proc: add LSM hook checks to /proc/<tid>/timerslack_ns
[cascardo/linux.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98  *      Implementing inode permission operations in /proc is almost
99  *      certainly an error.  Permission checks need to happen during
100  *      each system call not at open time.  The reason is that most of
101  *      what we wish to check for permissions in /proc varies at runtime.
102  *
103  *      The classic example of a problem is opening file descriptors
104  *      in /proc for a task before it execs a suid executable.
105  */
106
107 struct pid_entry {
108         const char *name;
109         int len;
110         umode_t mode;
111         const struct inode_operations *iop;
112         const struct file_operations *fop;
113         union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
117         .name = (NAME),                                 \
118         .len  = sizeof(NAME) - 1,                       \
119         .mode = MODE,                                   \
120         .iop  = IOP,                                    \
121         .fop  = FOP,                                    \
122         .op   = OP,                                     \
123 }
124
125 #define DIR(NAME, MODE, iops, fops)     \
126         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)                                     \
128         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
129                 &proc_pid_link_inode_operations, NULL,          \
130                 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)                           \
132         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)                           \
134         NOD(NAME, (S_IFREG|(MODE)),                     \
135                 NULL, &proc_single_file_operations,     \
136                 { .proc_show = show } )
137
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143         unsigned int n)
144 {
145         unsigned int i;
146         unsigned int count;
147
148         count = 0;
149         for (i = 0; i < n; ++i) {
150                 if (S_ISDIR(entries[i].mode))
151                         ++count;
152         }
153
154         return count;
155 }
156
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159         int result = -ENOENT;
160
161         task_lock(task);
162         if (task->fs) {
163                 get_fs_root(task->fs, root);
164                 result = 0;
165         }
166         task_unlock(task);
167         return result;
168 }
169
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172         struct task_struct *task = get_proc_task(d_inode(dentry));
173         int result = -ENOENT;
174
175         if (task) {
176                 task_lock(task);
177                 if (task->fs) {
178                         get_fs_pwd(task->fs, path);
179                         result = 0;
180                 }
181                 task_unlock(task);
182                 put_task_struct(task);
183         }
184         return result;
185 }
186
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189         struct task_struct *task = get_proc_task(d_inode(dentry));
190         int result = -ENOENT;
191
192         if (task) {
193                 result = get_task_root(task, path);
194                 put_task_struct(task);
195         }
196         return result;
197 }
198
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200                                      size_t _count, loff_t *pos)
201 {
202         struct task_struct *tsk;
203         struct mm_struct *mm;
204         char *page;
205         unsigned long count = _count;
206         unsigned long arg_start, arg_end, env_start, env_end;
207         unsigned long len1, len2, len;
208         unsigned long p;
209         char c;
210         ssize_t rv;
211
212         BUG_ON(*pos < 0);
213
214         tsk = get_proc_task(file_inode(file));
215         if (!tsk)
216                 return -ESRCH;
217         mm = get_task_mm(tsk);
218         put_task_struct(tsk);
219         if (!mm)
220                 return 0;
221         /* Check if process spawned far enough to have cmdline. */
222         if (!mm->env_end) {
223                 rv = 0;
224                 goto out_mmput;
225         }
226
227         page = (char *)__get_free_page(GFP_TEMPORARY);
228         if (!page) {
229                 rv = -ENOMEM;
230                 goto out_mmput;
231         }
232
233         down_read(&mm->mmap_sem);
234         arg_start = mm->arg_start;
235         arg_end = mm->arg_end;
236         env_start = mm->env_start;
237         env_end = mm->env_end;
238         up_read(&mm->mmap_sem);
239
240         BUG_ON(arg_start > arg_end);
241         BUG_ON(env_start > env_end);
242
243         len1 = arg_end - arg_start;
244         len2 = env_end - env_start;
245
246         /* Empty ARGV. */
247         if (len1 == 0) {
248                 rv = 0;
249                 goto out_free_page;
250         }
251         /*
252          * Inherently racy -- command line shares address space
253          * with code and data.
254          */
255         rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256         if (rv <= 0)
257                 goto out_free_page;
258
259         rv = 0;
260
261         if (c == '\0') {
262                 /* Command line (set of strings) occupies whole ARGV. */
263                 if (len1 <= *pos)
264                         goto out_free_page;
265
266                 p = arg_start + *pos;
267                 len = len1 - *pos;
268                 while (count > 0 && len > 0) {
269                         unsigned int _count;
270                         int nr_read;
271
272                         _count = min3(count, len, PAGE_SIZE);
273                         nr_read = access_remote_vm(mm, p, page, _count, 0);
274                         if (nr_read < 0)
275                                 rv = nr_read;
276                         if (nr_read <= 0)
277                                 goto out_free_page;
278
279                         if (copy_to_user(buf, page, nr_read)) {
280                                 rv = -EFAULT;
281                                 goto out_free_page;
282                         }
283
284                         p       += nr_read;
285                         len     -= nr_read;
286                         buf     += nr_read;
287                         count   -= nr_read;
288                         rv      += nr_read;
289                 }
290         } else {
291                 /*
292                  * Command line (1 string) occupies ARGV and maybe
293                  * extends into ENVP.
294                  */
295                 if (len1 + len2 <= *pos)
296                         goto skip_argv_envp;
297                 if (len1 <= *pos)
298                         goto skip_argv;
299
300                 p = arg_start + *pos;
301                 len = len1 - *pos;
302                 while (count > 0 && len > 0) {
303                         unsigned int _count, l;
304                         int nr_read;
305                         bool final;
306
307                         _count = min3(count, len, PAGE_SIZE);
308                         nr_read = access_remote_vm(mm, p, page, _count, 0);
309                         if (nr_read < 0)
310                                 rv = nr_read;
311                         if (nr_read <= 0)
312                                 goto out_free_page;
313
314                         /*
315                          * Command line can be shorter than whole ARGV
316                          * even if last "marker" byte says it is not.
317                          */
318                         final = false;
319                         l = strnlen(page, nr_read);
320                         if (l < nr_read) {
321                                 nr_read = l;
322                                 final = true;
323                         }
324
325                         if (copy_to_user(buf, page, nr_read)) {
326                                 rv = -EFAULT;
327                                 goto out_free_page;
328                         }
329
330                         p       += nr_read;
331                         len     -= nr_read;
332                         buf     += nr_read;
333                         count   -= nr_read;
334                         rv      += nr_read;
335
336                         if (final)
337                                 goto out_free_page;
338                 }
339 skip_argv:
340                 /*
341                  * Command line (1 string) occupies ARGV and
342                  * extends into ENVP.
343                  */
344                 if (len1 <= *pos) {
345                         p = env_start + *pos - len1;
346                         len = len1 + len2 - *pos;
347                 } else {
348                         p = env_start;
349                         len = len2;
350                 }
351                 while (count > 0 && len > 0) {
352                         unsigned int _count, l;
353                         int nr_read;
354                         bool final;
355
356                         _count = min3(count, len, PAGE_SIZE);
357                         nr_read = access_remote_vm(mm, p, page, _count, 0);
358                         if (nr_read < 0)
359                                 rv = nr_read;
360                         if (nr_read <= 0)
361                                 goto out_free_page;
362
363                         /* Find EOS. */
364                         final = false;
365                         l = strnlen(page, nr_read);
366                         if (l < nr_read) {
367                                 nr_read = l;
368                                 final = true;
369                         }
370
371                         if (copy_to_user(buf, page, nr_read)) {
372                                 rv = -EFAULT;
373                                 goto out_free_page;
374                         }
375
376                         p       += nr_read;
377                         len     -= nr_read;
378                         buf     += nr_read;
379                         count   -= nr_read;
380                         rv      += nr_read;
381
382                         if (final)
383                                 goto out_free_page;
384                 }
385 skip_argv_envp:
386                 ;
387         }
388
389 out_free_page:
390         free_page((unsigned long)page);
391 out_mmput:
392         mmput(mm);
393         if (rv > 0)
394                 *pos += rv;
395         return rv;
396 }
397
398 static const struct file_operations proc_pid_cmdline_ops = {
399         .read   = proc_pid_cmdline_read,
400         .llseek = generic_file_llseek,
401 };
402
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404                          struct pid *pid, struct task_struct *task)
405 {
406         struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407         if (mm && !IS_ERR(mm)) {
408                 unsigned int nwords = 0;
409                 do {
410                         nwords += 2;
411                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412                 seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413                 mmput(mm);
414                 return 0;
415         } else
416                 return PTR_ERR(mm);
417 }
418
419
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426                           struct pid *pid, struct task_struct *task)
427 {
428         unsigned long wchan;
429         char symname[KSYM_NAME_LEN];
430
431         wchan = get_wchan(task);
432
433         if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434                         && !lookup_symbol_name(wchan, symname))
435                 seq_printf(m, "%s", symname);
436         else
437                 seq_putc(m, '0');
438
439         return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442
443 static int lock_trace(struct task_struct *task)
444 {
445         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446         if (err)
447                 return err;
448         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449                 mutex_unlock(&task->signal->cred_guard_mutex);
450                 return -EPERM;
451         }
452         return 0;
453 }
454
455 static void unlock_trace(struct task_struct *task)
456 {
457         mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459
460 #ifdef CONFIG_STACKTRACE
461
462 #define MAX_STACK_TRACE_DEPTH   64
463
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465                           struct pid *pid, struct task_struct *task)
466 {
467         struct stack_trace trace;
468         unsigned long *entries;
469         int err;
470         int i;
471
472         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473         if (!entries)
474                 return -ENOMEM;
475
476         trace.nr_entries        = 0;
477         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
478         trace.entries           = entries;
479         trace.skip              = 0;
480
481         err = lock_trace(task);
482         if (!err) {
483                 save_stack_trace_tsk(task, &trace);
484
485                 for (i = 0; i < trace.nr_entries; i++) {
486                         seq_printf(m, "[<%pK>] %pB\n",
487                                    (void *)entries[i], (void *)entries[i]);
488                 }
489                 unlock_trace(task);
490         }
491         kfree(entries);
492
493         return err;
494 }
495 #endif
496
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502                               struct pid *pid, struct task_struct *task)
503 {
504         if (unlikely(!sched_info_on()))
505                 seq_printf(m, "0 0 0\n");
506         else
507                 seq_printf(m, "%llu %llu %lu\n",
508                    (unsigned long long)task->se.sum_exec_runtime,
509                    (unsigned long long)task->sched_info.run_delay,
510                    task->sched_info.pcount);
511
512         return 0;
513 }
514 #endif
515
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519         int i;
520         struct inode *inode = m->private;
521         struct task_struct *task = get_proc_task(inode);
522
523         if (!task)
524                 return -ESRCH;
525         seq_puts(m, "Latency Top version : v0.1\n");
526         for (i = 0; i < 32; i++) {
527                 struct latency_record *lr = &task->latency_record[i];
528                 if (lr->backtrace[0]) {
529                         int q;
530                         seq_printf(m, "%i %li %li",
531                                    lr->count, lr->time, lr->max);
532                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533                                 unsigned long bt = lr->backtrace[q];
534                                 if (!bt)
535                                         break;
536                                 if (bt == ULONG_MAX)
537                                         break;
538                                 seq_printf(m, " %ps", (void *)bt);
539                         }
540                         seq_putc(m, '\n');
541                 }
542
543         }
544         put_task_struct(task);
545         return 0;
546 }
547
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550         return single_open(file, lstats_show_proc, inode);
551 }
552
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554                             size_t count, loff_t *offs)
555 {
556         struct task_struct *task = get_proc_task(file_inode(file));
557
558         if (!task)
559                 return -ESRCH;
560         clear_all_latency_tracing(task);
561         put_task_struct(task);
562
563         return count;
564 }
565
566 static const struct file_operations proc_lstats_operations = {
567         .open           = lstats_open,
568         .read           = seq_read,
569         .write          = lstats_write,
570         .llseek         = seq_lseek,
571         .release        = single_release,
572 };
573
574 #endif
575
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577                           struct pid *pid, struct task_struct *task)
578 {
579         unsigned long totalpages = totalram_pages + total_swap_pages;
580         unsigned long points = 0;
581
582         points = oom_badness(task, NULL, NULL, totalpages) *
583                                         1000 / totalpages;
584         seq_printf(m, "%lu\n", points);
585
586         return 0;
587 }
588
589 struct limit_names {
590         const char *name;
591         const char *unit;
592 };
593
594 static const struct limit_names lnames[RLIM_NLIMITS] = {
595         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
596         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
597         [RLIMIT_DATA] = {"Max data size", "bytes"},
598         [RLIMIT_STACK] = {"Max stack size", "bytes"},
599         [RLIMIT_CORE] = {"Max core file size", "bytes"},
600         [RLIMIT_RSS] = {"Max resident set", "bytes"},
601         [RLIMIT_NPROC] = {"Max processes", "processes"},
602         [RLIMIT_NOFILE] = {"Max open files", "files"},
603         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
604         [RLIMIT_AS] = {"Max address space", "bytes"},
605         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
606         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
607         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
608         [RLIMIT_NICE] = {"Max nice priority", NULL},
609         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
610         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
611 };
612
613 /* Display limits for a process */
614 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
615                            struct pid *pid, struct task_struct *task)
616 {
617         unsigned int i;
618         unsigned long flags;
619
620         struct rlimit rlim[RLIM_NLIMITS];
621
622         if (!lock_task_sighand(task, &flags))
623                 return 0;
624         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
625         unlock_task_sighand(task, &flags);
626
627         /*
628          * print the file header
629          */
630        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
631                   "Limit", "Soft Limit", "Hard Limit", "Units");
632
633         for (i = 0; i < RLIM_NLIMITS; i++) {
634                 if (rlim[i].rlim_cur == RLIM_INFINITY)
635                         seq_printf(m, "%-25s %-20s ",
636                                    lnames[i].name, "unlimited");
637                 else
638                         seq_printf(m, "%-25s %-20lu ",
639                                    lnames[i].name, rlim[i].rlim_cur);
640
641                 if (rlim[i].rlim_max == RLIM_INFINITY)
642                         seq_printf(m, "%-20s ", "unlimited");
643                 else
644                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
645
646                 if (lnames[i].unit)
647                         seq_printf(m, "%-10s\n", lnames[i].unit);
648                 else
649                         seq_putc(m, '\n');
650         }
651
652         return 0;
653 }
654
655 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
656 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
657                             struct pid *pid, struct task_struct *task)
658 {
659         long nr;
660         unsigned long args[6], sp, pc;
661         int res;
662
663         res = lock_trace(task);
664         if (res)
665                 return res;
666
667         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
668                 seq_puts(m, "running\n");
669         else if (nr < 0)
670                 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
671         else
672                 seq_printf(m,
673                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
674                        nr,
675                        args[0], args[1], args[2], args[3], args[4], args[5],
676                        sp, pc);
677         unlock_trace(task);
678
679         return 0;
680 }
681 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
682
683 /************************************************************************/
684 /*                       Here the fs part begins                        */
685 /************************************************************************/
686
687 /* permission checks */
688 static int proc_fd_access_allowed(struct inode *inode)
689 {
690         struct task_struct *task;
691         int allowed = 0;
692         /* Allow access to a task's file descriptors if it is us or we
693          * may use ptrace attach to the process and find out that
694          * information.
695          */
696         task = get_proc_task(inode);
697         if (task) {
698                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
699                 put_task_struct(task);
700         }
701         return allowed;
702 }
703
704 int proc_setattr(struct dentry *dentry, struct iattr *attr)
705 {
706         int error;
707         struct inode *inode = d_inode(dentry);
708
709         if (attr->ia_valid & ATTR_MODE)
710                 return -EPERM;
711
712         error = inode_change_ok(inode, attr);
713         if (error)
714                 return error;
715
716         setattr_copy(inode, attr);
717         mark_inode_dirty(inode);
718         return 0;
719 }
720
721 /*
722  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
723  * or euid/egid (for hide_pid_min=2)?
724  */
725 static bool has_pid_permissions(struct pid_namespace *pid,
726                                  struct task_struct *task,
727                                  int hide_pid_min)
728 {
729         if (pid->hide_pid < hide_pid_min)
730                 return true;
731         if (in_group_p(pid->pid_gid))
732                 return true;
733         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
734 }
735
736
737 static int proc_pid_permission(struct inode *inode, int mask)
738 {
739         struct pid_namespace *pid = inode->i_sb->s_fs_info;
740         struct task_struct *task;
741         bool has_perms;
742
743         task = get_proc_task(inode);
744         if (!task)
745                 return -ESRCH;
746         has_perms = has_pid_permissions(pid, task, 1);
747         put_task_struct(task);
748
749         if (!has_perms) {
750                 if (pid->hide_pid == 2) {
751                         /*
752                          * Let's make getdents(), stat(), and open()
753                          * consistent with each other.  If a process
754                          * may not stat() a file, it shouldn't be seen
755                          * in procfs at all.
756                          */
757                         return -ENOENT;
758                 }
759
760                 return -EPERM;
761         }
762         return generic_permission(inode, mask);
763 }
764
765
766
767 static const struct inode_operations proc_def_inode_operations = {
768         .setattr        = proc_setattr,
769 };
770
771 static int proc_single_show(struct seq_file *m, void *v)
772 {
773         struct inode *inode = m->private;
774         struct pid_namespace *ns;
775         struct pid *pid;
776         struct task_struct *task;
777         int ret;
778
779         ns = inode->i_sb->s_fs_info;
780         pid = proc_pid(inode);
781         task = get_pid_task(pid, PIDTYPE_PID);
782         if (!task)
783                 return -ESRCH;
784
785         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
786
787         put_task_struct(task);
788         return ret;
789 }
790
791 static int proc_single_open(struct inode *inode, struct file *filp)
792 {
793         return single_open(filp, proc_single_show, inode);
794 }
795
796 static const struct file_operations proc_single_file_operations = {
797         .open           = proc_single_open,
798         .read           = seq_read,
799         .llseek         = seq_lseek,
800         .release        = single_release,
801 };
802
803
804 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
805 {
806         struct task_struct *task = get_proc_task(inode);
807         struct mm_struct *mm = ERR_PTR(-ESRCH);
808
809         if (task) {
810                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
811                 put_task_struct(task);
812
813                 if (!IS_ERR_OR_NULL(mm)) {
814                         /* ensure this mm_struct can't be freed */
815                         atomic_inc(&mm->mm_count);
816                         /* but do not pin its memory */
817                         mmput(mm);
818                 }
819         }
820
821         return mm;
822 }
823
824 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
825 {
826         struct mm_struct *mm = proc_mem_open(inode, mode);
827
828         if (IS_ERR(mm))
829                 return PTR_ERR(mm);
830
831         file->private_data = mm;
832         return 0;
833 }
834
835 static int mem_open(struct inode *inode, struct file *file)
836 {
837         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
838
839         /* OK to pass negative loff_t, we can catch out-of-range */
840         file->f_mode |= FMODE_UNSIGNED_OFFSET;
841
842         return ret;
843 }
844
845 static ssize_t mem_rw(struct file *file, char __user *buf,
846                         size_t count, loff_t *ppos, int write)
847 {
848         struct mm_struct *mm = file->private_data;
849         unsigned long addr = *ppos;
850         ssize_t copied;
851         char *page;
852
853         if (!mm)
854                 return 0;
855
856         page = (char *)__get_free_page(GFP_TEMPORARY);
857         if (!page)
858                 return -ENOMEM;
859
860         copied = 0;
861         if (!atomic_inc_not_zero(&mm->mm_users))
862                 goto free;
863
864         while (count > 0) {
865                 int this_len = min_t(int, count, PAGE_SIZE);
866
867                 if (write && copy_from_user(page, buf, this_len)) {
868                         copied = -EFAULT;
869                         break;
870                 }
871
872                 this_len = access_remote_vm(mm, addr, page, this_len, write);
873                 if (!this_len) {
874                         if (!copied)
875                                 copied = -EIO;
876                         break;
877                 }
878
879                 if (!write && copy_to_user(buf, page, this_len)) {
880                         copied = -EFAULT;
881                         break;
882                 }
883
884                 buf += this_len;
885                 addr += this_len;
886                 copied += this_len;
887                 count -= this_len;
888         }
889         *ppos = addr;
890
891         mmput(mm);
892 free:
893         free_page((unsigned long) page);
894         return copied;
895 }
896
897 static ssize_t mem_read(struct file *file, char __user *buf,
898                         size_t count, loff_t *ppos)
899 {
900         return mem_rw(file, buf, count, ppos, 0);
901 }
902
903 static ssize_t mem_write(struct file *file, const char __user *buf,
904                          size_t count, loff_t *ppos)
905 {
906         return mem_rw(file, (char __user*)buf, count, ppos, 1);
907 }
908
909 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
910 {
911         switch (orig) {
912         case 0:
913                 file->f_pos = offset;
914                 break;
915         case 1:
916                 file->f_pos += offset;
917                 break;
918         default:
919                 return -EINVAL;
920         }
921         force_successful_syscall_return();
922         return file->f_pos;
923 }
924
925 static int mem_release(struct inode *inode, struct file *file)
926 {
927         struct mm_struct *mm = file->private_data;
928         if (mm)
929                 mmdrop(mm);
930         return 0;
931 }
932
933 static const struct file_operations proc_mem_operations = {
934         .llseek         = mem_lseek,
935         .read           = mem_read,
936         .write          = mem_write,
937         .open           = mem_open,
938         .release        = mem_release,
939 };
940
941 static int environ_open(struct inode *inode, struct file *file)
942 {
943         return __mem_open(inode, file, PTRACE_MODE_READ);
944 }
945
946 static ssize_t environ_read(struct file *file, char __user *buf,
947                         size_t count, loff_t *ppos)
948 {
949         char *page;
950         unsigned long src = *ppos;
951         int ret = 0;
952         struct mm_struct *mm = file->private_data;
953         unsigned long env_start, env_end;
954
955         /* Ensure the process spawned far enough to have an environment. */
956         if (!mm || !mm->env_end)
957                 return 0;
958
959         page = (char *)__get_free_page(GFP_TEMPORARY);
960         if (!page)
961                 return -ENOMEM;
962
963         ret = 0;
964         if (!atomic_inc_not_zero(&mm->mm_users))
965                 goto free;
966
967         down_read(&mm->mmap_sem);
968         env_start = mm->env_start;
969         env_end = mm->env_end;
970         up_read(&mm->mmap_sem);
971
972         while (count > 0) {
973                 size_t this_len, max_len;
974                 int retval;
975
976                 if (src >= (env_end - env_start))
977                         break;
978
979                 this_len = env_end - (env_start + src);
980
981                 max_len = min_t(size_t, PAGE_SIZE, count);
982                 this_len = min(max_len, this_len);
983
984                 retval = access_remote_vm(mm, (env_start + src),
985                         page, this_len, 0);
986
987                 if (retval <= 0) {
988                         ret = retval;
989                         break;
990                 }
991
992                 if (copy_to_user(buf, page, retval)) {
993                         ret = -EFAULT;
994                         break;
995                 }
996
997                 ret += retval;
998                 src += retval;
999                 buf += retval;
1000                 count -= retval;
1001         }
1002         *ppos = src;
1003         mmput(mm);
1004
1005 free:
1006         free_page((unsigned long) page);
1007         return ret;
1008 }
1009
1010 static const struct file_operations proc_environ_operations = {
1011         .open           = environ_open,
1012         .read           = environ_read,
1013         .llseek         = generic_file_llseek,
1014         .release        = mem_release,
1015 };
1016
1017 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018                             loff_t *ppos)
1019 {
1020         struct task_struct *task = get_proc_task(file_inode(file));
1021         char buffer[PROC_NUMBUF];
1022         int oom_adj = OOM_ADJUST_MIN;
1023         size_t len;
1024
1025         if (!task)
1026                 return -ESRCH;
1027         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028                 oom_adj = OOM_ADJUST_MAX;
1029         else
1030                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031                           OOM_SCORE_ADJ_MAX;
1032         put_task_struct(task);
1033         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035 }
1036
1037 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038 {
1039         static DEFINE_MUTEX(oom_adj_mutex);
1040         struct mm_struct *mm = NULL;
1041         struct task_struct *task;
1042         int err = 0;
1043
1044         task = get_proc_task(file_inode(file));
1045         if (!task)
1046                 return -ESRCH;
1047
1048         mutex_lock(&oom_adj_mutex);
1049         if (legacy) {
1050                 if (oom_adj < task->signal->oom_score_adj &&
1051                                 !capable(CAP_SYS_RESOURCE)) {
1052                         err = -EACCES;
1053                         goto err_unlock;
1054                 }
1055                 /*
1056                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057                  * /proc/pid/oom_score_adj instead.
1058                  */
1059                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060                           current->comm, task_pid_nr(current), task_pid_nr(task),
1061                           task_pid_nr(task));
1062         } else {
1063                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064                                 !capable(CAP_SYS_RESOURCE)) {
1065                         err = -EACCES;
1066                         goto err_unlock;
1067                 }
1068         }
1069
1070         /*
1071          * Make sure we will check other processes sharing the mm if this is
1072          * not vfrok which wants its own oom_score_adj.
1073          * pin the mm so it doesn't go away and get reused after task_unlock
1074          */
1075         if (!task->vfork_done) {
1076                 struct task_struct *p = find_lock_task_mm(task);
1077
1078                 if (p) {
1079                         if (atomic_read(&p->mm->mm_users) > 1) {
1080                                 mm = p->mm;
1081                                 atomic_inc(&mm->mm_count);
1082                         }
1083                         task_unlock(p);
1084                 }
1085         }
1086
1087         task->signal->oom_score_adj = oom_adj;
1088         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089                 task->signal->oom_score_adj_min = (short)oom_adj;
1090         trace_oom_score_adj_update(task);
1091
1092         if (mm) {
1093                 struct task_struct *p;
1094
1095                 rcu_read_lock();
1096                 for_each_process(p) {
1097                         if (same_thread_group(task, p))
1098                                 continue;
1099
1100                         /* do not touch kernel threads or the global init */
1101                         if (p->flags & PF_KTHREAD || is_global_init(p))
1102                                 continue;
1103
1104                         task_lock(p);
1105                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1106                                 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1107                                                 task_pid_nr(p), p->comm,
1108                                                 p->signal->oom_score_adj, oom_adj,
1109                                                 task_pid_nr(task), task->comm);
1110                                 p->signal->oom_score_adj = oom_adj;
1111                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1112                                         p->signal->oom_score_adj_min = (short)oom_adj;
1113                         }
1114                         task_unlock(p);
1115                 }
1116                 rcu_read_unlock();
1117                 mmdrop(mm);
1118         }
1119 err_unlock:
1120         mutex_unlock(&oom_adj_mutex);
1121         put_task_struct(task);
1122         return err;
1123 }
1124
1125 /*
1126  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1127  * kernels.  The effective policy is defined by oom_score_adj, which has a
1128  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1129  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1130  * Processes that become oom disabled via oom_adj will still be oom disabled
1131  * with this implementation.
1132  *
1133  * oom_adj cannot be removed since existing userspace binaries use it.
1134  */
1135 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1136                              size_t count, loff_t *ppos)
1137 {
1138         char buffer[PROC_NUMBUF];
1139         int oom_adj;
1140         int err;
1141
1142         memset(buffer, 0, sizeof(buffer));
1143         if (count > sizeof(buffer) - 1)
1144                 count = sizeof(buffer) - 1;
1145         if (copy_from_user(buffer, buf, count)) {
1146                 err = -EFAULT;
1147                 goto out;
1148         }
1149
1150         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1151         if (err)
1152                 goto out;
1153         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1154              oom_adj != OOM_DISABLE) {
1155                 err = -EINVAL;
1156                 goto out;
1157         }
1158
1159         /*
1160          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1161          * value is always attainable.
1162          */
1163         if (oom_adj == OOM_ADJUST_MAX)
1164                 oom_adj = OOM_SCORE_ADJ_MAX;
1165         else
1166                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1167
1168         err = __set_oom_adj(file, oom_adj, true);
1169 out:
1170         return err < 0 ? err : count;
1171 }
1172
1173 static const struct file_operations proc_oom_adj_operations = {
1174         .read           = oom_adj_read,
1175         .write          = oom_adj_write,
1176         .llseek         = generic_file_llseek,
1177 };
1178
1179 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1180                                         size_t count, loff_t *ppos)
1181 {
1182         struct task_struct *task = get_proc_task(file_inode(file));
1183         char buffer[PROC_NUMBUF];
1184         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1185         size_t len;
1186
1187         if (!task)
1188                 return -ESRCH;
1189         oom_score_adj = task->signal->oom_score_adj;
1190         put_task_struct(task);
1191         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1192         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1193 }
1194
1195 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1196                                         size_t count, loff_t *ppos)
1197 {
1198         char buffer[PROC_NUMBUF];
1199         int oom_score_adj;
1200         int err;
1201
1202         memset(buffer, 0, sizeof(buffer));
1203         if (count > sizeof(buffer) - 1)
1204                 count = sizeof(buffer) - 1;
1205         if (copy_from_user(buffer, buf, count)) {
1206                 err = -EFAULT;
1207                 goto out;
1208         }
1209
1210         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1211         if (err)
1212                 goto out;
1213         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1214                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1215                 err = -EINVAL;
1216                 goto out;
1217         }
1218
1219         err = __set_oom_adj(file, oom_score_adj, false);
1220 out:
1221         return err < 0 ? err : count;
1222 }
1223
1224 static const struct file_operations proc_oom_score_adj_operations = {
1225         .read           = oom_score_adj_read,
1226         .write          = oom_score_adj_write,
1227         .llseek         = default_llseek,
1228 };
1229
1230 #ifdef CONFIG_AUDITSYSCALL
1231 #define TMPBUFLEN 21
1232 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1233                                   size_t count, loff_t *ppos)
1234 {
1235         struct inode * inode = file_inode(file);
1236         struct task_struct *task = get_proc_task(inode);
1237         ssize_t length;
1238         char tmpbuf[TMPBUFLEN];
1239
1240         if (!task)
1241                 return -ESRCH;
1242         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1243                            from_kuid(file->f_cred->user_ns,
1244                                      audit_get_loginuid(task)));
1245         put_task_struct(task);
1246         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1247 }
1248
1249 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1250                                    size_t count, loff_t *ppos)
1251 {
1252         struct inode * inode = file_inode(file);
1253         uid_t loginuid;
1254         kuid_t kloginuid;
1255         int rv;
1256
1257         rcu_read_lock();
1258         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1259                 rcu_read_unlock();
1260                 return -EPERM;
1261         }
1262         rcu_read_unlock();
1263
1264         if (*ppos != 0) {
1265                 /* No partial writes. */
1266                 return -EINVAL;
1267         }
1268
1269         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1270         if (rv < 0)
1271                 return rv;
1272
1273         /* is userspace tring to explicitly UNSET the loginuid? */
1274         if (loginuid == AUDIT_UID_UNSET) {
1275                 kloginuid = INVALID_UID;
1276         } else {
1277                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1278                 if (!uid_valid(kloginuid))
1279                         return -EINVAL;
1280         }
1281
1282         rv = audit_set_loginuid(kloginuid);
1283         if (rv < 0)
1284                 return rv;
1285         return count;
1286 }
1287
1288 static const struct file_operations proc_loginuid_operations = {
1289         .read           = proc_loginuid_read,
1290         .write          = proc_loginuid_write,
1291         .llseek         = generic_file_llseek,
1292 };
1293
1294 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1295                                   size_t count, loff_t *ppos)
1296 {
1297         struct inode * inode = file_inode(file);
1298         struct task_struct *task = get_proc_task(inode);
1299         ssize_t length;
1300         char tmpbuf[TMPBUFLEN];
1301
1302         if (!task)
1303                 return -ESRCH;
1304         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1305                                 audit_get_sessionid(task));
1306         put_task_struct(task);
1307         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1308 }
1309
1310 static const struct file_operations proc_sessionid_operations = {
1311         .read           = proc_sessionid_read,
1312         .llseek         = generic_file_llseek,
1313 };
1314 #endif
1315
1316 #ifdef CONFIG_FAULT_INJECTION
1317 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1318                                       size_t count, loff_t *ppos)
1319 {
1320         struct task_struct *task = get_proc_task(file_inode(file));
1321         char buffer[PROC_NUMBUF];
1322         size_t len;
1323         int make_it_fail;
1324
1325         if (!task)
1326                 return -ESRCH;
1327         make_it_fail = task->make_it_fail;
1328         put_task_struct(task);
1329
1330         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1331
1332         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1333 }
1334
1335 static ssize_t proc_fault_inject_write(struct file * file,
1336                         const char __user * buf, size_t count, loff_t *ppos)
1337 {
1338         struct task_struct *task;
1339         char buffer[PROC_NUMBUF];
1340         int make_it_fail;
1341         int rv;
1342
1343         if (!capable(CAP_SYS_RESOURCE))
1344                 return -EPERM;
1345         memset(buffer, 0, sizeof(buffer));
1346         if (count > sizeof(buffer) - 1)
1347                 count = sizeof(buffer) - 1;
1348         if (copy_from_user(buffer, buf, count))
1349                 return -EFAULT;
1350         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1351         if (rv < 0)
1352                 return rv;
1353         if (make_it_fail < 0 || make_it_fail > 1)
1354                 return -EINVAL;
1355
1356         task = get_proc_task(file_inode(file));
1357         if (!task)
1358                 return -ESRCH;
1359         task->make_it_fail = make_it_fail;
1360         put_task_struct(task);
1361
1362         return count;
1363 }
1364
1365 static const struct file_operations proc_fault_inject_operations = {
1366         .read           = proc_fault_inject_read,
1367         .write          = proc_fault_inject_write,
1368         .llseek         = generic_file_llseek,
1369 };
1370 #endif
1371
1372
1373 #ifdef CONFIG_SCHED_DEBUG
1374 /*
1375  * Print out various scheduling related per-task fields:
1376  */
1377 static int sched_show(struct seq_file *m, void *v)
1378 {
1379         struct inode *inode = m->private;
1380         struct task_struct *p;
1381
1382         p = get_proc_task(inode);
1383         if (!p)
1384                 return -ESRCH;
1385         proc_sched_show_task(p, m);
1386
1387         put_task_struct(p);
1388
1389         return 0;
1390 }
1391
1392 static ssize_t
1393 sched_write(struct file *file, const char __user *buf,
1394             size_t count, loff_t *offset)
1395 {
1396         struct inode *inode = file_inode(file);
1397         struct task_struct *p;
1398
1399         p = get_proc_task(inode);
1400         if (!p)
1401                 return -ESRCH;
1402         proc_sched_set_task(p);
1403
1404         put_task_struct(p);
1405
1406         return count;
1407 }
1408
1409 static int sched_open(struct inode *inode, struct file *filp)
1410 {
1411         return single_open(filp, sched_show, inode);
1412 }
1413
1414 static const struct file_operations proc_pid_sched_operations = {
1415         .open           = sched_open,
1416         .read           = seq_read,
1417         .write          = sched_write,
1418         .llseek         = seq_lseek,
1419         .release        = single_release,
1420 };
1421
1422 #endif
1423
1424 #ifdef CONFIG_SCHED_AUTOGROUP
1425 /*
1426  * Print out autogroup related information:
1427  */
1428 static int sched_autogroup_show(struct seq_file *m, void *v)
1429 {
1430         struct inode *inode = m->private;
1431         struct task_struct *p;
1432
1433         p = get_proc_task(inode);
1434         if (!p)
1435                 return -ESRCH;
1436         proc_sched_autogroup_show_task(p, m);
1437
1438         put_task_struct(p);
1439
1440         return 0;
1441 }
1442
1443 static ssize_t
1444 sched_autogroup_write(struct file *file, const char __user *buf,
1445             size_t count, loff_t *offset)
1446 {
1447         struct inode *inode = file_inode(file);
1448         struct task_struct *p;
1449         char buffer[PROC_NUMBUF];
1450         int nice;
1451         int err;
1452
1453         memset(buffer, 0, sizeof(buffer));
1454         if (count > sizeof(buffer) - 1)
1455                 count = sizeof(buffer) - 1;
1456         if (copy_from_user(buffer, buf, count))
1457                 return -EFAULT;
1458
1459         err = kstrtoint(strstrip(buffer), 0, &nice);
1460         if (err < 0)
1461                 return err;
1462
1463         p = get_proc_task(inode);
1464         if (!p)
1465                 return -ESRCH;
1466
1467         err = proc_sched_autogroup_set_nice(p, nice);
1468         if (err)
1469                 count = err;
1470
1471         put_task_struct(p);
1472
1473         return count;
1474 }
1475
1476 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1477 {
1478         int ret;
1479
1480         ret = single_open(filp, sched_autogroup_show, NULL);
1481         if (!ret) {
1482                 struct seq_file *m = filp->private_data;
1483
1484                 m->private = inode;
1485         }
1486         return ret;
1487 }
1488
1489 static const struct file_operations proc_pid_sched_autogroup_operations = {
1490         .open           = sched_autogroup_open,
1491         .read           = seq_read,
1492         .write          = sched_autogroup_write,
1493         .llseek         = seq_lseek,
1494         .release        = single_release,
1495 };
1496
1497 #endif /* CONFIG_SCHED_AUTOGROUP */
1498
1499 static ssize_t comm_write(struct file *file, const char __user *buf,
1500                                 size_t count, loff_t *offset)
1501 {
1502         struct inode *inode = file_inode(file);
1503         struct task_struct *p;
1504         char buffer[TASK_COMM_LEN];
1505         const size_t maxlen = sizeof(buffer) - 1;
1506
1507         memset(buffer, 0, sizeof(buffer));
1508         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1509                 return -EFAULT;
1510
1511         p = get_proc_task(inode);
1512         if (!p)
1513                 return -ESRCH;
1514
1515         if (same_thread_group(current, p))
1516                 set_task_comm(p, buffer);
1517         else
1518                 count = -EINVAL;
1519
1520         put_task_struct(p);
1521
1522         return count;
1523 }
1524
1525 static int comm_show(struct seq_file *m, void *v)
1526 {
1527         struct inode *inode = m->private;
1528         struct task_struct *p;
1529
1530         p = get_proc_task(inode);
1531         if (!p)
1532                 return -ESRCH;
1533
1534         task_lock(p);
1535         seq_printf(m, "%s\n", p->comm);
1536         task_unlock(p);
1537
1538         put_task_struct(p);
1539
1540         return 0;
1541 }
1542
1543 static int comm_open(struct inode *inode, struct file *filp)
1544 {
1545         return single_open(filp, comm_show, inode);
1546 }
1547
1548 static const struct file_operations proc_pid_set_comm_operations = {
1549         .open           = comm_open,
1550         .read           = seq_read,
1551         .write          = comm_write,
1552         .llseek         = seq_lseek,
1553         .release        = single_release,
1554 };
1555
1556 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1557 {
1558         struct task_struct *task;
1559         struct file *exe_file;
1560
1561         task = get_proc_task(d_inode(dentry));
1562         if (!task)
1563                 return -ENOENT;
1564         exe_file = get_task_exe_file(task);
1565         put_task_struct(task);
1566         if (exe_file) {
1567                 *exe_path = exe_file->f_path;
1568                 path_get(&exe_file->f_path);
1569                 fput(exe_file);
1570                 return 0;
1571         } else
1572                 return -ENOENT;
1573 }
1574
1575 static const char *proc_pid_get_link(struct dentry *dentry,
1576                                      struct inode *inode,
1577                                      struct delayed_call *done)
1578 {
1579         struct path path;
1580         int error = -EACCES;
1581
1582         if (!dentry)
1583                 return ERR_PTR(-ECHILD);
1584
1585         /* Are we allowed to snoop on the tasks file descriptors? */
1586         if (!proc_fd_access_allowed(inode))
1587                 goto out;
1588
1589         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1590         if (error)
1591                 goto out;
1592
1593         nd_jump_link(&path);
1594         return NULL;
1595 out:
1596         return ERR_PTR(error);
1597 }
1598
1599 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1600 {
1601         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1602         char *pathname;
1603         int len;
1604
1605         if (!tmp)
1606                 return -ENOMEM;
1607
1608         pathname = d_path(path, tmp, PAGE_SIZE);
1609         len = PTR_ERR(pathname);
1610         if (IS_ERR(pathname))
1611                 goto out;
1612         len = tmp + PAGE_SIZE - 1 - pathname;
1613
1614         if (len > buflen)
1615                 len = buflen;
1616         if (copy_to_user(buffer, pathname, len))
1617                 len = -EFAULT;
1618  out:
1619         free_page((unsigned long)tmp);
1620         return len;
1621 }
1622
1623 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1624 {
1625         int error = -EACCES;
1626         struct inode *inode = d_inode(dentry);
1627         struct path path;
1628
1629         /* Are we allowed to snoop on the tasks file descriptors? */
1630         if (!proc_fd_access_allowed(inode))
1631                 goto out;
1632
1633         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1634         if (error)
1635                 goto out;
1636
1637         error = do_proc_readlink(&path, buffer, buflen);
1638         path_put(&path);
1639 out:
1640         return error;
1641 }
1642
1643 const struct inode_operations proc_pid_link_inode_operations = {
1644         .readlink       = proc_pid_readlink,
1645         .get_link       = proc_pid_get_link,
1646         .setattr        = proc_setattr,
1647 };
1648
1649
1650 /* building an inode */
1651
1652 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1653 {
1654         struct inode * inode;
1655         struct proc_inode *ei;
1656         const struct cred *cred;
1657
1658         /* We need a new inode */
1659
1660         inode = new_inode(sb);
1661         if (!inode)
1662                 goto out;
1663
1664         /* Common stuff */
1665         ei = PROC_I(inode);
1666         inode->i_ino = get_next_ino();
1667         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1668         inode->i_op = &proc_def_inode_operations;
1669
1670         /*
1671          * grab the reference to task.
1672          */
1673         ei->pid = get_task_pid(task, PIDTYPE_PID);
1674         if (!ei->pid)
1675                 goto out_unlock;
1676
1677         if (task_dumpable(task)) {
1678                 rcu_read_lock();
1679                 cred = __task_cred(task);
1680                 inode->i_uid = cred->euid;
1681                 inode->i_gid = cred->egid;
1682                 rcu_read_unlock();
1683         }
1684         security_task_to_inode(task, inode);
1685
1686 out:
1687         return inode;
1688
1689 out_unlock:
1690         iput(inode);
1691         return NULL;
1692 }
1693
1694 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1695 {
1696         struct inode *inode = d_inode(dentry);
1697         struct task_struct *task;
1698         const struct cred *cred;
1699         struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1700
1701         generic_fillattr(inode, stat);
1702
1703         rcu_read_lock();
1704         stat->uid = GLOBAL_ROOT_UID;
1705         stat->gid = GLOBAL_ROOT_GID;
1706         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1707         if (task) {
1708                 if (!has_pid_permissions(pid, task, 2)) {
1709                         rcu_read_unlock();
1710                         /*
1711                          * This doesn't prevent learning whether PID exists,
1712                          * it only makes getattr() consistent with readdir().
1713                          */
1714                         return -ENOENT;
1715                 }
1716                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1717                     task_dumpable(task)) {
1718                         cred = __task_cred(task);
1719                         stat->uid = cred->euid;
1720                         stat->gid = cred->egid;
1721                 }
1722         }
1723         rcu_read_unlock();
1724         return 0;
1725 }
1726
1727 /* dentry stuff */
1728
1729 /*
1730  *      Exceptional case: normally we are not allowed to unhash a busy
1731  * directory. In this case, however, we can do it - no aliasing problems
1732  * due to the way we treat inodes.
1733  *
1734  * Rewrite the inode's ownerships here because the owning task may have
1735  * performed a setuid(), etc.
1736  *
1737  * Before the /proc/pid/status file was created the only way to read
1738  * the effective uid of a /process was to stat /proc/pid.  Reading
1739  * /proc/pid/status is slow enough that procps and other packages
1740  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1741  * made this apply to all per process world readable and executable
1742  * directories.
1743  */
1744 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1745 {
1746         struct inode *inode;
1747         struct task_struct *task;
1748         const struct cred *cred;
1749
1750         if (flags & LOOKUP_RCU)
1751                 return -ECHILD;
1752
1753         inode = d_inode(dentry);
1754         task = get_proc_task(inode);
1755
1756         if (task) {
1757                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1758                     task_dumpable(task)) {
1759                         rcu_read_lock();
1760                         cred = __task_cred(task);
1761                         inode->i_uid = cred->euid;
1762                         inode->i_gid = cred->egid;
1763                         rcu_read_unlock();
1764                 } else {
1765                         inode->i_uid = GLOBAL_ROOT_UID;
1766                         inode->i_gid = GLOBAL_ROOT_GID;
1767                 }
1768                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1769                 security_task_to_inode(task, inode);
1770                 put_task_struct(task);
1771                 return 1;
1772         }
1773         return 0;
1774 }
1775
1776 static inline bool proc_inode_is_dead(struct inode *inode)
1777 {
1778         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1779 }
1780
1781 int pid_delete_dentry(const struct dentry *dentry)
1782 {
1783         /* Is the task we represent dead?
1784          * If so, then don't put the dentry on the lru list,
1785          * kill it immediately.
1786          */
1787         return proc_inode_is_dead(d_inode(dentry));
1788 }
1789
1790 const struct dentry_operations pid_dentry_operations =
1791 {
1792         .d_revalidate   = pid_revalidate,
1793         .d_delete       = pid_delete_dentry,
1794 };
1795
1796 /* Lookups */
1797
1798 /*
1799  * Fill a directory entry.
1800  *
1801  * If possible create the dcache entry and derive our inode number and
1802  * file type from dcache entry.
1803  *
1804  * Since all of the proc inode numbers are dynamically generated, the inode
1805  * numbers do not exist until the inode is cache.  This means creating the
1806  * the dcache entry in readdir is necessary to keep the inode numbers
1807  * reported by readdir in sync with the inode numbers reported
1808  * by stat.
1809  */
1810 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1811         const char *name, int len,
1812         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1813 {
1814         struct dentry *child, *dir = file->f_path.dentry;
1815         struct qstr qname = QSTR_INIT(name, len);
1816         struct inode *inode;
1817         unsigned type;
1818         ino_t ino;
1819
1820         child = d_hash_and_lookup(dir, &qname);
1821         if (!child) {
1822                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1823                 child = d_alloc_parallel(dir, &qname, &wq);
1824                 if (IS_ERR(child))
1825                         goto end_instantiate;
1826                 if (d_in_lookup(child)) {
1827                         int err = instantiate(d_inode(dir), child, task, ptr);
1828                         d_lookup_done(child);
1829                         if (err < 0) {
1830                                 dput(child);
1831                                 goto end_instantiate;
1832                         }
1833                 }
1834         }
1835         inode = d_inode(child);
1836         ino = inode->i_ino;
1837         type = inode->i_mode >> 12;
1838         dput(child);
1839         return dir_emit(ctx, name, len, ino, type);
1840
1841 end_instantiate:
1842         return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1843 }
1844
1845 /*
1846  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1847  * which represent vma start and end addresses.
1848  */
1849 static int dname_to_vma_addr(struct dentry *dentry,
1850                              unsigned long *start, unsigned long *end)
1851 {
1852         if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1853                 return -EINVAL;
1854
1855         return 0;
1856 }
1857
1858 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1859 {
1860         unsigned long vm_start, vm_end;
1861         bool exact_vma_exists = false;
1862         struct mm_struct *mm = NULL;
1863         struct task_struct *task;
1864         const struct cred *cred;
1865         struct inode *inode;
1866         int status = 0;
1867
1868         if (flags & LOOKUP_RCU)
1869                 return -ECHILD;
1870
1871         inode = d_inode(dentry);
1872         task = get_proc_task(inode);
1873         if (!task)
1874                 goto out_notask;
1875
1876         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1877         if (IS_ERR_OR_NULL(mm))
1878                 goto out;
1879
1880         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1881                 down_read(&mm->mmap_sem);
1882                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1883                 up_read(&mm->mmap_sem);
1884         }
1885
1886         mmput(mm);
1887
1888         if (exact_vma_exists) {
1889                 if (task_dumpable(task)) {
1890                         rcu_read_lock();
1891                         cred = __task_cred(task);
1892                         inode->i_uid = cred->euid;
1893                         inode->i_gid = cred->egid;
1894                         rcu_read_unlock();
1895                 } else {
1896                         inode->i_uid = GLOBAL_ROOT_UID;
1897                         inode->i_gid = GLOBAL_ROOT_GID;
1898                 }
1899                 security_task_to_inode(task, inode);
1900                 status = 1;
1901         }
1902
1903 out:
1904         put_task_struct(task);
1905
1906 out_notask:
1907         return status;
1908 }
1909
1910 static const struct dentry_operations tid_map_files_dentry_operations = {
1911         .d_revalidate   = map_files_d_revalidate,
1912         .d_delete       = pid_delete_dentry,
1913 };
1914
1915 static int map_files_get_link(struct dentry *dentry, struct path *path)
1916 {
1917         unsigned long vm_start, vm_end;
1918         struct vm_area_struct *vma;
1919         struct task_struct *task;
1920         struct mm_struct *mm;
1921         int rc;
1922
1923         rc = -ENOENT;
1924         task = get_proc_task(d_inode(dentry));
1925         if (!task)
1926                 goto out;
1927
1928         mm = get_task_mm(task);
1929         put_task_struct(task);
1930         if (!mm)
1931                 goto out;
1932
1933         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1934         if (rc)
1935                 goto out_mmput;
1936
1937         rc = -ENOENT;
1938         down_read(&mm->mmap_sem);
1939         vma = find_exact_vma(mm, vm_start, vm_end);
1940         if (vma && vma->vm_file) {
1941                 *path = vma->vm_file->f_path;
1942                 path_get(path);
1943                 rc = 0;
1944         }
1945         up_read(&mm->mmap_sem);
1946
1947 out_mmput:
1948         mmput(mm);
1949 out:
1950         return rc;
1951 }
1952
1953 struct map_files_info {
1954         fmode_t         mode;
1955         unsigned long   len;
1956         unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1957 };
1958
1959 /*
1960  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1961  * symlinks may be used to bypass permissions on ancestor directories in the
1962  * path to the file in question.
1963  */
1964 static const char *
1965 proc_map_files_get_link(struct dentry *dentry,
1966                         struct inode *inode,
1967                         struct delayed_call *done)
1968 {
1969         if (!capable(CAP_SYS_ADMIN))
1970                 return ERR_PTR(-EPERM);
1971
1972         return proc_pid_get_link(dentry, inode, done);
1973 }
1974
1975 /*
1976  * Identical to proc_pid_link_inode_operations except for get_link()
1977  */
1978 static const struct inode_operations proc_map_files_link_inode_operations = {
1979         .readlink       = proc_pid_readlink,
1980         .get_link       = proc_map_files_get_link,
1981         .setattr        = proc_setattr,
1982 };
1983
1984 static int
1985 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1986                            struct task_struct *task, const void *ptr)
1987 {
1988         fmode_t mode = (fmode_t)(unsigned long)ptr;
1989         struct proc_inode *ei;
1990         struct inode *inode;
1991
1992         inode = proc_pid_make_inode(dir->i_sb, task);
1993         if (!inode)
1994                 return -ENOENT;
1995
1996         ei = PROC_I(inode);
1997         ei->op.proc_get_link = map_files_get_link;
1998
1999         inode->i_op = &proc_map_files_link_inode_operations;
2000         inode->i_size = 64;
2001         inode->i_mode = S_IFLNK;
2002
2003         if (mode & FMODE_READ)
2004                 inode->i_mode |= S_IRUSR;
2005         if (mode & FMODE_WRITE)
2006                 inode->i_mode |= S_IWUSR;
2007
2008         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2009         d_add(dentry, inode);
2010
2011         return 0;
2012 }
2013
2014 static struct dentry *proc_map_files_lookup(struct inode *dir,
2015                 struct dentry *dentry, unsigned int flags)
2016 {
2017         unsigned long vm_start, vm_end;
2018         struct vm_area_struct *vma;
2019         struct task_struct *task;
2020         int result;
2021         struct mm_struct *mm;
2022
2023         result = -ENOENT;
2024         task = get_proc_task(dir);
2025         if (!task)
2026                 goto out;
2027
2028         result = -EACCES;
2029         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2030                 goto out_put_task;
2031
2032         result = -ENOENT;
2033         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2034                 goto out_put_task;
2035
2036         mm = get_task_mm(task);
2037         if (!mm)
2038                 goto out_put_task;
2039
2040         down_read(&mm->mmap_sem);
2041         vma = find_exact_vma(mm, vm_start, vm_end);
2042         if (!vma)
2043                 goto out_no_vma;
2044
2045         if (vma->vm_file)
2046                 result = proc_map_files_instantiate(dir, dentry, task,
2047                                 (void *)(unsigned long)vma->vm_file->f_mode);
2048
2049 out_no_vma:
2050         up_read(&mm->mmap_sem);
2051         mmput(mm);
2052 out_put_task:
2053         put_task_struct(task);
2054 out:
2055         return ERR_PTR(result);
2056 }
2057
2058 static const struct inode_operations proc_map_files_inode_operations = {
2059         .lookup         = proc_map_files_lookup,
2060         .permission     = proc_fd_permission,
2061         .setattr        = proc_setattr,
2062 };
2063
2064 static int
2065 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2066 {
2067         struct vm_area_struct *vma;
2068         struct task_struct *task;
2069         struct mm_struct *mm;
2070         unsigned long nr_files, pos, i;
2071         struct flex_array *fa = NULL;
2072         struct map_files_info info;
2073         struct map_files_info *p;
2074         int ret;
2075
2076         ret = -ENOENT;
2077         task = get_proc_task(file_inode(file));
2078         if (!task)
2079                 goto out;
2080
2081         ret = -EACCES;
2082         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2083                 goto out_put_task;
2084
2085         ret = 0;
2086         if (!dir_emit_dots(file, ctx))
2087                 goto out_put_task;
2088
2089         mm = get_task_mm(task);
2090         if (!mm)
2091                 goto out_put_task;
2092         down_read(&mm->mmap_sem);
2093
2094         nr_files = 0;
2095
2096         /*
2097          * We need two passes here:
2098          *
2099          *  1) Collect vmas of mapped files with mmap_sem taken
2100          *  2) Release mmap_sem and instantiate entries
2101          *
2102          * otherwise we get lockdep complained, since filldir()
2103          * routine might require mmap_sem taken in might_fault().
2104          */
2105
2106         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2107                 if (vma->vm_file && ++pos > ctx->pos)
2108                         nr_files++;
2109         }
2110
2111         if (nr_files) {
2112                 fa = flex_array_alloc(sizeof(info), nr_files,
2113                                         GFP_KERNEL);
2114                 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2115                                                 GFP_KERNEL)) {
2116                         ret = -ENOMEM;
2117                         if (fa)
2118                                 flex_array_free(fa);
2119                         up_read(&mm->mmap_sem);
2120                         mmput(mm);
2121                         goto out_put_task;
2122                 }
2123                 for (i = 0, vma = mm->mmap, pos = 2; vma;
2124                                 vma = vma->vm_next) {
2125                         if (!vma->vm_file)
2126                                 continue;
2127                         if (++pos <= ctx->pos)
2128                                 continue;
2129
2130                         info.mode = vma->vm_file->f_mode;
2131                         info.len = snprintf(info.name,
2132                                         sizeof(info.name), "%lx-%lx",
2133                                         vma->vm_start, vma->vm_end);
2134                         if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2135                                 BUG();
2136                 }
2137         }
2138         up_read(&mm->mmap_sem);
2139
2140         for (i = 0; i < nr_files; i++) {
2141                 p = flex_array_get(fa, i);
2142                 if (!proc_fill_cache(file, ctx,
2143                                       p->name, p->len,
2144                                       proc_map_files_instantiate,
2145                                       task,
2146                                       (void *)(unsigned long)p->mode))
2147                         break;
2148                 ctx->pos++;
2149         }
2150         if (fa)
2151                 flex_array_free(fa);
2152         mmput(mm);
2153
2154 out_put_task:
2155         put_task_struct(task);
2156 out:
2157         return ret;
2158 }
2159
2160 static const struct file_operations proc_map_files_operations = {
2161         .read           = generic_read_dir,
2162         .iterate_shared = proc_map_files_readdir,
2163         .llseek         = generic_file_llseek,
2164 };
2165
2166 #ifdef CONFIG_CHECKPOINT_RESTORE
2167 struct timers_private {
2168         struct pid *pid;
2169         struct task_struct *task;
2170         struct sighand_struct *sighand;
2171         struct pid_namespace *ns;
2172         unsigned long flags;
2173 };
2174
2175 static void *timers_start(struct seq_file *m, loff_t *pos)
2176 {
2177         struct timers_private *tp = m->private;
2178
2179         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2180         if (!tp->task)
2181                 return ERR_PTR(-ESRCH);
2182
2183         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2184         if (!tp->sighand)
2185                 return ERR_PTR(-ESRCH);
2186
2187         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2188 }
2189
2190 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2191 {
2192         struct timers_private *tp = m->private;
2193         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2194 }
2195
2196 static void timers_stop(struct seq_file *m, void *v)
2197 {
2198         struct timers_private *tp = m->private;
2199
2200         if (tp->sighand) {
2201                 unlock_task_sighand(tp->task, &tp->flags);
2202                 tp->sighand = NULL;
2203         }
2204
2205         if (tp->task) {
2206                 put_task_struct(tp->task);
2207                 tp->task = NULL;
2208         }
2209 }
2210
2211 static int show_timer(struct seq_file *m, void *v)
2212 {
2213         struct k_itimer *timer;
2214         struct timers_private *tp = m->private;
2215         int notify;
2216         static const char * const nstr[] = {
2217                 [SIGEV_SIGNAL] = "signal",
2218                 [SIGEV_NONE] = "none",
2219                 [SIGEV_THREAD] = "thread",
2220         };
2221
2222         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2223         notify = timer->it_sigev_notify;
2224
2225         seq_printf(m, "ID: %d\n", timer->it_id);
2226         seq_printf(m, "signal: %d/%p\n",
2227                    timer->sigq->info.si_signo,
2228                    timer->sigq->info.si_value.sival_ptr);
2229         seq_printf(m, "notify: %s/%s.%d\n",
2230                    nstr[notify & ~SIGEV_THREAD_ID],
2231                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2232                    pid_nr_ns(timer->it_pid, tp->ns));
2233         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2234
2235         return 0;
2236 }
2237
2238 static const struct seq_operations proc_timers_seq_ops = {
2239         .start  = timers_start,
2240         .next   = timers_next,
2241         .stop   = timers_stop,
2242         .show   = show_timer,
2243 };
2244
2245 static int proc_timers_open(struct inode *inode, struct file *file)
2246 {
2247         struct timers_private *tp;
2248
2249         tp = __seq_open_private(file, &proc_timers_seq_ops,
2250                         sizeof(struct timers_private));
2251         if (!tp)
2252                 return -ENOMEM;
2253
2254         tp->pid = proc_pid(inode);
2255         tp->ns = inode->i_sb->s_fs_info;
2256         return 0;
2257 }
2258
2259 static const struct file_operations proc_timers_operations = {
2260         .open           = proc_timers_open,
2261         .read           = seq_read,
2262         .llseek         = seq_lseek,
2263         .release        = seq_release_private,
2264 };
2265 #endif
2266
2267 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2268                                         size_t count, loff_t *offset)
2269 {
2270         struct inode *inode = file_inode(file);
2271         struct task_struct *p;
2272         u64 slack_ns;
2273         int err;
2274
2275         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2276         if (err < 0)
2277                 return err;
2278
2279         p = get_proc_task(inode);
2280         if (!p)
2281                 return -ESRCH;
2282
2283         if (!capable(CAP_SYS_NICE)) {
2284                 count = -EPERM;
2285                 goto out;
2286         }
2287
2288         err = security_task_setscheduler(p);
2289         if (err) {
2290                 count = err;
2291                 goto out;
2292         }
2293
2294         task_lock(p);
2295         if (slack_ns == 0)
2296                 p->timer_slack_ns = p->default_timer_slack_ns;
2297         else
2298                 p->timer_slack_ns = slack_ns;
2299         task_unlock(p);
2300
2301 out:
2302         put_task_struct(p);
2303
2304         return count;
2305 }
2306
2307 static int timerslack_ns_show(struct seq_file *m, void *v)
2308 {
2309         struct inode *inode = m->private;
2310         struct task_struct *p;
2311         int err = 0;
2312
2313         p = get_proc_task(inode);
2314         if (!p)
2315                 return -ESRCH;
2316
2317         if (!capable(CAP_SYS_NICE)) {
2318                 err = -EPERM;
2319                 goto out;
2320         }
2321
2322         err = security_task_getscheduler(p);
2323         if (err)
2324                 goto out;
2325
2326         task_lock(p);
2327         seq_printf(m, "%llu\n", p->timer_slack_ns);
2328         task_unlock(p);
2329
2330 out:
2331         put_task_struct(p);
2332
2333         return err;
2334 }
2335
2336 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2337 {
2338         return single_open(filp, timerslack_ns_show, inode);
2339 }
2340
2341 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2342         .open           = timerslack_ns_open,
2343         .read           = seq_read,
2344         .write          = timerslack_ns_write,
2345         .llseek         = seq_lseek,
2346         .release        = single_release,
2347 };
2348
2349 static int proc_pident_instantiate(struct inode *dir,
2350         struct dentry *dentry, struct task_struct *task, const void *ptr)
2351 {
2352         const struct pid_entry *p = ptr;
2353         struct inode *inode;
2354         struct proc_inode *ei;
2355
2356         inode = proc_pid_make_inode(dir->i_sb, task);
2357         if (!inode)
2358                 goto out;
2359
2360         ei = PROC_I(inode);
2361         inode->i_mode = p->mode;
2362         if (S_ISDIR(inode->i_mode))
2363                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2364         if (p->iop)
2365                 inode->i_op = p->iop;
2366         if (p->fop)
2367                 inode->i_fop = p->fop;
2368         ei->op = p->op;
2369         d_set_d_op(dentry, &pid_dentry_operations);
2370         d_add(dentry, inode);
2371         /* Close the race of the process dying before we return the dentry */
2372         if (pid_revalidate(dentry, 0))
2373                 return 0;
2374 out:
2375         return -ENOENT;
2376 }
2377
2378 static struct dentry *proc_pident_lookup(struct inode *dir, 
2379                                          struct dentry *dentry,
2380                                          const struct pid_entry *ents,
2381                                          unsigned int nents)
2382 {
2383         int error;
2384         struct task_struct *task = get_proc_task(dir);
2385         const struct pid_entry *p, *last;
2386
2387         error = -ENOENT;
2388
2389         if (!task)
2390                 goto out_no_task;
2391
2392         /*
2393          * Yes, it does not scale. And it should not. Don't add
2394          * new entries into /proc/<tgid>/ without very good reasons.
2395          */
2396         last = &ents[nents - 1];
2397         for (p = ents; p <= last; p++) {
2398                 if (p->len != dentry->d_name.len)
2399                         continue;
2400                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2401                         break;
2402         }
2403         if (p > last)
2404                 goto out;
2405
2406         error = proc_pident_instantiate(dir, dentry, task, p);
2407 out:
2408         put_task_struct(task);
2409 out_no_task:
2410         return ERR_PTR(error);
2411 }
2412
2413 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2414                 const struct pid_entry *ents, unsigned int nents)
2415 {
2416         struct task_struct *task = get_proc_task(file_inode(file));
2417         const struct pid_entry *p;
2418
2419         if (!task)
2420                 return -ENOENT;
2421
2422         if (!dir_emit_dots(file, ctx))
2423                 goto out;
2424
2425         if (ctx->pos >= nents + 2)
2426                 goto out;
2427
2428         for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2429                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2430                                 proc_pident_instantiate, task, p))
2431                         break;
2432                 ctx->pos++;
2433         }
2434 out:
2435         put_task_struct(task);
2436         return 0;
2437 }
2438
2439 #ifdef CONFIG_SECURITY
2440 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2441                                   size_t count, loff_t *ppos)
2442 {
2443         struct inode * inode = file_inode(file);
2444         char *p = NULL;
2445         ssize_t length;
2446         struct task_struct *task = get_proc_task(inode);
2447
2448         if (!task)
2449                 return -ESRCH;
2450
2451         length = security_getprocattr(task,
2452                                       (char*)file->f_path.dentry->d_name.name,
2453                                       &p);
2454         put_task_struct(task);
2455         if (length > 0)
2456                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2457         kfree(p);
2458         return length;
2459 }
2460
2461 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2462                                    size_t count, loff_t *ppos)
2463 {
2464         struct inode * inode = file_inode(file);
2465         void *page;
2466         ssize_t length;
2467         struct task_struct *task = get_proc_task(inode);
2468
2469         length = -ESRCH;
2470         if (!task)
2471                 goto out_no_task;
2472         if (count > PAGE_SIZE)
2473                 count = PAGE_SIZE;
2474
2475         /* No partial writes. */
2476         length = -EINVAL;
2477         if (*ppos != 0)
2478                 goto out;
2479
2480         page = memdup_user(buf, count);
2481         if (IS_ERR(page)) {
2482                 length = PTR_ERR(page);
2483                 goto out;
2484         }
2485
2486         /* Guard against adverse ptrace interaction */
2487         length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2488         if (length < 0)
2489                 goto out_free;
2490
2491         length = security_setprocattr(task,
2492                                       (char*)file->f_path.dentry->d_name.name,
2493                                       page, count);
2494         mutex_unlock(&task->signal->cred_guard_mutex);
2495 out_free:
2496         kfree(page);
2497 out:
2498         put_task_struct(task);
2499 out_no_task:
2500         return length;
2501 }
2502
2503 static const struct file_operations proc_pid_attr_operations = {
2504         .read           = proc_pid_attr_read,
2505         .write          = proc_pid_attr_write,
2506         .llseek         = generic_file_llseek,
2507 };
2508
2509 static const struct pid_entry attr_dir_stuff[] = {
2510         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2511         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2512         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2513         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2514         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2515         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2516 };
2517
2518 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2519 {
2520         return proc_pident_readdir(file, ctx, 
2521                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2522 }
2523
2524 static const struct file_operations proc_attr_dir_operations = {
2525         .read           = generic_read_dir,
2526         .iterate_shared = proc_attr_dir_readdir,
2527         .llseek         = generic_file_llseek,
2528 };
2529
2530 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2531                                 struct dentry *dentry, unsigned int flags)
2532 {
2533         return proc_pident_lookup(dir, dentry,
2534                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2535 }
2536
2537 static const struct inode_operations proc_attr_dir_inode_operations = {
2538         .lookup         = proc_attr_dir_lookup,
2539         .getattr        = pid_getattr,
2540         .setattr        = proc_setattr,
2541 };
2542
2543 #endif
2544
2545 #ifdef CONFIG_ELF_CORE
2546 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2547                                          size_t count, loff_t *ppos)
2548 {
2549         struct task_struct *task = get_proc_task(file_inode(file));
2550         struct mm_struct *mm;
2551         char buffer[PROC_NUMBUF];
2552         size_t len;
2553         int ret;
2554
2555         if (!task)
2556                 return -ESRCH;
2557
2558         ret = 0;
2559         mm = get_task_mm(task);
2560         if (mm) {
2561                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2562                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2563                                 MMF_DUMP_FILTER_SHIFT));
2564                 mmput(mm);
2565                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2566         }
2567
2568         put_task_struct(task);
2569
2570         return ret;
2571 }
2572
2573 static ssize_t proc_coredump_filter_write(struct file *file,
2574                                           const char __user *buf,
2575                                           size_t count,
2576                                           loff_t *ppos)
2577 {
2578         struct task_struct *task;
2579         struct mm_struct *mm;
2580         unsigned int val;
2581         int ret;
2582         int i;
2583         unsigned long mask;
2584
2585         ret = kstrtouint_from_user(buf, count, 0, &val);
2586         if (ret < 0)
2587                 return ret;
2588
2589         ret = -ESRCH;
2590         task = get_proc_task(file_inode(file));
2591         if (!task)
2592                 goto out_no_task;
2593
2594         mm = get_task_mm(task);
2595         if (!mm)
2596                 goto out_no_mm;
2597         ret = 0;
2598
2599         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2600                 if (val & mask)
2601                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2602                 else
2603                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2604         }
2605
2606         mmput(mm);
2607  out_no_mm:
2608         put_task_struct(task);
2609  out_no_task:
2610         if (ret < 0)
2611                 return ret;
2612         return count;
2613 }
2614
2615 static const struct file_operations proc_coredump_filter_operations = {
2616         .read           = proc_coredump_filter_read,
2617         .write          = proc_coredump_filter_write,
2618         .llseek         = generic_file_llseek,
2619 };
2620 #endif
2621
2622 #ifdef CONFIG_TASK_IO_ACCOUNTING
2623 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2624 {
2625         struct task_io_accounting acct = task->ioac;
2626         unsigned long flags;
2627         int result;
2628
2629         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2630         if (result)
2631                 return result;
2632
2633         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2634                 result = -EACCES;
2635                 goto out_unlock;
2636         }
2637
2638         if (whole && lock_task_sighand(task, &flags)) {
2639                 struct task_struct *t = task;
2640
2641                 task_io_accounting_add(&acct, &task->signal->ioac);
2642                 while_each_thread(task, t)
2643                         task_io_accounting_add(&acct, &t->ioac);
2644
2645                 unlock_task_sighand(task, &flags);
2646         }
2647         seq_printf(m,
2648                    "rchar: %llu\n"
2649                    "wchar: %llu\n"
2650                    "syscr: %llu\n"
2651                    "syscw: %llu\n"
2652                    "read_bytes: %llu\n"
2653                    "write_bytes: %llu\n"
2654                    "cancelled_write_bytes: %llu\n",
2655                    (unsigned long long)acct.rchar,
2656                    (unsigned long long)acct.wchar,
2657                    (unsigned long long)acct.syscr,
2658                    (unsigned long long)acct.syscw,
2659                    (unsigned long long)acct.read_bytes,
2660                    (unsigned long long)acct.write_bytes,
2661                    (unsigned long long)acct.cancelled_write_bytes);
2662         result = 0;
2663
2664 out_unlock:
2665         mutex_unlock(&task->signal->cred_guard_mutex);
2666         return result;
2667 }
2668
2669 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2670                                   struct pid *pid, struct task_struct *task)
2671 {
2672         return do_io_accounting(task, m, 0);
2673 }
2674
2675 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2676                                    struct pid *pid, struct task_struct *task)
2677 {
2678         return do_io_accounting(task, m, 1);
2679 }
2680 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2681
2682 #ifdef CONFIG_USER_NS
2683 static int proc_id_map_open(struct inode *inode, struct file *file,
2684         const struct seq_operations *seq_ops)
2685 {
2686         struct user_namespace *ns = NULL;
2687         struct task_struct *task;
2688         struct seq_file *seq;
2689         int ret = -EINVAL;
2690
2691         task = get_proc_task(inode);
2692         if (task) {
2693                 rcu_read_lock();
2694                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2695                 rcu_read_unlock();
2696                 put_task_struct(task);
2697         }
2698         if (!ns)
2699                 goto err;
2700
2701         ret = seq_open(file, seq_ops);
2702         if (ret)
2703                 goto err_put_ns;
2704
2705         seq = file->private_data;
2706         seq->private = ns;
2707
2708         return 0;
2709 err_put_ns:
2710         put_user_ns(ns);
2711 err:
2712         return ret;
2713 }
2714
2715 static int proc_id_map_release(struct inode *inode, struct file *file)
2716 {
2717         struct seq_file *seq = file->private_data;
2718         struct user_namespace *ns = seq->private;
2719         put_user_ns(ns);
2720         return seq_release(inode, file);
2721 }
2722
2723 static int proc_uid_map_open(struct inode *inode, struct file *file)
2724 {
2725         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2726 }
2727
2728 static int proc_gid_map_open(struct inode *inode, struct file *file)
2729 {
2730         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2731 }
2732
2733 static int proc_projid_map_open(struct inode *inode, struct file *file)
2734 {
2735         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2736 }
2737
2738 static const struct file_operations proc_uid_map_operations = {
2739         .open           = proc_uid_map_open,
2740         .write          = proc_uid_map_write,
2741         .read           = seq_read,
2742         .llseek         = seq_lseek,
2743         .release        = proc_id_map_release,
2744 };
2745
2746 static const struct file_operations proc_gid_map_operations = {
2747         .open           = proc_gid_map_open,
2748         .write          = proc_gid_map_write,
2749         .read           = seq_read,
2750         .llseek         = seq_lseek,
2751         .release        = proc_id_map_release,
2752 };
2753
2754 static const struct file_operations proc_projid_map_operations = {
2755         .open           = proc_projid_map_open,
2756         .write          = proc_projid_map_write,
2757         .read           = seq_read,
2758         .llseek         = seq_lseek,
2759         .release        = proc_id_map_release,
2760 };
2761
2762 static int proc_setgroups_open(struct inode *inode, struct file *file)
2763 {
2764         struct user_namespace *ns = NULL;
2765         struct task_struct *task;
2766         int ret;
2767
2768         ret = -ESRCH;
2769         task = get_proc_task(inode);
2770         if (task) {
2771                 rcu_read_lock();
2772                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2773                 rcu_read_unlock();
2774                 put_task_struct(task);
2775         }
2776         if (!ns)
2777                 goto err;
2778
2779         if (file->f_mode & FMODE_WRITE) {
2780                 ret = -EACCES;
2781                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2782                         goto err_put_ns;
2783         }
2784
2785         ret = single_open(file, &proc_setgroups_show, ns);
2786         if (ret)
2787                 goto err_put_ns;
2788
2789         return 0;
2790 err_put_ns:
2791         put_user_ns(ns);
2792 err:
2793         return ret;
2794 }
2795
2796 static int proc_setgroups_release(struct inode *inode, struct file *file)
2797 {
2798         struct seq_file *seq = file->private_data;
2799         struct user_namespace *ns = seq->private;
2800         int ret = single_release(inode, file);
2801         put_user_ns(ns);
2802         return ret;
2803 }
2804
2805 static const struct file_operations proc_setgroups_operations = {
2806         .open           = proc_setgroups_open,
2807         .write          = proc_setgroups_write,
2808         .read           = seq_read,
2809         .llseek         = seq_lseek,
2810         .release        = proc_setgroups_release,
2811 };
2812 #endif /* CONFIG_USER_NS */
2813
2814 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2815                                 struct pid *pid, struct task_struct *task)
2816 {
2817         int err = lock_trace(task);
2818         if (!err) {
2819                 seq_printf(m, "%08x\n", task->personality);
2820                 unlock_trace(task);
2821         }
2822         return err;
2823 }
2824
2825 /*
2826  * Thread groups
2827  */
2828 static const struct file_operations proc_task_operations;
2829 static const struct inode_operations proc_task_inode_operations;
2830
2831 static const struct pid_entry tgid_base_stuff[] = {
2832         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2833         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2834         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2835         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2836         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2837 #ifdef CONFIG_NET
2838         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2839 #endif
2840         REG("environ",    S_IRUSR, proc_environ_operations),
2841         ONE("auxv",       S_IRUSR, proc_pid_auxv),
2842         ONE("status",     S_IRUGO, proc_pid_status),
2843         ONE("personality", S_IRUSR, proc_pid_personality),
2844         ONE("limits",     S_IRUGO, proc_pid_limits),
2845 #ifdef CONFIG_SCHED_DEBUG
2846         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2847 #endif
2848 #ifdef CONFIG_SCHED_AUTOGROUP
2849         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2850 #endif
2851         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2852 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2853         ONE("syscall",    S_IRUSR, proc_pid_syscall),
2854 #endif
2855         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2856         ONE("stat",       S_IRUGO, proc_tgid_stat),
2857         ONE("statm",      S_IRUGO, proc_pid_statm),
2858         REG("maps",       S_IRUGO, proc_pid_maps_operations),
2859 #ifdef CONFIG_NUMA
2860         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2861 #endif
2862         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2863         LNK("cwd",        proc_cwd_link),
2864         LNK("root",       proc_root_link),
2865         LNK("exe",        proc_exe_link),
2866         REG("mounts",     S_IRUGO, proc_mounts_operations),
2867         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2868         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2869 #ifdef CONFIG_PROC_PAGE_MONITOR
2870         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2871         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2872         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2873 #endif
2874 #ifdef CONFIG_SECURITY
2875         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2876 #endif
2877 #ifdef CONFIG_KALLSYMS
2878         ONE("wchan",      S_IRUGO, proc_pid_wchan),
2879 #endif
2880 #ifdef CONFIG_STACKTRACE
2881         ONE("stack",      S_IRUSR, proc_pid_stack),
2882 #endif
2883 #ifdef CONFIG_SCHED_INFO
2884         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2885 #endif
2886 #ifdef CONFIG_LATENCYTOP
2887         REG("latency",  S_IRUGO, proc_lstats_operations),
2888 #endif
2889 #ifdef CONFIG_PROC_PID_CPUSET
2890         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2891 #endif
2892 #ifdef CONFIG_CGROUPS
2893         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2894 #endif
2895         ONE("oom_score",  S_IRUGO, proc_oom_score),
2896         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2897         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2898 #ifdef CONFIG_AUDITSYSCALL
2899         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2900         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2901 #endif
2902 #ifdef CONFIG_FAULT_INJECTION
2903         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2904 #endif
2905 #ifdef CONFIG_ELF_CORE
2906         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2907 #endif
2908 #ifdef CONFIG_TASK_IO_ACCOUNTING
2909         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2910 #endif
2911 #ifdef CONFIG_HARDWALL
2912         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2913 #endif
2914 #ifdef CONFIG_USER_NS
2915         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2916         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2917         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2918         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2919 #endif
2920 #ifdef CONFIG_CHECKPOINT_RESTORE
2921         REG("timers",     S_IRUGO, proc_timers_operations),
2922 #endif
2923         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2924 };
2925
2926 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2927 {
2928         return proc_pident_readdir(file, ctx,
2929                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2930 }
2931
2932 static const struct file_operations proc_tgid_base_operations = {
2933         .read           = generic_read_dir,
2934         .iterate_shared = proc_tgid_base_readdir,
2935         .llseek         = generic_file_llseek,
2936 };
2937
2938 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2939 {
2940         return proc_pident_lookup(dir, dentry,
2941                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2942 }
2943
2944 static const struct inode_operations proc_tgid_base_inode_operations = {
2945         .lookup         = proc_tgid_base_lookup,
2946         .getattr        = pid_getattr,
2947         .setattr        = proc_setattr,
2948         .permission     = proc_pid_permission,
2949 };
2950
2951 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2952 {
2953         struct dentry *dentry, *leader, *dir;
2954         char buf[PROC_NUMBUF];
2955         struct qstr name;
2956
2957         name.name = buf;
2958         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2959         /* no ->d_hash() rejects on procfs */
2960         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2961         if (dentry) {
2962                 d_invalidate(dentry);
2963                 dput(dentry);
2964         }
2965
2966         if (pid == tgid)
2967                 return;
2968
2969         name.name = buf;
2970         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2971         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2972         if (!leader)
2973                 goto out;
2974
2975         name.name = "task";
2976         name.len = strlen(name.name);
2977         dir = d_hash_and_lookup(leader, &name);
2978         if (!dir)
2979                 goto out_put_leader;
2980
2981         name.name = buf;
2982         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2983         dentry = d_hash_and_lookup(dir, &name);
2984         if (dentry) {
2985                 d_invalidate(dentry);
2986                 dput(dentry);
2987         }
2988
2989         dput(dir);
2990 out_put_leader:
2991         dput(leader);
2992 out:
2993         return;
2994 }
2995
2996 /**
2997  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2998  * @task: task that should be flushed.
2999  *
3000  * When flushing dentries from proc, one needs to flush them from global
3001  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3002  * in. This call is supposed to do all of this job.
3003  *
3004  * Looks in the dcache for
3005  * /proc/@pid
3006  * /proc/@tgid/task/@pid
3007  * if either directory is present flushes it and all of it'ts children
3008  * from the dcache.
3009  *
3010  * It is safe and reasonable to cache /proc entries for a task until
3011  * that task exits.  After that they just clog up the dcache with
3012  * useless entries, possibly causing useful dcache entries to be
3013  * flushed instead.  This routine is proved to flush those useless
3014  * dcache entries at process exit time.
3015  *
3016  * NOTE: This routine is just an optimization so it does not guarantee
3017  *       that no dcache entries will exist at process exit time it
3018  *       just makes it very unlikely that any will persist.
3019  */
3020
3021 void proc_flush_task(struct task_struct *task)
3022 {
3023         int i;
3024         struct pid *pid, *tgid;
3025         struct upid *upid;
3026
3027         pid = task_pid(task);
3028         tgid = task_tgid(task);
3029
3030         for (i = 0; i <= pid->level; i++) {
3031                 upid = &pid->numbers[i];
3032                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3033                                         tgid->numbers[i].nr);
3034         }
3035 }
3036
3037 static int proc_pid_instantiate(struct inode *dir,
3038                                    struct dentry * dentry,
3039                                    struct task_struct *task, const void *ptr)
3040 {
3041         struct inode *inode;
3042
3043         inode = proc_pid_make_inode(dir->i_sb, task);
3044         if (!inode)
3045                 goto out;
3046
3047         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3048         inode->i_op = &proc_tgid_base_inode_operations;
3049         inode->i_fop = &proc_tgid_base_operations;
3050         inode->i_flags|=S_IMMUTABLE;
3051
3052         set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3053                                                   ARRAY_SIZE(tgid_base_stuff)));
3054
3055         d_set_d_op(dentry, &pid_dentry_operations);
3056
3057         d_add(dentry, inode);
3058         /* Close the race of the process dying before we return the dentry */
3059         if (pid_revalidate(dentry, 0))
3060                 return 0;
3061 out:
3062         return -ENOENT;
3063 }
3064
3065 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3066 {
3067         int result = -ENOENT;
3068         struct task_struct *task;
3069         unsigned tgid;
3070         struct pid_namespace *ns;
3071
3072         tgid = name_to_int(&dentry->d_name);
3073         if (tgid == ~0U)
3074                 goto out;
3075
3076         ns = dentry->d_sb->s_fs_info;
3077         rcu_read_lock();
3078         task = find_task_by_pid_ns(tgid, ns);
3079         if (task)
3080                 get_task_struct(task);
3081         rcu_read_unlock();
3082         if (!task)
3083                 goto out;
3084
3085         result = proc_pid_instantiate(dir, dentry, task, NULL);
3086         put_task_struct(task);
3087 out:
3088         return ERR_PTR(result);
3089 }
3090
3091 /*
3092  * Find the first task with tgid >= tgid
3093  *
3094  */
3095 struct tgid_iter {
3096         unsigned int tgid;
3097         struct task_struct *task;
3098 };
3099 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3100 {
3101         struct pid *pid;
3102
3103         if (iter.task)
3104                 put_task_struct(iter.task);
3105         rcu_read_lock();
3106 retry:
3107         iter.task = NULL;
3108         pid = find_ge_pid(iter.tgid, ns);
3109         if (pid) {
3110                 iter.tgid = pid_nr_ns(pid, ns);
3111                 iter.task = pid_task(pid, PIDTYPE_PID);
3112                 /* What we to know is if the pid we have find is the
3113                  * pid of a thread_group_leader.  Testing for task
3114                  * being a thread_group_leader is the obvious thing
3115                  * todo but there is a window when it fails, due to
3116                  * the pid transfer logic in de_thread.
3117                  *
3118                  * So we perform the straight forward test of seeing
3119                  * if the pid we have found is the pid of a thread
3120                  * group leader, and don't worry if the task we have
3121                  * found doesn't happen to be a thread group leader.
3122                  * As we don't care in the case of readdir.
3123                  */
3124                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3125                         iter.tgid += 1;
3126                         goto retry;
3127                 }
3128                 get_task_struct(iter.task);
3129         }
3130         rcu_read_unlock();
3131         return iter;
3132 }
3133
3134 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3135
3136 /* for the /proc/ directory itself, after non-process stuff has been done */
3137 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3138 {
3139         struct tgid_iter iter;
3140         struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3141         loff_t pos = ctx->pos;
3142
3143         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3144                 return 0;
3145
3146         if (pos == TGID_OFFSET - 2) {
3147                 struct inode *inode = d_inode(ns->proc_self);
3148                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3149                         return 0;
3150                 ctx->pos = pos = pos + 1;
3151         }
3152         if (pos == TGID_OFFSET - 1) {
3153                 struct inode *inode = d_inode(ns->proc_thread_self);
3154                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3155                         return 0;
3156                 ctx->pos = pos = pos + 1;
3157         }
3158         iter.tgid = pos - TGID_OFFSET;
3159         iter.task = NULL;
3160         for (iter = next_tgid(ns, iter);
3161              iter.task;
3162              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3163                 char name[PROC_NUMBUF];
3164                 int len;
3165                 if (!has_pid_permissions(ns, iter.task, 2))
3166                         continue;
3167
3168                 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3169                 ctx->pos = iter.tgid + TGID_OFFSET;
3170                 if (!proc_fill_cache(file, ctx, name, len,
3171                                      proc_pid_instantiate, iter.task, NULL)) {
3172                         put_task_struct(iter.task);
3173                         return 0;
3174                 }
3175         }
3176         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3177         return 0;
3178 }
3179
3180 /*
3181  * proc_tid_comm_permission is a special permission function exclusively
3182  * used for the node /proc/<pid>/task/<tid>/comm.
3183  * It bypasses generic permission checks in the case where a task of the same
3184  * task group attempts to access the node.
3185  * The rationale behind this is that glibc and bionic access this node for
3186  * cross thread naming (pthread_set/getname_np(!self)). However, if
3187  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3188  * which locks out the cross thread naming implementation.
3189  * This function makes sure that the node is always accessible for members of
3190  * same thread group.
3191  */
3192 static int proc_tid_comm_permission(struct inode *inode, int mask)
3193 {
3194         bool is_same_tgroup;
3195         struct task_struct *task;
3196
3197         task = get_proc_task(inode);
3198         if (!task)
3199                 return -ESRCH;
3200         is_same_tgroup = same_thread_group(current, task);
3201         put_task_struct(task);
3202
3203         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3204                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3205                  * read or written by the members of the corresponding
3206                  * thread group.
3207                  */
3208                 return 0;
3209         }
3210
3211         return generic_permission(inode, mask);
3212 }
3213
3214 static const struct inode_operations proc_tid_comm_inode_operations = {
3215                 .permission = proc_tid_comm_permission,
3216 };
3217
3218 /*
3219  * Tasks
3220  */
3221 static const struct pid_entry tid_base_stuff[] = {
3222         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3223         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3224         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3225 #ifdef CONFIG_NET
3226         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3227 #endif
3228         REG("environ",   S_IRUSR, proc_environ_operations),
3229         ONE("auxv",      S_IRUSR, proc_pid_auxv),
3230         ONE("status",    S_IRUGO, proc_pid_status),
3231         ONE("personality", S_IRUSR, proc_pid_personality),
3232         ONE("limits",    S_IRUGO, proc_pid_limits),
3233 #ifdef CONFIG_SCHED_DEBUG
3234         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3235 #endif
3236         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3237                          &proc_tid_comm_inode_operations,
3238                          &proc_pid_set_comm_operations, {}),
3239 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3240         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3241 #endif
3242         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3243         ONE("stat",      S_IRUGO, proc_tid_stat),
3244         ONE("statm",     S_IRUGO, proc_pid_statm),
3245         REG("maps",      S_IRUGO, proc_tid_maps_operations),
3246 #ifdef CONFIG_PROC_CHILDREN
3247         REG("children",  S_IRUGO, proc_tid_children_operations),
3248 #endif
3249 #ifdef CONFIG_NUMA
3250         REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3251 #endif
3252         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3253         LNK("cwd",       proc_cwd_link),
3254         LNK("root",      proc_root_link),
3255         LNK("exe",       proc_exe_link),
3256         REG("mounts",    S_IRUGO, proc_mounts_operations),
3257         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3258 #ifdef CONFIG_PROC_PAGE_MONITOR
3259         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3260         REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3261         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3262 #endif
3263 #ifdef CONFIG_SECURITY
3264         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3265 #endif
3266 #ifdef CONFIG_KALLSYMS
3267         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3268 #endif
3269 #ifdef CONFIG_STACKTRACE
3270         ONE("stack",      S_IRUSR, proc_pid_stack),
3271 #endif
3272 #ifdef CONFIG_SCHED_INFO
3273         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3274 #endif
3275 #ifdef CONFIG_LATENCYTOP
3276         REG("latency",  S_IRUGO, proc_lstats_operations),
3277 #endif
3278 #ifdef CONFIG_PROC_PID_CPUSET
3279         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3280 #endif
3281 #ifdef CONFIG_CGROUPS
3282         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3283 #endif
3284         ONE("oom_score", S_IRUGO, proc_oom_score),
3285         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3286         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3287 #ifdef CONFIG_AUDITSYSCALL
3288         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3289         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3290 #endif
3291 #ifdef CONFIG_FAULT_INJECTION
3292         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3293 #endif
3294 #ifdef CONFIG_TASK_IO_ACCOUNTING
3295         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3296 #endif
3297 #ifdef CONFIG_HARDWALL
3298         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3299 #endif
3300 #ifdef CONFIG_USER_NS
3301         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3302         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3303         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3304         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3305 #endif
3306 };
3307
3308 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3309 {
3310         return proc_pident_readdir(file, ctx,
3311                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3312 }
3313
3314 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3315 {
3316         return proc_pident_lookup(dir, dentry,
3317                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3318 }
3319
3320 static const struct file_operations proc_tid_base_operations = {
3321         .read           = generic_read_dir,
3322         .iterate_shared = proc_tid_base_readdir,
3323         .llseek         = generic_file_llseek,
3324 };
3325
3326 static const struct inode_operations proc_tid_base_inode_operations = {
3327         .lookup         = proc_tid_base_lookup,
3328         .getattr        = pid_getattr,
3329         .setattr        = proc_setattr,
3330 };
3331
3332 static int proc_task_instantiate(struct inode *dir,
3333         struct dentry *dentry, struct task_struct *task, const void *ptr)
3334 {
3335         struct inode *inode;
3336         inode = proc_pid_make_inode(dir->i_sb, task);
3337
3338         if (!inode)
3339                 goto out;
3340         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3341         inode->i_op = &proc_tid_base_inode_operations;
3342         inode->i_fop = &proc_tid_base_operations;
3343         inode->i_flags|=S_IMMUTABLE;
3344
3345         set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3346                                                   ARRAY_SIZE(tid_base_stuff)));
3347
3348         d_set_d_op(dentry, &pid_dentry_operations);
3349
3350         d_add(dentry, inode);
3351         /* Close the race of the process dying before we return the dentry */
3352         if (pid_revalidate(dentry, 0))
3353                 return 0;
3354 out:
3355         return -ENOENT;
3356 }
3357
3358 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3359 {
3360         int result = -ENOENT;
3361         struct task_struct *task;
3362         struct task_struct *leader = get_proc_task(dir);
3363         unsigned tid;
3364         struct pid_namespace *ns;
3365
3366         if (!leader)
3367                 goto out_no_task;
3368
3369         tid = name_to_int(&dentry->d_name);
3370         if (tid == ~0U)
3371                 goto out;
3372
3373         ns = dentry->d_sb->s_fs_info;
3374         rcu_read_lock();
3375         task = find_task_by_pid_ns(tid, ns);
3376         if (task)
3377                 get_task_struct(task);
3378         rcu_read_unlock();
3379         if (!task)
3380                 goto out;
3381         if (!same_thread_group(leader, task))
3382                 goto out_drop_task;
3383
3384         result = proc_task_instantiate(dir, dentry, task, NULL);
3385 out_drop_task:
3386         put_task_struct(task);
3387 out:
3388         put_task_struct(leader);
3389 out_no_task:
3390         return ERR_PTR(result);
3391 }
3392
3393 /*
3394  * Find the first tid of a thread group to return to user space.
3395  *
3396  * Usually this is just the thread group leader, but if the users
3397  * buffer was too small or there was a seek into the middle of the
3398  * directory we have more work todo.
3399  *
3400  * In the case of a short read we start with find_task_by_pid.
3401  *
3402  * In the case of a seek we start with the leader and walk nr
3403  * threads past it.
3404  */
3405 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3406                                         struct pid_namespace *ns)
3407 {
3408         struct task_struct *pos, *task;
3409         unsigned long nr = f_pos;
3410
3411         if (nr != f_pos)        /* 32bit overflow? */
3412                 return NULL;
3413
3414         rcu_read_lock();
3415         task = pid_task(pid, PIDTYPE_PID);
3416         if (!task)
3417                 goto fail;
3418
3419         /* Attempt to start with the tid of a thread */
3420         if (tid && nr) {
3421                 pos = find_task_by_pid_ns(tid, ns);
3422                 if (pos && same_thread_group(pos, task))
3423                         goto found;
3424         }
3425
3426         /* If nr exceeds the number of threads there is nothing todo */
3427         if (nr >= get_nr_threads(task))
3428                 goto fail;
3429
3430         /* If we haven't found our starting place yet start
3431          * with the leader and walk nr threads forward.
3432          */
3433         pos = task = task->group_leader;
3434         do {
3435                 if (!nr--)
3436                         goto found;
3437         } while_each_thread(task, pos);
3438 fail:
3439         pos = NULL;
3440         goto out;
3441 found:
3442         get_task_struct(pos);
3443 out:
3444         rcu_read_unlock();
3445         return pos;
3446 }
3447
3448 /*
3449  * Find the next thread in the thread list.
3450  * Return NULL if there is an error or no next thread.
3451  *
3452  * The reference to the input task_struct is released.
3453  */
3454 static struct task_struct *next_tid(struct task_struct *start)
3455 {
3456         struct task_struct *pos = NULL;
3457         rcu_read_lock();
3458         if (pid_alive(start)) {
3459                 pos = next_thread(start);
3460                 if (thread_group_leader(pos))
3461                         pos = NULL;
3462                 else
3463                         get_task_struct(pos);
3464         }
3465         rcu_read_unlock();
3466         put_task_struct(start);
3467         return pos;
3468 }
3469
3470 /* for the /proc/TGID/task/ directories */
3471 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3472 {
3473         struct inode *inode = file_inode(file);
3474         struct task_struct *task;
3475         struct pid_namespace *ns;
3476         int tid;
3477
3478         if (proc_inode_is_dead(inode))
3479                 return -ENOENT;
3480
3481         if (!dir_emit_dots(file, ctx))
3482                 return 0;
3483
3484         /* f_version caches the tgid value that the last readdir call couldn't
3485          * return. lseek aka telldir automagically resets f_version to 0.
3486          */
3487         ns = inode->i_sb->s_fs_info;
3488         tid = (int)file->f_version;
3489         file->f_version = 0;
3490         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3491              task;
3492              task = next_tid(task), ctx->pos++) {
3493                 char name[PROC_NUMBUF];
3494                 int len;
3495                 tid = task_pid_nr_ns(task, ns);
3496                 len = snprintf(name, sizeof(name), "%d", tid);
3497                 if (!proc_fill_cache(file, ctx, name, len,
3498                                 proc_task_instantiate, task, NULL)) {
3499                         /* returning this tgid failed, save it as the first
3500                          * pid for the next readir call */
3501                         file->f_version = (u64)tid;
3502                         put_task_struct(task);
3503                         break;
3504                 }
3505         }
3506
3507         return 0;
3508 }
3509
3510 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3511 {
3512         struct inode *inode = d_inode(dentry);
3513         struct task_struct *p = get_proc_task(inode);
3514         generic_fillattr(inode, stat);
3515
3516         if (p) {
3517                 stat->nlink += get_nr_threads(p);
3518                 put_task_struct(p);
3519         }
3520
3521         return 0;
3522 }
3523
3524 static const struct inode_operations proc_task_inode_operations = {
3525         .lookup         = proc_task_lookup,
3526         .getattr        = proc_task_getattr,
3527         .setattr        = proc_setattr,
3528         .permission     = proc_pid_permission,
3529 };
3530
3531 static const struct file_operations proc_task_operations = {
3532         .read           = generic_read_dir,
3533         .iterate_shared = proc_task_readdir,
3534         .llseek         = generic_file_llseek,
3535 };