Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / fs / ext4 / file.c
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *      (jj@sunsite.ms.mff.cuni.cz)
19  */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 /*
35  * Called when an inode is released. Note that this is different
36  * from ext4_file_open: open gets called at every open, but release
37  * gets called only when /all/ the files are closed.
38  */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42                 ext4_alloc_da_blocks(inode);
43                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44         }
45         /* if we are the last writer on the inode, drop the block reservation */
46         if ((filp->f_mode & FMODE_WRITE) &&
47                         (atomic_read(&inode->i_writecount) == 1) &&
48                         !EXT4_I(inode)->i_reserved_data_blocks)
49         {
50                 down_write(&EXT4_I(inode)->i_data_sem);
51                 ext4_discard_preallocations(inode);
52                 up_write(&EXT4_I(inode)->i_data_sem);
53         }
54         if (is_dx(inode) && filp->private_data)
55                 ext4_htree_free_dir_info(filp->private_data);
56
57         return 0;
58 }
59
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62         wait_queue_head_t *wq = ext4_ioend_wq(inode);
63
64         wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66
67 /*
68  * This tests whether the IO in question is block-aligned or not.
69  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70  * are converted to written only after the IO is complete.  Until they are
71  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72  * it needs to zero out portions of the start and/or end block.  If 2 AIO
73  * threads are at work on the same unwritten block, they must be synchronized
74  * or one thread will zero the other's data, causing corruption.
75  */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79         struct super_block *sb = inode->i_sb;
80         int blockmask = sb->s_blocksize - 1;
81
82         if (pos >= i_size_read(inode))
83                 return 0;
84
85         if ((pos | iov_iter_alignment(from)) & blockmask)
86                 return 1;
87
88         return 0;
89 }
90
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94         struct inode *inode = file_inode(iocb->ki_filp);
95         int o_direct = iocb->ki_flags & IOCB_DIRECT;
96         int unaligned_aio = 0;
97         int overwrite = 0;
98         ssize_t ret;
99
100         inode_lock(inode);
101         ret = generic_write_checks(iocb, from);
102         if (ret <= 0)
103                 goto out;
104
105         /*
106          * Unaligned direct AIO must be serialized among each other as zeroing
107          * of partial blocks of two competing unaligned AIOs can result in data
108          * corruption.
109          */
110         if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
111             !is_sync_kiocb(iocb) &&
112             ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
113                 unaligned_aio = 1;
114                 ext4_unwritten_wait(inode);
115         }
116
117         /*
118          * If we have encountered a bitmap-format file, the size limit
119          * is smaller than s_maxbytes, which is for extent-mapped files.
120          */
121         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
122                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
123
124                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
125                         ret = -EFBIG;
126                         goto out;
127                 }
128                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
129         }
130
131         iocb->private = &overwrite;
132         if (o_direct) {
133                 size_t length = iov_iter_count(from);
134                 loff_t pos = iocb->ki_pos;
135
136                 /* check whether we do a DIO overwrite or not */
137                 if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
138                     pos + length <= i_size_read(inode)) {
139                         struct ext4_map_blocks map;
140                         unsigned int blkbits = inode->i_blkbits;
141                         int err, len;
142
143                         map.m_lblk = pos >> blkbits;
144                         map.m_len = EXT4_MAX_BLOCKS(length, pos, blkbits);
145                         len = map.m_len;
146
147                         err = ext4_map_blocks(NULL, inode, &map, 0);
148                         /*
149                          * 'err==len' means that all of blocks has
150                          * been preallocated no matter they are
151                          * initialized or not.  For excluding
152                          * unwritten extents, we need to check
153                          * m_flags.  There are two conditions that
154                          * indicate for initialized extents.  1) If we
155                          * hit extent cache, EXT4_MAP_MAPPED flag is
156                          * returned; 2) If we do a real lookup,
157                          * non-flags are returned.  So we should check
158                          * these two conditions.
159                          */
160                         if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
161                                 overwrite = 1;
162                 }
163         }
164
165         ret = __generic_file_write_iter(iocb, from);
166         inode_unlock(inode);
167
168         if (ret > 0)
169                 ret = generic_write_sync(iocb, ret);
170
171         return ret;
172
173 out:
174         inode_unlock(inode);
175         return ret;
176 }
177
178 #ifdef CONFIG_FS_DAX
179 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
180 {
181         int result;
182         handle_t *handle = NULL;
183         struct inode *inode = file_inode(vma->vm_file);
184         struct super_block *sb = inode->i_sb;
185         bool write = vmf->flags & FAULT_FLAG_WRITE;
186
187         if (write) {
188                 sb_start_pagefault(sb);
189                 file_update_time(vma->vm_file);
190                 down_read(&EXT4_I(inode)->i_mmap_sem);
191                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
192                                                 EXT4_DATA_TRANS_BLOCKS(sb));
193         } else
194                 down_read(&EXT4_I(inode)->i_mmap_sem);
195
196         if (IS_ERR(handle))
197                 result = VM_FAULT_SIGBUS;
198         else
199                 result = dax_fault(vma, vmf, ext4_dax_get_block);
200
201         if (write) {
202                 if (!IS_ERR(handle))
203                         ext4_journal_stop(handle);
204                 up_read(&EXT4_I(inode)->i_mmap_sem);
205                 sb_end_pagefault(sb);
206         } else
207                 up_read(&EXT4_I(inode)->i_mmap_sem);
208
209         return result;
210 }
211
212 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
213                                                 pmd_t *pmd, unsigned int flags)
214 {
215         int result;
216         handle_t *handle = NULL;
217         struct inode *inode = file_inode(vma->vm_file);
218         struct super_block *sb = inode->i_sb;
219         bool write = flags & FAULT_FLAG_WRITE;
220
221         if (write) {
222                 sb_start_pagefault(sb);
223                 file_update_time(vma->vm_file);
224                 down_read(&EXT4_I(inode)->i_mmap_sem);
225                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
226                                 ext4_chunk_trans_blocks(inode,
227                                                         PMD_SIZE / PAGE_SIZE));
228         } else
229                 down_read(&EXT4_I(inode)->i_mmap_sem);
230
231         if (IS_ERR(handle))
232                 result = VM_FAULT_SIGBUS;
233         else
234                 result = dax_pmd_fault(vma, addr, pmd, flags,
235                                          ext4_dax_get_block);
236
237         if (write) {
238                 if (!IS_ERR(handle))
239                         ext4_journal_stop(handle);
240                 up_read(&EXT4_I(inode)->i_mmap_sem);
241                 sb_end_pagefault(sb);
242         } else
243                 up_read(&EXT4_I(inode)->i_mmap_sem);
244
245         return result;
246 }
247
248 /*
249  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
250  * handler we check for races agaist truncate. Note that since we cycle through
251  * i_mmap_sem, we are sure that also any hole punching that began before we
252  * were called is finished by now and so if it included part of the file we
253  * are working on, our pte will get unmapped and the check for pte_same() in
254  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
255  * desired.
256  */
257 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
258                                 struct vm_fault *vmf)
259 {
260         struct inode *inode = file_inode(vma->vm_file);
261         struct super_block *sb = inode->i_sb;
262         loff_t size;
263         int ret;
264
265         sb_start_pagefault(sb);
266         file_update_time(vma->vm_file);
267         down_read(&EXT4_I(inode)->i_mmap_sem);
268         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
269         if (vmf->pgoff >= size)
270                 ret = VM_FAULT_SIGBUS;
271         else
272                 ret = dax_pfn_mkwrite(vma, vmf);
273         up_read(&EXT4_I(inode)->i_mmap_sem);
274         sb_end_pagefault(sb);
275
276         return ret;
277 }
278
279 static const struct vm_operations_struct ext4_dax_vm_ops = {
280         .fault          = ext4_dax_fault,
281         .pmd_fault      = ext4_dax_pmd_fault,
282         .page_mkwrite   = ext4_dax_fault,
283         .pfn_mkwrite    = ext4_dax_pfn_mkwrite,
284 };
285 #else
286 #define ext4_dax_vm_ops ext4_file_vm_ops
287 #endif
288
289 static const struct vm_operations_struct ext4_file_vm_ops = {
290         .fault          = ext4_filemap_fault,
291         .map_pages      = filemap_map_pages,
292         .page_mkwrite   = ext4_page_mkwrite,
293 };
294
295 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
296 {
297         struct inode *inode = file->f_mapping->host;
298
299         if (ext4_encrypted_inode(inode)) {
300                 int err = fscrypt_get_encryption_info(inode);
301                 if (err)
302                         return 0;
303                 if (!fscrypt_has_encryption_key(inode))
304                         return -ENOKEY;
305         }
306         file_accessed(file);
307         if (IS_DAX(file_inode(file))) {
308                 vma->vm_ops = &ext4_dax_vm_ops;
309                 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
310         } else {
311                 vma->vm_ops = &ext4_file_vm_ops;
312         }
313         return 0;
314 }
315
316 static int ext4_file_open(struct inode * inode, struct file * filp)
317 {
318         struct super_block *sb = inode->i_sb;
319         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
320         struct vfsmount *mnt = filp->f_path.mnt;
321         struct dentry *dir;
322         struct path path;
323         char buf[64], *cp;
324         int ret;
325
326         if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
327                      !(sb->s_flags & MS_RDONLY))) {
328                 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
329                 /*
330                  * Sample where the filesystem has been mounted and
331                  * store it in the superblock for sysadmin convenience
332                  * when trying to sort through large numbers of block
333                  * devices or filesystem images.
334                  */
335                 memset(buf, 0, sizeof(buf));
336                 path.mnt = mnt;
337                 path.dentry = mnt->mnt_root;
338                 cp = d_path(&path, buf, sizeof(buf));
339                 if (!IS_ERR(cp)) {
340                         handle_t *handle;
341                         int err;
342
343                         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
344                         if (IS_ERR(handle))
345                                 return PTR_ERR(handle);
346                         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
347                         err = ext4_journal_get_write_access(handle, sbi->s_sbh);
348                         if (err) {
349                                 ext4_journal_stop(handle);
350                                 return err;
351                         }
352                         strlcpy(sbi->s_es->s_last_mounted, cp,
353                                 sizeof(sbi->s_es->s_last_mounted));
354                         ext4_handle_dirty_super(handle, sb);
355                         ext4_journal_stop(handle);
356                 }
357         }
358         if (ext4_encrypted_inode(inode)) {
359                 ret = fscrypt_get_encryption_info(inode);
360                 if (ret)
361                         return -EACCES;
362                 if (!fscrypt_has_encryption_key(inode))
363                         return -ENOKEY;
364         }
365
366         dir = dget_parent(file_dentry(filp));
367         if (ext4_encrypted_inode(d_inode(dir)) &&
368                         !fscrypt_has_permitted_context(d_inode(dir), inode)) {
369                 ext4_warning(inode->i_sb,
370                              "Inconsistent encryption contexts: %lu/%lu",
371                              (unsigned long) d_inode(dir)->i_ino,
372                              (unsigned long) inode->i_ino);
373                 dput(dir);
374                 return -EPERM;
375         }
376         dput(dir);
377         /*
378          * Set up the jbd2_inode if we are opening the inode for
379          * writing and the journal is present
380          */
381         if (filp->f_mode & FMODE_WRITE) {
382                 ret = ext4_inode_attach_jinode(inode);
383                 if (ret < 0)
384                         return ret;
385         }
386         return dquot_file_open(inode, filp);
387 }
388
389 /*
390  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
391  * file rather than ext4_ext_walk_space() because we can introduce
392  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
393  * function.  When extent status tree has been fully implemented, it will
394  * track all extent status for a file and we can directly use it to
395  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
396  */
397
398 /*
399  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
400  * lookup page cache to check whether or not there has some data between
401  * [startoff, endoff] because, if this range contains an unwritten extent,
402  * we determine this extent as a data or a hole according to whether the
403  * page cache has data or not.
404  */
405 static int ext4_find_unwritten_pgoff(struct inode *inode,
406                                      int whence,
407                                      ext4_lblk_t end_blk,
408                                      loff_t *offset)
409 {
410         struct pagevec pvec;
411         unsigned int blkbits;
412         pgoff_t index;
413         pgoff_t end;
414         loff_t endoff;
415         loff_t startoff;
416         loff_t lastoff;
417         int found = 0;
418
419         blkbits = inode->i_sb->s_blocksize_bits;
420         startoff = *offset;
421         lastoff = startoff;
422         endoff = (loff_t)end_blk << blkbits;
423
424         index = startoff >> PAGE_SHIFT;
425         end = endoff >> PAGE_SHIFT;
426
427         pagevec_init(&pvec, 0);
428         do {
429                 int i, num;
430                 unsigned long nr_pages;
431
432                 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
433                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
434                                           (pgoff_t)num);
435                 if (nr_pages == 0) {
436                         if (whence == SEEK_DATA)
437                                 break;
438
439                         BUG_ON(whence != SEEK_HOLE);
440                         /*
441                          * If this is the first time to go into the loop and
442                          * offset is not beyond the end offset, it will be a
443                          * hole at this offset
444                          */
445                         if (lastoff == startoff || lastoff < endoff)
446                                 found = 1;
447                         break;
448                 }
449
450                 /*
451                  * If this is the first time to go into the loop and
452                  * offset is smaller than the first page offset, it will be a
453                  * hole at this offset.
454                  */
455                 if (lastoff == startoff && whence == SEEK_HOLE &&
456                     lastoff < page_offset(pvec.pages[0])) {
457                         found = 1;
458                         break;
459                 }
460
461                 for (i = 0; i < nr_pages; i++) {
462                         struct page *page = pvec.pages[i];
463                         struct buffer_head *bh, *head;
464
465                         /*
466                          * If the current offset is not beyond the end of given
467                          * range, it will be a hole.
468                          */
469                         if (lastoff < endoff && whence == SEEK_HOLE &&
470                             page->index > end) {
471                                 found = 1;
472                                 *offset = lastoff;
473                                 goto out;
474                         }
475
476                         lock_page(page);
477
478                         if (unlikely(page->mapping != inode->i_mapping)) {
479                                 unlock_page(page);
480                                 continue;
481                         }
482
483                         if (!page_has_buffers(page)) {
484                                 unlock_page(page);
485                                 continue;
486                         }
487
488                         if (page_has_buffers(page)) {
489                                 lastoff = page_offset(page);
490                                 bh = head = page_buffers(page);
491                                 do {
492                                         if (buffer_uptodate(bh) ||
493                                             buffer_unwritten(bh)) {
494                                                 if (whence == SEEK_DATA)
495                                                         found = 1;
496                                         } else {
497                                                 if (whence == SEEK_HOLE)
498                                                         found = 1;
499                                         }
500                                         if (found) {
501                                                 *offset = max_t(loff_t,
502                                                         startoff, lastoff);
503                                                 unlock_page(page);
504                                                 goto out;
505                                         }
506                                         lastoff += bh->b_size;
507                                         bh = bh->b_this_page;
508                                 } while (bh != head);
509                         }
510
511                         lastoff = page_offset(page) + PAGE_SIZE;
512                         unlock_page(page);
513                 }
514
515                 /*
516                  * The no. of pages is less than our desired, that would be a
517                  * hole in there.
518                  */
519                 if (nr_pages < num && whence == SEEK_HOLE) {
520                         found = 1;
521                         *offset = lastoff;
522                         break;
523                 }
524
525                 index = pvec.pages[i - 1]->index + 1;
526                 pagevec_release(&pvec);
527         } while (index <= end);
528
529 out:
530         pagevec_release(&pvec);
531         return found;
532 }
533
534 /*
535  * ext4_seek_data() retrieves the offset for SEEK_DATA.
536  */
537 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
538 {
539         struct inode *inode = file->f_mapping->host;
540         struct extent_status es;
541         ext4_lblk_t start, last, end;
542         loff_t dataoff, isize;
543         int blkbits;
544         int ret;
545
546         inode_lock(inode);
547
548         isize = i_size_read(inode);
549         if (offset >= isize) {
550                 inode_unlock(inode);
551                 return -ENXIO;
552         }
553
554         blkbits = inode->i_sb->s_blocksize_bits;
555         start = offset >> blkbits;
556         last = start;
557         end = isize >> blkbits;
558         dataoff = offset;
559
560         do {
561                 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
562                 if (ret <= 0) {
563                         /* No extent found -> no data */
564                         if (ret == 0)
565                                 ret = -ENXIO;
566                         inode_unlock(inode);
567                         return ret;
568                 }
569
570                 last = es.es_lblk;
571                 if (last != start)
572                         dataoff = (loff_t)last << blkbits;
573                 if (!ext4_es_is_unwritten(&es))
574                         break;
575
576                 /*
577                  * If there is a unwritten extent at this offset,
578                  * it will be as a data or a hole according to page
579                  * cache that has data or not.
580                  */
581                 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
582                                               es.es_lblk + es.es_len, &dataoff))
583                         break;
584                 last += es.es_len;
585                 dataoff = (loff_t)last << blkbits;
586                 cond_resched();
587         } while (last <= end);
588
589         inode_unlock(inode);
590
591         if (dataoff > isize)
592                 return -ENXIO;
593
594         return vfs_setpos(file, dataoff, maxsize);
595 }
596
597 /*
598  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
599  */
600 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
601 {
602         struct inode *inode = file->f_mapping->host;
603         struct extent_status es;
604         ext4_lblk_t start, last, end;
605         loff_t holeoff, isize;
606         int blkbits;
607         int ret;
608
609         inode_lock(inode);
610
611         isize = i_size_read(inode);
612         if (offset >= isize) {
613                 inode_unlock(inode);
614                 return -ENXIO;
615         }
616
617         blkbits = inode->i_sb->s_blocksize_bits;
618         start = offset >> blkbits;
619         last = start;
620         end = isize >> blkbits;
621         holeoff = offset;
622
623         do {
624                 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
625                 if (ret < 0) {
626                         inode_unlock(inode);
627                         return ret;
628                 }
629                 /* Found a hole? */
630                 if (ret == 0 || es.es_lblk > last) {
631                         if (last != start)
632                                 holeoff = (loff_t)last << blkbits;
633                         break;
634                 }
635                 /*
636                  * If there is a unwritten extent at this offset,
637                  * it will be as a data or a hole according to page
638                  * cache that has data or not.
639                  */
640                 if (ext4_es_is_unwritten(&es) &&
641                     ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
642                                               last + es.es_len, &holeoff))
643                         break;
644
645                 last += es.es_len;
646                 holeoff = (loff_t)last << blkbits;
647                 cond_resched();
648         } while (last <= end);
649
650         inode_unlock(inode);
651
652         if (holeoff > isize)
653                 holeoff = isize;
654
655         return vfs_setpos(file, holeoff, maxsize);
656 }
657
658 /*
659  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
660  * by calling generic_file_llseek_size() with the appropriate maxbytes
661  * value for each.
662  */
663 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
664 {
665         struct inode *inode = file->f_mapping->host;
666         loff_t maxbytes;
667
668         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
669                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
670         else
671                 maxbytes = inode->i_sb->s_maxbytes;
672
673         switch (whence) {
674         case SEEK_SET:
675         case SEEK_CUR:
676         case SEEK_END:
677                 return generic_file_llseek_size(file, offset, whence,
678                                                 maxbytes, i_size_read(inode));
679         case SEEK_DATA:
680                 return ext4_seek_data(file, offset, maxbytes);
681         case SEEK_HOLE:
682                 return ext4_seek_hole(file, offset, maxbytes);
683         }
684
685         return -EINVAL;
686 }
687
688 const struct file_operations ext4_file_operations = {
689         .llseek         = ext4_llseek,
690         .read_iter      = generic_file_read_iter,
691         .write_iter     = ext4_file_write_iter,
692         .unlocked_ioctl = ext4_ioctl,
693 #ifdef CONFIG_COMPAT
694         .compat_ioctl   = ext4_compat_ioctl,
695 #endif
696         .mmap           = ext4_file_mmap,
697         .open           = ext4_file_open,
698         .release        = ext4_release_file,
699         .fsync          = ext4_sync_file,
700         .get_unmapped_area = thp_get_unmapped_area,
701         .splice_read    = generic_file_splice_read,
702         .splice_write   = iter_file_splice_write,
703         .fallocate      = ext4_fallocate,
704 };
705
706 const struct inode_operations ext4_file_inode_operations = {
707         .setattr        = ext4_setattr,
708         .getattr        = ext4_getattr,
709         .listxattr      = ext4_listxattr,
710         .get_acl        = ext4_get_acl,
711         .set_acl        = ext4_set_acl,
712         .fiemap         = ext4_fiemap,
713 };
714