERT(device->missing);
6634
6635                         list_move(&device->dev_list, &fs_devices->devices);
6636                         device->fs_devices->num_devices--;
6637                         fs_devices->num_devices++;
6638
6639                         device->fs_devices->missing_devices--;
6640                         fs_devices->missing_devices++;
6641
6642                         device->fs_devices = fs_devices;
6643                 }
6644         }
6645
6646         if (device->fs_devices != root->fs_info->fs_devices) {
6647                 BUG_ON(device->writeable);
6648                 if (device->generation !=
6649                     btrfs_device_generation(leaf, dev_item))
6650                         return -EINVAL;
6651         }
6652
6653         fill_device_from_item(leaf, dev_item, device);
6654         device->in_fs_metadata = 1;
6655         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6656                 device->fs_devices->total_rw_bytes += device->total_bytes;
6657                 spin_lock(&root->fs_info->free_chunk_lock);
6658                 root->fs_info->free_chunk_space += device->total_bytes -
6659                         device->bytes_used;
6660                 spin_unlock(&root->fs_info->free_chunk_lock);
6661         }
6662         ret = 0;
6663         return ret;
6664 }
6665
6666 int btrfs_read_sys_array(struct btrfs_root *root)
6667 {
6668         struct btrfs_fs_info *fs_info = root->fs_info;
6669         struct btrfs_super_block *super_copy = fs_info->super_copy;
6670         struct extent_buffer *sb;
6671         struct btrfs_disk_key *disk_key;
6672         struct btrfs_chunk *chunk;
6673         u8 *array_ptr;
6674         unsigned long sb_array_offset;
6675         int ret = 0;
6676         u32 num_stripes;
6677         u32 array_size;
6678         u32 len = 0;
6679         u32 cur_offset;
6680         u64 type;
6681         struct btrfs_key key;
6682
6683         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6684         /*
6685          * This will create extent buffer of nodesize, superblock size is
6686          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6687          * overallocate but we can keep it as-is, only the first page is used.
6688          */
6689         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6690         if (IS_ERR(sb))
6691                 return PTR_ERR(sb);
6692         set_extent_buffer_uptodate(sb);
6693         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6694         /*
6695          * The sb extent buffer is artificial and just used to read the system array.
6696          * set_extent_buffer_uptodate() call does not properly mark all it's
6697          * pages up-to-date when the page is larger: extent does not cover the
6698          * whole page and consequently check_page_uptodate does not find all
6699          * the page's extents up-to-date (the hole beyond sb),
6700          * write_extent_buffer then triggers a WARN_ON.
6701          *
6702          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6703          * but sb spans only this function. Add an explicit SetPageUptodate call
6704          * to silence the warning eg. on PowerPC 64.
6705          */
6706         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6707                 SetPageUptodate(sb->pages[0]);
6708
6709         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6710         array_size = btrfs_super_sys_array_size(super_copy);
6711
6712         array_ptr = super_copy->sys_chunk_array;
6713         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6714         cur_offset = 0;
6715
6716         while (cur_offset < array_size) {
6717                 disk_key = (struct btrfs_disk_key *)array_ptr;
6718                 len = sizeof(*disk_key);
6719                 if (cur_offset + len > array_size)
6720                         goto out_short_read;
6721
6722                 btrfs_disk_key_to_cpu(&key, disk_key);
6723
6724                 array_ptr += len;
6725                 sb_array_offset += len;
6726                 cur_offset += len;
6727
6728                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6729                         chunk = (struct btrfs_chunk *)sb_array_offset;
6730                         /*
6731                          * At least one btrfs_chunk with one stripe must be
6732                          * present, exact stripe count check comes afterwards
6733                          */
6734                         len = btrfs_chunk_item_size(1);
6735                         if (cur_offset + len > array_size)
6736                                 goto out_short_read;
6737
6738                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6739                         if (!num_stripes) {
6740                                 btrfs_err(fs_info,
6741                                         "invalid number of stripes %u in sys_array at offset %u",
6742                                         num_stripes, cur_offset);
6743                                 ret = -EIO;
6744                                 break;
6745                         }
6746
6747                         type = btrfs_chunk_type(sb, chunk);
6748                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6749                                 btrfs_err(fs_info,
6750                             "invalid chunk type %llu in sys_array at offset %u",
6751                                         type, cur_offset);
6752                                 ret = -EIO;
6753                                 break;
6754                         }
6755
6756                         len = btrfs_chunk_item_size(num_stripes);
6757                         if (cur_offset + len > array_size)
6758                                 goto out_short_read;
6759
6760                         ret = read_one_chunk(root, &key, sb, chunk);
6761                         if (ret)
6762                                 break;
6763                 } else {
6764                         btrfs_err(fs_info,
6765                             "unexpected item type %u in sys_array at offset %u",
6766                                   (u32)key.type, cur_offset);
6767                         ret = -EIO;
6768                         break;
6769                 }
6770                 array_ptr += len;
6771                 sb_array_offset += len;
6772                 cur_offset += len;
6773         }
6774         clear_extent_buffer_uptodate(sb);
6775         free_extent_buffer_stale(sb);
6776         return ret;
6777
6778 out_short_read:
6779         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6780                         len, cur_offset);
6781         clear_extent_buffer_uptodate(sb);
6782         free_extent_buffer_stale(sb);
6783         return -EIO;
6784 }
6785
6786 int btrfs_read_chunk_tree(struct btrfs_root *root)
6787 {
6788         struct btrfs_path *path;
6789         struct extent_buffer *leaf;
6790         struct btrfs_key key;
6791         struct btrfs_key found_key;
6792         int ret;
6793         int slot;
6794         u64 total_dev = 0;
6795
6796         root = root->fs_info->chunk_root;
6797
6798         path = btrfs_alloc_path();
6799         if (!path)
6800                 return -ENOMEM;
6801
6802         mutex_lock(&uuid_mutex);
6803         lock_chunks(root);
6804
6805         /*
6806          * Read all device items, and then all the chunk items. All
6807          * device items are found before any chunk item (their object id
6808          * is smaller than the lowest possible object id for a chunk
6809          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6810          */
6811         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6812         key.offset = 0;
6813         key.type = 0;
6814         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6815         if (ret < 0)
6816                 goto error;
6817         while (1) {
6818                 leaf = path->nodes[0];
6819                 slot = path->slots[0];
6820                 if (slot >= btrfs_header_nritems(leaf)) {
6821                         ret = btrfs_next_leaf(root, path);
6822                         if (ret == 0)
6823                                 continue;
6824                         if (ret < 0)
6825                                 goto error;
6826                         break;
6827                 }
6828                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6829                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6830                         struct btrfs_dev_item *dev_item;
6831                         dev_item = btrfs_item_ptr(leaf, slot,
6832                                                   struct btrfs_dev_item);
6833                         ret = read_one_dev(root, leaf, dev_item);
6834                         if (ret)
6835                                 goto error;
6836                         total_dev++;
6837                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6838                         struct btrfs_chunk *chunk;
6839                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6840                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6841                         if (ret)
6842                                 goto error;
6843                 }
6844                 path->slots[0]++;
6845         }
6846
6847         /*
6848          * After loading chunk tree, we've got all device information,
6849          * do another round of validation checks.
6850          */
6851         if (total_dev != root->fs_info->fs_devices->total_devices) {
6852                 btrfs_err(root->fs_info,
6853            "super_num_devices %llu mismatch with num_devices %llu found here",
6854                           btrfs_super_num_devices(root->fs_info->super_copy),
6855                           total_dev);
6856                 ret = -EINVAL;
6857                 goto error;
6858         }
6859         if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6860             root->fs_info->fs_devices->total_rw_bytes) {
6861                 btrfs_err(root->fs_info,
6862         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6863                           btrfs_super_total_bytes(root->fs_info->super_copy),
6864                           root->fs_info->fs_devices->total_rw_bytes);
6865                 ret = -EINVAL;
6866                 goto error;
6867         }
6868         ret = 0;
6869 error:
6870         unlock_chunks(root);
6871         mutex_unlock(&uuid_mutex);
6872
6873         btrfs_free_path(path);
6874         return ret;
6875 }
6876
6877 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6878 {
6879         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6880         struct btrfs_device *device;
6881
6882         while (fs_devices) {
6883                 mutex_lock(&fs_devices->device_list_mutex);
6884                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6885                         device->dev_root = fs_info->dev_root;
6886                 mutex_unlock(&fs_devices->device_list_mutex);
6887
6888                 fs_devices = fs_devices->seed;
6889         }
6890 }
6891
6892 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6893 {
6894         int i;
6895
6896         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6897                 btrfs_dev_stat_reset(dev, i);
6898 }
6899
6900 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6901 {
6902         struct btrfs_key key;
6903         struct btrfs_key found_key;
6904         struct btrfs_root *dev_root = fs_info->dev_root;
6905         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6906         struct extent_buffer *eb;
6907         int slot;
6908         int ret = 0;
6909         struct btrfs_device *device;
6910         struct btrfs_path *path = NULL;
6911         int i;
6912
6913         path = btrfs_alloc_path();
6914         if (!path) {
6915                 ret = -ENOMEM;
6916                 goto out;
6917         }
6918
6919         mutex_lock(&fs_devices->device_list_mutex);
6920         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6921                 int item_size;
6922                 struct btrfs_dev_stats_item *ptr;
6923
6924                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6925                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6926                 key.offset = device->devid;
6927                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6928                 if (ret) {
6929                         __btrfs_reset_dev_stats(device);
6930                         device->dev_stats_valid = 1;
6931                         btrfs_release_path(path);
6932                         continue;
6933                 }
6934                 slot = path->slots[0];
6935                 eb = path->nodes[0];
6936                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6937                 item_size = btrfs_item_size_nr(eb, slot);
6938
6939                 ptr = btrfs_item_ptr(eb, slot,
6940                                      struct btrfs_dev_stats_item);
6941
6942                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6943                         if (item_size >= (1 + i) * sizeof(__le64))
6944                                 btrfs_dev_stat_set(device, i,
6945                                         btrfs_dev_stats_value(eb, ptr, i));
6946                         else
6947                                 btrfs_dev_stat_reset(device, i);
6948                 }
6949
6950                 device->dev_stats_valid = 1;
6951                 btrfs_dev_stat_print_on_load(device);
6952                 btrfs_release_path(path);
6953         }
6954         mutex_unlock(&fs_devices->device_list_mutex);
6955
6956 out:
6957         btrfs_free_path(path);
6958         return ret < 0 ? ret : 0;
6959 }
6960
6961 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6962                                 struct btrfs_root *dev_root,
6963                                 struct btrfs_device *device)
6964 {
6965         struct btrfs_path *path;
6966         struct btrfs_key key;
6967         struct extent_buffer *eb;
6968         struct btrfs_dev_stats_item *ptr;
6969         int ret;
6970         int i;
6971
6972         key.objectid = BTRFS_DEV_STATS_OBJECTID;
6973         key.type = BTRFS_PERSISTENT_ITEM_KEY;
6974         key.offset = device->devid;
6975
6976         path = btrfs_alloc_path();
6977         BUG_ON(!path);
6978         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6979         if (ret < 0) {
6980                 btrfs_warn_in_rcu(dev_root->fs_info,
6981                         "error %d while searching for dev_stats item for device %s",
6982                               ret, rcu_str_deref(device->name));
6983                 goto out;
6984         }
6985
6986         if (ret == 0 &&
6987             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6988                 /* need to delete old one and insert a new one */
6989                 ret = btrfs_del_item(trans, dev_root, path);
6990                 if (ret != 0) {
6991                         btrfs_warn_in_rcu(dev_root->fs_info,
6992                                 "delete too small dev_stats item for device %s failed %d",
6993                                       rcu_str_deref(device->name), ret);
6994                         goto out;
6995                 }
6996                 ret = 1;
6997         }
6998
6999         if (ret == 1) {
7000                 /* need to insert a new item */
7001                 btrfs_release_path(path);
7002                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7003                                               &key, sizeof(*ptr));
7004                 if (ret < 0) {
7005                         btrfs_warn_in_rcu(dev_root->fs_info,
7006                                 "insert dev_stats item for device %s failed %d",
7007                                 rcu_str_deref(device->name), ret);
7008                         goto out;
7009                 }
7010         }
7011
7012         eb = path->nodes[0];
7013         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7014         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7015                 btrfs_set_dev_stats_value(eb, ptr, i,
7016                                           btrfs_dev_stat_read(device, i));
7017         btrfs_mark_buffer_dirty(eb);
7018
7019 out:
7020         btrfs_free_path(path);
7021         return ret;
7022 }
7023
7024 /*
7025  * called from commit_transaction. Writes all changed device stats to disk.
7026  */
7027 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7028                         struct btrfs_fs_info *fs_info)
7029 {
7030         struct btrfs_root *dev_root = fs_info->dev_root;
7031         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7032         struct btrfs_device *device;
7033         int stats_cnt;
7034         int ret = 0;
7035
7036         mutex_lock(&fs_devices->device_list_mutex);
7037         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7038                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7039                         continue;
7040
7041                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7042                 ret = update_dev_stat_item(trans, dev_root, device);
7043                 if (!ret)
7044                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7045         }
7046         mutex_unlock(&fs_devices->device_list_mutex);
7047
7048         return ret;
7049 }
7050
7051 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7052 {
7053         btrfs_dev_stat_inc(dev, index);
7054         btrfs_dev_stat_print_on_error(dev);
7055 }
7056
7057 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7058 {
7059         if (!dev->dev_stats_valid)
7060                 return;
7061         btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7062                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7063                            rcu_str_deref(dev->name),
7064                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7065                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7066                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7067                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7068                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7069 }
7070
7071 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7072 {
7073         int i;
7074
7075         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7076                 if (btrfs_dev_stat_read(dev, i) != 0)
7077                         break;
7078         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7079                 return; /* all values == 0, suppress message */
7080
7081         btrfs_info_in_rcu(dev->dev_root->fs_info,
7082                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7083                rcu_str_deref(dev->name),
7084                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7085                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7086                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7087                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7088                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7089 }
7090
7091 int btrfs_get_dev_stats(struct btrfs_root *root,
7092                         struct btrfs_ioctl_get_dev_stats *stats)
7093 {
7094         struct btrfs_device *dev;
7095         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7096         int i;
7097
7098         mutex_lock(&fs_devices->device_list_mutex);
7099         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7100         mutex_unlock(&fs_devices->device_list_mutex);
7101
7102         if (!dev) {
7103                 btrfs_warn(root->fs_info,
7104                            "get dev_stats failed, device not found");
7105                 return -ENODEV;
7106         } else if (!dev->dev_stats_valid) {
7107                 btrfs_warn(root->fs_info,
7108                            "get dev_stats failed, not yet valid");
7109                 return -ENODEV;
7110         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7111                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7112                         if (stats->nr_items > i)
7113                                 stats->values[i] =
7114                                         btrfs_dev_stat_read_and_reset(dev, i);
7115                         else
7116                                 btrfs_dev_stat_reset(dev, i);
7117                 }
7118         } else {
7119                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7120                         if (stats->nr_items > i)
7121                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7122         }
7123         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7124                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7125         return 0;
7126 }
7127
7128 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7129 {
7130         struct buffer_head *bh;
7131         struct btrfs_super_block *disk_super;
7132         int copy_num;
7133
7134         if (!bdev)
7135                 return;
7136
7137         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7138                 copy_num++) {
7139
7140                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7141                         continue;
7142
7143                 disk_super = (struct btrfs_super_block *)bh->b_data;
7144
7145                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7146                 set_buffer_dirty(bh);
7147                 sync_dirty_buffer(bh);
7148                 brelse(bh);
7149         }
7150
7151         /* Notify udev that device has changed */
7152         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7153
7154         /* Update ctime/mtime for device path for libblkid */
7155         update_dev_time(device_path);
7156 }
7157
7158 /*
7159  * Update the size of all devices, which is used for writing out the
7160  * super blocks.
7161  */
7162 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7163 {
7164         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165         struct btrfs_device *curr, *next;
7166
7167         if (list_empty(&fs_devices->resized_devices))
7168                 return;
7169
7170         mutex_lock(&fs_devices->device_list_mutex);
7171         lock_chunks(fs_info->dev_root);
7172         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7173                                  resized_list) {
7174                 list_del_init(&curr->resized_list);
7175                 curr->commit_total_bytes = curr->disk_total_bytes;
7176         }
7177         unlock_chunks(fs_info->dev_root);
7178         mutex_unlock(&fs_devices->device_list_mutex);
7179 }
7180
7181 /* Must be invoked during the transaction commit */
7182 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7183                                         struct btrfs_transaction *transaction)
7184 {
7185         struct extent_map *em;
7186         struct map_lookup *map;
7187         struct btrfs_device *dev;
7188         int i;
7189
7190         if (list_empty(&transaction->pending_chunks))
7191                 return;
7192
7193         /* In order to kick the device replace finish process */
7194         lock_chunks(root);
7195         list_for_each_entry(em, &transaction->pending_chunks, list) {
7196                 map = em->map_lookup;
7197
7198                 for (i = 0; i < map->num_stripes; i++) {
7199                         dev = map->stripes[i].dev;
7200                         dev->commit_bytes_used = dev->bytes_used;
7201                 }
7202         }
7203         unlock_chunks(root);
7204 }
7205
7206 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7207 {
7208         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209         while (fs_devices) {
7210                 fs_devices->fs_info = fs_info;
7211                 fs_devices = fs_devices->seed;
7212         }
7213 }
7214
7215 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7216 {
7217         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7218         while (fs_devices) {
7219                 fs_devices->fs_info = NULL;
7220                 fs_devices = fs_devices->seed;
7221         }
7222 }