b4048c1b3d9bd9f40eefdeedda91f94893a0a671
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_root *root,
138                                 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148         return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153         struct btrfs_fs_devices *fs_devs;
154
155         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156         if (!fs_devs)
157                 return ERR_PTR(-ENOMEM);
158
159         mutex_init(&fs_devs->device_list_mutex);
160
161         INIT_LIST_HEAD(&fs_devs->devices);
162         INIT_LIST_HEAD(&fs_devs->resized_devices);
163         INIT_LIST_HEAD(&fs_devs->alloc_list);
164         INIT_LIST_HEAD(&fs_devs->list);
165
166         return fs_devs;
167 }
168
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
172  *              generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180         struct btrfs_fs_devices *fs_devs;
181
182         fs_devs = __alloc_fs_devices();
183         if (IS_ERR(fs_devs))
184                 return fs_devs;
185
186         if (fsid)
187                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188         else
189                 generate_random_uuid(fs_devs->fsid);
190
191         return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196         struct btrfs_device *device;
197         WARN_ON(fs_devices->opened);
198         while (!list_empty(&fs_devices->devices)) {
199                 device = list_entry(fs_devices->devices.next,
200                                     struct btrfs_device, dev_list);
201                 list_del(&device->dev_list);
202                 rcu_string_free(device->name);
203                 kfree(device);
204         }
205         kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209                                  enum kobject_action action)
210 {
211         int ret;
212
213         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214         if (ret)
215                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216                         action,
217                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218                         &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223         struct btrfs_fs_devices *fs_devices;
224
225         while (!list_empty(&fs_uuids)) {
226                 fs_devices = list_entry(fs_uuids.next,
227                                         struct btrfs_fs_devices, list);
228                 list_del(&fs_devices->list);
229                 free_fs_devices(fs_devices);
230         }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235         struct btrfs_device *dev;
236
237         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238         if (!dev)
239                 return ERR_PTR(-ENOMEM);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258                                                    u64 devid, u8 *uuid)
259 {
260         struct btrfs_device *dev;
261
262         list_for_each_entry(dev, head, dev_list) {
263                 if (dev->devid == devid &&
264                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265                         return dev;
266                 }
267         }
268         return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273         struct btrfs_fs_devices *fs_devices;
274
275         list_for_each_entry(fs_devices, &fs_uuids, list) {
276                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277                         return fs_devices;
278         }
279         return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284                       int flush, struct block_device **bdev,
285                       struct buffer_head **bh)
286 {
287         int ret;
288
289         *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291         if (IS_ERR(*bdev)) {
292                 ret = PTR_ERR(*bdev);
293                 goto error;
294         }
295
296         if (flush)
297                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298         ret = set_blocksize(*bdev, 4096);
299         if (ret) {
300                 blkdev_put(*bdev, flags);
301                 goto error;
302         }
303         invalidate_bdev(*bdev);
304         *bh = btrfs_read_dev_super(*bdev);
305         if (IS_ERR(*bh)) {
306                 ret = PTR_ERR(*bh);
307                 blkdev_put(*bdev, flags);
308                 goto error;
309         }
310
311         return 0;
312
313 error:
314         *bdev = NULL;
315         *bh = NULL;
316         return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320                         struct bio *head, struct bio *tail)
321 {
322
323         struct bio *old_head;
324
325         old_head = pending_bios->head;
326         pending_bios->head = head;
327         if (pending_bios->tail)
328                 tail->bi_next = old_head;
329         else
330                 pending_bios->tail = tail;
331 }
332
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346         struct bio *pending;
347         struct backing_dev_info *bdi;
348         struct btrfs_fs_info *fs_info;
349         struct btrfs_pending_bios *pending_bios;
350         struct bio *tail;
351         struct bio *cur;
352         int again = 0;
353         unsigned long num_run;
354         unsigned long batch_run = 0;
355         unsigned long limit;
356         unsigned long last_waited = 0;
357         int force_reg = 0;
358         int sync_pending = 0;
359         struct blk_plug plug;
360
361         /*
362          * this function runs all the bios we've collected for
363          * a particular device.  We don't want to wander off to
364          * another device without first sending all of these down.
365          * So, setup a plug here and finish it off before we return
366          */
367         blk_start_plug(&plug);
368
369         bdi = blk_get_backing_dev_info(device->bdev);
370         fs_info = device->dev_root->fs_info;
371         limit = btrfs_async_submit_limit(fs_info);
372         limit = limit * 2 / 3;
373
374 loop:
375         spin_lock(&device->io_lock);
376
377 loop_lock:
378         num_run = 0;
379
380         /* take all the bios off the list at once and process them
381          * later on (without the lock held).  But, remember the
382          * tail and other pointers so the bios can be properly reinserted
383          * into the list if we hit congestion
384          */
385         if (!force_reg && device->pending_sync_bios.head) {
386                 pending_bios = &device->pending_sync_bios;
387                 force_reg = 1;
388         } else {
389                 pending_bios = &device->pending_bios;
390                 force_reg = 0;
391         }
392
393         pending = pending_bios->head;
394         tail = pending_bios->tail;
395         WARN_ON(pending && !tail);
396
397         /*
398          * if pending was null this time around, no bios need processing
399          * at all and we can stop.  Otherwise it'll loop back up again
400          * and do an additional check so no bios are missed.
401          *
402          * device->running_pending is used to synchronize with the
403          * schedule_bio code.
404          */
405         if (device->pending_sync_bios.head == NULL &&
406             device->pending_bios.head == NULL) {
407                 again = 0;
408                 device->running_pending = 0;
409         } else {
410                 again = 1;
411                 device->running_pending = 1;
412         }
413
414         pending_bios->head = NULL;
415         pending_bios->tail = NULL;
416
417         spin_unlock(&device->io_lock);
418
419         while (pending) {
420
421                 rmb();
422                 /* we want to work on both lists, but do more bios on the
423                  * sync list than the regular list
424                  */
425                 if ((num_run > 32 &&
426                     pending_bios != &device->pending_sync_bios &&
427                     device->pending_sync_bios.head) ||
428                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429                     device->pending_bios.head)) {
430                         spin_lock(&device->io_lock);
431                         requeue_list(pending_bios, pending, tail);
432                         goto loop_lock;
433                 }
434
435                 cur = pending;
436                 pending = pending->bi_next;
437                 cur->bi_next = NULL;
438
439                 /*
440                  * atomic_dec_return implies a barrier for waitqueue_active
441                  */
442                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443                     waitqueue_active(&fs_info->async_submit_wait))
444                         wake_up(&fs_info->async_submit_wait);
445
446                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448                 /*
449                  * if we're doing the sync list, record that our
450                  * plug has some sync requests on it
451                  *
452                  * If we're doing the regular list and there are
453                  * sync requests sitting around, unplug before
454                  * we add more
455                  */
456                 if (pending_bios == &device->pending_sync_bios) {
457                         sync_pending = 1;
458                 } else if (sync_pending) {
459                         blk_finish_plug(&plug);
460                         blk_start_plug(&plug);
461                         sync_pending = 0;
462                 }
463
464                 btrfsic_submit_bio(cur);
465                 num_run++;
466                 batch_run++;
467
468                 cond_resched();
469
470                 /*
471                  * we made progress, there is more work to do and the bdi
472                  * is now congested.  Back off and let other work structs
473                  * run instead
474                  */
475                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476                     fs_info->fs_devices->open_devices > 1) {
477                         struct io_context *ioc;
478
479                         ioc = current->io_context;
480
481                         /*
482                          * the main goal here is that we don't want to
483                          * block if we're going to be able to submit
484                          * more requests without blocking.
485                          *
486                          * This code does two great things, it pokes into
487                          * the elevator code from a filesystem _and_
488                          * it makes assumptions about how batching works.
489                          */
490                         if (ioc && ioc->nr_batch_requests > 0 &&
491                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492                             (last_waited == 0 ||
493                              ioc->last_waited == last_waited)) {
494                                 /*
495                                  * we want to go through our batch of
496                                  * requests and stop.  So, we copy out
497                                  * the ioc->last_waited time and test
498                                  * against it before looping
499                                  */
500                                 last_waited = ioc->last_waited;
501                                 cond_resched();
502                                 continue;
503                         }
504                         spin_lock(&device->io_lock);
505                         requeue_list(pending_bios, pending, tail);
506                         device->running_pending = 1;
507
508                         spin_unlock(&device->io_lock);
509                         btrfs_queue_work(fs_info->submit_workers,
510                                          &device->work);
511                         goto done;
512                 }
513                 /* unplug every 64 requests just for good measure */
514                 if (batch_run % 64 == 0) {
515                         blk_finish_plug(&plug);
516                         blk_start_plug(&plug);
517                         sync_pending = 0;
518                 }
519         }
520
521         cond_resched();
522         if (again)
523                 goto loop;
524
525         spin_lock(&device->io_lock);
526         if (device->pending_bios.head || device->pending_sync_bios.head)
527                 goto loop_lock;
528         spin_unlock(&device->io_lock);
529
530 done:
531         blk_finish_plug(&plug);
532 }
533
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536         struct btrfs_device *device;
537
538         device = container_of(work, struct btrfs_device, work);
539         run_scheduled_bios(device);
540 }
541
542
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545         struct btrfs_fs_devices *fs_devs;
546         struct btrfs_device *dev;
547
548         if (!cur_dev->name)
549                 return;
550
551         list_for_each_entry(fs_devs, &fs_uuids, list) {
552                 int del = 1;
553
554                 if (fs_devs->opened)
555                         continue;
556                 if (fs_devs->seeding)
557                         continue;
558
559                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561                         if (dev == cur_dev)
562                                 continue;
563                         if (!dev->name)
564                                 continue;
565
566                         /*
567                          * Todo: This won't be enough. What if the same device
568                          * comes back (with new uuid and) with its mapper path?
569                          * But for now, this does help as mostly an admin will
570                          * either use mapper or non mapper path throughout.
571                          */
572                         rcu_read_lock();
573                         del = strcmp(rcu_str_deref(dev->name),
574                                                 rcu_str_deref(cur_dev->name));
575                         rcu_read_unlock();
576                         if (!del)
577                                 break;
578                 }
579
580                 if (!del) {
581                         /* delete the stale device */
582                         if (fs_devs->num_devices == 1) {
583                                 btrfs_sysfs_remove_fsid(fs_devs);
584                                 list_del(&fs_devs->list);
585                                 free_fs_devices(fs_devs);
586                         } else {
587                                 fs_devs->num_devices--;
588                                 list_del(&dev->dev_list);
589                                 rcu_string_free(dev->name);
590                                 kfree(dev);
591                         }
592                         break;
593                 }
594         }
595 }
596
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606                            struct btrfs_super_block *disk_super,
607                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609         struct btrfs_device *device;
610         struct btrfs_fs_devices *fs_devices;
611         struct rcu_string *name;
612         int ret = 0;
613         u64 found_transid = btrfs_super_generation(disk_super);
614
615         fs_devices = find_fsid(disk_super->fsid);
616         if (!fs_devices) {
617                 fs_devices = alloc_fs_devices(disk_super->fsid);
618                 if (IS_ERR(fs_devices))
619                         return PTR_ERR(fs_devices);
620
621                 list_add(&fs_devices->list, &fs_uuids);
622
623                 device = NULL;
624         } else {
625                 device = __find_device(&fs_devices->devices, devid,
626                                        disk_super->dev_item.uuid);
627         }
628
629         if (!device) {
630                 if (fs_devices->opened)
631                         return -EBUSY;
632
633                 device = btrfs_alloc_device(NULL, &devid,
634                                             disk_super->dev_item.uuid);
635                 if (IS_ERR(device)) {
636                         /* we can safely leave the fs_devices entry around */
637                         return PTR_ERR(device);
638                 }
639
640                 name = rcu_string_strdup(path, GFP_NOFS);
641                 if (!name) {
642                         kfree(device);
643                         return -ENOMEM;
644                 }
645                 rcu_assign_pointer(device->name, name);
646
647                 mutex_lock(&fs_devices->device_list_mutex);
648                 list_add_rcu(&device->dev_list, &fs_devices->devices);
649                 fs_devices->num_devices++;
650                 mutex_unlock(&fs_devices->device_list_mutex);
651
652                 ret = 1;
653                 device->fs_devices = fs_devices;
654         } else if (!device->name || strcmp(device->name->str, path)) {
655                 /*
656                  * When FS is already mounted.
657                  * 1. If you are here and if the device->name is NULL that
658                  *    means this device was missing at time of FS mount.
659                  * 2. If you are here and if the device->name is different
660                  *    from 'path' that means either
661                  *      a. The same device disappeared and reappeared with
662                  *         different name. or
663                  *      b. The missing-disk-which-was-replaced, has
664                  *         reappeared now.
665                  *
666                  * We must allow 1 and 2a above. But 2b would be a spurious
667                  * and unintentional.
668                  *
669                  * Further in case of 1 and 2a above, the disk at 'path'
670                  * would have missed some transaction when it was away and
671                  * in case of 2a the stale bdev has to be updated as well.
672                  * 2b must not be allowed at all time.
673                  */
674
675                 /*
676                  * For now, we do allow update to btrfs_fs_device through the
677                  * btrfs dev scan cli after FS has been mounted.  We're still
678                  * tracking a problem where systems fail mount by subvolume id
679                  * when we reject replacement on a mounted FS.
680                  */
681                 if (!fs_devices->opened && found_transid < device->generation) {
682                         /*
683                          * That is if the FS is _not_ mounted and if you
684                          * are here, that means there is more than one
685                          * disk with same uuid and devid.We keep the one
686                          * with larger generation number or the last-in if
687                          * generation are equal.
688                          */
689                         return -EEXIST;
690                 }
691
692                 name = rcu_string_strdup(path, GFP_NOFS);
693                 if (!name)
694                         return -ENOMEM;
695                 rcu_string_free(device->name);
696                 rcu_assign_pointer(device->name, name);
697                 if (device->missing) {
698                         fs_devices->missing_devices--;
699                         device->missing = 0;
700                 }
701         }
702
703         /*
704          * Unmount does not free the btrfs_device struct but would zero
705          * generation along with most of the other members. So just update
706          * it back. We need it to pick the disk with largest generation
707          * (as above).
708          */
709         if (!fs_devices->opened)
710                 device->generation = found_transid;
711
712         /*
713          * if there is new btrfs on an already registered device,
714          * then remove the stale device entry.
715          */
716         if (ret > 0)
717                 btrfs_free_stale_device(device);
718
719         *fs_devices_ret = fs_devices;
720
721         return ret;
722 }
723
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726         struct btrfs_fs_devices *fs_devices;
727         struct btrfs_device *device;
728         struct btrfs_device *orig_dev;
729
730         fs_devices = alloc_fs_devices(orig->fsid);
731         if (IS_ERR(fs_devices))
732                 return fs_devices;
733
734         mutex_lock(&orig->device_list_mutex);
735         fs_devices->total_devices = orig->total_devices;
736
737         /* We have held the volume lock, it is safe to get the devices. */
738         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739                 struct rcu_string *name;
740
741                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742                                             orig_dev->uuid);
743                 if (IS_ERR(device))
744                         goto error;
745
746                 /*
747                  * This is ok to do without rcu read locked because we hold the
748                  * uuid mutex so nothing we touch in here is going to disappear.
749                  */
750                 if (orig_dev->name) {
751                         name = rcu_string_strdup(orig_dev->name->str,
752                                         GFP_KERNEL);
753                         if (!name) {
754                                 kfree(device);
755                                 goto error;
756                         }
757                         rcu_assign_pointer(device->name, name);
758                 }
759
760                 list_add(&device->dev_list, &fs_devices->devices);
761                 device->fs_devices = fs_devices;
762                 fs_devices->num_devices++;
763         }
764         mutex_unlock(&orig->device_list_mutex);
765         return fs_devices;
766 error:
767         mutex_unlock(&orig->device_list_mutex);
768         free_fs_devices(fs_devices);
769         return ERR_PTR(-ENOMEM);
770 }
771
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774         struct btrfs_device *device, *next;
775         struct btrfs_device *latest_dev = NULL;
776
777         mutex_lock(&uuid_mutex);
778 again:
779         /* This is the initialized path, it is safe to release the devices. */
780         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781                 if (device->in_fs_metadata) {
782                         if (!device->is_tgtdev_for_dev_replace &&
783                             (!latest_dev ||
784                              device->generation > latest_dev->generation)) {
785                                 latest_dev = device;
786                         }
787                         continue;
788                 }
789
790                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791                         /*
792                          * In the first step, keep the device which has
793                          * the correct fsid and the devid that is used
794                          * for the dev_replace procedure.
795                          * In the second step, the dev_replace state is
796                          * read from the device tree and it is known
797                          * whether the procedure is really active or
798                          * not, which means whether this device is
799                          * used or whether it should be removed.
800                          */
801                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
802                                 continue;
803                         }
804                 }
805                 if (device->bdev) {
806                         blkdev_put(device->bdev, device->mode);
807                         device->bdev = NULL;
808                         fs_devices->open_devices--;
809                 }
810                 if (device->writeable) {
811                         list_del_init(&device->dev_alloc_list);
812                         device->writeable = 0;
813                         if (!device->is_tgtdev_for_dev_replace)
814                                 fs_devices->rw_devices--;
815                 }
816                 list_del_init(&device->dev_list);
817                 fs_devices->num_devices--;
818                 rcu_string_free(device->name);
819                 kfree(device);
820         }
821
822         if (fs_devices->seed) {
823                 fs_devices = fs_devices->seed;
824                 goto again;
825         }
826
827         fs_devices->latest_bdev = latest_dev->bdev;
828
829         mutex_unlock(&uuid_mutex);
830 }
831
832 static void __free_device(struct work_struct *work)
833 {
834         struct btrfs_device *device;
835
836         device = container_of(work, struct btrfs_device, rcu_work);
837         rcu_string_free(device->name);
838         kfree(device);
839 }
840
841 static void free_device(struct rcu_head *head)
842 {
843         struct btrfs_device *device;
844
845         device = container_of(head, struct btrfs_device, rcu);
846
847         INIT_WORK(&device->rcu_work, __free_device);
848         schedule_work(&device->rcu_work);
849 }
850
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853         if (device->bdev && device->writeable) {
854                 sync_blockdev(device->bdev);
855                 invalidate_bdev(device->bdev);
856         }
857
858         if (device->bdev)
859                 blkdev_put(device->bdev, device->mode);
860 }
861
862 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
863 {
864         struct btrfs_fs_devices *fs_devices = device->fs_devices;
865         struct btrfs_device *new_device;
866         struct rcu_string *name;
867
868         if (device->bdev)
869                 fs_devices->open_devices--;
870
871         if (device->writeable &&
872             device->devid != BTRFS_DEV_REPLACE_DEVID) {
873                 list_del_init(&device->dev_alloc_list);
874                 fs_devices->rw_devices--;
875         }
876
877         if (device->missing)
878                 fs_devices->missing_devices--;
879
880         new_device = btrfs_alloc_device(NULL, &device->devid,
881                                         device->uuid);
882         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
883
884         /* Safe because we are under uuid_mutex */
885         if (device->name) {
886                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
887                 BUG_ON(!name); /* -ENOMEM */
888                 rcu_assign_pointer(new_device->name, name);
889         }
890
891         list_replace_rcu(&device->dev_list, &new_device->dev_list);
892         new_device->fs_devices = device->fs_devices;
893 }
894
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
896 {
897         struct btrfs_device *device, *tmp;
898         struct list_head pending_put;
899
900         INIT_LIST_HEAD(&pending_put);
901
902         if (--fs_devices->opened > 0)
903                 return 0;
904
905         mutex_lock(&fs_devices->device_list_mutex);
906         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
907                 btrfs_prepare_close_one_device(device);
908                 list_add(&device->dev_list, &pending_put);
909         }
910         mutex_unlock(&fs_devices->device_list_mutex);
911
912         /*
913          * btrfs_show_devname() is using the device_list_mutex,
914          * sometimes call to blkdev_put() leads vfs calling
915          * into this func. So do put outside of device_list_mutex,
916          * as of now.
917          */
918         while (!list_empty(&pending_put)) {
919                 device = list_first_entry(&pending_put,
920                                 struct btrfs_device, dev_list);
921                 list_del(&device->dev_list);
922                 btrfs_close_bdev(device);
923                 call_rcu(&device->rcu, free_device);
924         }
925
926         WARN_ON(fs_devices->open_devices);
927         WARN_ON(fs_devices->rw_devices);
928         fs_devices->opened = 0;
929         fs_devices->seeding = 0;
930
931         return 0;
932 }
933
934 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
935 {
936         struct btrfs_fs_devices *seed_devices = NULL;
937         int ret;
938
939         mutex_lock(&uuid_mutex);
940         ret = __btrfs_close_devices(fs_devices);
941         if (!fs_devices->opened) {
942                 seed_devices = fs_devices->seed;
943                 fs_devices->seed = NULL;
944         }
945         mutex_unlock(&uuid_mutex);
946
947         while (seed_devices) {
948                 fs_devices = seed_devices;
949                 seed_devices = fs_devices->seed;
950                 __btrfs_close_devices(fs_devices);
951                 free_fs_devices(fs_devices);
952         }
953         /*
954          * Wait for rcu kworkers under __btrfs_close_devices
955          * to finish all blkdev_puts so device is really
956          * free when umount is done.
957          */
958         rcu_barrier();
959         return ret;
960 }
961
962 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
963                                 fmode_t flags, void *holder)
964 {
965         struct request_queue *q;
966         struct block_device *bdev;
967         struct list_head *head = &fs_devices->devices;
968         struct btrfs_device *device;
969         struct btrfs_device *latest_dev = NULL;
970         struct buffer_head *bh;
971         struct btrfs_super_block *disk_super;
972         u64 devid;
973         int seeding = 1;
974         int ret = 0;
975
976         flags |= FMODE_EXCL;
977
978         list_for_each_entry(device, head, dev_list) {
979                 if (device->bdev)
980                         continue;
981                 if (!device->name)
982                         continue;
983
984                 /* Just open everything we can; ignore failures here */
985                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
986                                             &bdev, &bh))
987                         continue;
988
989                 disk_super = (struct btrfs_super_block *)bh->b_data;
990                 devid = btrfs_stack_device_id(&disk_super->dev_item);
991                 if (devid != device->devid)
992                         goto error_brelse;
993
994                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
995                            BTRFS_UUID_SIZE))
996                         goto error_brelse;
997
998                 device->generation = btrfs_super_generation(disk_super);
999                 if (!latest_dev ||
1000                     device->generation > latest_dev->generation)
1001                         latest_dev = device;
1002
1003                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1004                         device->writeable = 0;
1005                 } else {
1006                         device->writeable = !bdev_read_only(bdev);
1007                         seeding = 0;
1008                 }
1009
1010                 q = bdev_get_queue(bdev);
1011                 if (blk_queue_discard(q))
1012                         device->can_discard = 1;
1013
1014                 device->bdev = bdev;
1015                 device->in_fs_metadata = 0;
1016                 device->mode = flags;
1017
1018                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1019                         fs_devices->rotating = 1;
1020
1021                 fs_devices->open_devices++;
1022                 if (device->writeable &&
1023                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1024                         fs_devices->rw_devices++;
1025                         list_add(&device->dev_alloc_list,
1026                                  &fs_devices->alloc_list);
1027                 }
1028                 brelse(bh);
1029                 continue;
1030
1031 error_brelse:
1032                 brelse(bh);
1033                 blkdev_put(bdev, flags);
1034                 continue;
1035         }
1036         if (fs_devices->open_devices == 0) {
1037                 ret = -EINVAL;
1038                 goto out;
1039         }
1040         fs_devices->seeding = seeding;
1041         fs_devices->opened = 1;
1042         fs_devices->latest_bdev = latest_dev->bdev;
1043         fs_devices->total_rw_bytes = 0;
1044 out:
1045         return ret;
1046 }
1047
1048 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1049                        fmode_t flags, void *holder)
1050 {
1051         int ret;
1052
1053         mutex_lock(&uuid_mutex);
1054         if (fs_devices->opened) {
1055                 fs_devices->opened++;
1056                 ret = 0;
1057         } else {
1058                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1059         }
1060         mutex_unlock(&uuid_mutex);
1061         return ret;
1062 }
1063
1064 void btrfs_release_disk_super(struct page *page)
1065 {
1066         kunmap(page);
1067         put_page(page);
1068 }
1069
1070 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1071                 struct page **page, struct btrfs_super_block **disk_super)
1072 {
1073         void *p;
1074         pgoff_t index;
1075
1076         /* make sure our super fits in the device */
1077         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1078                 return 1;
1079
1080         /* make sure our super fits in the page */
1081         if (sizeof(**disk_super) > PAGE_SIZE)
1082                 return 1;
1083
1084         /* make sure our super doesn't straddle pages on disk */
1085         index = bytenr >> PAGE_SHIFT;
1086         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1087                 return 1;
1088
1089         /* pull in the page with our super */
1090         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1091                                    index, GFP_KERNEL);
1092
1093         if (IS_ERR_OR_NULL(*page))
1094                 return 1;
1095
1096         p = kmap(*page);
1097
1098         /* align our pointer to the offset of the super block */
1099         *disk_super = p + (bytenr & ~PAGE_MASK);
1100
1101         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1102             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1103                 btrfs_release_disk_super(*page);
1104                 return 1;
1105         }
1106
1107         if ((*disk_super)->label[0] &&
1108                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1109                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Look for a btrfs signature on a device. This may be called out of the mount path
1116  * and we are not allowed to call set_blocksize during the scan. The superblock
1117  * is read via pagecache
1118  */
1119 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1120                           struct btrfs_fs_devices **fs_devices_ret)
1121 {
1122         struct btrfs_super_block *disk_super;
1123         struct block_device *bdev;
1124         struct page *page;
1125         int ret = -EINVAL;
1126         u64 devid;
1127         u64 transid;
1128         u64 total_devices;
1129         u64 bytenr;
1130
1131         /*
1132          * we would like to check all the supers, but that would make
1133          * a btrfs mount succeed after a mkfs from a different FS.
1134          * So, we need to add a special mount option to scan for
1135          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136          */
1137         bytenr = btrfs_sb_offset(0);
1138         flags |= FMODE_EXCL;
1139         mutex_lock(&uuid_mutex);
1140
1141         bdev = blkdev_get_by_path(path, flags, holder);
1142         if (IS_ERR(bdev)) {
1143                 ret = PTR_ERR(bdev);
1144                 goto error;
1145         }
1146
1147         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1148                 goto error_bdev_put;
1149
1150         devid = btrfs_stack_device_id(&disk_super->dev_item);
1151         transid = btrfs_super_generation(disk_super);
1152         total_devices = btrfs_super_num_devices(disk_super);
1153
1154         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1155         if (ret > 0) {
1156                 if (disk_super->label[0]) {
1157                         pr_info("BTRFS: device label %s ", disk_super->label);
1158                 } else {
1159                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1160                 }
1161
1162                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1163                 ret = 0;
1164         }
1165         if (!ret && fs_devices_ret)
1166                 (*fs_devices_ret)->total_devices = total_devices;
1167
1168         btrfs_release_disk_super(page);
1169
1170 error_bdev_put:
1171         blkdev_put(bdev, flags);
1172 error:
1173         mutex_unlock(&uuid_mutex);
1174         return ret;
1175 }
1176
1177 /* helper to account the used device space in the range */
1178 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1179                                    u64 end, u64 *length)
1180 {
1181         struct btrfs_key key;
1182         struct btrfs_root *root = device->dev_root;
1183         struct btrfs_dev_extent *dev_extent;
1184         struct btrfs_path *path;
1185         u64 extent_end;
1186         int ret;
1187         int slot;
1188         struct extent_buffer *l;
1189
1190         *length = 0;
1191
1192         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1193                 return 0;
1194
1195         path = btrfs_alloc_path();
1196         if (!path)
1197                 return -ENOMEM;
1198         path->reada = READA_FORWARD;
1199
1200         key.objectid = device->devid;
1201         key.offset = start;
1202         key.type = BTRFS_DEV_EXTENT_KEY;
1203
1204         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205         if (ret < 0)
1206                 goto out;
1207         if (ret > 0) {
1208                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1209                 if (ret < 0)
1210                         goto out;
1211         }
1212
1213         while (1) {
1214                 l = path->nodes[0];
1215                 slot = path->slots[0];
1216                 if (slot >= btrfs_header_nritems(l)) {
1217                         ret = btrfs_next_leaf(root, path);
1218                         if (ret == 0)
1219                                 continue;
1220                         if (ret < 0)
1221                                 goto out;
1222
1223                         break;
1224                 }
1225                 btrfs_item_key_to_cpu(l, &key, slot);
1226
1227                 if (key.objectid < device->devid)
1228                         goto next;
1229
1230                 if (key.objectid > device->devid)
1231                         break;
1232
1233                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1234                         goto next;
1235
1236                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1237                 extent_end = key.offset + btrfs_dev_extent_length(l,
1238                                                                   dev_extent);
1239                 if (key.offset <= start && extent_end > end) {
1240                         *length = end - start + 1;
1241                         break;
1242                 } else if (key.offset <= start && extent_end > start)
1243                         *length += extent_end - start;
1244                 else if (key.offset > start && extent_end <= end)
1245                         *length += extent_end - key.offset;
1246                 else if (key.offset > start && key.offset <= end) {
1247                         *length += end - key.offset + 1;
1248                         break;
1249                 } else if (key.offset > end)
1250                         break;
1251
1252 next:
1253                 path->slots[0]++;
1254         }
1255         ret = 0;
1256 out:
1257         btrfs_free_path(path);
1258         return ret;
1259 }
1260
1261 static int contains_pending_extent(struct btrfs_transaction *transaction,
1262                                    struct btrfs_device *device,
1263                                    u64 *start, u64 len)
1264 {
1265         struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1266         struct extent_map *em;
1267         struct list_head *search_list = &fs_info->pinned_chunks;
1268         int ret = 0;
1269         u64 physical_start = *start;
1270
1271         if (transaction)
1272                 search_list = &transaction->pending_chunks;
1273 again:
1274         list_for_each_entry(em, search_list, list) {
1275                 struct map_lookup *map;
1276                 int i;
1277
1278                 map = em->map_lookup;
1279                 for (i = 0; i < map->num_stripes; i++) {
1280                         u64 end;
1281
1282                         if (map->stripes[i].dev != device)
1283                                 continue;
1284                         if (map->stripes[i].physical >= physical_start + len ||
1285                             map->stripes[i].physical + em->orig_block_len <=
1286                             physical_start)
1287                                 continue;
1288                         /*
1289                          * Make sure that while processing the pinned list we do
1290                          * not override our *start with a lower value, because
1291                          * we can have pinned chunks that fall within this
1292                          * device hole and that have lower physical addresses
1293                          * than the pending chunks we processed before. If we
1294                          * do not take this special care we can end up getting
1295                          * 2 pending chunks that start at the same physical
1296                          * device offsets because the end offset of a pinned
1297                          * chunk can be equal to the start offset of some
1298                          * pending chunk.
1299                          */
1300                         end = map->stripes[i].physical + em->orig_block_len;
1301                         if (end > *start) {
1302                                 *start = end;
1303                                 ret = 1;
1304                         }
1305                 }
1306         }
1307         if (search_list != &fs_info->pinned_chunks) {
1308                 search_list = &fs_info->pinned_chunks;
1309                 goto again;
1310         }
1311
1312         return ret;
1313 }
1314
1315
1316 /*
1317  * find_free_dev_extent_start - find free space in the specified device
1318  * @device:       the device which we search the free space in
1319  * @num_bytes:    the size of the free space that we need
1320  * @search_start: the position from which to begin the search
1321  * @start:        store the start of the free space.
1322  * @len:          the size of the free space. that we find, or the size
1323  *                of the max free space if we don't find suitable free space
1324  *
1325  * this uses a pretty simple search, the expectation is that it is
1326  * called very infrequently and that a given device has a small number
1327  * of extents
1328  *
1329  * @start is used to store the start of the free space if we find. But if we
1330  * don't find suitable free space, it will be used to store the start position
1331  * of the max free space.
1332  *
1333  * @len is used to store the size of the free space that we find.
1334  * But if we don't find suitable free space, it is used to store the size of
1335  * the max free space.
1336  */
1337 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1338                                struct btrfs_device *device, u64 num_bytes,
1339                                u64 search_start, u64 *start, u64 *len)
1340 {
1341         struct btrfs_key key;
1342         struct btrfs_root *root = device->dev_root;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353         u64 min_search_start;
1354
1355         /*
1356          * We don't want to overwrite the superblock on the drive nor any area
1357          * used by the boot loader (grub for example), so we make sure to start
1358          * at an offset of at least 1MB.
1359          */
1360         min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361         search_start = max(search_start, min_search_start);
1362
1363         path = btrfs_alloc_path();
1364         if (!path)
1365                 return -ENOMEM;
1366
1367         max_hole_start = search_start;
1368         max_hole_size = 0;
1369
1370 again:
1371         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372                 ret = -ENOSPC;
1373                 goto out;
1374         }
1375
1376         path->reada = READA_FORWARD;
1377         path->search_commit_root = 1;
1378         path->skip_locking = 1;
1379
1380         key.objectid = device->devid;
1381         key.offset = search_start;
1382         key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385         if (ret < 0)
1386                 goto out;
1387         if (ret > 0) {
1388                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389                 if (ret < 0)
1390                         goto out;
1391         }
1392
1393         while (1) {
1394                 l = path->nodes[0];
1395                 slot = path->slots[0];
1396                 if (slot >= btrfs_header_nritems(l)) {
1397                         ret = btrfs_next_leaf(root, path);
1398                         if (ret == 0)
1399                                 continue;
1400                         if (ret < 0)
1401                                 goto out;
1402
1403                         break;
1404                 }
1405                 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407                 if (key.objectid < device->devid)
1408                         goto next;
1409
1410                 if (key.objectid > device->devid)
1411                         break;
1412
1413                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414                         goto next;
1415
1416                 if (key.offset > search_start) {
1417                         hole_size = key.offset - search_start;
1418
1419                         /*
1420                          * Have to check before we set max_hole_start, otherwise
1421                          * we could end up sending back this offset anyway.
1422                          */
1423                         if (contains_pending_extent(transaction, device,
1424                                                     &search_start,
1425                                                     hole_size)) {
1426                                 if (key.offset >= search_start) {
1427                                         hole_size = key.offset - search_start;
1428                                 } else {
1429                                         WARN_ON_ONCE(1);
1430                                         hole_size = 0;
1431                                 }
1432                         }
1433
1434                         if (hole_size > max_hole_size) {
1435                                 max_hole_start = search_start;
1436                                 max_hole_size = hole_size;
1437                         }
1438
1439                         /*
1440                          * If this free space is greater than which we need,
1441                          * it must be the max free space that we have found
1442                          * until now, so max_hole_start must point to the start
1443                          * of this free space and the length of this free space
1444                          * is stored in max_hole_size. Thus, we return
1445                          * max_hole_start and max_hole_size and go back to the
1446                          * caller.
1447                          */
1448                         if (hole_size >= num_bytes) {
1449                                 ret = 0;
1450                                 goto out;
1451                         }
1452                 }
1453
1454                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455                 extent_end = key.offset + btrfs_dev_extent_length(l,
1456                                                                   dev_extent);
1457                 if (extent_end > search_start)
1458                         search_start = extent_end;
1459 next:
1460                 path->slots[0]++;
1461                 cond_resched();
1462         }
1463
1464         /*
1465          * At this point, search_start should be the end of
1466          * allocated dev extents, and when shrinking the device,
1467          * search_end may be smaller than search_start.
1468          */
1469         if (search_end > search_start) {
1470                 hole_size = search_end - search_start;
1471
1472                 if (contains_pending_extent(transaction, device, &search_start,
1473                                             hole_size)) {
1474                         btrfs_release_path(path);
1475                         goto again;
1476                 }
1477
1478                 if (hole_size > max_hole_size) {
1479                         max_hole_start = search_start;
1480                         max_hole_size = hole_size;
1481                 }
1482         }
1483
1484         /* See above. */
1485         if (max_hole_size < num_bytes)
1486                 ret = -ENOSPC;
1487         else
1488                 ret = 0;
1489
1490 out:
1491         btrfs_free_path(path);
1492         *start = max_hole_start;
1493         if (len)
1494                 *len = max_hole_size;
1495         return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499                          struct btrfs_device *device, u64 num_bytes,
1500                          u64 *start, u64 *len)
1501 {
1502         /* FIXME use last free of some kind */
1503         return find_free_dev_extent_start(trans->transaction, device,
1504                                           num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508                           struct btrfs_device *device,
1509                           u64 start, u64 *dev_extent_len)
1510 {
1511         int ret;
1512         struct btrfs_path *path;
1513         struct btrfs_root *root = device->dev_root;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(root->fs_info, ret,
1556                             "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_tree, u64 chunk_objectid,
1568                                   u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570         int ret;
1571         struct btrfs_path *path;
1572         struct btrfs_root *root = device->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!device->in_fs_metadata);
1578         WARN_ON(device->is_tgtdev_for_dev_replace);
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1595         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1596         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1597
1598         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1599                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1600
1601         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602         btrfs_mark_buffer_dirty(leaf);
1603 out:
1604         btrfs_free_path(path);
1605         return ret;
1606 }
1607
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610         struct extent_map_tree *em_tree;
1611         struct extent_map *em;
1612         struct rb_node *n;
1613         u64 ret = 0;
1614
1615         em_tree = &fs_info->mapping_tree.map_tree;
1616         read_lock(&em_tree->lock);
1617         n = rb_last(&em_tree->map);
1618         if (n) {
1619                 em = rb_entry(n, struct extent_map, rb_node);
1620                 ret = em->start + em->len;
1621         }
1622         read_unlock(&em_tree->lock);
1623
1624         return ret;
1625 }
1626
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628                                     u64 *devid_ret)
1629 {
1630         int ret;
1631         struct btrfs_key key;
1632         struct btrfs_key found_key;
1633         struct btrfs_path *path;
1634
1635         path = btrfs_alloc_path();
1636         if (!path)
1637                 return -ENOMEM;
1638
1639         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640         key.type = BTRFS_DEV_ITEM_KEY;
1641         key.offset = (u64)-1;
1642
1643         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644         if (ret < 0)
1645                 goto error;
1646
1647         BUG_ON(ret == 0); /* Corruption */
1648
1649         ret = btrfs_previous_item(fs_info->chunk_root, path,
1650                                   BTRFS_DEV_ITEMS_OBJECTID,
1651                                   BTRFS_DEV_ITEM_KEY);
1652         if (ret) {
1653                 *devid_ret = 1;
1654         } else {
1655                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656                                       path->slots[0]);
1657                 *devid_ret = found_key.offset + 1;
1658         }
1659         ret = 0;
1660 error:
1661         btrfs_free_path(path);
1662         return ret;
1663 }
1664
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670                             struct btrfs_root *root,
1671                             struct btrfs_device *device)
1672 {
1673         int ret;
1674         struct btrfs_path *path;
1675         struct btrfs_dev_item *dev_item;
1676         struct extent_buffer *leaf;
1677         struct btrfs_key key;
1678         unsigned long ptr;
1679
1680         root = root->fs_info->chunk_root;
1681
1682         path = btrfs_alloc_path();
1683         if (!path)
1684                 return -ENOMEM;
1685
1686         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687         key.type = BTRFS_DEV_ITEM_KEY;
1688         key.offset = device->devid;
1689
1690         ret = btrfs_insert_empty_item(trans, root, path, &key,
1691                                       sizeof(*dev_item));
1692         if (ret)
1693                 goto out;
1694
1695         leaf = path->nodes[0];
1696         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698         btrfs_set_device_id(leaf, dev_item, device->devid);
1699         btrfs_set_device_generation(leaf, dev_item, 0);
1700         btrfs_set_device_type(leaf, dev_item, device->type);
1701         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704         btrfs_set_device_total_bytes(leaf, dev_item,
1705                                      btrfs_device_get_disk_total_bytes(device));
1706         btrfs_set_device_bytes_used(leaf, dev_item,
1707                                     btrfs_device_get_bytes_used(device));
1708         btrfs_set_device_group(leaf, dev_item, 0);
1709         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711         btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713         ptr = btrfs_device_uuid(dev_item);
1714         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715         ptr = btrfs_device_fsid(dev_item);
1716         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717         btrfs_mark_buffer_dirty(leaf);
1718
1719         ret = 0;
1720 out:
1721         btrfs_free_path(path);
1722         return ret;
1723 }
1724
1725 /*
1726  * Function to update ctime/mtime for a given device path.
1727  * Mainly used for ctime/mtime based probe like libblkid.
1728  */
1729 static void update_dev_time(char *path_name)
1730 {
1731         struct file *filp;
1732
1733         filp = filp_open(path_name, O_RDWR, 0);
1734         if (IS_ERR(filp))
1735                 return;
1736         file_update_time(filp);
1737         filp_close(filp, NULL);
1738 }
1739
1740 static int btrfs_rm_dev_item(struct btrfs_root *root,
1741                              struct btrfs_device *device)
1742 {
1743         int ret;
1744         struct btrfs_path *path;
1745         struct btrfs_key key;
1746         struct btrfs_trans_handle *trans;
1747
1748         root = root->fs_info->chunk_root;
1749
1750         path = btrfs_alloc_path();
1751         if (!path)
1752                 return -ENOMEM;
1753
1754         trans = btrfs_start_transaction(root, 0);
1755         if (IS_ERR(trans)) {
1756                 btrfs_free_path(path);
1757                 return PTR_ERR(trans);
1758         }
1759         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760         key.type = BTRFS_DEV_ITEM_KEY;
1761         key.offset = device->devid;
1762
1763         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1764         if (ret < 0)
1765                 goto out;
1766
1767         if (ret > 0) {
1768                 ret = -ENOENT;
1769                 goto out;
1770         }
1771
1772         ret = btrfs_del_item(trans, root, path);
1773         if (ret)
1774                 goto out;
1775 out:
1776         btrfs_free_path(path);
1777         btrfs_commit_transaction(trans, root);
1778         return ret;
1779 }
1780
1781 /*
1782  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1783  * filesystem. It's up to the caller to adjust that number regarding eg. device
1784  * replace.
1785  */
1786 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1787                 u64 num_devices)
1788 {
1789         u64 all_avail;
1790         unsigned seq;
1791         int i;
1792
1793         do {
1794                 seq = read_seqbegin(&fs_info->profiles_lock);
1795
1796                 all_avail = fs_info->avail_data_alloc_bits |
1797                             fs_info->avail_system_alloc_bits |
1798                             fs_info->avail_metadata_alloc_bits;
1799         } while (read_seqretry(&fs_info->profiles_lock, seq));
1800
1801         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1802                 if (!(all_avail & btrfs_raid_group[i]))
1803                         continue;
1804
1805                 if (num_devices < btrfs_raid_array[i].devs_min) {
1806                         int ret = btrfs_raid_mindev_error[i];
1807
1808                         if (ret)
1809                                 return ret;
1810                 }
1811         }
1812
1813         return 0;
1814 }
1815
1816 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1817                                         struct btrfs_device *device)
1818 {
1819         struct btrfs_device *next_device;
1820
1821         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1822                 if (next_device != device &&
1823                         !next_device->missing && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1837                 struct btrfs_device *device, struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_device *next_device;
1840
1841         if (this_dev)
1842                 next_device = this_dev;
1843         else
1844                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1845                                                                 device);
1846         ASSERT(next_device);
1847
1848         if (fs_info->sb->s_bdev &&
1849                         (fs_info->sb->s_bdev == device->bdev))
1850                 fs_info->sb->s_bdev = next_device->bdev;
1851
1852         if (fs_info->fs_devices->latest_bdev == device->bdev)
1853                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1854 }
1855
1856 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1857 {
1858         struct btrfs_device *device;
1859         struct btrfs_fs_devices *cur_devices;
1860         u64 num_devices;
1861         int ret = 0;
1862         bool clear_super = false;
1863
1864         mutex_lock(&uuid_mutex);
1865
1866         num_devices = root->fs_info->fs_devices->num_devices;
1867         btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1868         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1869                 WARN_ON(num_devices < 1);
1870                 num_devices--;
1871         }
1872         btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1873
1874         ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1875         if (ret)
1876                 goto out;
1877
1878         ret = btrfs_find_device_by_devspec(root, devid, device_path,
1879                                 &device);
1880         if (ret)
1881                 goto out;
1882
1883         if (device->is_tgtdev_for_dev_replace) {
1884                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1885                 goto out;
1886         }
1887
1888         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1889                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1890                 goto out;
1891         }
1892
1893         if (device->writeable) {
1894                 lock_chunks(root);
1895                 list_del_init(&device->dev_alloc_list);
1896                 device->fs_devices->rw_devices--;
1897                 unlock_chunks(root);
1898                 clear_super = true;
1899         }
1900
1901         mutex_unlock(&uuid_mutex);
1902         ret = btrfs_shrink_device(device, 0);
1903         mutex_lock(&uuid_mutex);
1904         if (ret)
1905                 goto error_undo;
1906
1907         /*
1908          * TODO: the superblock still includes this device in its num_devices
1909          * counter although write_all_supers() is not locked out. This
1910          * could give a filesystem state which requires a degraded mount.
1911          */
1912         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1913         if (ret)
1914                 goto error_undo;
1915
1916         device->in_fs_metadata = 0;
1917         btrfs_scrub_cancel_dev(root->fs_info, device);
1918
1919         /*
1920          * the device list mutex makes sure that we don't change
1921          * the device list while someone else is writing out all
1922          * the device supers. Whoever is writing all supers, should
1923          * lock the device list mutex before getting the number of
1924          * devices in the super block (super_copy). Conversely,
1925          * whoever updates the number of devices in the super block
1926          * (super_copy) should hold the device list mutex.
1927          */
1928
1929         cur_devices = device->fs_devices;
1930         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1931         list_del_rcu(&device->dev_list);
1932
1933         device->fs_devices->num_devices--;
1934         device->fs_devices->total_devices--;
1935
1936         if (device->missing)
1937                 device->fs_devices->missing_devices--;
1938
1939         btrfs_assign_next_active_device(root->fs_info, device, NULL);
1940
1941         if (device->bdev) {
1942                 device->fs_devices->open_devices--;
1943                 /* remove sysfs entry */
1944                 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1945         }
1946
1947         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1948         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1949         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1950
1951         /*
1952          * at this point, the device is zero sized and detached from
1953          * the devices list.  All that's left is to zero out the old
1954          * supers and free the device.
1955          */
1956         if (device->writeable)
1957                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1958
1959         btrfs_close_bdev(device);
1960         call_rcu(&device->rcu, free_device);
1961
1962         if (cur_devices->open_devices == 0) {
1963                 struct btrfs_fs_devices *fs_devices;
1964                 fs_devices = root->fs_info->fs_devices;
1965                 while (fs_devices) {
1966                         if (fs_devices->seed == cur_devices) {
1967                                 fs_devices->seed = cur_devices->seed;
1968                                 break;
1969                         }
1970                         fs_devices = fs_devices->seed;
1971                 }
1972                 cur_devices->seed = NULL;
1973                 __btrfs_close_devices(cur_devices);
1974                 free_fs_devices(cur_devices);
1975         }
1976
1977         root->fs_info->num_tolerated_disk_barrier_failures =
1978                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1979
1980 out:
1981         mutex_unlock(&uuid_mutex);
1982         return ret;
1983
1984 error_undo:
1985         if (device->writeable) {
1986                 lock_chunks(root);
1987                 list_add(&device->dev_alloc_list,
1988                          &root->fs_info->fs_devices->alloc_list);
1989                 device->fs_devices->rw_devices++;
1990                 unlock_chunks(root);
1991         }
1992         goto out;
1993 }
1994
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996                                         struct btrfs_device *srcdev)
1997 {
1998         struct btrfs_fs_devices *fs_devices;
1999
2000         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001
2002         /*
2003          * in case of fs with no seed, srcdev->fs_devices will point
2004          * to fs_devices of fs_info. However when the dev being replaced is
2005          * a seed dev it will point to the seed's local fs_devices. In short
2006          * srcdev will have its correct fs_devices in both the cases.
2007          */
2008         fs_devices = srcdev->fs_devices;
2009
2010         list_del_rcu(&srcdev->dev_list);
2011         list_del_rcu(&srcdev->dev_alloc_list);
2012         fs_devices->num_devices--;
2013         if (srcdev->missing)
2014                 fs_devices->missing_devices--;
2015
2016         if (srcdev->writeable)
2017                 fs_devices->rw_devices--;
2018
2019         if (srcdev->bdev)
2020                 fs_devices->open_devices--;
2021 }
2022
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024                                       struct btrfs_device *srcdev)
2025 {
2026         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027
2028         if (srcdev->writeable) {
2029                 /* zero out the old super if it is writable */
2030                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031         }
2032
2033         btrfs_close_bdev(srcdev);
2034
2035         call_rcu(&srcdev->rcu, free_device);
2036
2037         /*
2038          * unless fs_devices is seed fs, num_devices shouldn't go
2039          * zero
2040          */
2041         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043         /* if this is no devs we rather delete the fs_devices */
2044         if (!fs_devices->num_devices) {
2045                 struct btrfs_fs_devices *tmp_fs_devices;
2046
2047                 tmp_fs_devices = fs_info->fs_devices;
2048                 while (tmp_fs_devices) {
2049                         if (tmp_fs_devices->seed == fs_devices) {
2050                                 tmp_fs_devices->seed = fs_devices->seed;
2051                                 break;
2052                         }
2053                         tmp_fs_devices = tmp_fs_devices->seed;
2054                 }
2055                 fs_devices->seed = NULL;
2056                 __btrfs_close_devices(fs_devices);
2057                 free_fs_devices(fs_devices);
2058         }
2059 }
2060
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062                                       struct btrfs_device *tgtdev)
2063 {
2064         mutex_lock(&uuid_mutex);
2065         WARN_ON(!tgtdev);
2066         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067
2068         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069
2070         if (tgtdev->bdev)
2071                 fs_info->fs_devices->open_devices--;
2072
2073         fs_info->fs_devices->num_devices--;
2074
2075         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076
2077         list_del_rcu(&tgtdev->dev_list);
2078
2079         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080         mutex_unlock(&uuid_mutex);
2081
2082         /*
2083          * The update_dev_time() with in btrfs_scratch_superblocks()
2084          * may lead to a call to btrfs_show_devname() which will try
2085          * to hold device_list_mutex. And here this device
2086          * is already out of device list, so we don't have to hold
2087          * the device_list_mutex lock.
2088          */
2089         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090
2091         btrfs_close_bdev(tgtdev);
2092         call_rcu(&tgtdev->rcu, free_device);
2093 }
2094
2095 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096                                      struct btrfs_device **device)
2097 {
2098         int ret = 0;
2099         struct btrfs_super_block *disk_super;
2100         u64 devid;
2101         u8 *dev_uuid;
2102         struct block_device *bdev;
2103         struct buffer_head *bh;
2104
2105         *device = NULL;
2106         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2108         if (ret)
2109                 return ret;
2110         disk_super = (struct btrfs_super_block *)bh->b_data;
2111         devid = btrfs_stack_device_id(&disk_super->dev_item);
2112         dev_uuid = disk_super->dev_item.uuid;
2113         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2114                                     disk_super->fsid);
2115         brelse(bh);
2116         if (!*device)
2117                 ret = -ENOENT;
2118         blkdev_put(bdev, FMODE_READ);
2119         return ret;
2120 }
2121
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123                                          char *device_path,
2124                                          struct btrfs_device **device)
2125 {
2126         *device = NULL;
2127         if (strcmp(device_path, "missing") == 0) {
2128                 struct list_head *devices;
2129                 struct btrfs_device *tmp;
2130
2131                 devices = &root->fs_info->fs_devices->devices;
2132                 /*
2133                  * It is safe to read the devices since the volume_mutex
2134                  * is held by the caller.
2135                  */
2136                 list_for_each_entry(tmp, devices, dev_list) {
2137                         if (tmp->in_fs_metadata && !tmp->bdev) {
2138                                 *device = tmp;
2139                                 break;
2140                         }
2141                 }
2142
2143                 if (!*device)
2144                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145
2146                 return 0;
2147         } else {
2148                 return btrfs_find_device_by_path(root, device_path, device);
2149         }
2150 }
2151
2152 /*
2153  * Lookup a device given by device id, or the path if the id is 0.
2154  */
2155 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2156                                          char *devpath,
2157                                          struct btrfs_device **device)
2158 {
2159         int ret;
2160
2161         if (devid) {
2162                 ret = 0;
2163                 *device = btrfs_find_device(root->fs_info, devid, NULL,
2164                                             NULL);
2165                 if (!*device)
2166                         ret = -ENOENT;
2167         } else {
2168                 if (!devpath || !devpath[0])
2169                         return -EINVAL;
2170
2171                 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2172                                                            device);
2173         }
2174         return ret;
2175 }
2176
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_root *root)
2181 {
2182         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2183         struct btrfs_fs_devices *old_devices;
2184         struct btrfs_fs_devices *seed_devices;
2185         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2186         struct btrfs_device *device;
2187         u64 super_flags;
2188
2189         BUG_ON(!mutex_is_locked(&uuid_mutex));
2190         if (!fs_devices->seeding)
2191                 return -EINVAL;
2192
2193         seed_devices = __alloc_fs_devices();
2194         if (IS_ERR(seed_devices))
2195                 return PTR_ERR(seed_devices);
2196
2197         old_devices = clone_fs_devices(fs_devices);
2198         if (IS_ERR(old_devices)) {
2199                 kfree(seed_devices);
2200                 return PTR_ERR(old_devices);
2201         }
2202
2203         list_add(&old_devices->list, &fs_uuids);
2204
2205         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206         seed_devices->opened = 1;
2207         INIT_LIST_HEAD(&seed_devices->devices);
2208         INIT_LIST_HEAD(&seed_devices->alloc_list);
2209         mutex_init(&seed_devices->device_list_mutex);
2210
2211         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2212         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213                               synchronize_rcu);
2214         list_for_each_entry(device, &seed_devices->devices, dev_list)
2215                 device->fs_devices = seed_devices;
2216
2217         lock_chunks(root);
2218         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219         unlock_chunks(root);
2220
2221         fs_devices->seeding = 0;
2222         fs_devices->num_devices = 0;
2223         fs_devices->open_devices = 0;
2224         fs_devices->missing_devices = 0;
2225         fs_devices->rotating = 0;
2226         fs_devices->seed = seed_devices;
2227
2228         generate_random_uuid(fs_devices->fsid);
2229         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2232
2233         super_flags = btrfs_super_flags(disk_super) &
2234                       ~BTRFS_SUPER_FLAG_SEEDING;
2235         btrfs_set_super_flags(disk_super, super_flags);
2236
2237         return 0;
2238 }
2239
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244                                struct btrfs_root *root)
2245 {
2246         struct btrfs_path *path;
2247         struct extent_buffer *leaf;
2248         struct btrfs_dev_item *dev_item;
2249         struct btrfs_device *device;
2250         struct btrfs_key key;
2251         u8 fs_uuid[BTRFS_UUID_SIZE];
2252         u8 dev_uuid[BTRFS_UUID_SIZE];
2253         u64 devid;
2254         int ret;
2255
2256         path = btrfs_alloc_path();
2257         if (!path)
2258                 return -ENOMEM;
2259
2260         root = root->fs_info->chunk_root;
2261         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262         key.offset = 0;
2263         key.type = BTRFS_DEV_ITEM_KEY;
2264
2265         while (1) {
2266                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267                 if (ret < 0)
2268                         goto error;
2269
2270                 leaf = path->nodes[0];
2271 next_slot:
2272                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273                         ret = btrfs_next_leaf(root, path);
2274                         if (ret > 0)
2275                                 break;
2276                         if (ret < 0)
2277                                 goto error;
2278                         leaf = path->nodes[0];
2279                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280                         btrfs_release_path(path);
2281                         continue;
2282                 }
2283
2284                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286                     key.type != BTRFS_DEV_ITEM_KEY)
2287                         break;
2288
2289                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290                                           struct btrfs_dev_item);
2291                 devid = btrfs_device_id(leaf, dev_item);
2292                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293                                    BTRFS_UUID_SIZE);
2294                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295                                    BTRFS_UUID_SIZE);
2296                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2297                                            fs_uuid);
2298                 BUG_ON(!device); /* Logic error */
2299
2300                 if (device->fs_devices->seeding) {
2301                         btrfs_set_device_generation(leaf, dev_item,
2302                                                     device->generation);
2303                         btrfs_mark_buffer_dirty(leaf);
2304                 }
2305
2306                 path->slots[0]++;
2307                 goto next_slot;
2308         }
2309         ret = 0;
2310 error:
2311         btrfs_free_path(path);
2312         return ret;
2313 }
2314
2315 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2316 {
2317         struct request_queue *q;
2318         struct btrfs_trans_handle *trans;
2319         struct btrfs_device *device;
2320         struct block_device *bdev;
2321         struct list_head *devices;
2322         struct super_block *sb = root->fs_info->sb;
2323         struct rcu_string *name;
2324         u64 tmp;
2325         int seeding_dev = 0;
2326         int ret = 0;
2327
2328         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2329                 return -EROFS;
2330
2331         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2332                                   root->fs_info->bdev_holder);
2333         if (IS_ERR(bdev))
2334                 return PTR_ERR(bdev);
2335
2336         if (root->fs_info->fs_devices->seeding) {
2337                 seeding_dev = 1;
2338                 down_write(&sb->s_umount);
2339                 mutex_lock(&uuid_mutex);
2340         }
2341
2342         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343
2344         devices = &root->fs_info->fs_devices->devices;
2345
2346         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2347         list_for_each_entry(device, devices, dev_list) {
2348                 if (device->bdev == bdev) {
2349                         ret = -EEXIST;
2350                         mutex_unlock(
2351                                 &root->fs_info->fs_devices->device_list_mutex);
2352                         goto error;
2353                 }
2354         }
2355         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2356
2357         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2358         if (IS_ERR(device)) {
2359                 /* we can safely leave the fs_devices entry around */
2360                 ret = PTR_ERR(device);
2361                 goto error;
2362         }
2363
2364         name = rcu_string_strdup(device_path, GFP_KERNEL);
2365         if (!name) {
2366                 kfree(device);
2367                 ret = -ENOMEM;
2368                 goto error;
2369         }
2370         rcu_assign_pointer(device->name, name);
2371
2372         trans = btrfs_start_transaction(root, 0);
2373         if (IS_ERR(trans)) {
2374                 rcu_string_free(device->name);
2375                 kfree(device);
2376                 ret = PTR_ERR(trans);
2377                 goto error;
2378         }
2379
2380         q = bdev_get_queue(bdev);
2381         if (blk_queue_discard(q))
2382                 device->can_discard = 1;
2383         device->writeable = 1;
2384         device->generation = trans->transid;
2385         device->io_width = root->sectorsize;
2386         device->io_align = root->sectorsize;
2387         device->sector_size = root->sectorsize;
2388         device->total_bytes = i_size_read(bdev->bd_inode);
2389         device->disk_total_bytes = device->total_bytes;
2390         device->commit_total_bytes = device->total_bytes;
2391         device->dev_root = root->fs_info->dev_root;
2392         device->bdev = bdev;
2393         device->in_fs_metadata = 1;
2394         device->is_tgtdev_for_dev_replace = 0;
2395         device->mode = FMODE_EXCL;
2396         device->dev_stats_valid = 1;
2397         set_blocksize(device->bdev, 4096);
2398
2399         if (seeding_dev) {
2400                 sb->s_flags &= ~MS_RDONLY;
2401                 ret = btrfs_prepare_sprout(root);
2402                 BUG_ON(ret); /* -ENOMEM */
2403         }
2404
2405         device->fs_devices = root->fs_info->fs_devices;
2406
2407         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2408         lock_chunks(root);
2409         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2410         list_add(&device->dev_alloc_list,
2411                  &root->fs_info->fs_devices->alloc_list);
2412         root->fs_info->fs_devices->num_devices++;
2413         root->fs_info->fs_devices->open_devices++;
2414         root->fs_info->fs_devices->rw_devices++;
2415         root->fs_info->fs_devices->total_devices++;
2416         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417
2418         spin_lock(&root->fs_info->free_chunk_lock);
2419         root->fs_info->free_chunk_space += device->total_bytes;
2420         spin_unlock(&root->fs_info->free_chunk_lock);
2421
2422         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2423                 root->fs_info->fs_devices->rotating = 1;
2424
2425         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2426         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2427                                     tmp + device->total_bytes);
2428
2429         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2430         btrfs_set_super_num_devices(root->fs_info->super_copy,
2431                                     tmp + 1);
2432
2433         /* add sysfs device entry */
2434         btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2435
2436         /*
2437          * we've got more storage, clear any full flags on the space
2438          * infos
2439          */
2440         btrfs_clear_space_info_full(root->fs_info);
2441
2442         unlock_chunks(root);
2443         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2444
2445         if (seeding_dev) {
2446                 lock_chunks(root);
2447                 ret = init_first_rw_device(trans, root, device);
2448                 unlock_chunks(root);
2449                 if (ret) {
2450                         btrfs_abort_transaction(trans, ret);
2451                         goto error_trans;
2452                 }
2453         }
2454
2455         ret = btrfs_add_device(trans, root, device);
2456         if (ret) {
2457                 btrfs_abort_transaction(trans, ret);
2458                 goto error_trans;
2459         }
2460
2461         if (seeding_dev) {
2462                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2463
2464                 ret = btrfs_finish_sprout(trans, root);
2465                 if (ret) {
2466                         btrfs_abort_transaction(trans, ret);
2467                         goto error_trans;
2468                 }
2469
2470                 /* Sprouting would change fsid of the mounted root,
2471                  * so rename the fsid on the sysfs
2472                  */
2473                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2474                                                 root->fs_info->fsid);
2475                 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2476                                                                 fsid_buf))
2477                         btrfs_warn(root->fs_info,
2478                                 "sysfs: failed to create fsid for sprout");
2479         }
2480
2481         root->fs_info->num_tolerated_disk_barrier_failures =
2482                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2483         ret = btrfs_commit_transaction(trans, root);
2484
2485         if (seeding_dev) {
2486                 mutex_unlock(&uuid_mutex);
2487                 up_write(&sb->s_umount);
2488
2489                 if (ret) /* transaction commit */
2490                         return ret;
2491
2492                 ret = btrfs_relocate_sys_chunks(root);
2493                 if (ret < 0)
2494                         btrfs_handle_fs_error(root->fs_info, ret,
2495                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496                 trans = btrfs_attach_transaction(root);
2497                 if (IS_ERR(trans)) {
2498                         if (PTR_ERR(trans) == -ENOENT)
2499                                 return 0;
2500                         return PTR_ERR(trans);
2501                 }
2502                 ret = btrfs_commit_transaction(trans, root);
2503         }
2504
2505         /* Update ctime/mtime for libblkid */
2506         update_dev_time(device_path);
2507         return ret;
2508
2509 error_trans:
2510         btrfs_end_transaction(trans, root);
2511         rcu_string_free(device->name);
2512         btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2513         kfree(device);
2514 error:
2515         blkdev_put(bdev, FMODE_EXCL);
2516         if (seeding_dev) {
2517                 mutex_unlock(&uuid_mutex);
2518                 up_write(&sb->s_umount);
2519         }
2520         return ret;
2521 }
2522
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2524                                   struct btrfs_device *srcdev,
2525                                   struct btrfs_device **device_out)
2526 {
2527         struct request_queue *q;
2528         struct btrfs_device *device;
2529         struct block_device *bdev;
2530         struct btrfs_fs_info *fs_info = root->fs_info;
2531         struct list_head *devices;
2532         struct rcu_string *name;
2533         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534         int ret = 0;
2535
2536         *device_out = NULL;
2537         if (fs_info->fs_devices->seeding) {
2538                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539                 return -EINVAL;
2540         }
2541
2542         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543                                   fs_info->bdev_holder);
2544         if (IS_ERR(bdev)) {
2545                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546                 return PTR_ERR(bdev);
2547         }
2548
2549         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551         devices = &fs_info->fs_devices->devices;
2552         list_for_each_entry(device, devices, dev_list) {
2553                 if (device->bdev == bdev) {
2554                         btrfs_err(fs_info,
2555                                   "target device is in the filesystem!");
2556                         ret = -EEXIST;
2557                         goto error;
2558                 }
2559         }
2560
2561
2562         if (i_size_read(bdev->bd_inode) <
2563             btrfs_device_get_total_bytes(srcdev)) {
2564                 btrfs_err(fs_info,
2565                           "target device is smaller than source device!");
2566                 ret = -EINVAL;
2567                 goto error;
2568         }
2569
2570
2571         device = btrfs_alloc_device(NULL, &devid, NULL);
2572         if (IS_ERR(device)) {
2573                 ret = PTR_ERR(device);
2574                 goto error;
2575         }
2576
2577         name = rcu_string_strdup(device_path, GFP_NOFS);
2578         if (!name) {
2579                 kfree(device);
2580                 ret = -ENOMEM;
2581                 goto error;
2582         }
2583         rcu_assign_pointer(device->name, name);
2584
2585         q = bdev_get_queue(bdev);
2586         if (blk_queue_discard(q))
2587                 device->can_discard = 1;
2588         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2589         device->writeable = 1;
2590         device->generation = 0;
2591         device->io_width = root->sectorsize;
2592         device->io_align = root->sectorsize;
2593         device->sector_size = root->sectorsize;
2594         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597         ASSERT(list_empty(&srcdev->resized_list));
2598         device->commit_total_bytes = srcdev->commit_total_bytes;
2599         device->commit_bytes_used = device->bytes_used;
2600         device->dev_root = fs_info->dev_root;
2601         device->bdev = bdev;
2602         device->in_fs_metadata = 1;
2603         device->is_tgtdev_for_dev_replace = 1;
2604         device->mode = FMODE_EXCL;
2605         device->dev_stats_valid = 1;
2606         set_blocksize(device->bdev, 4096);
2607         device->fs_devices = fs_info->fs_devices;
2608         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609         fs_info->fs_devices->num_devices++;
2610         fs_info->fs_devices->open_devices++;
2611         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2612
2613         *device_out = device;
2614         return ret;
2615
2616 error:
2617         blkdev_put(bdev, FMODE_EXCL);
2618         return ret;
2619 }
2620
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622                                               struct btrfs_device *tgtdev)
2623 {
2624         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2625         tgtdev->io_width = fs_info->dev_root->sectorsize;
2626         tgtdev->io_align = fs_info->dev_root->sectorsize;
2627         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2628         tgtdev->dev_root = fs_info->dev_root;
2629         tgtdev->in_fs_metadata = 1;
2630 }
2631
2632 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2633                                         struct btrfs_device *device)
2634 {
2635         int ret;
2636         struct btrfs_path *path;
2637         struct btrfs_root *root;
2638         struct btrfs_dev_item *dev_item;
2639         struct extent_buffer *leaf;
2640         struct btrfs_key key;
2641
2642         root = device->dev_root->fs_info->chunk_root;
2643
2644         path = btrfs_alloc_path();
2645         if (!path)
2646                 return -ENOMEM;
2647
2648         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649         key.type = BTRFS_DEV_ITEM_KEY;
2650         key.offset = device->devid;
2651
2652         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653         if (ret < 0)
2654                 goto out;
2655
2656         if (ret > 0) {
2657                 ret = -ENOENT;
2658                 goto out;
2659         }
2660
2661         leaf = path->nodes[0];
2662         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664         btrfs_set_device_id(leaf, dev_item, device->devid);
2665         btrfs_set_device_type(leaf, dev_item, device->type);
2666         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669         btrfs_set_device_total_bytes(leaf, dev_item,
2670                                      btrfs_device_get_disk_total_bytes(device));
2671         btrfs_set_device_bytes_used(leaf, dev_item,
2672                                     btrfs_device_get_bytes_used(device));
2673         btrfs_mark_buffer_dirty(leaf);
2674
2675 out:
2676         btrfs_free_path(path);
2677         return ret;
2678 }
2679
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681                       struct btrfs_device *device, u64 new_size)
2682 {
2683         struct btrfs_super_block *super_copy =
2684                 device->dev_root->fs_info->super_copy;
2685         struct btrfs_fs_devices *fs_devices;
2686         u64 old_total;
2687         u64 diff;
2688
2689         if (!device->writeable)
2690                 return -EACCES;
2691
2692         lock_chunks(device->dev_root);
2693         old_total = btrfs_super_total_bytes(super_copy);
2694         diff = new_size - device->total_bytes;
2695
2696         if (new_size <= device->total_bytes ||
2697             device->is_tgtdev_for_dev_replace) {
2698                 unlock_chunks(device->dev_root);
2699                 return -EINVAL;
2700         }
2701
2702         fs_devices = device->dev_root->fs_info->fs_devices;
2703
2704         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705         device->fs_devices->total_rw_bytes += diff;
2706
2707         btrfs_device_set_total_bytes(device, new_size);
2708         btrfs_device_set_disk_total_bytes(device, new_size);
2709         btrfs_clear_space_info_full(device->dev_root->fs_info);
2710         if (list_empty(&device->resized_list))
2711                 list_add_tail(&device->resized_list,
2712                               &fs_devices->resized_devices);
2713         unlock_chunks(device->dev_root);
2714
2715         return btrfs_update_device(trans, device);
2716 }
2717
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719                             struct btrfs_root *root, u64 chunk_objectid,
2720                             u64 chunk_offset)
2721 {
2722         int ret;
2723         struct btrfs_path *path;
2724         struct btrfs_key key;
2725
2726         root = root->fs_info->chunk_root;
2727         path = btrfs_alloc_path();
2728         if (!path)
2729                 return -ENOMEM;
2730
2731         key.objectid = chunk_objectid;
2732         key.offset = chunk_offset;
2733         key.type = BTRFS_CHUNK_ITEM_KEY;
2734
2735         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736         if (ret < 0)
2737                 goto out;
2738         else if (ret > 0) { /* Logic error or corruption */
2739                 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2740                             "Failed lookup while freeing chunk.");
2741                 ret = -ENOENT;
2742                 goto out;
2743         }
2744
2745         ret = btrfs_del_item(trans, root, path);
2746         if (ret < 0)
2747                 btrfs_handle_fs_error(root->fs_info, ret,
2748                             "Failed to delete chunk item.");
2749 out:
2750         btrfs_free_path(path);
2751         return ret;
2752 }
2753
2754 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2755                         chunk_offset)
2756 {
2757         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2758         struct btrfs_disk_key *disk_key;
2759         struct btrfs_chunk *chunk;
2760         u8 *ptr;
2761         int ret = 0;
2762         u32 num_stripes;
2763         u32 array_size;
2764         u32 len = 0;
2765         u32 cur;
2766         struct btrfs_key key;
2767
2768         lock_chunks(root);
2769         array_size = btrfs_super_sys_array_size(super_copy);
2770
2771         ptr = super_copy->sys_chunk_array;
2772         cur = 0;
2773
2774         while (cur < array_size) {
2775                 disk_key = (struct btrfs_disk_key *)ptr;
2776                 btrfs_disk_key_to_cpu(&key, disk_key);
2777
2778                 len = sizeof(*disk_key);
2779
2780                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781                         chunk = (struct btrfs_chunk *)(ptr + len);
2782                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783                         len += btrfs_chunk_item_size(num_stripes);
2784                 } else {
2785                         ret = -EIO;
2786                         break;
2787                 }
2788                 if (key.objectid == chunk_objectid &&
2789                     key.offset == chunk_offset) {
2790                         memmove(ptr, ptr + len, array_size - (cur + len));
2791                         array_size -= len;
2792                         btrfs_set_super_sys_array_size(super_copy, array_size);
2793                 } else {
2794                         ptr += len;
2795                         cur += len;
2796                 }
2797         }
2798         unlock_chunks(root);
2799         return ret;
2800 }
2801
2802 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2803                        struct btrfs_root *root, u64 chunk_offset)
2804 {
2805         struct extent_map_tree *em_tree;
2806         struct extent_map *em;
2807         struct btrfs_root *extent_root = root->fs_info->extent_root;
2808         struct map_lookup *map;
2809         u64 dev_extent_len = 0;
2810         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2811         int i, ret = 0;
2812         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2813
2814         /* Just in case */
2815         root = root->fs_info->chunk_root;
2816         em_tree = &root->fs_info->mapping_tree.map_tree;
2817
2818         read_lock(&em_tree->lock);
2819         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2820         read_unlock(&em_tree->lock);
2821
2822         if (!em || em->start > chunk_offset ||
2823             em->start + em->len < chunk_offset) {
2824                 /*
2825                  * This is a logic error, but we don't want to just rely on the
2826                  * user having built with ASSERT enabled, so if ASSERT doesn't
2827                  * do anything we still error out.
2828                  */
2829                 ASSERT(0);
2830                 if (em)
2831                         free_extent_map(em);
2832                 return -EINVAL;
2833         }
2834         map = em->map_lookup;
2835         lock_chunks(root->fs_info->chunk_root);
2836         check_system_chunk(trans, extent_root, map->type);
2837         unlock_chunks(root->fs_info->chunk_root);
2838
2839         /*
2840          * Take the device list mutex to prevent races with the final phase of
2841          * a device replace operation that replaces the device object associated
2842          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2843          */
2844         mutex_lock(&fs_devices->device_list_mutex);
2845         for (i = 0; i < map->num_stripes; i++) {
2846                 struct btrfs_device *device = map->stripes[i].dev;
2847                 ret = btrfs_free_dev_extent(trans, device,
2848                                             map->stripes[i].physical,
2849                                             &dev_extent_len);
2850                 if (ret) {
2851                         mutex_unlock(&fs_devices->device_list_mutex);
2852                         btrfs_abort_transaction(trans, ret);
2853                         goto out;
2854                 }
2855
2856                 if (device->bytes_used > 0) {
2857                         lock_chunks(root);
2858                         btrfs_device_set_bytes_used(device,
2859                                         device->bytes_used - dev_extent_len);
2860                         spin_lock(&root->fs_info->free_chunk_lock);
2861                         root->fs_info->free_chunk_space += dev_extent_len;
2862                         spin_unlock(&root->fs_info->free_chunk_lock);
2863                         btrfs_clear_space_info_full(root->fs_info);
2864                         unlock_chunks(root);
2865                 }
2866
2867                 if (map->stripes[i].dev) {
2868                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2869                         if (ret) {
2870                                 mutex_unlock(&fs_devices->device_list_mutex);
2871                                 btrfs_abort_transaction(trans, ret);
2872                                 goto out;
2873                         }
2874                 }
2875         }
2876         mutex_unlock(&fs_devices->device_list_mutex);
2877
2878         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2879         if (ret) {
2880                 btrfs_abort_transaction(trans, ret);
2881                 goto out;
2882         }
2883
2884         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2885
2886         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2887                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2888                 if (ret) {
2889                         btrfs_abort_transaction(trans, ret);
2890                         goto out;
2891                 }
2892         }
2893
2894         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2895         if (ret) {
2896                 btrfs_abort_transaction(trans, ret);
2897                 goto out;
2898         }
2899
2900 out:
2901         /* once for us */
2902         free_extent_map(em);
2903         return ret;
2904 }
2905
2906 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2907 {
2908         struct btrfs_root *extent_root;
2909         int ret;
2910         struct btrfs_block_group_cache *block_group;
2911
2912         root = root->fs_info->chunk_root;
2913         extent_root = root->fs_info->extent_root;
2914
2915         /*
2916          * Prevent races with automatic removal of unused block groups.
2917          * After we relocate and before we remove the chunk with offset
2918          * chunk_offset, automatic removal of the block group can kick in,
2919          * resulting in a failure when calling btrfs_remove_chunk() below.
2920          *
2921          * Make sure to acquire this mutex before doing a tree search (dev
2922          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924          * we release the path used to search the chunk/dev tree and before
2925          * the current task acquires this mutex and calls us.
2926          */
2927         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2928
2929         ret = btrfs_can_relocate(extent_root, chunk_offset);
2930         if (ret)
2931                 return -ENOSPC;
2932
2933         /* step one, relocate all the extents inside this chunk */
2934         btrfs_scrub_pause(root);
2935         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2936         btrfs_scrub_continue(root);
2937         if (ret)
2938                 return ret;
2939
2940         /*
2941          * step two, flag the chunk as removed and let
2942          * btrfs_delete_unused_bgs() remove it.
2943          */
2944         block_group = btrfs_lookup_block_group(root->fs_info, chunk_offset);
2945         spin_lock(&block_group->lock);
2946         block_group->removed = 1;
2947         spin_unlock(&block_group->lock);
2948         btrfs_put_block_group(block_group);
2949
2950         return 0;
2951 }
2952
2953 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2954 {
2955         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2956         struct btrfs_path *path;
2957         struct extent_buffer *leaf;
2958         struct btrfs_chunk *chunk;
2959         struct btrfs_key key;
2960         struct btrfs_key found_key;
2961         u64 chunk_type;
2962         bool retried = false;
2963         int failed = 0;
2964         int ret;
2965
2966         path = btrfs_alloc_path();
2967         if (!path)
2968                 return -ENOMEM;
2969
2970 again:
2971         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2972         key.offset = (u64)-1;
2973         key.type = BTRFS_CHUNK_ITEM_KEY;
2974
2975         while (1) {
2976                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2977                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2978                 if (ret < 0) {
2979                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2980                         goto error;
2981                 }
2982                 BUG_ON(ret == 0); /* Corruption */
2983
2984                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2985                                           key.type);
2986                 if (ret)
2987                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2988                 if (ret < 0)
2989                         goto error;
2990                 if (ret > 0)
2991                         break;
2992
2993                 leaf = path->nodes[0];
2994                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2995
2996                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2997                                        struct btrfs_chunk);
2998                 chunk_type = btrfs_chunk_type(leaf, chunk);
2999                 btrfs_release_path(path);
3000
3001                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3002                         ret = btrfs_relocate_chunk(chunk_root,
3003                                                    found_key.offset);
3004                         if (ret == -ENOSPC)
3005                                 failed++;
3006                         else
3007                                 BUG_ON(ret);
3008                 }
3009                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3010
3011                 if (found_key.offset == 0)
3012                         break;
3013                 key.offset = found_key.offset - 1;
3014         }
3015         ret = 0;
3016         if (failed && !retried) {
3017                 failed = 0;
3018                 retried = true;
3019                 goto again;
3020         } else if (WARN_ON(failed && retried)) {
3021                 ret = -ENOSPC;
3022         }
3023 error:
3024         btrfs_free_path(path);
3025         return ret;
3026 }
3027
3028 static int insert_balance_item(struct btrfs_root *root,
3029                                struct btrfs_balance_control *bctl)
3030 {
3031         struct btrfs_trans_handle *trans;
3032         struct btrfs_balance_item *item;
3033         struct btrfs_disk_balance_args disk_bargs;
3034         struct btrfs_path *path;
3035         struct extent_buffer *leaf;
3036         struct btrfs_key key;
3037         int ret, err;
3038
3039         path = btrfs_alloc_path();
3040         if (!path)
3041                 return -ENOMEM;
3042
3043         trans = btrfs_start_transaction(root, 0);
3044         if (IS_ERR(trans)) {
3045                 btrfs_free_path(path);
3046                 return PTR_ERR(trans);
3047         }
3048
3049         key.objectid = BTRFS_BALANCE_OBJECTID;
3050         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3051         key.offset = 0;
3052
3053         ret = btrfs_insert_empty_item(trans, root, path, &key,
3054                                       sizeof(*item));
3055         if (ret)
3056                 goto out;
3057
3058         leaf = path->nodes[0];
3059         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3060
3061         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3062
3063         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3064         btrfs_set_balance_data(leaf, item, &disk_bargs);
3065         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3066         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3067         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3068         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3069
3070         btrfs_set_balance_flags(leaf, item, bctl->flags);
3071
3072         btrfs_mark_buffer_dirty(leaf);
3073 out:
3074         btrfs_free_path(path);
3075         err = btrfs_commit_transaction(trans, root);
3076         if (err && !ret)
3077                 ret = err;
3078         return ret;
3079 }
3080
3081 static int del_balance_item(struct btrfs_root *root)
3082 {
3083         struct btrfs_trans_handle *trans;
3084         struct btrfs_path *path;
3085         struct btrfs_key key;
3086         int ret, err;
3087
3088         path = btrfs_alloc_path();
3089         if (!path)
3090                 return -ENOMEM;
3091
3092         trans = btrfs_start_transaction(root, 0);
3093         if (IS_ERR(trans)) {
3094                 btrfs_free_path(path);
3095                 return PTR_ERR(trans);
3096         }
3097
3098         key.objectid = BTRFS_BALANCE_OBJECTID;
3099         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3100         key.offset = 0;
3101
3102         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3103         if (ret < 0)
3104                 goto out;
3105         if (ret > 0) {
3106                 ret = -ENOENT;
3107                 goto out;
3108         }
3109
3110         ret = btrfs_del_item(trans, root, path);
3111 out:
3112         btrfs_free_path(path);
3113         err = btrfs_commit_transaction(trans, root);
3114         if (err && !ret)
3115                 ret = err;
3116         return ret;
3117 }
3118
3119 /*
3120  * This is a heuristic used to reduce the number of chunks balanced on
3121  * resume after balance was interrupted.
3122  */
3123 static void update_balance_args(struct btrfs_balance_control *bctl)
3124 {
3125         /*
3126          * Turn on soft mode for chunk types that were being converted.
3127          */
3128         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3129                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3130         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3131                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3132         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134
3135         /*
3136          * Turn on usage filter if is not already used.  The idea is
3137          * that chunks that we have already balanced should be
3138          * reasonably full.  Don't do it for chunks that are being
3139          * converted - that will keep us from relocating unconverted
3140          * (albeit full) chunks.
3141          */
3142         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3143             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3144             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3145                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3146                 bctl->data.usage = 90;
3147         }
3148         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152                 bctl->sys.usage = 90;
3153         }
3154         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3155             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3156             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158                 bctl->meta.usage = 90;
3159         }
3160 }
3161
3162 /*
3163  * Should be called with both balance and volume mutexes held to
3164  * serialize other volume operations (add_dev/rm_dev/resize) with
3165  * restriper.  Same goes for unset_balance_control.
3166  */
3167 static void set_balance_control(struct btrfs_balance_control *bctl)
3168 {
3169         struct btrfs_fs_info *fs_info = bctl->fs_info;
3170
3171         BUG_ON(fs_info->balance_ctl);
3172
3173         spin_lock(&fs_info->balance_lock);
3174         fs_info->balance_ctl = bctl;
3175         spin_unlock(&fs_info->balance_lock);
3176 }
3177
3178 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3179 {
3180         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3181
3182         BUG_ON(!fs_info->balance_ctl);
3183
3184         spin_lock(&fs_info->balance_lock);
3185         fs_info->balance_ctl = NULL;
3186         spin_unlock(&fs_info->balance_lock);
3187
3188         kfree(bctl);
3189 }
3190
3191 /*
3192  * Balance filters.  Return 1 if chunk should be filtered out
3193  * (should not be balanced).
3194  */
3195 static int chunk_profiles_filter(u64 chunk_type,
3196                                  struct btrfs_balance_args *bargs)
3197 {
3198         chunk_type = chunk_to_extended(chunk_type) &
3199                                 BTRFS_EXTENDED_PROFILE_MASK;
3200
3201         if (bargs->profiles & chunk_type)
3202                 return 0;
3203
3204         return 1;
3205 }
3206
3207 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3208                               struct btrfs_balance_args *bargs)
3209 {
3210         struct btrfs_block_group_cache *cache;
3211         u64 chunk_used;
3212         u64 user_thresh_min;
3213         u64 user_thresh_max;
3214         int ret = 1;
3215
3216         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3217         chunk_used = btrfs_block_group_used(&cache->item);
3218
3219         if (bargs->usage_min == 0)
3220                 user_thresh_min = 0;
3221         else
3222                 user_thresh_min = div_factor_fine(cache->key.offset,
3223                                         bargs->usage_min);
3224
3225         if (bargs->usage_max == 0)
3226                 user_thresh_max = 1;
3227         else if (bargs->usage_max > 100)
3228                 user_thresh_max = cache->key.offset;
3229         else
3230                 user_thresh_max = div_factor_fine(cache->key.offset,
3231                                         bargs->usage_max);
3232
3233         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3234                 ret = 0;
3235
3236         btrfs_put_block_group(cache);
3237         return ret;
3238 }
3239
3240 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3241                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3242 {
3243         struct btrfs_block_group_cache *cache;
3244         u64 chunk_used, user_thresh;
3245         int ret = 1;
3246
3247         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3248         chunk_used = btrfs_block_group_used(&cache->item);
3249
3250         if (bargs->usage_min == 0)
3251                 user_thresh = 1;
3252         else if (bargs->usage > 100)
3253                 user_thresh = cache->key.offset;
3254         else
3255                 user_thresh = div_factor_fine(cache->key.offset,
3256                                               bargs->usage);
3257
3258         if (chunk_used < user_thresh)
3259                 ret = 0;
3260
3261         btrfs_put_block_group(cache);
3262         return ret;
3263 }
3264
3265 static int chunk_devid_filter(struct extent_buffer *leaf,
3266                               struct btrfs_chunk *chunk,
3267                               struct btrfs_balance_args *bargs)
3268 {
3269         struct btrfs_stripe *stripe;
3270         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3271         int i;
3272
3273         for (i = 0; i < num_stripes; i++) {
3274                 stripe = btrfs_stripe_nr(chunk, i);
3275                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3276                         return 0;
3277         }
3278
3279         return 1;
3280 }
3281
3282 /* [pstart, pend) */
3283 static int chunk_drange_filter(struct extent_buffer *leaf,
3284                                struct btrfs_chunk *chunk,
3285                                u64 chunk_offset,
3286                                struct btrfs_balance_args *bargs)
3287 {
3288         struct btrfs_stripe *stripe;
3289         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3290         u64 stripe_offset;
3291         u64 stripe_length;
3292         int factor;
3293         int i;
3294
3295         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3296                 return 0;
3297
3298         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3299              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3300                 factor = num_stripes / 2;
3301         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3302                 factor = num_stripes - 1;
3303         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3304                 factor = num_stripes - 2;
3305         } else {
3306                 factor = num_stripes;
3307         }
3308
3309         for (i = 0; i < num_stripes; i++) {
3310                 stripe = btrfs_stripe_nr(chunk, i);
3311                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3312                         continue;
3313
3314                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3315                 stripe_length = btrfs_chunk_length(leaf, chunk);
3316                 stripe_length = div_u64(stripe_length, factor);
3317
3318                 if (stripe_offset < bargs->pend &&
3319                     stripe_offset + stripe_length > bargs->pstart)
3320                         return 0;
3321         }
3322
3323         return 1;
3324 }
3325
3326 /* [vstart, vend) */
3327 static int chunk_vrange_filter(struct extent_buffer *leaf,
3328                                struct btrfs_chunk *chunk,
3329                                u64 chunk_offset,
3330                                struct btrfs_balance_args *bargs)
3331 {
3332         if (chunk_offset < bargs->vend &&
3333             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3334                 /* at least part of the chunk is inside this vrange */
3335                 return 0;
3336
3337         return 1;
3338 }
3339
3340 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3341                                struct btrfs_chunk *chunk,
3342                                struct btrfs_balance_args *bargs)
3343 {
3344         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3345
3346         if (bargs->stripes_min <= num_stripes
3347                         && num_stripes <= bargs->stripes_max)
3348                 return 0;
3349
3350         return 1;
3351 }
3352
3353 static int chunk_soft_convert_filter(u64 chunk_type,
3354                                      struct btrfs_balance_args *bargs)
3355 {
3356         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3357                 return 0;
3358
3359         chunk_type = chunk_to_extended(chunk_type) &
3360                                 BTRFS_EXTENDED_PROFILE_MASK;
3361
3362         if (bargs->target == chunk_type)
3363                 return 1;
3364
3365         return 0;
3366 }
3367
3368 static int should_balance_chunk(struct btrfs_root *root,
3369                                 struct extent_buffer *leaf,
3370                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3371 {
3372         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3373         struct btrfs_balance_args *bargs = NULL;
3374         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3375
3376         /* type filter */
3377         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3378               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3379                 return 0;
3380         }
3381
3382         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3383                 bargs = &bctl->data;
3384         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3385                 bargs = &bctl->sys;
3386         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3387                 bargs = &bctl->meta;
3388
3389         /* profiles filter */
3390         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3391             chunk_profiles_filter(chunk_type, bargs)) {
3392                 return 0;
3393         }
3394
3395         /* usage filter */
3396         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3397             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3398                 return 0;
3399         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3400             chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3401                 return 0;
3402         }
3403
3404         /* devid filter */
3405         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3406             chunk_devid_filter(leaf, chunk, bargs)) {
3407                 return 0;
3408         }
3409
3410         /* drange filter, makes sense only with devid filter */
3411         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3412             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3413                 return 0;
3414         }
3415
3416         /* vrange filter */
3417         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3418             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3419                 return 0;
3420         }
3421
3422         /* stripes filter */
3423         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3424             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3425                 return 0;
3426         }
3427
3428         /* soft profile changing mode */
3429         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3430             chunk_soft_convert_filter(chunk_type, bargs)) {
3431                 return 0;
3432         }
3433
3434         /*
3435          * limited by count, must be the last filter
3436          */
3437         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3438                 if (bargs->limit == 0)
3439                         return 0;
3440                 else
3441                         bargs->limit--;
3442         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3443                 /*
3444                  * Same logic as the 'limit' filter; the minimum cannot be
3445                  * determined here because we do not have the global information
3446                  * about the count of all chunks that satisfy the filters.
3447                  */
3448                 if (bargs->limit_max == 0)
3449                         return 0;
3450                 else
3451                         bargs->limit_max--;
3452         }
3453
3454         return 1;
3455 }
3456
3457 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3458 {
3459         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3460         struct btrfs_root *chunk_root = fs_info->chunk_root;
3461         struct btrfs_root *dev_root = fs_info->dev_root;
3462         struct list_head *devices;
3463         struct btrfs_device *device;
3464         u64 old_size;
3465         u64 size_to_free;
3466         u64 chunk_type;
3467         struct btrfs_chunk *chunk;
3468         struct btrfs_path *path = NULL;
3469         struct btrfs_key key;
3470         struct btrfs_key found_key;
3471         struct btrfs_trans_handle *trans;
3472         struct extent_buffer *leaf;
3473         int slot;
3474         int ret;
3475         int enospc_errors = 0;
3476         bool counting = true;
3477         /* The single value limit and min/max limits use the same bytes in the */
3478         u64 limit_data = bctl->data.limit;
3479         u64 limit_meta = bctl->meta.limit;
3480         u64 limit_sys = bctl->sys.limit;
3481         u32 count_data = 0;
3482         u32 count_meta = 0;
3483         u32 count_sys = 0;
3484         int chunk_reserved = 0;
3485         u64 bytes_used = 0;
3486
3487         /* step one make some room on all the devices */
3488         devices = &fs_info->fs_devices->devices;
3489         list_for_each_entry(device, devices, dev_list) {
3490                 old_size = btrfs_device_get_total_bytes(device);
3491                 size_to_free = div_factor(old_size, 1);
3492                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3493                 if (!device->writeable ||
3494                     btrfs_device_get_total_bytes(device) -
3495                     btrfs_device_get_bytes_used(device) > size_to_free ||
3496                     device->is_tgtdev_for_dev_replace)
3497                         continue;
3498
3499                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3500                 if (ret == -ENOSPC)
3501                         break;
3502                 if (ret) {
3503                         /* btrfs_shrink_device never returns ret > 0 */
3504                         WARN_ON(ret > 0);
3505                         goto error;
3506                 }
3507
3508                 trans = btrfs_start_transaction(dev_root, 0);
3509                 if (IS_ERR(trans)) {
3510                         ret = PTR_ERR(trans);
3511                         btrfs_info_in_rcu(fs_info,
3512                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3513                                           rcu_str_deref(device->name), ret,
3514                                           old_size, old_size - size_to_free);
3515                         goto error;
3516                 }
3517
3518                 ret = btrfs_grow_device(trans, device, old_size);
3519                 if (ret) {
3520                         btrfs_end_transaction(trans, dev_root);
3521                         /* btrfs_grow_device never returns ret > 0 */
3522                         WARN_ON(ret > 0);
3523                         btrfs_info_in_rcu(fs_info,
3524                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3525                                           rcu_str_deref(device->name), ret,
3526                                           old_size, old_size - size_to_free);
3527                         goto error;
3528                 }
3529
3530                 btrfs_end_transaction(trans, dev_root);
3531         }
3532
3533         /* step two, relocate all the chunks */
3534         path = btrfs_alloc_path();
3535         if (!path) {
3536                 ret = -ENOMEM;
3537                 goto error;
3538         }
3539
3540         /* zero out stat counters */
3541         spin_lock(&fs_info->balance_lock);
3542         memset(&bctl->stat, 0, sizeof(bctl->stat));
3543         spin_unlock(&fs_info->balance_lock);
3544 again:
3545         if (!counting) {
3546                 /*
3547                  * The single value limit and min/max limits use the same bytes
3548                  * in the
3549                  */
3550                 bctl->data.limit = limit_data;
3551                 bctl->meta.limit = limit_meta;
3552                 bctl->sys.limit = limit_sys;
3553         }
3554         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3555         key.offset = (u64)-1;
3556         key.type = BTRFS_CHUNK_ITEM_KEY;
3557
3558         while (1) {
3559                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3560                     atomic_read(&fs_info->balance_cancel_req)) {
3561                         ret = -ECANCELED;
3562                         goto error;
3563                 }
3564
3565                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3566                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3567                 if (ret < 0) {
3568                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3569                         goto error;
3570                 }
3571
3572                 /*
3573                  * this shouldn't happen, it means the last relocate
3574                  * failed
3575                  */
3576                 if (ret == 0)
3577                         BUG(); /* FIXME break ? */
3578
3579                 ret = btrfs_previous_item(chunk_root, path, 0,
3580                                           BTRFS_CHUNK_ITEM_KEY);
3581                 if (ret) {
3582                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3583                         ret = 0;
3584                         break;
3585                 }
3586
3587                 leaf = path->nodes[0];
3588                 slot = path->slots[0];
3589                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3590
3591                 if (found_key.objectid != key.objectid) {
3592                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3593                         break;
3594                 }
3595
3596                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3597                 chunk_type = btrfs_chunk_type(leaf, chunk);
3598
3599                 if (!counting) {
3600                         spin_lock(&fs_info->balance_lock);
3601                         bctl->stat.considered++;
3602                         spin_unlock(&fs_info->balance_lock);
3603                 }
3604
3605                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3606                                            found_key.offset);
3607
3608                 btrfs_release_path(path);
3609                 if (!ret) {
3610                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611                         goto loop;
3612                 }
3613
3614                 if (counting) {
3615                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3616                         spin_lock(&fs_info->balance_lock);
3617                         bctl->stat.expected++;
3618                         spin_unlock(&fs_info->balance_lock);
3619
3620                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3621                                 count_data++;
3622                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3623                                 count_sys++;
3624                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3625                                 count_meta++;
3626
3627                         goto loop;
3628                 }
3629
3630                 /*
3631                  * Apply limit_min filter, no need to check if the LIMITS
3632                  * filter is used, limit_min is 0 by default
3633                  */
3634                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3635                                         count_data < bctl->data.limit_min)
3636                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3637                                         count_meta < bctl->meta.limit_min)
3638                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3639                                         count_sys < bctl->sys.limit_min)) {
3640                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641                         goto loop;
3642                 }
3643
3644                 ASSERT(fs_info->data_sinfo);
3645                 spin_lock(&fs_info->data_sinfo->lock);
3646                 bytes_used = fs_info->data_sinfo->bytes_used;
3647                 spin_unlock(&fs_info->data_sinfo->lock);
3648
3649                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3650                     !chunk_reserved && !bytes_used) {
3651                         trans = btrfs_start_transaction(chunk_root, 0);
3652                         if (IS_ERR(trans)) {
3653                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3654                                 ret = PTR_ERR(trans);
3655                                 goto error;
3656                         }
3657
3658                         ret = btrfs_force_chunk_alloc(trans, chunk_root,
3659                                                       BTRFS_BLOCK_GROUP_DATA);
3660                         btrfs_end_transaction(trans, chunk_root);
3661                         if (ret < 0) {
3662                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3663                                 goto error;
3664                         }
3665                         chunk_reserved = 1;
3666                 }
3667
3668                 ret = btrfs_relocate_chunk(chunk_root,
3669                                            found_key.offset);
3670                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3671                 if (ret && ret != -ENOSPC)
3672                         goto error;
3673                 if (ret == -ENOSPC) {
3674                         enospc_errors++;
3675                 } else {
3676                         spin_lock(&fs_info->balance_lock);
3677                         bctl->stat.completed++;
3678                         spin_unlock(&fs_info->balance_lock);
3679                 }
3680 loop:
3681                 if (found_key.offset == 0)
3682                         break;
3683                 key.offset = found_key.offset - 1;
3684         }
3685
3686         if (counting) {
3687                 btrfs_release_path(path);
3688                 counting = false;
3689                 goto again;
3690         }
3691 error:
3692         btrfs_free_path(path);
3693         if (enospc_errors) {
3694                 btrfs_info(fs_info, "%d enospc errors during balance",
3695                            enospc_errors);
3696                 if (!ret)
3697                         ret = -ENOSPC;
3698         }
3699
3700         return ret;
3701 }
3702
3703 /**
3704  * alloc_profile_is_valid - see if a given profile is valid and reduced
3705  * @flags: profile to validate
3706  * @extended: if true @flags is treated as an extended profile
3707  */
3708 static int alloc_profile_is_valid(u64 flags, int extended)
3709 {
3710         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3711                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3712
3713         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3714
3715         /* 1) check that all other bits are zeroed */
3716         if (flags & ~mask)
3717                 return 0;
3718
3719         /* 2) see if profile is reduced */
3720         if (flags == 0)
3721                 return !extended; /* "0" is valid for usual profiles */
3722
3723         /* true if exactly one bit set */
3724         return (flags & (flags - 1)) == 0;
3725 }
3726
3727 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3728 {
3729         /* cancel requested || normal exit path */
3730         return atomic_read(&fs_info->balance_cancel_req) ||
3731                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3732                  atomic_read(&fs_info->balance_cancel_req) == 0);
3733 }
3734
3735 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3736 {
3737         int ret;
3738
3739         unset_balance_control(fs_info);
3740         ret = del_balance_item(fs_info->tree_root);
3741         if (ret)
3742                 btrfs_handle_fs_error(fs_info, ret, NULL);
3743
3744         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3745 }
3746
3747 /* Non-zero return value signifies invalidity */
3748 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3749                 u64 allowed)
3750 {
3751         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3752                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3753                  (bctl_arg->target & ~allowed)));
3754 }
3755
3756 /*
3757  * Should be called with both balance and volume mutexes held
3758  */
3759 int btrfs_balance(struct btrfs_balance_control *bctl,
3760                   struct btrfs_ioctl_balance_args *bargs)
3761 {
3762         struct btrfs_fs_info *fs_info = bctl->fs_info;
3763         u64 allowed;
3764         int mixed = 0;
3765         int ret;
3766         u64 num_devices;
3767         unsigned seq;
3768
3769         if (btrfs_fs_closing(fs_info) ||
3770             atomic_read(&fs_info->balance_pause_req) ||
3771             atomic_read(&fs_info->balance_cancel_req)) {
3772                 ret = -EINVAL;
3773                 goto out;
3774         }
3775
3776         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3777         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3778                 mixed = 1;
3779
3780         /*
3781          * In case of mixed groups both data and meta should be picked,
3782          * and identical options should be given for both of them.
3783          */
3784         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3785         if (mixed && (bctl->flags & allowed)) {
3786                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3787                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3788                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3789                         btrfs_err(fs_info,
3790                                   "with mixed groups data and metadata balance options must be the same");
3791                         ret = -EINVAL;
3792                         goto out;
3793                 }
3794         }
3795
3796         num_devices = fs_info->fs_devices->num_devices;
3797         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3798         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3799                 BUG_ON(num_devices < 1);
3800                 num_devices--;
3801         }
3802         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3803         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3804         if (num_devices > 1)
3805                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3806         if (num_devices > 2)
3807                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3808         if (num_devices > 3)
3809                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3810                             BTRFS_BLOCK_GROUP_RAID6);
3811         if (validate_convert_profile(&bctl->data, allowed)) {
3812                 btrfs_err(fs_info,
3813                           "unable to start balance with target data profile %llu",
3814                           bctl->data.target);
3815                 ret = -EINVAL;
3816                 goto out;
3817         }
3818         if (validate_convert_profile(&bctl->meta, allowed)) {
3819                 btrfs_err(fs_info,
3820                           "unable to start balance with target metadata profile %llu",
3821                           bctl->meta.target);
3822                 ret = -EINVAL;
3823                 goto out;
3824         }
3825         if (validate_convert_profile(&bctl->sys, allowed)) {
3826                 btrfs_err(fs_info,
3827                           "unable to start balance with target system profile %llu",
3828                           bctl->sys.target);
3829                 ret = -EINVAL;
3830                 goto out;
3831         }
3832
3833         /* allow to reduce meta or sys integrity only if force set */
3834         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3835                         BTRFS_BLOCK_GROUP_RAID10 |
3836                         BTRFS_BLOCK_GROUP_RAID5 |
3837                         BTRFS_BLOCK_GROUP_RAID6;
3838         do {
3839                 seq = read_seqbegin(&fs_info->profiles_lock);
3840
3841                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3842                      (fs_info->avail_system_alloc_bits & allowed) &&
3843                      !(bctl->sys.target & allowed)) ||
3844                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3845                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3846                      !(bctl->meta.target & allowed))) {
3847                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3848                                 btrfs_info(fs_info,
3849                                            "force reducing metadata integrity");
3850                         } else {
3851                                 btrfs_err(fs_info,
3852                                           "balance will reduce metadata integrity, use force if you want this");
3853                                 ret = -EINVAL;
3854                                 goto out;
3855                         }
3856                 }
3857         } while (read_seqretry(&fs_info->profiles_lock, seq));
3858
3859         if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3860                 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3861                 btrfs_warn(fs_info,
3862                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3863                            bctl->meta.target, bctl->data.target);
3864         }
3865
3866         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3867                 fs_info->num_tolerated_disk_barrier_failures = min(
3868                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3869                         btrfs_get_num_tolerated_disk_barrier_failures(
3870                                 bctl->sys.target));
3871         }
3872
3873         ret = insert_balance_item(fs_info->tree_root, bctl);
3874         if (ret && ret != -EEXIST)
3875                 goto out;
3876
3877         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3878                 BUG_ON(ret == -EEXIST);
3879                 set_balance_control(bctl);
3880         } else {
3881                 BUG_ON(ret != -EEXIST);
3882                 spin_lock(&fs_info->balance_lock);
3883                 update_balance_args(bctl);
3884                 spin_unlock(&fs_info->balance_lock);
3885         }
3886
3887         atomic_inc(&fs_info->balance_running);
3888         mutex_unlock(&fs_info->balance_mutex);
3889
3890         ret = __btrfs_balance(fs_info);
3891
3892         mutex_lock(&fs_info->balance_mutex);
3893         atomic_dec(&fs_info->balance_running);
3894
3895         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3896                 fs_info->num_tolerated_disk_barrier_failures =
3897                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3898         }
3899
3900         if (bargs) {
3901                 memset(bargs, 0, sizeof(*bargs));
3902                 update_ioctl_balance_args(fs_info, 0, bargs);
3903         }
3904
3905         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3906             balance_need_close(fs_info)) {
3907                 __cancel_balance(fs_info);
3908         }
3909
3910         wake_up(&fs_info->balance_wait_q);
3911
3912         return ret;
3913 out:
3914         if (bctl->flags & BTRFS_BALANCE_RESUME)
3915                 __cancel_balance(fs_info);
3916         else {
3917                 kfree(bctl);
3918                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3919         }
3920         return ret;
3921 }
3922
3923 static int balance_kthread(void *data)
3924 {
3925         struct btrfs_fs_info *fs_info = data;
3926         int ret = 0;
3927
3928         mutex_lock(&fs_info->volume_mutex);
3929         mutex_lock(&fs_info->balance_mutex);
3930
3931         if (fs_info->balance_ctl) {
3932                 btrfs_info(fs_info, "continuing balance");
3933                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3934         }
3935
3936         mutex_unlock(&fs_info->balance_mutex);
3937         mutex_unlock(&fs_info->volume_mutex);
3938
3939         return ret;
3940 }
3941
3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3943 {
3944         struct task_struct *tsk;
3945
3946         spin_lock(&fs_info->balance_lock);
3947         if (!fs_info->balance_ctl) {
3948                 spin_unlock(&fs_info->balance_lock);
3949                 return 0;
3950         }
3951         spin_unlock(&fs_info->balance_lock);
3952
3953         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3954                 btrfs_info(fs_info, "force skipping balance");
3955                 return 0;
3956         }
3957
3958         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3959         return PTR_ERR_OR_ZERO(tsk);
3960 }
3961
3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3963 {
3964         struct btrfs_balance_control *bctl;
3965         struct btrfs_balance_item *item;
3966         struct btrfs_disk_balance_args disk_bargs;
3967         struct btrfs_path *path;
3968         struct extent_buffer *leaf;
3969         struct btrfs_key key;
3970         int ret;
3971
3972         path = btrfs_alloc_path();
3973         if (!path)
3974                 return -ENOMEM;
3975
3976         key.objectid = BTRFS_BALANCE_OBJECTID;
3977         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3978         key.offset = 0;
3979
3980         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3981         if (ret < 0)
3982                 goto out;
3983         if (ret > 0) { /* ret = -ENOENT; */
3984                 ret = 0;
3985                 goto out;
3986         }
3987
3988         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3989         if (!bctl) {
3990                 ret = -ENOMEM;
3991                 goto out;
3992         }
3993
3994         leaf = path->nodes[0];
3995         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3996
3997         bctl->fs_info = fs_info;
3998         bctl->flags = btrfs_balance_flags(leaf, item);
3999         bctl->flags |= BTRFS_BALANCE_RESUME;
4000
4001         btrfs_balance_data(leaf, item, &disk_bargs);
4002         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4003         btrfs_balance_meta(leaf, item, &disk_bargs);
4004         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4005         btrfs_balance_sys(leaf, item, &disk_bargs);
4006         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4007
4008         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4009
4010         mutex_lock(&fs_info->volume_mutex);
4011         mutex_lock(&fs_info->balance_mutex);
4012
4013         set_balance_control(bctl);
4014
4015         mutex_unlock(&fs_info->balance_mutex);
4016         mutex_unlock(&fs_info->volume_mutex);
4017 out:
4018         btrfs_free_path(path);
4019         return ret;
4020 }
4021
4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4023 {
4024         int ret = 0;
4025
4026         mutex_lock(&fs_info->balance_mutex);
4027         if (!fs_info->balance_ctl) {
4028                 mutex_unlock(&fs_info->balance_mutex);
4029                 return -ENOTCONN;
4030         }
4031
4032         if (atomic_read(&fs_info->balance_running)) {
4033                 atomic_inc(&fs_info->balance_pause_req);
4034                 mutex_unlock(&fs_info->balance_mutex);
4035
4036                 wait_event(fs_info->balance_wait_q,
4037                            atomic_read(&fs_info->balance_running) == 0);
4038
4039                 mutex_lock(&fs_info->balance_mutex);
4040                 /* we are good with balance_ctl ripped off from under us */
4041                 BUG_ON(atomic_read(&fs_info->balance_running));
4042                 atomic_dec(&fs_info->balance_pause_req);
4043         } else {
4044                 ret = -ENOTCONN;
4045         }
4046
4047         mutex_unlock(&fs_info->balance_mutex);
4048         return ret;
4049 }
4050
4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4052 {
4053         if (fs_info->sb->s_flags & MS_RDONLY)
4054                 return -EROFS;
4055
4056         mutex_lock(&fs_info->balance_mutex);
4057         if (!fs_info->balance_ctl) {
4058                 mutex_unlock(&fs_info->balance_mutex);
4059                 return -ENOTCONN;
4060         }
4061
4062         atomic_inc(&fs_info->balance_cancel_req);
4063         /*
4064          * if we are running just wait and return, balance item is
4065          * deleted in btrfs_balance in this case
4066          */
4067         if (atomic_read(&fs_info->balance_running)) {
4068                 mutex_unlock(&fs_info->balance_mutex);
4069                 wait_event(fs_info->balance_wait_q,
4070                            atomic_read(&fs_info->balance_running) == 0);
4071                 mutex_lock(&fs_info->balance_mutex);
4072         } else {
4073                 /* __cancel_balance needs volume_mutex */
4074                 mutex_unlock(&fs_info->balance_mutex);
4075                 mutex_lock(&fs_info->volume_mutex);
4076                 mutex_lock(&fs_info->balance_mutex);
4077
4078                 if (fs_info->balance_ctl)
4079                         __cancel_balance(fs_info);
4080
4081                 mutex_unlock(&fs_info->volume_mutex);
4082         }
4083
4084         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4085         atomic_dec(&fs_info->balance_cancel_req);
4086         mutex_unlock(&fs_info->balance_mutex);
4087         return 0;
4088 }
4089
4090 static int btrfs_uuid_scan_kthread(void *data)
4091 {
4092         struct btrfs_fs_info *fs_info = data;
4093         struct btrfs_root *root = fs_info->tree_root;
4094         struct btrfs_key key;
4095         struct btrfs_key max_key;
4096         struct btrfs_path *path = NULL;
4097         int ret = 0;
4098         struct extent_buffer *eb;
4099         int slot;
4100         struct btrfs_root_item root_item;
4101         u32 item_size;
4102         struct btrfs_trans_handle *trans = NULL;
4103
4104         path = btrfs_alloc_path();
4105         if (!path) {
4106                 ret = -ENOMEM;
4107                 goto out;
4108         }
4109
4110         key.objectid = 0;
4111         key.type = BTRFS_ROOT_ITEM_KEY;
4112         key.offset = 0;
4113
4114         max_key.objectid = (u64)-1;
4115         max_key.type = BTRFS_ROOT_ITEM_KEY;
4116         max_key.offset = (u64)-1;
4117
4118         while (1) {
4119                 ret = btrfs_search_forward(root, &key, path, 0);
4120                 if (ret) {
4121                         if (ret > 0)
4122                                 ret = 0;
4123                         break;
4124                 }
4125
4126                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4127                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4128                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4129                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4130                         goto skip;
4131
4132                 eb = path->nodes[0];
4133                 slot = path->slots[0];
4134                 item_size = btrfs_item_size_nr(eb, slot);
4135                 if (item_size < sizeof(root_item))
4136                         goto skip;
4137
4138                 read_extent_buffer(eb, &root_item,
4139                                    btrfs_item_ptr_offset(eb, slot),
4140                                    (int)sizeof(root_item));
4141                 if (btrfs_root_refs(&root_item) == 0)
4142                         goto skip;
4143
4144                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4145                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4146                         if (trans)
4147                                 goto update_tree;
4148
4149                         btrfs_release_path(path);
4150                         /*
4151                          * 1 - subvol uuid item
4152                          * 1 - received_subvol uuid item
4153                          */
4154                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4155                         if (IS_ERR(trans)) {
4156                                 ret = PTR_ERR(trans);
4157                                 break;
4158                         }
4159                         continue;
4160                 } else {
4161                         goto skip;
4162                 }
4163 update_tree:
4164                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4165                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4166                                                   root_item.uuid,
4167                                                   BTRFS_UUID_KEY_SUBVOL,
4168                                                   key.objectid);
4169                         if (ret < 0) {
4170                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4171                                         ret);
4172                                 break;
4173                         }
4174                 }
4175
4176                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4177                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4178                                                   root_item.received_uuid,
4179                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4180                                                   key.objectid);
4181                         if (ret < 0) {
4182                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4183                                         ret);
4184                                 break;
4185                         }
4186                 }
4187
4188 skip:
4189                 if (trans) {
4190                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4191                         trans = NULL;
4192                         if (ret)
4193                                 break;
4194                 }
4195
4196                 btrfs_release_path(path);
4197                 if (key.offset < (u64)-1) {
4198                         key.offset++;
4199                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4200                         key.offset = 0;
4201                         key.type = BTRFS_ROOT_ITEM_KEY;
4202                 } else if (key.objectid < (u64)-1) {
4203                         key.offset = 0;
4204                         key.type = BTRFS_ROOT_ITEM_KEY;
4205                         key.objectid++;
4206                 } else {
4207                         break;
4208                 }
4209                 cond_resched();
4210         }
4211
4212 out:
4213         btrfs_free_path(path);
4214         if (trans && !IS_ERR(trans))
4215                 btrfs_end_transaction(trans, fs_info->uuid_root);
4216         if (ret)
4217                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4218         else
4219                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4220         up(&fs_info->uuid_tree_rescan_sem);
4221         return 0;
4222 }
4223
4224 /*
4225  * Callback for btrfs_uuid_tree_iterate().
4226  * returns:
4227  * 0    check succeeded, the entry is not outdated.
4228  * < 0  if an error occurred.
4229  * > 0  if the check failed, which means the caller shall remove the entry.
4230  */
4231 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4232                                        u8 *uuid, u8 type, u64 subid)
4233 {
4234         struct btrfs_key key;
4235         int ret = 0;
4236         struct btrfs_root *subvol_root;
4237
4238         if (type != BTRFS_UUID_KEY_SUBVOL &&
4239             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4240                 goto out;
4241
4242         key.objectid = subid;
4243         key.type = BTRFS_ROOT_ITEM_KEY;
4244         key.offset = (u64)-1;
4245         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4246         if (IS_ERR(subvol_root)) {
4247                 ret = PTR_ERR(subvol_root);
4248                 if (ret == -ENOENT)
4249                         ret = 1;
4250                 goto out;
4251         }
4252
4253         switch (type) {
4254         case BTRFS_UUID_KEY_SUBVOL:
4255                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4256                         ret = 1;
4257                 break;
4258         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4259                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4260                            BTRFS_UUID_SIZE))
4261                         ret = 1;
4262                 break;
4263         }
4264
4265 out:
4266         return ret;
4267 }
4268
4269 static int btrfs_uuid_rescan_kthread(void *data)
4270 {
4271         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4272         int ret;
4273
4274         /*
4275          * 1st step is to iterate through the existing UUID tree and
4276          * to delete all entries that contain outdated data.
4277          * 2nd step is to add all missing entries to the UUID tree.
4278          */
4279         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4280         if (ret < 0) {
4281                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4282                 up(&fs_info->uuid_tree_rescan_sem);
4283                 return ret;
4284         }
4285         return btrfs_uuid_scan_kthread(data);
4286 }
4287
4288 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4289 {
4290         struct btrfs_trans_handle *trans;
4291         struct btrfs_root *tree_root = fs_info->tree_root;
4292         struct btrfs_root *uuid_root;
4293         struct task_struct *task;
4294         int ret;
4295
4296         /*
4297          * 1 - root node
4298          * 1 - root item
4299          */
4300         trans = btrfs_start_transaction(tree_root, 2);
4301         if (IS_ERR(trans))
4302                 return PTR_ERR(trans);
4303
4304         uuid_root = btrfs_create_tree(trans, fs_info,
4305                                       BTRFS_UUID_TREE_OBJECTID);
4306         if (IS_ERR(uuid_root)) {
4307                 ret = PTR_ERR(uuid_root);
4308                 btrfs_abort_transaction(trans, ret);
4309                 btrfs_end_transaction(trans, tree_root);
4310                 return ret;
4311         }
4312
4313         fs_info->uuid_root = uuid_root;
4314
4315         ret = btrfs_commit_transaction(trans, tree_root);
4316         if (ret)
4317                 return ret;
4318
4319         down(&fs_info->uuid_tree_rescan_sem);
4320         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4321         if (IS_ERR(task)) {
4322                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4323                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4324                 up(&fs_info->uuid_tree_rescan_sem);
4325                 return PTR_ERR(task);
4326         }
4327
4328         return 0;
4329 }
4330
4331 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4332 {
4333         struct task_struct *task;
4334
4335         down(&fs_info->uuid_tree_rescan_sem);
4336         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4337         if (IS_ERR(task)) {
4338                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4339                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4340                 up(&fs_info->uuid_tree_rescan_sem);
4341                 return PTR_ERR(task);
4342         }
4343
4344         return 0;
4345 }
4346
4347 /*
4348  * shrinking a device means finding all of the device extents past
4349  * the new size, and then following the back refs to the chunks.
4350  * The chunk relocation code actually frees the device extent
4351  */
4352 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4353 {
4354         struct btrfs_trans_handle *trans;
4355         struct btrfs_root *root = device->dev_root;
4356         struct btrfs_dev_extent *dev_extent = NULL;
4357         struct btrfs_path *path;
4358         u64 length;
4359         u64 chunk_offset;
4360         int ret;
4361         int slot;
4362         int failed = 0;
4363         bool retried = false;
4364         bool checked_pending_chunks = false;
4365         struct extent_buffer *l;
4366         struct btrfs_key key;
4367         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4368         u64 old_total = btrfs_super_total_bytes(super_copy);
4369         u64 old_size = btrfs_device_get_total_bytes(device);
4370         u64 diff = old_size - new_size;
4371
4372         if (device->is_tgtdev_for_dev_replace)
4373                 return -EINVAL;
4374
4375         path = btrfs_alloc_path();
4376         if (!path)
4377                 return -ENOMEM;
4378
4379         path->reada = READA_FORWARD;
4380
4381         lock_chunks(root);
4382
4383         btrfs_device_set_total_bytes(device, new_size);
4384         if (device->writeable) {
4385                 device->fs_devices->total_rw_bytes -= diff;
4386                 spin_lock(&root->fs_info->free_chunk_lock);
4387                 root->fs_info->free_chunk_space -= diff;
4388                 spin_unlock(&root->fs_info->free_chunk_lock);
4389         }
4390         unlock_chunks(root);
4391
4392 again:
4393         key.objectid = device->devid;
4394         key.offset = (u64)-1;
4395         key.type = BTRFS_DEV_EXTENT_KEY;
4396
4397         do {
4398                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4399                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400                 if (ret < 0) {
4401                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4402                         goto done;
4403                 }
4404
4405                 ret = btrfs_previous_item(root, path, 0, key.type);
4406                 if (ret)
4407                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4408                 if (ret < 0)
4409                         goto done;
4410                 if (ret) {
4411                         ret = 0;
4412                         btrfs_release_path(path);
4413                         break;
4414                 }
4415
4416                 l = path->nodes[0];
4417                 slot = path->slots[0];
4418                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4419
4420                 if (key.objectid != device->devid) {
4421                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4422                         btrfs_release_path(path);
4423                         break;
4424                 }
4425
4426                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4427                 length = btrfs_dev_extent_length(l, dev_extent);
4428
4429                 if (key.offset + length <= new_size) {
4430                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4431                         btrfs_release_path(path);
4432                         break;
4433                 }
4434
4435                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4436                 btrfs_release_path(path);
4437
4438                 ret = btrfs_relocate_chunk(root, chunk_offset);
4439                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4440                 if (ret && ret != -ENOSPC)
4441                         goto done;
4442                 if (ret == -ENOSPC)
4443                         failed++;
4444         } while (key.offset-- > 0);
4445
4446         if (failed && !retried) {
4447                 failed = 0;
4448                 retried = true;
4449                 goto again;
4450         } else if (failed && retried) {
4451                 ret = -ENOSPC;
4452                 goto done;
4453         }
4454
4455         /* Shrinking succeeded, else we would be at "done". */
4456         trans = btrfs_start_transaction(root, 0);
4457         if (IS_ERR(trans)) {
4458                 ret = PTR_ERR(trans);
4459                 goto done;
4460         }
4461
4462         lock_chunks(root);
4463
4464         /*
4465          * We checked in the above loop all device extents that were already in
4466          * the device tree. However before we have updated the device's
4467          * total_bytes to the new size, we might have had chunk allocations that
4468          * have not complete yet (new block groups attached to transaction
4469          * handles), and therefore their device extents were not yet in the
4470          * device tree and we missed them in the loop above. So if we have any
4471          * pending chunk using a device extent that overlaps the device range
4472          * that we can not use anymore, commit the current transaction and
4473          * repeat the search on the device tree - this way we guarantee we will
4474          * not have chunks using device extents that end beyond 'new_size'.
4475          */
4476         if (!checked_pending_chunks) {
4477                 u64 start = new_size;
4478                 u64 len = old_size - new_size;
4479
4480                 if (contains_pending_extent(trans->transaction, device,
4481                                             &start, len)) {
4482                         unlock_chunks(root);
4483                         checked_pending_chunks = true;
4484                         failed = 0;
4485                         retried = false;
4486                         ret = btrfs_commit_transaction(trans, root);
4487                         if (ret)
4488                                 goto done;
4489                         goto again;
4490                 }
4491         }
4492
4493         btrfs_device_set_disk_total_bytes(device, new_size);
4494         if (list_empty(&device->resized_list))
4495                 list_add_tail(&device->resized_list,
4496                               &root->fs_info->fs_devices->resized_devices);
4497
4498         WARN_ON(diff > old_total);
4499         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4500         unlock_chunks(root);
4501
4502         /* Now btrfs_update_device() will change the on-disk size. */
4503         ret = btrfs_update_device(trans, device);
4504         btrfs_end_transaction(trans, root);
4505 done:
4506         btrfs_free_path(path);
4507         if (ret) {
4508                 lock_chunks(root);
4509                 btrfs_device_set_total_bytes(device, old_size);
4510                 if (device->writeable)
4511                         device->fs_devices->total_rw_bytes += diff;
4512                 spin_lock(&root->fs_info->free_chunk_lock);
4513                 root->fs_info->free_chunk_space += diff;
4514                 spin_unlock(&root->fs_info->free_chunk_lock);
4515                 unlock_chunks(root);
4516         }
4517         return ret;
4518 }
4519
4520 static int btrfs_add_system_chunk(struct btrfs_root *root,
4521                            struct btrfs_key *key,
4522                            struct btrfs_chunk *chunk, int item_size)
4523 {
4524         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4525         struct btrfs_disk_key disk_key;
4526         u32 array_size;
4527         u8 *ptr;
4528
4529         lock_chunks(root);
4530         array_size = btrfs_super_sys_array_size(super_copy);
4531         if (array_size + item_size + sizeof(disk_key)
4532                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4533                 unlock_chunks(root);
4534                 return -EFBIG;
4535         }
4536
4537         ptr = super_copy->sys_chunk_array + array_size;
4538         btrfs_cpu_key_to_disk(&disk_key, key);
4539         memcpy(ptr, &disk_key, sizeof(disk_key));
4540         ptr += sizeof(disk_key);
4541         memcpy(ptr, chunk, item_size);
4542         item_size += sizeof(disk_key);
4543         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4544         unlock_chunks(root);
4545
4546         return 0;
4547 }
4548
4549 /*
4550  * sort the devices in descending order by max_avail, total_avail
4551  */
4552 static int btrfs_cmp_device_info(const void *a, const void *b)
4553 {
4554         const struct btrfs_device_info *di_a = a;
4555         const struct btrfs_device_info *di_b = b;
4556
4557         if (di_a->max_avail > di_b->max_avail)
4558                 return -1;
4559         if (di_a->max_avail < di_b->max_avail)
4560                 return 1;
4561         if (di_a->total_avail > di_b->total_avail)
4562                 return -1;
4563         if (di_a->total_avail < di_b->total_avail)
4564                 return 1;
4565         return 0;
4566 }
4567
4568 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4569 {
4570         /* TODO allow them to set a preferred stripe size */
4571         return SZ_64K;
4572 }
4573
4574 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4575 {
4576         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4577                 return;
4578
4579         btrfs_set_fs_incompat(info, RAID56);
4580 }
4581
4582 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)              \
4583                         - sizeof(struct btrfs_chunk))           \
4584                         / sizeof(struct btrfs_stripe) + 1)
4585
4586 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4587                                 - 2 * sizeof(struct btrfs_disk_key)     \
4588                                 - 2 * sizeof(struct btrfs_chunk))       \
4589                                 / sizeof(struct btrfs_stripe) + 1)
4590
4591 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4592                                struct btrfs_root *extent_root, u64 start,
4593                                u64 type)
4594 {
4595         struct btrfs_fs_info *info = extent_root->fs_info;
4596         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4597         struct list_head *cur;
4598         struct map_lookup *map = NULL;
4599         struct extent_map_tree *em_tree;
4600         struct extent_map *em;
4601         struct btrfs_device_info *devices_info = NULL;
4602         u64 total_avail;
4603         int num_stripes;        /* total number of stripes to allocate */
4604         int data_stripes;       /* number of stripes that count for
4605                                    block group size */
4606         int sub_stripes;        /* sub_stripes info for map */
4607         int dev_stripes;        /* stripes per dev */
4608         int devs_max;           /* max devs to use */
4609         int devs_min;           /* min devs needed */
4610         int devs_increment;     /* ndevs has to be a multiple of this */
4611         int ncopies;            /* how many copies to data has */
4612         int ret;
4613         u64 max_stripe_size;
4614         u64 max_chunk_size;
4615         u64 stripe_size;
4616         u64 num_bytes;
4617         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4618         int ndevs;
4619         int i;
4620         int j;
4621         int index;
4622
4623         BUG_ON(!alloc_profile_is_valid(type, 0));
4624
4625         if (list_empty(&fs_devices->alloc_list))
4626                 return -ENOSPC;
4627
4628         index = __get_raid_index(type);
4629
4630         sub_stripes = btrfs_raid_array[index].sub_stripes;
4631         dev_stripes = btrfs_raid_array[index].dev_stripes;
4632         devs_max = btrfs_raid_array[index].devs_max;
4633         devs_min = btrfs_raid_array[index].devs_min;
4634         devs_increment = btrfs_raid_array[index].devs_increment;
4635         ncopies = btrfs_raid_array[index].ncopies;
4636
4637         if (type & BTRFS_BLOCK_GROUP_DATA) {
4638                 max_stripe_size = SZ_1G;
4639                 max_chunk_size = 10 * max_stripe_size;
4640                 if (!devs_max)
4641                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4642         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4643                 /* for larger filesystems, use larger metadata chunks */
4644                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4645                         max_stripe_size = SZ_1G;
4646                 else
4647                         max_stripe_size = SZ_256M;
4648                 max_chunk_size = max_stripe_size;
4649                 if (!devs_max)
4650                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4651         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4652                 max_stripe_size = SZ_32M;
4653                 max_chunk_size = 2 * max_stripe_size;
4654                 if (!devs_max)
4655                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4656         } else {
4657                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4658                        type);
4659                 BUG_ON(1);
4660         }
4661
4662         /* we don't want a chunk larger than 10% of writeable space */
4663         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4664                              max_chunk_size);
4665
4666         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4667                                GFP_NOFS);
4668         if (!devices_info)
4669                 return -ENOMEM;
4670
4671         cur = fs_devices->alloc_list.next;
4672
4673         /*
4674          * in the first pass through the devices list, we gather information
4675          * about the available holes on each device.
4676          */
4677         ndevs = 0;
4678         while (cur != &fs_devices->alloc_list) {
4679                 struct btrfs_device *device;
4680                 u64 max_avail;
4681                 u64 dev_offset;
4682
4683                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4684
4685                 cur = cur->next;
4686
4687                 if (!device->writeable) {
4688                         WARN(1, KERN_ERR
4689                                "BTRFS: read-only device in alloc_list\n");
4690                         continue;
4691                 }
4692
4693                 if (!device->in_fs_metadata ||
4694                     device->is_tgtdev_for_dev_replace)
4695                         continue;
4696
4697                 if (device->total_bytes > device->bytes_used)
4698                         total_avail = device->total_bytes - device->bytes_used;
4699                 else
4700                         total_avail = 0;
4701
4702                 /* If there is no space on this device, skip it. */
4703                 if (total_avail == 0)
4704                         continue;
4705
4706                 ret = find_free_dev_extent(trans, device,
4707                                            max_stripe_size * dev_stripes,
4708                                            &dev_offset, &max_avail);
4709                 if (ret && ret != -ENOSPC)
4710                         goto error;
4711
4712                 if (ret == 0)
4713                         max_avail = max_stripe_size * dev_stripes;
4714
4715                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4716                         continue;
4717
4718                 if (ndevs == fs_devices->rw_devices) {
4719                         WARN(1, "%s: found more than %llu devices\n",
4720                              __func__, fs_devices->rw_devices);
4721                         break;
4722                 }
4723                 devices_info[ndevs].dev_offset = dev_offset;
4724                 devices_info[ndevs].max_avail = max_avail;
4725                 devices_info[ndevs].total_avail = total_avail;
4726                 devices_info[ndevs].dev = device;
4727                 ++ndevs;
4728         }
4729
4730         /*
4731          * now sort the devices by hole size / available space
4732          */
4733         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4734              btrfs_cmp_device_info, NULL);
4735
4736         /* round down to number of usable stripes */
4737         ndevs -= ndevs % devs_increment;
4738
4739         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4740                 ret = -ENOSPC;
4741                 goto error;
4742         }
4743
4744         if (devs_max && ndevs > devs_max)
4745                 ndevs = devs_max;
4746         /*
4747          * the primary goal is to maximize the number of stripes, so use as many
4748          * devices as possible, even if the stripes are not maximum sized.
4749          */
4750         stripe_size = devices_info[ndevs-1].max_avail;
4751         num_stripes = ndevs * dev_stripes;
4752
4753         /*
4754          * this will have to be fixed for RAID1 and RAID10 over
4755          * more drives
4756          */
4757         data_stripes = num_stripes / ncopies;
4758
4759         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4760                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4761                                                 extent_root->stripesize);
4762                 data_stripes = num_stripes - 1;
4763         }
4764         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4765                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4766                                                 extent_root->stripesize);
4767                 data_stripes = num_stripes - 2;
4768         }
4769
4770         /*
4771          * Use the number of data stripes to figure out how big this chunk
4772          * is really going to be in terms of logical address space,
4773          * and compare that answer with the max chunk size
4774          */
4775         if (stripe_size * data_stripes > max_chunk_size) {
4776                 u64 mask = (1ULL << 24) - 1;
4777
4778                 stripe_size = div_u64(max_chunk_size, data_stripes);
4779
4780                 /* bump the answer up to a 16MB boundary */
4781                 stripe_size = (stripe_size + mask) & ~mask;
4782
4783                 /* but don't go higher than the limits we found
4784                  * while searching for free extents
4785                  */
4786                 if (stripe_size > devices_info[ndevs-1].max_avail)
4787                         stripe_size = devices_info[ndevs-1].max_avail;
4788         }
4789
4790         stripe_size = div_u64(stripe_size, dev_stripes);
4791
4792         /* align to BTRFS_STRIPE_LEN */
4793         stripe_size = div_u64(stripe_size, raid_stripe_len);
4794         stripe_size *= raid_stripe_len;
4795
4796         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4797         if (!map) {
4798                 ret = -ENOMEM;
4799                 goto error;
4800         }
4801         map->num_stripes = num_stripes;
4802
4803         for (i = 0; i < ndevs; ++i) {
4804                 for (j = 0; j < dev_stripes; ++j) {
4805                         int s = i * dev_stripes + j;
4806                         map->stripes[s].dev = devices_info[i].dev;
4807                         map->stripes[s].physical = devices_info[i].dev_offset +
4808                                                    j * stripe_size;
4809                 }
4810         }
4811         map->sector_size = extent_root->sectorsize;
4812         map->stripe_len = raid_stripe_len;
4813         map->io_align = raid_stripe_len;
4814         map->io_width = raid_stripe_len;
4815         map->type = type;
4816         map->sub_stripes = sub_stripes;
4817
4818         num_bytes = stripe_size * data_stripes;
4819
4820         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4821
4822         em = alloc_extent_map();
4823         if (!em) {
4824                 kfree(map);
4825                 ret = -ENOMEM;
4826                 goto error;
4827         }
4828         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4829         em->map_lookup = map;
4830         em->start = start;
4831         em->len = num_bytes;
4832         em->block_start = 0;
4833         em->block_len = em->len;
4834         em->orig_block_len = stripe_size;
4835
4836         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4837         write_lock(&em_tree->lock);
4838         ret = add_extent_mapping(em_tree, em, 0);
4839         if (!ret) {
4840                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4841                 atomic_inc(&em->refs);
4842         }
4843         write_unlock(&em_tree->lock);
4844         if (ret) {
4845                 free_extent_map(em);
4846                 goto error;
4847         }
4848
4849         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4850                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4851                                      start, num_bytes);
4852         if (ret)
4853                 goto error_del_extent;
4854
4855         for (i = 0; i < map->num_stripes; i++) {
4856                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4857                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4858         }
4859
4860         spin_lock(&extent_root->fs_info->free_chunk_lock);
4861         extent_root->fs_info->free_chunk_space -= (stripe_size *
4862                                                    map->num_stripes);
4863         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4864
4865         free_extent_map(em);
4866         check_raid56_incompat_flag(extent_root->fs_info, type);
4867
4868         kfree(devices_info);
4869         return 0;
4870
4871 error_del_extent:
4872         write_lock(&em_tree->lock);
4873         remove_extent_mapping(em_tree, em);
4874         write_unlock(&em_tree->lock);
4875
4876         /* One for our allocation */
4877         free_extent_map(em);
4878         /* One for the tree reference */
4879         free_extent_map(em);
4880         /* One for the pending_chunks list reference */
4881         free_extent_map(em);
4882 error:
4883         kfree(devices_info);
4884         return ret;
4885 }
4886
4887 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4888                                 struct btrfs_root *extent_root,
4889                                 u64 chunk_offset, u64 chunk_size)
4890 {
4891         struct btrfs_key key;
4892         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4893         struct btrfs_device *device;
4894         struct btrfs_chunk *chunk;
4895         struct btrfs_stripe *stripe;
4896         struct extent_map_tree *em_tree;
4897         struct extent_map *em;
4898         struct map_lookup *map;
4899         size_t item_size;
4900         u64 dev_offset;
4901         u64 stripe_size;
4902         int i = 0;
4903         int ret = 0;
4904
4905         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4906         read_lock(&em_tree->lock);
4907         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4908         read_unlock(&em_tree->lock);
4909
4910         if (!em) {
4911                 btrfs_crit(extent_root->fs_info,
4912                            "unable to find logical %Lu len %Lu",
4913                            chunk_offset, chunk_size);
4914                 return -EINVAL;
4915         }
4916
4917         if (em->start != chunk_offset || em->len != chunk_size) {
4918                 btrfs_crit(extent_root->fs_info,
4919                            "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4920                             chunk_offset, chunk_size, em->start, em->len);
4921                 free_extent_map(em);
4922                 return -EINVAL;
4923         }
4924
4925         map = em->map_lookup;
4926         item_size = btrfs_chunk_item_size(map->num_stripes);
4927         stripe_size = em->orig_block_len;
4928
4929         chunk = kzalloc(item_size, GFP_NOFS);
4930         if (!chunk) {
4931                 ret = -ENOMEM;
4932                 goto out;
4933         }
4934
4935         /*
4936          * Take the device list mutex to prevent races with the final phase of
4937          * a device replace operation that replaces the device object associated
4938          * with the map's stripes, because the device object's id can change
4939          * at any time during that final phase of the device replace operation
4940          * (dev-replace.c:btrfs_dev_replace_finishing()).
4941          */
4942         mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4943         for (i = 0; i < map->num_stripes; i++) {
4944                 device = map->stripes[i].dev;
4945                 dev_offset = map->stripes[i].physical;
4946
4947                 ret = btrfs_update_device(trans, device);
4948                 if (ret)
4949                         break;
4950                 ret = btrfs_alloc_dev_extent(trans, device,
4951                                              chunk_root->root_key.objectid,
4952                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4953                                              chunk_offset, dev_offset,
4954                                              stripe_size);
4955                 if (ret)
4956                         break;
4957         }
4958         if (ret) {
4959                 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4960                 goto out;
4961         }
4962
4963         stripe = &chunk->stripe;
4964         for (i = 0; i < map->num_stripes; i++) {
4965                 device = map->stripes[i].dev;
4966                 dev_offset = map->stripes[i].physical;
4967
4968                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4969                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4970                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4971                 stripe++;
4972         }
4973         mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4974
4975         btrfs_set_stack_chunk_length(chunk, chunk_size);
4976         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4977         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4978         btrfs_set_stack_chunk_type(chunk, map->type);
4979         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4980         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4981         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4982         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4983         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4984
4985         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4986         key.type = BTRFS_CHUNK_ITEM_KEY;
4987         key.offset = chunk_offset;
4988
4989         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4990         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4991                 /*
4992                  * TODO: Cleanup of inserted chunk root in case of
4993                  * failure.
4994                  */
4995                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4996                                              item_size);
4997         }
4998
4999 out:
5000         kfree(chunk);
5001         free_extent_map(em);
5002         return ret;
5003 }
5004
5005 /*
5006  * Chunk allocation falls into two parts. The first part does works
5007  * that make the new allocated chunk useable, but not do any operation
5008  * that modifies the chunk tree. The second part does the works that
5009  * require modifying the chunk tree. This division is important for the
5010  * bootstrap process of adding storage to a seed btrfs.
5011  */
5012 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5013                       struct btrfs_root *extent_root, u64 type)
5014 {
5015         u64 chunk_offset;
5016
5017         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5018         chunk_offset = find_next_chunk(extent_root->fs_info);
5019         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5020 }
5021
5022 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5023                                          struct btrfs_root *root,
5024                                          struct btrfs_device *device)
5025 {
5026         u64 chunk_offset;
5027         u64 sys_chunk_offset;
5028         u64 alloc_profile;
5029         struct btrfs_fs_info *fs_info = root->fs_info;
5030         struct btrfs_root *extent_root = fs_info->extent_root;
5031         int ret;
5032
5033         chunk_offset = find_next_chunk(fs_info);
5034         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5035         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5036                                   alloc_profile);
5037         if (ret)
5038                 return ret;
5039
5040         sys_chunk_offset = find_next_chunk(root->fs_info);
5041         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5042         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5043                                   alloc_profile);
5044         return ret;
5045 }
5046
5047 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5048 {
5049         int max_errors;
5050
5051         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5052                          BTRFS_BLOCK_GROUP_RAID10 |
5053                          BTRFS_BLOCK_GROUP_RAID5 |
5054                          BTRFS_BLOCK_GROUP_DUP)) {
5055                 max_errors = 1;
5056         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5057                 max_errors = 2;
5058         } else {
5059                 max_errors = 0;
5060         }
5061
5062         return max_errors;
5063 }
5064
5065 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5066 {
5067         struct extent_map *em;
5068         struct map_lookup *map;
5069         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5070         int readonly = 0;
5071         int miss_ndevs = 0;
5072         int i;
5073
5074         read_lock(&map_tree->map_tree.lock);
5075         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5076         read_unlock(&map_tree->map_tree.lock);
5077         if (!em)
5078                 return 1;
5079
5080         map = em->map_lookup;
5081         for (i = 0; i < map->num_stripes; i++) {
5082                 if (map->stripes[i].dev->missing) {
5083                         miss_ndevs++;
5084                         continue;
5085                 }
5086
5087                 if (!map->stripes[i].dev->writeable) {
5088                         readonly = 1;
5089                         goto end;
5090                 }
5091         }
5092
5093         /*
5094          * If the number of missing devices is larger than max errors,
5095          * we can not write the data into that chunk successfully, so
5096          * set it readonly.
5097          */
5098         if (miss_ndevs > btrfs_chunk_max_errors(map))
5099                 readonly = 1;
5100 end:
5101         free_extent_map(em);
5102         return readonly;
5103 }
5104
5105 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5106 {
5107         extent_map_tree_init(&tree->map_tree);
5108 }
5109
5110 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5111 {
5112         struct extent_map *em;
5113
5114         while (1) {
5115                 write_lock(&tree->map_tree.lock);
5116                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5117                 if (em)
5118                         remove_extent_mapping(&tree->map_tree, em);
5119                 write_unlock(&tree->map_tree.lock);
5120                 if (!em)
5121                         break;
5122                 /* once for us */
5123                 free_extent_map(em);
5124                 /* once for the tree */
5125                 free_extent_map(em);
5126         }
5127 }
5128
5129 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5132         struct extent_map *em;
5133         struct map_lookup *map;
5134         struct extent_map_tree *em_tree = &map_tree->map_tree;
5135         int ret;
5136
5137         read_lock(&em_tree->lock);
5138         em = lookup_extent_mapping(em_tree, logical, len);
5139         read_unlock(&em_tree->lock);
5140
5141         /*
5142          * We could return errors for these cases, but that could get ugly and
5143          * we'd probably do the same thing which is just not do anything else
5144          * and exit, so return 1 so the callers don't try to use other copies.
5145          */
5146         if (!em) {
5147                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5148                             logical+len);
5149                 return 1;
5150         }
5151
5152         if (em->start > logical || em->start + em->len < logical) {
5153                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5154                            logical, logical+len, em->start,
5155                            em->start + em->len);
5156                 free_extent_map(em);
5157                 return 1;
5158         }
5159
5160         map = em->map_lookup;
5161         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5162                 ret = map->num_stripes;
5163         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5164                 ret = map->sub_stripes;
5165         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5166                 ret = 2;
5167         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5168                 ret = 3;
5169         else
5170                 ret = 1;
5171         free_extent_map(em);
5172
5173         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5174         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5175                 ret++;
5176         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5177
5178         return ret;
5179 }
5180
5181 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5182                                     struct btrfs_mapping_tree *map_tree,
5183                                     u64 logical)
5184 {
5185         struct extent_map *em;
5186         struct map_lookup *map;
5187         struct extent_map_tree *em_tree = &map_tree->map_tree;
5188         unsigned long len = root->sectorsize;
5189
5190         read_lock(&em_tree->lock);
5191         em = lookup_extent_mapping(em_tree, logical, len);
5192         read_unlock(&em_tree->lock);
5193         BUG_ON(!em);
5194
5195         BUG_ON(em->start > logical || em->start + em->len < logical);
5196         map = em->map_lookup;
5197         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5198                 len = map->stripe_len * nr_data_stripes(map);
5199         free_extent_map(em);
5200         return len;
5201 }
5202
5203 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5204                            u64 logical, u64 len, int mirror_num)
5205 {
5206         struct extent_map *em;
5207         struct map_lookup *map;
5208         struct extent_map_tree *em_tree = &map_tree->map_tree;
5209         int ret = 0;
5210
5211         read_lock(&em_tree->lock);
5212         em = lookup_extent_mapping(em_tree, logical, len);
5213         read_unlock(&em_tree->lock);
5214         BUG_ON(!em);
5215
5216         BUG_ON(em->start > logical || em->start + em->len < logical);
5217         map = em->map_lookup;
5218         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5219                 ret = 1;
5220         free_extent_map(em);
5221         return ret;
5222 }
5223
5224 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5225                             struct map_lookup *map, int first, int num,
5226                             int optimal, int dev_replace_is_ongoing)
5227 {
5228         int i;
5229         int tolerance;
5230         struct btrfs_device *srcdev;
5231
5232         if (dev_replace_is_ongoing &&
5233             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5234              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5235                 srcdev = fs_info->dev_replace.srcdev;
5236         else
5237                 srcdev = NULL;
5238
5239         /*
5240          * try to avoid the drive that is the source drive for a
5241          * dev-replace procedure, only choose it if no other non-missing
5242          * mirror is available
5243          */
5244         for (tolerance = 0; tolerance < 2; tolerance++) {
5245                 if (map->stripes[optimal].dev->bdev &&
5246                     (tolerance || map->stripes[optimal].dev != srcdev))
5247                         return optimal;
5248                 for (i = first; i < first + num; i++) {
5249                         if (map->stripes[i].dev->bdev &&
5250                             (tolerance || map->stripes[i].dev != srcdev))
5251                                 return i;
5252                 }
5253         }
5254
5255         /* we couldn't find one that doesn't fail.  Just return something
5256          * and the io error handling code will clean up eventually
5257          */
5258         return optimal;
5259 }
5260
5261 static inline int parity_smaller(u64 a, u64 b)
5262 {
5263         return a > b;
5264 }
5265
5266 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5267 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5268 {
5269         struct btrfs_bio_stripe s;
5270         int i;
5271         u64 l;
5272         int again = 1;
5273
5274         while (again) {
5275                 again = 0;
5276                 for (i = 0; i < num_stripes - 1; i++) {
5277                         if (parity_smaller(bbio->raid_map[i],
5278                                            bbio->raid_map[i+1])) {
5279                                 s = bbio->stripes[i];
5280                                 l = bbio->raid_map[i];
5281                                 bbio->stripes[i] = bbio->stripes[i+1];
5282                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5283                                 bbio->stripes[i+1] = s;
5284                                 bbio->raid_map[i+1] = l;
5285
5286                                 again = 1;
5287                         }
5288                 }
5289         }
5290 }
5291
5292 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5293 {
5294         struct btrfs_bio *bbio = kzalloc(
5295                  /* the size of the btrfs_bio */
5296                 sizeof(struct btrfs_bio) +
5297                 /* plus the variable array for the stripes */
5298                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5299                 /* plus the variable array for the tgt dev */
5300                 sizeof(int) * (real_stripes) +
5301                 /*
5302                  * plus the raid_map, which includes both the tgt dev
5303                  * and the stripes
5304                  */
5305                 sizeof(u64) * (total_stripes),
5306                 GFP_NOFS|__GFP_NOFAIL);
5307
5308         atomic_set(&bbio->error, 0);
5309         atomic_set(&bbio->refs, 1);
5310
5311         return bbio;
5312 }
5313
5314 void btrfs_get_bbio(struct btrfs_bio *bbio)
5315 {
5316         WARN_ON(!atomic_read(&bbio->refs));
5317         atomic_inc(&bbio->refs);
5318 }
5319
5320 void btrfs_put_bbio(struct btrfs_bio *bbio)
5321 {
5322         if (!bbio)
5323                 return;
5324         if (atomic_dec_and_test(&bbio->refs))
5325                 kfree(bbio);
5326 }
5327
5328 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5329                              u64 logical, u64 *length,
5330                              struct btrfs_bio **bbio_ret,
5331                              int mirror_num, int need_raid_map)
5332 {
5333         struct extent_map *em;
5334         struct map_lookup *map;
5335         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5336         struct extent_map_tree *em_tree = &map_tree->map_tree;
5337         u64 offset;
5338         u64 stripe_offset;
5339         u64 stripe_end_offset;
5340         u64 stripe_nr;
5341         u64 stripe_nr_orig;
5342         u64 stripe_nr_end;
5343         u64 stripe_len;
5344         u32 stripe_index;
5345         int i;
5346         int ret = 0;
5347         int num_stripes;
5348         int max_errors = 0;
5349         int tgtdev_indexes = 0;
5350         struct btrfs_bio *bbio = NULL;
5351         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5352         int dev_replace_is_ongoing = 0;
5353         int num_alloc_stripes;
5354         int patch_the_first_stripe_for_dev_replace = 0;
5355         u64 physical_to_patch_in_first_stripe = 0;
5356         u64 raid56_full_stripe_start = (u64)-1;
5357
5358         read_lock(&em_tree->lock);
5359         em = lookup_extent_mapping(em_tree, logical, *length);
5360         read_unlock(&em_tree->lock);
5361
5362         if (!em) {
5363                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5364                         logical, *length);
5365                 return -EINVAL;
5366         }
5367
5368         if (em->start > logical || em->start + em->len < logical) {
5369                 btrfs_crit(fs_info,
5370                            "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5371                            logical, em->start, em->start + em->len);
5372                 free_extent_map(em);
5373                 return -EINVAL;
5374         }
5375
5376         map = em->map_lookup;
5377         offset = logical - em->start;
5378
5379         stripe_len = map->stripe_len;
5380         stripe_nr = offset;
5381         /*
5382          * stripe_nr counts the total number of stripes we have to stride
5383          * to get to this block
5384          */
5385         stripe_nr = div64_u64(stripe_nr, stripe_len);
5386
5387         stripe_offset = stripe_nr * stripe_len;
5388         if (offset < stripe_offset) {
5389                 btrfs_crit(fs_info,
5390                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5391                            stripe_offset, offset, em->start, logical,
5392                            stripe_len);
5393                 free_extent_map(em);
5394                 return -EINVAL;
5395         }
5396
5397         /* stripe_offset is the offset of this block in its stripe*/
5398         stripe_offset = offset - stripe_offset;
5399
5400         /* if we're here for raid56, we need to know the stripe aligned start */
5401         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5402                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5403                 raid56_full_stripe_start = offset;
5404
5405                 /* allow a write of a full stripe, but make sure we don't
5406                  * allow straddling of stripes
5407                  */
5408                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5409                                 full_stripe_len);
5410                 raid56_full_stripe_start *= full_stripe_len;
5411         }
5412
5413         if (op == REQ_OP_DISCARD) {
5414                 /* we don't discard raid56 yet */
5415                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5416                         ret = -EOPNOTSUPP;
5417                         goto out;
5418                 }
5419                 *length = min_t(u64, em->len - offset, *length);
5420         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5421                 u64 max_len;
5422                 /* For writes to RAID[56], allow a full stripeset across all disks.
5423                    For other RAID types and for RAID[56] reads, just allow a single
5424                    stripe (on a single disk). */
5425                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5426                     (op == REQ_OP_WRITE)) {
5427                         max_len = stripe_len * nr_data_stripes(map) -
5428                                 (offset - raid56_full_stripe_start);
5429                 } else {
5430                         /* we limit the length of each bio to what fits in a stripe */
5431                         max_len = stripe_len - stripe_offset;
5432                 }
5433                 *length = min_t(u64, em->len - offset, max_len);
5434         } else {
5435                 *length = em->len - offset;
5436         }
5437
5438         /* This is for when we're called from btrfs_merge_bio_hook() and all
5439            it cares about is the length */
5440         if (!bbio_ret)
5441                 goto out;
5442
5443         btrfs_dev_replace_lock(dev_replace, 0);
5444         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5445         if (!dev_replace_is_ongoing)
5446                 btrfs_dev_replace_unlock(dev_replace, 0);
5447         else
5448                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5449
5450         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5451             op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5452             op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5453                 /*
5454                  * in dev-replace case, for repair case (that's the only
5455                  * case where the mirror is selected explicitly when
5456                  * calling btrfs_map_block), blocks left of the left cursor
5457                  * can also be read from the target drive.
5458                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5459                  * the last one to the array of stripes. For READ, it also
5460                  * needs to be supported using the same mirror number.
5461                  * If the requested block is not left of the left cursor,
5462                  * EIO is returned. This can happen because btrfs_num_copies()
5463                  * returns one more in the dev-replace case.
5464                  */
5465                 u64 tmp_length = *length;
5466                 struct btrfs_bio *tmp_bbio = NULL;
5467                 int tmp_num_stripes;
5468                 u64 srcdev_devid = dev_replace->srcdev->devid;
5469                 int index_srcdev = 0;
5470                 int found = 0;
5471                 u64 physical_of_found = 0;
5472
5473                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5474                              logical, &tmp_length, &tmp_bbio, 0, 0);
5475                 if (ret) {
5476                         WARN_ON(tmp_bbio != NULL);
5477                         goto out;
5478                 }
5479
5480                 tmp_num_stripes = tmp_bbio->num_stripes;
5481                 if (mirror_num > tmp_num_stripes) {
5482                         /*
5483                          * REQ_GET_READ_MIRRORS does not contain this
5484                          * mirror, that means that the requested area
5485                          * is not left of the left cursor
5486                          */
5487                         ret = -EIO;
5488                         btrfs_put_bbio(tmp_bbio);
5489                         goto out;
5490                 }
5491
5492                 /*
5493                  * process the rest of the function using the mirror_num
5494                  * of the source drive. Therefore look it up first.
5495                  * At the end, patch the device pointer to the one of the
5496                  * target drive.
5497                  */
5498                 for (i = 0; i < tmp_num_stripes; i++) {
5499                         if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5500                                 continue;
5501
5502                         /*
5503                          * In case of DUP, in order to keep it simple, only add
5504                          * the mirror with the lowest physical address
5505                          */
5506                         if (found &&
5507                             physical_of_found <= tmp_bbio->stripes[i].physical)
5508                                 continue;
5509
5510                         index_srcdev = i;
5511                         found = 1;
5512                         physical_of_found = tmp_bbio->stripes[i].physical;
5513                 }
5514
5515                 btrfs_put_bbio(tmp_bbio);
5516
5517                 if (!found) {
5518                         WARN_ON(1);
5519                         ret = -EIO;
5520                         goto out;
5521                 }
5522
5523                 mirror_num = index_srcdev + 1;
5524                 patch_the_first_stripe_for_dev_replace = 1;
5525                 physical_to_patch_in_first_stripe = physical_of_found;
5526         } else if (mirror_num > map->num_stripes) {
5527                 mirror_num = 0;
5528         }
5529
5530         num_stripes = 1;
5531         stripe_index = 0;
5532         stripe_nr_orig = stripe_nr;
5533         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5534         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5535         stripe_end_offset = stripe_nr_end * map->stripe_len -
5536                             (offset + *length);
5537
5538         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5539                 if (op == REQ_OP_DISCARD)
5540                         num_stripes = min_t(u64, map->num_stripes,
5541                                             stripe_nr_end - stripe_nr_orig);
5542                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5543                                 &stripe_index);
5544                 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5545                     op != REQ_GET_READ_MIRRORS)
5546                         mirror_num = 1;
5547         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5548                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5549                     op == REQ_GET_READ_MIRRORS)
5550                         num_stripes = map->num_stripes;
5551                 else if (mirror_num)
5552                         stripe_index = mirror_num - 1;
5553                 else {
5554                         stripe_index = find_live_mirror(fs_info, map, 0,
5555                                             map->num_stripes,
5556                                             current->pid % map->num_stripes,
5557                                             dev_replace_is_ongoing);
5558                         mirror_num = stripe_index + 1;
5559                 }
5560
5561         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5562                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5563                     op == REQ_GET_READ_MIRRORS) {
5564                         num_stripes = map->num_stripes;
5565                 } else if (mirror_num) {
5566                         stripe_index = mirror_num - 1;
5567                 } else {
5568                         mirror_num = 1;
5569                 }
5570
5571         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5572                 u32 factor = map->num_stripes / map->sub_stripes;
5573
5574                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5575                 stripe_index *= map->sub_stripes;
5576
5577                 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5578                         num_stripes = map->sub_stripes;
5579                 else if (op == REQ_OP_DISCARD)
5580                         num_stripes = min_t(u64, map->sub_stripes *
5581                                             (stripe_nr_end - stripe_nr_orig),
5582                                             map->num_stripes);
5583                 else if (mirror_num)
5584                         stripe_index += mirror_num - 1;
5585                 else {
5586                         int old_stripe_index = stripe_index;
5587                         stripe_index = find_live_mirror(fs_info, map,
5588                                               stripe_index,
5589                                               map->sub_stripes, stripe_index +
5590                                               current->pid % map->sub_stripes,
5591                                               dev_replace_is_ongoing);
5592                         mirror_num = stripe_index - old_stripe_index + 1;
5593                 }
5594
5595         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5596                 if (need_raid_map &&
5597                     (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5598                      mirror_num > 1)) {
5599                         /* push stripe_nr back to the start of the full stripe */
5600                         stripe_nr = div_u64(raid56_full_stripe_start,
5601                                         stripe_len * nr_data_stripes(map));
5602
5603                         /* RAID[56] write or recovery. Return all stripes */
5604                         num_stripes = map->num_stripes;
5605                         max_errors = nr_parity_stripes(map);
5606
5607                         *length = map->stripe_len;
5608                         stripe_index = 0;
5609                         stripe_offset = 0;
5610                 } else {
5611                         /*
5612                          * Mirror #0 or #1 means the original data block.
5613                          * Mirror #2 is RAID5 parity block.
5614                          * Mirror #3 is RAID6 Q block.
5615                          */
5616                         stripe_nr = div_u64_rem(stripe_nr,
5617                                         nr_data_stripes(map), &stripe_index);
5618                         if (mirror_num > 1)
5619                                 stripe_index = nr_data_stripes(map) +
5620                                                 mirror_num - 2;
5621
5622                         /* We distribute the parity blocks across stripes */
5623                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5624                                         &stripe_index);
5625                         if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5626                             op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5627                                 mirror_num = 1;
5628                 }
5629         } else {
5630                 /*
5631                  * after this, stripe_nr is the number of stripes on this
5632                  * device we have to walk to find the data, and stripe_index is
5633                  * the number of our device in the stripe array
5634                  */
5635                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5636                                 &stripe_index);
5637                 mirror_num = stripe_index + 1;
5638         }
5639         if (stripe_index >= map->num_stripes) {
5640                 btrfs_crit(fs_info,
5641                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5642                            stripe_index, map->num_stripes);
5643                 ret = -EINVAL;
5644                 goto out;
5645         }
5646
5647         num_alloc_stripes = num_stripes;
5648         if (dev_replace_is_ongoing) {
5649                 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5650                         num_alloc_stripes <<= 1;
5651                 if (op == REQ_GET_READ_MIRRORS)
5652                         num_alloc_stripes++;
5653                 tgtdev_indexes = num_stripes;
5654         }
5655
5656         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5657         if (!bbio) {
5658                 ret = -ENOMEM;
5659                 goto out;
5660         }
5661         if (dev_replace_is_ongoing)
5662                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5663
5664         /* build raid_map */
5665         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5666             need_raid_map &&
5667             ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5668             mirror_num > 1)) {
5669                 u64 tmp;
5670                 unsigned rot;
5671
5672                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5673                                  sizeof(struct btrfs_bio_stripe) *
5674                                  num_alloc_stripes +
5675                                  sizeof(int) * tgtdev_indexes);
5676
5677                 /* Work out the disk rotation on this stripe-set */
5678                 div_u64_rem(stripe_nr, num_stripes, &rot);
5679
5680                 /* Fill in the logical address of each stripe */
5681                 tmp = stripe_nr * nr_data_stripes(map);
5682                 for (i = 0; i < nr_data_stripes(map); i++)
5683                         bbio->raid_map[(i+rot) % num_stripes] =
5684                                 em->start + (tmp + i) * map->stripe_len;
5685
5686                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5687                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5688                         bbio->raid_map[(i+rot+1) % num_stripes] =
5689                                 RAID6_Q_STRIPE;
5690         }
5691
5692         if (op == REQ_OP_DISCARD) {
5693                 u32 factor = 0;
5694                 u32 sub_stripes = 0;
5695                 u64 stripes_per_dev = 0;
5696                 u32 remaining_stripes = 0;
5697                 u32 last_stripe = 0;
5698
5699                 if (map->type &
5700                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5701                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5702                                 sub_stripes = 1;
5703                         else
5704                                 sub_stripes = map->sub_stripes;
5705
5706                         factor = map->num_stripes / sub_stripes;
5707                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5708                                                       stripe_nr_orig,
5709                                                       factor,
5710                                                       &remaining_stripes);
5711                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5712                         last_stripe *= sub_stripes;
5713                 }
5714
5715                 for (i = 0; i < num_stripes; i++) {
5716                         bbio->stripes[i].physical =
5717                                 map->stripes[stripe_index].physical +
5718                                 stripe_offset + stripe_nr * map->stripe_len;
5719                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5720
5721                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5722                                          BTRFS_BLOCK_GROUP_RAID10)) {
5723                                 bbio->stripes[i].length = stripes_per_dev *
5724                                                           map->stripe_len;
5725
5726                                 if (i / sub_stripes < remaining_stripes)
5727                                         bbio->stripes[i].length +=
5728                                                 map->stripe_len;
5729
5730                                 /*
5731                                  * Special for the first stripe and
5732                                  * the last stripe:
5733                                  *
5734                                  * |-------|...|-------|
5735                                  *     |----------|
5736                                  *    off     end_off
5737                                  */
5738                                 if (i < sub_stripes)
5739                                         bbio->stripes[i].length -=
5740                                                 stripe_offset;
5741
5742                                 if (stripe_index >= last_stripe &&
5743                                     stripe_index <= (last_stripe +
5744                                                      sub_stripes - 1))
5745                                         bbio->stripes[i].length -=
5746                                                 stripe_end_offset;
5747
5748                                 if (i == sub_stripes - 1)
5749                                         stripe_offset = 0;
5750                         } else
5751                                 bbio->stripes[i].length = *length;
5752
5753                         stripe_index++;
5754                         if (stripe_index == map->num_stripes) {
5755                                 /* This could only happen for RAID0/10 */
5756                                 stripe_index = 0;
5757                                 stripe_nr++;
5758                         }
5759                 }
5760         } else {
5761                 for (i = 0; i < num_stripes; i++) {
5762                         bbio->stripes[i].physical =
5763                                 map->stripes[stripe_index].physical +
5764                                 stripe_offset +
5765                                 stripe_nr * map->stripe_len;
5766                         bbio->stripes[i].dev =
5767                                 map->stripes[stripe_index].dev;
5768                         stripe_index++;
5769                 }
5770         }
5771
5772         if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5773                 max_errors = btrfs_chunk_max_errors(map);
5774
5775         if (bbio->raid_map)
5776                 sort_parity_stripes(bbio, num_stripes);
5777
5778         tgtdev_indexes = 0;
5779         if (dev_replace_is_ongoing &&
5780            (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5781             dev_replace->tgtdev != NULL) {
5782                 int index_where_to_add;
5783                 u64 srcdev_devid = dev_replace->srcdev->devid;
5784
5785                 /*
5786                  * duplicate the write operations while the dev replace
5787                  * procedure is running. Since the copying of the old disk
5788                  * to the new disk takes place at run time while the
5789                  * filesystem is mounted writable, the regular write
5790                  * operations to the old disk have to be duplicated to go
5791                  * to the new disk as well.
5792                  * Note that device->missing is handled by the caller, and
5793                  * that the write to the old disk is already set up in the
5794                  * stripes array.
5795                  */
5796                 index_where_to_add = num_stripes;
5797                 for (i = 0; i < num_stripes; i++) {
5798                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5799                                 /* write to new disk, too */
5800                                 struct btrfs_bio_stripe *new =
5801                                         bbio->stripes + index_where_to_add;
5802                                 struct btrfs_bio_stripe *old =
5803                                         bbio->stripes + i;
5804
5805                                 new->physical = old->physical;
5806                                 new->length = old->length;
5807                                 new->dev = dev_replace->tgtdev;
5808                                 bbio->tgtdev_map[i] = index_where_to_add;
5809                                 index_where_to_add++;
5810                                 max_errors++;
5811                                 tgtdev_indexes++;
5812                         }
5813                 }
5814                 num_stripes = index_where_to_add;
5815         } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5816                    dev_replace->tgtdev != NULL) {
5817                 u64 srcdev_devid = dev_replace->srcdev->devid;
5818                 int index_srcdev = 0;
5819                 int found = 0;
5820                 u64 physical_of_found = 0;
5821
5822                 /*
5823                  * During the dev-replace procedure, the target drive can
5824                  * also be used to read data in case it is needed to repair
5825                  * a corrupt block elsewhere. This is possible if the
5826                  * requested area is left of the left cursor. In this area,
5827                  * the target drive is a full copy of the source drive.
5828                  */
5829                 for (i = 0; i < num_stripes; i++) {
5830                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5831                                 /*
5832                                  * In case of DUP, in order to keep it
5833                                  * simple, only add the mirror with the
5834                                  * lowest physical address
5835                                  */
5836                                 if (found &&
5837                                     physical_of_found <=
5838                                      bbio->stripes[i].physical)
5839                                         continue;
5840                                 index_srcdev = i;
5841                                 found = 1;
5842                                 physical_of_found = bbio->stripes[i].physical;
5843                         }
5844                 }
5845                 if (found) {
5846                         struct btrfs_bio_stripe *tgtdev_stripe =
5847                                 bbio->stripes + num_stripes;
5848
5849                         tgtdev_stripe->physical = physical_of_found;
5850                         tgtdev_stripe->length =
5851                                 bbio->stripes[index_srcdev].length;
5852                         tgtdev_stripe->dev = dev_replace->tgtdev;
5853                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5854
5855                         tgtdev_indexes++;
5856                         num_stripes++;
5857                 }
5858         }
5859
5860         *bbio_ret = bbio;
5861         bbio->map_type = map->type;
5862         bbio->num_stripes = num_stripes;
5863         bbio->max_errors = max_errors;
5864         bbio->mirror_num = mirror_num;
5865         bbio->num_tgtdevs = tgtdev_indexes;
5866
5867         /*
5868          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5869          * mirror_num == num_stripes + 1 && dev_replace target drive is
5870          * available as a mirror
5871          */
5872         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5873                 WARN_ON(num_stripes > 1);
5874                 bbio->stripes[0].dev = dev_replace->tgtdev;
5875                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5876                 bbio->mirror_num = map->num_stripes + 1;
5877         }
5878 out:
5879         if (dev_replace_is_ongoing) {
5880                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5881                 btrfs_dev_replace_unlock(dev_replace, 0);
5882         }
5883         free_extent_map(em);
5884         return ret;
5885 }
5886
5887 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5888                       u64 logical, u64 *length,
5889                       struct btrfs_bio **bbio_ret, int mirror_num)
5890 {
5891         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5892                                  mirror_num, 0);
5893 }
5894
5895 /* For Scrub/replace */
5896 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5897                      u64 logical, u64 *length,
5898                      struct btrfs_bio **bbio_ret, int mirror_num,
5899                      int need_raid_map)
5900 {
5901         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5902                                  mirror_num, need_raid_map);
5903 }
5904
5905 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5906                      u64 chunk_start, u64 physical, u64 devid,
5907                      u64 **logical, int *naddrs, int *stripe_len)
5908 {
5909         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5910         struct extent_map_tree *em_tree = &map_tree->map_tree;
5911         struct extent_map *em;
5912         struct map_lookup *map;
5913         u64 *buf;
5914         u64 bytenr;
5915         u64 length;
5916         u64 stripe_nr;
5917         u64 rmap_len;
5918         int i, j, nr = 0;
5919
5920         read_lock(&em_tree->lock);
5921         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5922         read_unlock(&em_tree->lock);
5923
5924         if (!em) {
5925                 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5926                         chunk_start);
5927                 return -EIO;
5928         }
5929
5930         if (em->start != chunk_start) {
5931                 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5932                        em->start, chunk_start);
5933                 free_extent_map(em);
5934                 return -EIO;
5935         }
5936         map = em->map_lookup;
5937
5938         length = em->len;
5939         rmap_len = map->stripe_len;
5940
5941         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5942                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5943         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5944                 length = div_u64(length, map->num_stripes);
5945         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5946                 length = div_u64(length, nr_data_stripes(map));
5947                 rmap_len = map->stripe_len * nr_data_stripes(map);
5948         }
5949
5950         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5951         BUG_ON(!buf); /* -ENOMEM */
5952
5953         for (i = 0; i < map->num_stripes; i++) {
5954                 if (devid && map->stripes[i].dev->devid != devid)
5955                         continue;
5956                 if (map->stripes[i].physical > physical ||
5957                     map->stripes[i].physical + length <= physical)
5958                         continue;
5959
5960                 stripe_nr = physical - map->stripes[i].physical;
5961                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5962
5963                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5964                         stripe_nr = stripe_nr * map->num_stripes + i;
5965                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5966                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5967                         stripe_nr = stripe_nr * map->num_stripes + i;
5968                 } /* else if RAID[56], multiply by nr_data_stripes().
5969                    * Alternatively, just use rmap_len below instead of
5970                    * map->stripe_len */
5971
5972                 bytenr = chunk_start + stripe_nr * rmap_len;
5973                 WARN_ON(nr >= map->num_stripes);
5974                 for (j = 0; j < nr; j++) {
5975                         if (buf[j] == bytenr)
5976                                 break;
5977                 }
5978                 if (j == nr) {
5979                         WARN_ON(nr >= map->num_stripes);
5980                         buf[nr++] = bytenr;
5981                 }
5982         }
5983
5984         *logical = buf;
5985         *naddrs = nr;
5986         *stripe_len = rmap_len;
5987
5988         free_extent_map(em);
5989         return 0;
5990 }
5991
5992 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5993 {
5994         bio->bi_private = bbio->private;
5995         bio->bi_end_io = bbio->end_io;
5996         bio_endio(bio);
5997
5998         btrfs_put_bbio(bbio);
5999 }
6000
6001 static void btrfs_end_bio(struct bio *bio)
6002 {
6003         struct btrfs_bio *bbio = bio->bi_private;
6004         int is_orig_bio = 0;
6005
6006         if (bio->bi_error) {
6007                 atomic_inc(&bbio->error);
6008                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6009                         unsigned int stripe_index =
6010                                 btrfs_io_bio(bio)->stripe_index;
6011                         struct btrfs_device *dev;
6012
6013                         BUG_ON(stripe_index >= bbio->num_stripes);
6014                         dev = bbio->stripes[stripe_index].dev;
6015                         if (dev->bdev) {
6016                                 if (bio_op(bio) == REQ_OP_WRITE)
6017                                         btrfs_dev_stat_inc(dev,
6018                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6019                                 else
6020                                         btrfs_dev_stat_inc(dev,
6021                                                 BTRFS_DEV_STAT_READ_ERRS);
6022                                 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6023                                         btrfs_dev_stat_inc(dev,
6024                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6025                                 btrfs_dev_stat_print_on_error(dev);
6026                         }
6027                 }
6028         }
6029
6030         if (bio == bbio->orig_bio)
6031                 is_orig_bio = 1;
6032
6033         btrfs_bio_counter_dec(bbio->fs_info);
6034
6035         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6036                 if (!is_orig_bio) {
6037                         bio_put(bio);
6038                         bio = bbio->orig_bio;
6039                 }
6040
6041                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6042                 /* only send an error to the higher layers if it is
6043                  * beyond the tolerance of the btrfs bio
6044                  */
6045                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6046                         bio->bi_error = -EIO;
6047                 } else {
6048                         /*
6049                          * this bio is actually up to date, we didn't
6050                          * go over the max number of errors
6051                          */
6052                         bio->bi_error = 0;
6053                 }
6054
6055                 btrfs_end_bbio(bbio, bio);
6056         } else if (!is_orig_bio) {
6057                 bio_put(bio);
6058         }
6059 }
6060
6061 /*
6062  * see run_scheduled_bios for a description of why bios are collected for
6063  * async submit.
6064  *
6065  * This will add one bio to the pending list for a device and make sure
6066  * the work struct is scheduled.
6067  */
6068 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6069                                         struct btrfs_device *device,
6070                                         struct bio *bio)
6071 {
6072         int should_queue = 1;
6073         struct btrfs_pending_bios *pending_bios;
6074
6075         if (device->missing || !device->bdev) {
6076                 bio_io_error(bio);
6077                 return;
6078         }
6079
6080         /* don't bother with additional async steps for reads, right now */
6081         if (bio_op(bio) == REQ_OP_READ) {
6082                 bio_get(bio);
6083                 btrfsic_submit_bio(bio);
6084                 bio_put(bio);
6085                 return;
6086         }
6087
6088         /*
6089          * nr_async_bios allows us to reliably return congestion to the
6090          * higher layers.  Otherwise, the async bio makes it appear we have
6091          * made progress against dirty pages when we've really just put it
6092          * on a queue for later
6093          */
6094         atomic_inc(&root->fs_info->nr_async_bios);
6095         WARN_ON(bio->bi_next);
6096         bio->bi_next = NULL;
6097
6098         spin_lock(&device->io_lock);
6099         if (bio->bi_opf & REQ_SYNC)
6100                 pending_bios = &device->pending_sync_bios;
6101         else
6102                 pending_bios = &device->pending_bios;
6103
6104         if (pending_bios->tail)
6105                 pending_bios->tail->bi_next = bio;
6106
6107         pending_bios->tail = bio;
6108         if (!pending_bios->head)
6109                 pending_bios->head = bio;
6110         if (device->running_pending)
6111                 should_queue = 0;
6112
6113         spin_unlock(&device->io_lock);
6114
6115         if (should_queue)
6116                 btrfs_queue_work(root->fs_info->submit_workers,
6117                                  &device->work);
6118 }
6119
6120 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6121                               struct bio *bio, u64 physical, int dev_nr,
6122                               int async)
6123 {
6124         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6125
6126         bio->bi_private = bbio;
6127         btrfs_io_bio(bio)->stripe_index = dev_nr;
6128         bio->bi_end_io = btrfs_end_bio;
6129         bio->bi_iter.bi_sector = physical >> 9;
6130 #ifdef DEBUG
6131         {
6132                 struct rcu_string *name;
6133
6134                 rcu_read_lock();
6135                 name = rcu_dereference(dev->name);
6136                 btrfs_debug(fs_info,
6137                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6138                         bio_op(bio), bio->bi_opf,
6139                         (u64)bio->bi_iter.bi_sector,
6140                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6141                         bio->bi_iter.bi_size);
6142                 rcu_read_unlock();
6143         }
6144 #endif
6145         bio->bi_bdev = dev->bdev;
6146
6147         btrfs_bio_counter_inc_noblocked(root->fs_info);
6148
6149         if (async)
6150                 btrfs_schedule_bio(root, dev, bio);
6151         else
6152                 btrfsic_submit_bio(bio);
6153 }
6154
6155 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6156 {
6157         atomic_inc(&bbio->error);
6158         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6159                 /* Should be the original bio. */
6160                 WARN_ON(bio != bbio->orig_bio);
6161
6162                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6163                 bio->bi_iter.bi_sector = logical >> 9;
6164                 bio->bi_error = -EIO;
6165                 btrfs_end_bbio(bbio, bio);
6166         }
6167 }
6168
6169 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6170                   int mirror_num, int async_submit)
6171 {
6172         struct btrfs_device *dev;
6173         struct bio *first_bio = bio;
6174         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6175         u64 length = 0;
6176         u64 map_length;
6177         int ret;
6178         int dev_nr;
6179         int total_devs;
6180         struct btrfs_bio *bbio = NULL;
6181
6182         length = bio->bi_iter.bi_size;
6183         map_length = length;
6184
6185         btrfs_bio_counter_inc_blocked(root->fs_info);
6186         ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6187                                 &map_length, &bbio, mirror_num, 1);
6188         if (ret) {
6189                 btrfs_bio_counter_dec(root->fs_info);
6190                 return ret;
6191         }
6192
6193         total_devs = bbio->num_stripes;
6194         bbio->orig_bio = first_bio;
6195         bbio->private = first_bio->bi_private;
6196         bbio->end_io = first_bio->bi_end_io;
6197         bbio->fs_info = root->fs_info;
6198         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6199
6200         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6201             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6202                 /* In this case, map_length has been set to the length of
6203                    a single stripe; not the whole write */
6204                 if (bio_op(bio) == REQ_OP_WRITE) {
6205                         ret = raid56_parity_write(root, bio, bbio, map_length);
6206                 } else {
6207                         ret = raid56_parity_recover(root, bio, bbio, map_length,
6208                                                     mirror_num, 1);
6209                 }
6210
6211                 btrfs_bio_counter_dec(root->fs_info);
6212                 return ret;
6213         }
6214
6215         if (map_length < length) {
6216                 btrfs_crit(root->fs_info,
6217                            "mapping failed logical %llu bio len %llu len %llu",
6218                            logical, length, map_length);
6219                 BUG();
6220         }
6221
6222         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6223                 dev = bbio->stripes[dev_nr].dev;
6224                 if (!dev || !dev->bdev ||
6225                     (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6226                         bbio_error(bbio, first_bio, logical);
6227                         continue;
6228                 }
6229
6230                 if (dev_nr < total_devs - 1) {
6231                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6232                         BUG_ON(!bio); /* -ENOMEM */
6233                 } else
6234                         bio = first_bio;
6235
6236                 submit_stripe_bio(root, bbio, bio,
6237                                   bbio->stripes[dev_nr].physical, dev_nr,
6238                                   async_submit);
6239         }
6240         btrfs_bio_counter_dec(root->fs_info);
6241         return 0;
6242 }
6243
6244 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6245                                        u8 *uuid, u8 *fsid)
6246 {
6247         struct btrfs_device *device;
6248         struct btrfs_fs_devices *cur_devices;
6249
6250         cur_devices = fs_info->fs_devices;
6251         while (cur_devices) {
6252                 if (!fsid ||
6253                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6254                         device = __find_device(&cur_devices->devices,
6255                                                devid, uuid);
6256                         if (device)
6257                                 return device;
6258                 }
6259                 cur_devices = cur_devices->seed;
6260         }
6261         return NULL;
6262 }
6263
6264 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6265                                             struct btrfs_fs_devices *fs_devices,
6266                                             u64 devid, u8 *dev_uuid)
6267 {
6268         struct btrfs_device *device;
6269
6270         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6271         if (IS_ERR(device))
6272                 return NULL;
6273
6274         list_add(&device->dev_list, &fs_devices->devices);
6275         device->fs_devices = fs_devices;
6276         fs_devices->num_devices++;
6277
6278         device->missing = 1;
6279         fs_devices->missing_devices++;
6280
6281         return device;
6282 }
6283
6284 /**
6285  * btrfs_alloc_device - allocate struct btrfs_device
6286  * @fs_info:    used only for generating a new devid, can be NULL if
6287  *              devid is provided (i.e. @devid != NULL).
6288  * @devid:      a pointer to devid for this device.  If NULL a new devid
6289  *              is generated.
6290  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6291  *              is generated.
6292  *
6293  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6294  * on error.  Returned struct is not linked onto any lists and can be
6295  * destroyed with kfree() right away.
6296  */
6297 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6298                                         const u64 *devid,
6299                                         const u8 *uuid)
6300 {
6301         struct btrfs_device *dev;
6302         u64 tmp;
6303
6304         if (WARN_ON(!devid && !fs_info))
6305                 return ERR_PTR(-EINVAL);
6306
6307         dev = __alloc_device();
6308         if (IS_ERR(dev))
6309                 return dev;
6310
6311         if (devid)
6312                 tmp = *devid;
6313         else {
6314                 int ret;
6315
6316                 ret = find_next_devid(fs_info, &tmp);
6317                 if (ret) {
6318                         kfree(dev);
6319                         return ERR_PTR(ret);
6320                 }
6321         }
6322         dev->devid = tmp;
6323
6324         if (uuid)
6325                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6326         else
6327                 generate_random_uuid(dev->uuid);
6328
6329         btrfs_init_work(&dev->work, btrfs_submit_helper,
6330                         pending_bios_fn, NULL, NULL);
6331
6332         return dev;
6333 }
6334
6335 /* Return -EIO if any error, otherwise return 0. */
6336 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6337                                    struct extent_buffer *leaf,
6338                                    struct btrfs_chunk *chunk, u64 logical)
6339 {
6340         u64 length;
6341         u64 stripe_len;
6342         u16 num_stripes;
6343         u16 sub_stripes;
6344         u64 type;
6345
6346         length = btrfs_chunk_length(leaf, chunk);
6347         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6348         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6349         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6350         type = btrfs_chunk_type(leaf, chunk);
6351
6352         if (!num_stripes) {
6353                 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6354                           num_stripes);
6355                 return -EIO;
6356         }
6357         if (!IS_ALIGNED(logical, root->sectorsize)) {
6358                 btrfs_err(root->fs_info,
6359                           "invalid chunk logical %llu", logical);
6360                 return -EIO;
6361         }
6362         if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6363                 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6364                           btrfs_chunk_sector_size(leaf, chunk));
6365                 return -EIO;
6366         }
6367         if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6368                 btrfs_err(root->fs_info,
6369                         "invalid chunk length %llu", length);
6370                 return -EIO;
6371         }
6372         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6373                 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6374                           stripe_len);
6375                 return -EIO;
6376         }
6377         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6378             type) {
6379                 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6380                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6381                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6382                           btrfs_chunk_type(leaf, chunk));
6383                 return -EIO;
6384         }
6385         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6386             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6387             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6388             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6389             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6390             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6391              num_stripes != 1)) {
6392                 btrfs_err(root->fs_info,
6393                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6394                         num_stripes, sub_stripes,
6395                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6396                 return -EIO;
6397         }
6398
6399         return 0;
6400 }
6401
6402 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6403                           struct extent_buffer *leaf,
6404                           struct btrfs_chunk *chunk)
6405 {
6406         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6407         struct map_lookup *map;
6408         struct extent_map *em;
6409         u64 logical;
6410         u64 length;
6411         u64 stripe_len;
6412         u64 devid;
6413         u8 uuid[BTRFS_UUID_SIZE];
6414         int num_stripes;
6415         int ret;
6416         int i;
6417
6418         logical = key->offset;
6419         length = btrfs_chunk_length(leaf, chunk);
6420         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6421         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6422
6423         ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6424         if (ret)
6425                 return ret;
6426
6427         read_lock(&map_tree->map_tree.lock);
6428         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6429         read_unlock(&map_tree->map_tree.lock);
6430
6431         /* already mapped? */
6432         if (em && em->start <= logical && em->start + em->len > logical) {
6433                 free_extent_map(em);
6434                 return 0;
6435         } else if (em) {
6436                 free_extent_map(em);
6437         }
6438
6439         em = alloc_extent_map();
6440         if (!em)
6441                 return -ENOMEM;
6442         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6443         if (!map) {
6444                 free_extent_map(em);
6445                 return -ENOMEM;
6446         }
6447
6448         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6449         em->map_lookup = map;
6450         em->start = logical;
6451         em->len = length;
6452         em->orig_start = 0;
6453         em->block_start = 0;
6454         em->block_len = em->len;
6455
6456         map->num_stripes = num_stripes;
6457         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6458         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6459         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6460         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6461         map->type = btrfs_chunk_type(leaf, chunk);
6462         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6463         for (i = 0; i < num_stripes; i++) {
6464                 map->stripes[i].physical =
6465                         btrfs_stripe_offset_nr(leaf, chunk, i);
6466                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6467                 read_extent_buffer(leaf, uuid, (unsigned long)
6468                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6469                                    BTRFS_UUID_SIZE);
6470                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6471                                                         uuid, NULL);
6472                 if (!map->stripes[i].dev &&
6473                     !btrfs_test_opt(root->fs_info, DEGRADED)) {
6474                         free_extent_map(em);
6475                         return -EIO;
6476                 }
6477                 if (!map->stripes[i].dev) {
6478                         map->stripes[i].dev =
6479                                 add_missing_dev(root, root->fs_info->fs_devices,
6480                                                 devid, uuid);
6481                         if (!map->stripes[i].dev) {
6482                                 free_extent_map(em);
6483                                 return -EIO;
6484                         }
6485                         btrfs_warn(root->fs_info,
6486                                    "devid %llu uuid %pU is missing",
6487                                    devid, uuid);
6488                 }
6489                 map->stripes[i].dev->in_fs_metadata = 1;
6490         }
6491
6492         write_lock(&map_tree->map_tree.lock);
6493         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6494         write_unlock(&map_tree->map_tree.lock);
6495         BUG_ON(ret); /* Tree corruption */
6496         free_extent_map(em);
6497
6498         return 0;
6499 }
6500
6501 static void fill_device_from_item(struct extent_buffer *leaf,
6502                                  struct btrfs_dev_item *dev_item,
6503                                  struct btrfs_device *device)
6504 {
6505         unsigned long ptr;
6506
6507         device->devid = btrfs_device_id(leaf, dev_item);
6508         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6509         device->total_bytes = device->disk_total_bytes;
6510         device->commit_total_bytes = device->disk_total_bytes;
6511         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6512         device->commit_bytes_used = device->bytes_used;
6513         device->type = btrfs_device_type(leaf, dev_item);
6514         device->io_align = btrfs_device_io_align(leaf, dev_item);
6515         device->io_width = btrfs_device_io_width(leaf, dev_item);
6516         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6517         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6518         device->is_tgtdev_for_dev_replace = 0;
6519
6520         ptr = btrfs_device_uuid(dev_item);
6521         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6522 }
6523
6524 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6525                                                   u8 *fsid)
6526 {
6527         struct btrfs_fs_devices *fs_devices;
6528         int ret;
6529
6530         BUG_ON(!mutex_is_locked(&uuid_mutex));
6531
6532         fs_devices = root->fs_info->fs_devices->seed;
6533         while (fs_devices) {
6534                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6535                         return fs_devices;
6536
6537                 fs_devices = fs_devices->seed;
6538         }
6539
6540         fs_devices = find_fsid(fsid);
6541         if (!fs_devices) {
6542                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6543                         return ERR_PTR(-ENOENT);
6544
6545                 fs_devices = alloc_fs_devices(fsid);
6546                 if (IS_ERR(fs_devices))
6547                         return fs_devices;
6548
6549                 fs_devices->seeding = 1;
6550                 fs_devices->opened = 1;
6551                 return fs_devices;
6552         }
6553
6554         fs_devices = clone_fs_devices(fs_devices);
6555         if (IS_ERR(fs_devices))
6556                 return fs_devices;
6557
6558         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6559                                    root->fs_info->bdev_holder);
6560         if (ret) {
6561                 free_fs_devices(fs_devices);
6562                 fs_devices = ERR_PTR(ret);
6563                 goto out;
6564         }
6565
6566         if (!fs_devices->seeding) {
6567                 __btrfs_close_devices(fs_devices);
6568                 free_fs_devices(fs_devices);
6569                 fs_devices = ERR_PTR(-EINVAL);
6570                 goto out;
6571         }
6572
6573         fs_devices->seed = root->fs_info->fs_devices->seed;
6574         root->fs_info->fs_devices->seed = fs_devices;
6575 out:
6576         return fs_devices;
6577 }
6578
6579 static int read_one_dev(struct btrfs_root *root,
6580                         struct extent_buffer *leaf,
6581                         struct btrfs_dev_item *dev_item)
6582 {
6583         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6584         struct btrfs_device *device;
6585         u64 devid;
6586         int ret;
6587         u8 fs_uuid[BTRFS_UUID_SIZE];
6588         u8 dev_uuid[BTRFS_UUID_SIZE];
6589
6590         devid = btrfs_device_id(leaf, dev_item);
6591         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6592                            BTRFS_UUID_SIZE);
6593         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6594                            BTRFS_UUID_SIZE);
6595
6596         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6597                 fs_devices = open_seed_devices(root, fs_uuid);
6598                 if (IS_ERR(fs_devices))
6599                         return PTR_ERR(fs_devices);
6600         }
6601
6602         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6603         if (!device) {
6604                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6605                         return -EIO;
6606
6607                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6608                 if (!device)
6609                         return -ENOMEM;
6610                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6611                                 devid, dev_uuid);
6612         } else {
6613                 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6614                         return -EIO;
6615
6616                 if(!device->bdev && !device->missing) {
6617                         /*
6618                          * this happens when a device that was properly setup
6619                          * in the device info lists suddenly goes bad.
6620                          * device->bdev is NULL, and so we have to set
6621                          * device->missing to one here
6622                          */
6623                         device->fs_devices->missing_devices++;
6624                         device->missing = 1;
6625                 }
6626
6627                 /* Move the device to its own fs_devices */
6628                 if (device->fs_devices != fs_devices) {
6629                         ASSERT(device->missing);
6630
6631                         list_move(&device->dev_list, &fs_devices->devices);
6632                         device->fs_devices->num_devices--;
6633                         fs_devices->num_devices++;
6634
6635                         device->fs_devices->missing_devices--;
6636                         fs_devices->missing_devices++;
6637
6638                         device->fs_devices = fs_devices;
6639                 }
6640         }
6641
6642         if (device->fs_devices != root->fs_info->fs_devices) {
6643                 BUG_ON(device->writeable);
6644                 if (device->generation !=
6645                     btrfs_device_generation(leaf, dev_item))
6646                         return -EINVAL;
6647         }
6648
6649         fill_device_from_item(leaf, dev_item, device);
6650         device->in_fs_metadata = 1;
6651         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6652                 device->fs_devices->total_rw_bytes += device->total_bytes;
6653                 spin_lock(&root->fs_info->free_chunk_lock);
6654                 root->fs_info->free_chunk_space += device->total_bytes -
6655                         device->bytes_used;
6656                 spin_unlock(&root->fs_info->free_chunk_lock);
6657         }
6658         ret = 0;
6659         return ret;
6660 }
6661
6662 int btrfs_read_sys_array(struct btrfs_root *root)
6663 {
6664         struct btrfs_fs_info *fs_info = root->fs_info;
6665         struct btrfs_super_block *super_copy = fs_info->super_copy;
6666         struct extent_buffer *sb;
6667         struct btrfs_disk_key *disk_key;
6668         struct btrfs_chunk *chunk;
6669         u8 *array_ptr;
6670         unsigned long sb_array_offset;
6671         int ret = 0;
6672         u32 num_stripes;
6673         u32 array_size;
6674         u32 len = 0;
6675         u32 cur_offset;
6676         u64 type;
6677         struct btrfs_key key;
6678
6679         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6680         /*
6681          * This will create extent buffer of nodesize, superblock size is
6682          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6683          * overallocate but we can keep it as-is, only the first page is used.
6684          */
6685         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6686         if (IS_ERR(sb))
6687                 return PTR_ERR(sb);
6688         set_extent_buffer_uptodate(sb);
6689         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6690         /*
6691          * The sb extent buffer is artificial and just used to read the system array.
6692          * set_extent_buffer_uptodate() call does not properly mark all it's
6693          * pages up-to-date when the page is larger: extent does not cover the
6694          * whole page and consequently check_page_uptodate does not find all
6695          * the page's extents up-to-date (the hole beyond sb),
6696          * write_extent_buffer then triggers a WARN_ON.
6697          *
6698          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6699          * but sb spans only this function. Add an explicit SetPageUptodate call
6700          * to silence the warning eg. on PowerPC 64.
6701          */
6702         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6703                 SetPageUptodate(sb->pages[0]);
6704
6705         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6706         array_size = btrfs_super_sys_array_size(super_copy);
6707
6708         array_ptr = super_copy->sys_chunk_array;
6709         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6710         cur_offset = 0;
6711
6712         while (cur_offset < array_size) {
6713                 disk_key = (struct btrfs_disk_key *)array_ptr;
6714                 len = sizeof(*disk_key);
6715                 if (cur_offset + len > array_size)
6716                         goto out_short_read;
6717
6718                 btrfs_disk_key_to_cpu(&key, disk_key);
6719
6720                 array_ptr += len;
6721                 sb_array_offset += len;
6722                 cur_offset += len;
6723
6724                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6725                         chunk = (struct btrfs_chunk *)sb_array_offset;
6726                         /*
6727                          * At least one btrfs_chunk with one stripe must be
6728                          * present, exact stripe count check comes afterwards
6729                          */
6730                         len = btrfs_chunk_item_size(1);
6731                         if (cur_offset + len > array_size)
6732                                 goto out_short_read;
6733
6734                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6735                         if (!num_stripes) {
6736                                 btrfs_err(fs_info,
6737                                         "invalid number of stripes %u in sys_array at offset %u",
6738                                         num_stripes, cur_offset);
6739                                 ret = -EIO;
6740                                 break;
6741                         }
6742
6743                         type = btrfs_chunk_type(sb, chunk);
6744                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6745                                 btrfs_err(fs_info,
6746                             "invalid chunk type %llu in sys_array at offset %u",
6747                                         type, cur_offset);
6748                                 ret = -EIO;
6749                                 break;
6750                         }
6751
6752                         len = btrfs_chunk_item_size(num_stripes);
6753                         if (cur_offset + len > array_size)
6754                                 goto out_short_read;
6755
6756                         ret = read_one_chunk(root, &key, sb, chunk);
6757                         if (ret)
6758                                 break;
6759                 } else {
6760                         btrfs_err(fs_info,
6761                             "unexpected item type %u in sys_array at offset %u",
6762                                   (u32)key.type, cur_offset);
6763                         ret = -EIO;
6764                         break;
6765                 }
6766                 array_ptr += len;
6767                 sb_array_offset += len;
6768                 cur_offset += len;
6769         }
6770         clear_extent_buffer_uptodate(sb);
6771         free_extent_buffer_stale(sb);
6772         return ret;
6773
6774 out_short_read:
6775         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6776                         len, cur_offset);
6777         clear_extent_buffer_uptodate(sb);
6778         free_extent_buffer_stale(sb);
6779         return -EIO;
6780 }
6781
6782 int btrfs_read_chunk_tree(struct btrfs_root *root)
6783 {
6784         struct btrfs_path *path;
6785         struct extent_buffer *leaf;
6786         struct btrfs_key key;
6787         struct btrfs_key found_key;
6788         int ret;
6789         int slot;
6790         u64 total_dev = 0;
6791
6792         root = root->fs_info->chunk_root;
6793
6794         path = btrfs_alloc_path();
6795         if (!path)
6796                 return -ENOMEM;
6797
6798         mutex_lock(&uuid_mutex);
6799         lock_chunks(root);
6800
6801         /*
6802          * Read all device items, and then all the chunk items. All
6803          * device items are found before any chunk item (their object id
6804          * is smaller than the lowest possible object id for a chunk
6805          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6806          */
6807         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6808         key.offset = 0;
6809         key.type = 0;
6810         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6811         if (ret < 0)
6812                 goto error;
6813         while (1) {
6814                 leaf = path->nodes[0];
6815                 slot = path->slots[0];
6816                 if (slot >= btrfs_header_nritems(leaf)) {
6817                         ret = btrfs_next_leaf(root, path);
6818                         if (ret == 0)
6819                                 continue;
6820                         if (ret < 0)
6821                                 goto error;
6822                         break;
6823                 }
6824                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6825                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6826                         struct btrfs_dev_item *dev_item;
6827                         dev_item = btrfs_item_ptr(leaf, slot,
6828                                                   struct btrfs_dev_item);
6829                         ret = read_one_dev(root, leaf, dev_item);
6830                         if (ret)
6831                                 goto error;
6832                         total_dev++;
6833                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6834                         struct btrfs_chunk *chunk;
6835                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6836                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6837                         if (ret)
6838                                 goto error;
6839                 }
6840                 path->slots[0]++;
6841         }
6842
6843         /*
6844          * After loading chunk tree, we've got all device information,
6845          * do another round of validation checks.
6846          */
6847         if (total_dev != root->fs_info->fs_devices->total_devices) {
6848                 btrfs_err(root->fs_info,
6849            "super_num_devices %llu mismatch with num_devices %llu found here",
6850                           btrfs_super_num_devices(root->fs_info->super_copy),
6851                           total_dev);
6852                 ret = -EINVAL;
6853                 goto error;
6854         }
6855         if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6856             root->fs_info->fs_devices->total_rw_bytes) {
6857                 btrfs_err(root->fs_info,
6858         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6859                           btrfs_super_total_bytes(root->fs_info->super_copy),
6860                           root->fs_info->fs_devices->total_rw_bytes);
6861                 ret = -EINVAL;
6862                 goto error;
6863         }
6864         ret = 0;
6865 error:
6866         unlock_chunks(root);
6867         mutex_unlock(&uuid_mutex);
6868
6869         btrfs_free_path(path);
6870         return ret;
6871 }
6872
6873 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6874 {
6875         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6876         struct btrfs_device *device;
6877
6878         while (fs_devices) {
6879                 mutex_lock(&fs_devices->device_list_mutex);
6880                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6881                         device->dev_root = fs_info->dev_root;
6882                 mutex_unlock(&fs_devices->device_list_mutex);
6883
6884                 fs_devices = fs_devices->seed;
6885         }
6886 }
6887
6888 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6889 {
6890         int i;
6891
6892         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6893                 btrfs_dev_stat_reset(dev, i);
6894 }
6895
6896 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6897 {
6898         struct btrfs_key key;
6899         struct btrfs_key found_key;
6900         struct btrfs_root *dev_root = fs_info->dev_root;
6901         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6902         struct extent_buffer *eb;
6903         int slot;
6904         int ret = 0;
6905         struct btrfs_device *device;
6906         struct btrfs_path *path = NULL;
6907         int i;
6908
6909         path = btrfs_alloc_path();
6910         if (!path) {
6911                 ret = -ENOMEM;
6912                 goto out;
6913         }
6914
6915         mutex_lock(&fs_devices->device_list_mutex);
6916         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6917                 int item_size;
6918                 struct btrfs_dev_stats_item *ptr;
6919
6920                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6921                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6922                 key.offset = device->devid;
6923                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6924                 if (ret) {
6925                         __btrfs_reset_dev_stats(device);
6926                         device->dev_stats_valid = 1;
6927                         btrfs_release_path(path);
6928                         continue;
6929                 }
6930                 slot = path->slots[0];
6931                 eb = path->nodes[0];
6932                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6933                 item_size = btrfs_item_size_nr(eb, slot);
6934
6935                 ptr = btrfs_item_ptr(eb, slot,
6936                                      struct btrfs_dev_stats_item);
6937
6938                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6939                         if (item_size >= (1 + i) * sizeof(__le64))
6940                                 btrfs_dev_stat_set(device, i,
6941                                         btrfs_dev_stats_value(eb, ptr, i));
6942                         else
6943                                 btrfs_dev_stat_reset(device, i);
6944                 }
6945
6946                 device->dev_stats_valid = 1;
6947                 btrfs_dev_stat_print_on_load(device);
6948                 btrfs_release_path(path);
6949         }
6950         mutex_unlock(&fs_devices->device_list_mutex);
6951
6952 out:
6953         btrfs_free_path(path);
6954         return ret < 0 ? ret : 0;
6955 }
6956
6957 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6958                                 struct btrfs_root *dev_root,
6959                                 struct btrfs_device *device)
6960 {
6961         struct btrfs_path *path;
6962         struct btrfs_key key;
6963         struct extent_buffer *eb;
6964         struct btrfs_dev_stats_item *ptr;
6965         int ret;
6966         int i;
6967
6968         key.objectid = BTRFS_DEV_STATS_OBJECTID;
6969         key.type = BTRFS_PERSISTENT_ITEM_KEY;
6970         key.offset = device->devid;
6971
6972         path = btrfs_alloc_path();
6973         BUG_ON(!path);
6974         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6975         if (ret < 0) {
6976                 btrfs_warn_in_rcu(dev_root->fs_info,
6977                         "error %d while searching for dev_stats item for device %s",
6978                               ret, rcu_str_deref(device->name));
6979                 goto out;
6980         }
6981
6982         if (ret == 0 &&
6983             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6984                 /* need to delete old one and insert a new one */
6985                 ret = btrfs_del_item(trans, dev_root, path);
6986                 if (ret != 0) {
6987                         btrfs_warn_in_rcu(dev_root->fs_info,
6988                                 "delete too small dev_stats item for device %s failed %d",
6989                                       rcu_str_deref(device->name), ret);
6990                         goto out;
6991                 }
6992                 ret = 1;
6993         }
6994
6995         if (ret == 1) {
6996                 /* need to insert a new item */
6997                 btrfs_release_path(path);
6998                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6999                                               &key, sizeof(*ptr));
7000                 if (ret < 0) {
7001                         btrfs_warn_in_rcu(dev_root->fs_info,
7002                                 "insert dev_stats item for device %s failed %d",
7003                                 rcu_str_deref(device->name), ret);
7004                         goto out;
7005                 }
7006         }
7007
7008         eb = path->nodes[0];
7009         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7010         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7011                 btrfs_set_dev_stats_value(eb, ptr, i,
7012                                           btrfs_dev_stat_read(device, i));
7013         btrfs_mark_buffer_dirty(eb);
7014
7015 out:
7016         btrfs_free_path(path);
7017         return ret;
7018 }
7019
7020 /*
7021  * called from commit_transaction. Writes all changed device stats to disk.
7022  */
7023 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7024                         struct btrfs_fs_info *fs_info)
7025 {
7026         struct btrfs_root *dev_root = fs_info->dev_root;
7027         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7028         struct btrfs_device *device;
7029         int stats_cnt;
7030         int ret = 0;
7031
7032         mutex_lock(&fs_devices->device_list_mutex);
7033         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7034                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7035                         continue;
7036
7037                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7038                 ret = update_dev_stat_item(trans, dev_root, device);
7039                 if (!ret)
7040                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7041         }
7042         mutex_unlock(&fs_devices->device_list_mutex);
7043
7044         return ret;
7045 }
7046
7047 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7048 {
7049         btrfs_dev_stat_inc(dev, index);
7050         btrfs_dev_stat_print_on_error(dev);
7051 }
7052
7053 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7054 {
7055         if (!dev->dev_stats_valid)
7056                 return;
7057         btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7058                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7059                            rcu_str_deref(dev->name),
7060                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7061                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7062                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7063                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7064                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7065 }
7066
7067 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7068 {
7069         int i;
7070
7071         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7072                 if (btrfs_dev_stat_read(dev, i) != 0)
7073                         break;
7074         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7075                 return; /* all values == 0, suppress message */
7076
7077         btrfs_info_in_rcu(dev->dev_root->fs_info,
7078                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7079                rcu_str_deref(dev->name),
7080                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7081                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7082                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7083                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7084                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7085 }
7086
7087 int btrfs_get_dev_stats(struct btrfs_root *root,
7088                         struct btrfs_ioctl_get_dev_stats *stats)
7089 {
7090         struct btrfs_device *dev;
7091         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7092         int i;
7093
7094         mutex_lock(&fs_devices->device_list_mutex);
7095         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7096         mutex_unlock(&fs_devices->device_list_mutex);
7097
7098         if (!dev) {
7099                 btrfs_warn(root->fs_info,
7100                            "get dev_stats failed, device not found");
7101                 return -ENODEV;
7102         } else if (!dev->dev_stats_valid) {
7103                 btrfs_warn(root->fs_info,
7104                            "get dev_stats failed, not yet valid");
7105                 return -ENODEV;
7106         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7107                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7108                         if (stats->nr_items > i)
7109                                 stats->values[i] =
7110                                         btrfs_dev_stat_read_and_reset(dev, i);
7111                         else
7112                                 btrfs_dev_stat_reset(dev, i);
7113                 }
7114         } else {
7115                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7116                         if (stats->nr_items > i)
7117                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7118         }
7119         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7120                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7121         return 0;
7122 }
7123
7124 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7125 {
7126         struct buffer_head *bh;
7127         struct btrfs_super_block *disk_super;
7128         int copy_num;
7129
7130         if (!bdev)
7131                 return;
7132
7133         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7134                 copy_num++) {
7135
7136                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7137                         continue;
7138
7139                 disk_super = (struct btrfs_super_block *)bh->b_data;
7140
7141                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7142                 set_buffer_dirty(bh);
7143                 sync_dirty_buffer(bh);
7144                 brelse(bh);
7145         }
7146
7147         /* Notify udev that device has changed */
7148         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7149
7150         /* Update ctime/mtime for device path for libblkid */
7151         update_dev_time(device_path);
7152 }
7153
7154 /*
7155  * Update the size of all devices, which is used for writing out the
7156  * super blocks.
7157  */
7158 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7159 {
7160         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7161         struct btrfs_device *curr, *next;
7162
7163         if (list_empty(&fs_devices->resized_devices))
7164                 return;
7165
7166         mutex_lock(&fs_devices->device_list_mutex);
7167         lock_chunks(fs_info->dev_root);
7168         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7169                                  resized_list) {
7170                 list_del_init(&curr->resized_list);
7171                 curr->commit_total_bytes = curr->disk_total_bytes;
7172         }
7173         unlock_chunks(fs_info->dev_root);
7174         mutex_unlock(&fs_devices->device_list_mutex);
7175 }
7176
7177 /* Must be invoked during the transaction commit */
7178 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7179                                         struct btrfs_transaction *transaction)
7180 {
7181         struct extent_map *em;
7182         struct map_lookup *map;
7183         struct btrfs_device *dev;
7184         int i;
7185
7186         if (list_empty(&transaction->pending_chunks))
7187                 return;
7188
7189         /* In order to kick the device replace finish process */
7190         lock_chunks(root);
7191         list_for_each_entry(em, &transaction->pending_chunks, list) {
7192                 map = em->map_lookup;
7193
7194                 for (i = 0; i < map->num_stripes; i++) {
7195                         dev = map->stripes[i].dev;
7196                         dev->commit_bytes_used = dev->bytes_used;
7197                 }
7198         }
7199         unlock_chunks(root);
7200 }
7201
7202 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7203 {
7204         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7205         while (fs_devices) {
7206                 fs_devices->fs_info = fs_info;
7207                 fs_devices = fs_devices->seed;
7208         }
7209 }
7210
7211 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7212 {
7213         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7214         while (fs_devices) {
7215                 fs_devices->fs_info = NULL;
7216                 fs_devices = fs_devices->seed;
7217         }
7218 }