Merge commit 'f17a0dd1c2e0' into clk-next
[cascardo/linux.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44                                      struct pipe_buffer *buf)
45 {
46         struct page *page = buf->page;
47         struct address_space *mapping;
48
49         lock_page(page);
50
51         mapping = page_mapping(page);
52         if (mapping) {
53                 WARN_ON(!PageUptodate(page));
54
55                 /*
56                  * At least for ext2 with nobh option, we need to wait on
57                  * writeback completing on this page, since we'll remove it
58                  * from the pagecache.  Otherwise truncate wont wait on the
59                  * page, allowing the disk blocks to be reused by someone else
60                  * before we actually wrote our data to them. fs corruption
61                  * ensues.
62                  */
63                 wait_on_page_writeback(page);
64
65                 if (page_has_private(page) &&
66                     !try_to_release_page(page, GFP_KERNEL))
67                         goto out_unlock;
68
69                 /*
70                  * If we succeeded in removing the mapping, set LRU flag
71                  * and return good.
72                  */
73                 if (remove_mapping(mapping, page)) {
74                         buf->flags |= PIPE_BUF_FLAG_LRU;
75                         return 0;
76                 }
77         }
78
79         /*
80          * Raced with truncate or failed to remove page from current
81          * address space, unlock and return failure.
82          */
83 out_unlock:
84         unlock_page(page);
85         return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89                                         struct pipe_buffer *buf)
90 {
91         put_page(buf->page);
92         buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100                                        struct pipe_buffer *buf)
101 {
102         struct page *page = buf->page;
103         int err;
104
105         if (!PageUptodate(page)) {
106                 lock_page(page);
107
108                 /*
109                  * Page got truncated/unhashed. This will cause a 0-byte
110                  * splice, if this is the first page.
111                  */
112                 if (!page->mapping) {
113                         err = -ENODATA;
114                         goto error;
115                 }
116
117                 /*
118                  * Uh oh, read-error from disk.
119                  */
120                 if (!PageUptodate(page)) {
121                         err = -EIO;
122                         goto error;
123                 }
124
125                 /*
126                  * Page is ok afterall, we are done.
127                  */
128                 unlock_page(page);
129         }
130
131         return 0;
132 error:
133         unlock_page(page);
134         return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138         .can_merge = 0,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .confirm = generic_pipe_buf_confirm,
158         .release = page_cache_pipe_buf_release,
159         .steal = user_page_pipe_buf_steal,
160         .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165         smp_mb();
166         if (waitqueue_active(&pipe->wait))
167                 wake_up_interruptible(&pipe->wait);
168         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:       pipe to fill
174  * @spd:        data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183                        struct splice_pipe_desc *spd)
184 {
185         unsigned int spd_pages = spd->nr_pages;
186         int ret, do_wakeup, page_nr;
187
188         if (!spd_pages)
189                 return 0;
190
191         ret = 0;
192         do_wakeup = 0;
193         page_nr = 0;
194
195         pipe_lock(pipe);
196
197         for (;;) {
198                 if (!pipe->readers) {
199                         send_sig(SIGPIPE, current, 0);
200                         if (!ret)
201                                 ret = -EPIPE;
202                         break;
203                 }
204
205                 if (pipe->nrbufs < pipe->buffers) {
206                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207                         struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209                         buf->page = spd->pages[page_nr];
210                         buf->offset = spd->partial[page_nr].offset;
211                         buf->len = spd->partial[page_nr].len;
212                         buf->private = spd->partial[page_nr].private;
213                         buf->ops = spd->ops;
214                         if (spd->flags & SPLICE_F_GIFT)
215                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217                         pipe->nrbufs++;
218                         page_nr++;
219                         ret += buf->len;
220
221                         if (pipe->files)
222                                 do_wakeup = 1;
223
224                         if (!--spd->nr_pages)
225                                 break;
226                         if (pipe->nrbufs < pipe->buffers)
227                                 continue;
228
229                         break;
230                 }
231
232                 if (spd->flags & SPLICE_F_NONBLOCK) {
233                         if (!ret)
234                                 ret = -EAGAIN;
235                         break;
236                 }
237
238                 if (signal_pending(current)) {
239                         if (!ret)
240                                 ret = -ERESTARTSYS;
241                         break;
242                 }
243
244                 if (do_wakeup) {
245                         smp_mb();
246                         if (waitqueue_active(&pipe->wait))
247                                 wake_up_interruptible_sync(&pipe->wait);
248                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249                         do_wakeup = 0;
250                 }
251
252                 pipe->waiting_writers++;
253                 pipe_wait(pipe);
254                 pipe->waiting_writers--;
255         }
256
257         pipe_unlock(pipe);
258
259         if (do_wakeup)
260                 wakeup_pipe_readers(pipe);
261
262         while (page_nr < spd_pages)
263                 spd->spd_release(spd, page_nr++);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 {
271         put_page(spd->pages[i]);
272 }
273
274 /*
275  * Check if we need to grow the arrays holding pages and partial page
276  * descriptions.
277  */
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 {
280         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282         spd->nr_pages_max = buffers;
283         if (buffers <= PIPE_DEF_BUFFERS)
284                 return 0;
285
286         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289         if (spd->pages && spd->partial)
290                 return 0;
291
292         kfree(spd->pages);
293         kfree(spd->partial);
294         return -ENOMEM;
295 }
296
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 {
299         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300                 return;
301
302         kfree(spd->pages);
303         kfree(spd->partial);
304 }
305
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308                            struct pipe_inode_info *pipe, size_t len,
309                            unsigned int flags)
310 {
311         struct address_space *mapping = in->f_mapping;
312         unsigned int loff, nr_pages, req_pages;
313         struct page *pages[PIPE_DEF_BUFFERS];
314         struct partial_page partial[PIPE_DEF_BUFFERS];
315         struct page *page;
316         pgoff_t index, end_index;
317         loff_t isize;
318         int error, page_nr;
319         struct splice_pipe_desc spd = {
320                 .pages = pages,
321                 .partial = partial,
322                 .nr_pages_max = PIPE_DEF_BUFFERS,
323                 .flags = flags,
324                 .ops = &page_cache_pipe_buf_ops,
325                 .spd_release = spd_release_page,
326         };
327
328         if (splice_grow_spd(pipe, &spd))
329                 return -ENOMEM;
330
331         index = *ppos >> PAGE_SHIFT;
332         loff = *ppos & ~PAGE_MASK;
333         req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334         nr_pages = min(req_pages, spd.nr_pages_max);
335
336         /*
337          * Lookup the (hopefully) full range of pages we need.
338          */
339         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340         index += spd.nr_pages;
341
342         /*
343          * If find_get_pages_contig() returned fewer pages than we needed,
344          * readahead/allocate the rest and fill in the holes.
345          */
346         if (spd.nr_pages < nr_pages)
347                 page_cache_sync_readahead(mapping, &in->f_ra, in,
348                                 index, req_pages - spd.nr_pages);
349
350         error = 0;
351         while (spd.nr_pages < nr_pages) {
352                 /*
353                  * Page could be there, find_get_pages_contig() breaks on
354                  * the first hole.
355                  */
356                 page = find_get_page(mapping, index);
357                 if (!page) {
358                         /*
359                          * page didn't exist, allocate one.
360                          */
361                         page = page_cache_alloc_cold(mapping);
362                         if (!page)
363                                 break;
364
365                         error = add_to_page_cache_lru(page, mapping, index,
366                                    mapping_gfp_constraint(mapping, GFP_KERNEL));
367                         if (unlikely(error)) {
368                                 put_page(page);
369                                 if (error == -EEXIST)
370                                         continue;
371                                 break;
372                         }
373                         /*
374                          * add_to_page_cache() locks the page, unlock it
375                          * to avoid convoluting the logic below even more.
376                          */
377                         unlock_page(page);
378                 }
379
380                 spd.pages[spd.nr_pages++] = page;
381                 index++;
382         }
383
384         /*
385          * Now loop over the map and see if we need to start IO on any
386          * pages, fill in the partial map, etc.
387          */
388         index = *ppos >> PAGE_SHIFT;
389         nr_pages = spd.nr_pages;
390         spd.nr_pages = 0;
391         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392                 unsigned int this_len;
393
394                 if (!len)
395                         break;
396
397                 /*
398                  * this_len is the max we'll use from this page
399                  */
400                 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401                 page = spd.pages[page_nr];
402
403                 if (PageReadahead(page))
404                         page_cache_async_readahead(mapping, &in->f_ra, in,
405                                         page, index, req_pages - page_nr);
406
407                 /*
408                  * If the page isn't uptodate, we may need to start io on it
409                  */
410                 if (!PageUptodate(page)) {
411                         lock_page(page);
412
413                         /*
414                          * Page was truncated, or invalidated by the
415                          * filesystem.  Redo the find/create, but this time the
416                          * page is kept locked, so there's no chance of another
417                          * race with truncate/invalidate.
418                          */
419                         if (!page->mapping) {
420                                 unlock_page(page);
421 retry_lookup:
422                                 page = find_or_create_page(mapping, index,
423                                                 mapping_gfp_mask(mapping));
424
425                                 if (!page) {
426                                         error = -ENOMEM;
427                                         break;
428                                 }
429                                 put_page(spd.pages[page_nr]);
430                                 spd.pages[page_nr] = page;
431                         }
432                         /*
433                          * page was already under io and is now done, great
434                          */
435                         if (PageUptodate(page)) {
436                                 unlock_page(page);
437                                 goto fill_it;
438                         }
439
440                         /*
441                          * need to read in the page
442                          */
443                         error = mapping->a_ops->readpage(in, page);
444                         if (unlikely(error)) {
445                                 /*
446                                  * Re-lookup the page
447                                  */
448                                 if (error == AOP_TRUNCATED_PAGE)
449                                         goto retry_lookup;
450
451                                 break;
452                         }
453                 }
454 fill_it:
455                 /*
456                  * i_size must be checked after PageUptodate.
457                  */
458                 isize = i_size_read(mapping->host);
459                 end_index = (isize - 1) >> PAGE_SHIFT;
460                 if (unlikely(!isize || index > end_index))
461                         break;
462
463                 /*
464                  * if this is the last page, see if we need to shrink
465                  * the length and stop
466                  */
467                 if (end_index == index) {
468                         unsigned int plen;
469
470                         /*
471                          * max good bytes in this page
472                          */
473                         plen = ((isize - 1) & ~PAGE_MASK) + 1;
474                         if (plen <= loff)
475                                 break;
476
477                         /*
478                          * force quit after adding this page
479                          */
480                         this_len = min(this_len, plen - loff);
481                         len = this_len;
482                 }
483
484                 spd.partial[page_nr].offset = loff;
485                 spd.partial[page_nr].len = this_len;
486                 len -= this_len;
487                 loff = 0;
488                 spd.nr_pages++;
489                 index++;
490         }
491
492         /*
493          * Release any pages at the end, if we quit early. 'page_nr' is how far
494          * we got, 'nr_pages' is how many pages are in the map.
495          */
496         while (page_nr < nr_pages)
497                 put_page(spd.pages[page_nr++]);
498         in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500         if (spd.nr_pages)
501                 error = splice_to_pipe(pipe, &spd);
502
503         splice_shrink_spd(&spd);
504         return error;
505 }
506
507 /**
508  * generic_file_splice_read - splice data from file to a pipe
509  * @in:         file to splice from
510  * @ppos:       position in @in
511  * @pipe:       pipe to splice to
512  * @len:        number of bytes to splice
513  * @flags:      splice modifier flags
514  *
515  * Description:
516  *    Will read pages from given file and fill them into a pipe. Can be
517  *    used as long as the address_space operations for the source implements
518  *    a readpage() hook.
519  *
520  */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522                                  struct pipe_inode_info *pipe, size_t len,
523                                  unsigned int flags)
524 {
525         loff_t isize, left;
526         int ret;
527
528         if (IS_DAX(in->f_mapping->host))
529                 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531         isize = i_size_read(in->f_mapping->host);
532         if (unlikely(*ppos >= isize))
533                 return 0;
534
535         left = isize - *ppos;
536         if (unlikely(left < len))
537                 len = left;
538
539         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540         if (ret > 0) {
541                 *ppos += ret;
542                 file_accessed(in);
543         }
544
545         return ret;
546 }
547 EXPORT_SYMBOL(generic_file_splice_read);
548
549 static const struct pipe_buf_operations default_pipe_buf_ops = {
550         .can_merge = 0,
551         .confirm = generic_pipe_buf_confirm,
552         .release = generic_pipe_buf_release,
553         .steal = generic_pipe_buf_steal,
554         .get = generic_pipe_buf_get,
555 };
556
557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558                                     struct pipe_buffer *buf)
559 {
560         return 1;
561 }
562
563 /* Pipe buffer operations for a socket and similar. */
564 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565         .can_merge = 0,
566         .confirm = generic_pipe_buf_confirm,
567         .release = generic_pipe_buf_release,
568         .steal = generic_pipe_buf_nosteal,
569         .get = generic_pipe_buf_get,
570 };
571 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574                             unsigned long vlen, loff_t offset)
575 {
576         mm_segment_t old_fs;
577         loff_t pos = offset;
578         ssize_t res;
579
580         old_fs = get_fs();
581         set_fs(get_ds());
582         /* The cast to a user pointer is valid due to the set_fs() */
583         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584         set_fs(old_fs);
585
586         return res;
587 }
588
589 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590                             loff_t pos)
591 {
592         mm_segment_t old_fs;
593         ssize_t res;
594
595         old_fs = get_fs();
596         set_fs(get_ds());
597         /* The cast to a user pointer is valid due to the set_fs() */
598         res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599         set_fs(old_fs);
600
601         return res;
602 }
603 EXPORT_SYMBOL(kernel_write);
604
605 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606                                  struct pipe_inode_info *pipe, size_t len,
607                                  unsigned int flags)
608 {
609         unsigned int nr_pages;
610         unsigned int nr_freed;
611         size_t offset;
612         struct page *pages[PIPE_DEF_BUFFERS];
613         struct partial_page partial[PIPE_DEF_BUFFERS];
614         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615         ssize_t res;
616         size_t this_len;
617         int error;
618         int i;
619         struct splice_pipe_desc spd = {
620                 .pages = pages,
621                 .partial = partial,
622                 .nr_pages_max = PIPE_DEF_BUFFERS,
623                 .flags = flags,
624                 .ops = &default_pipe_buf_ops,
625                 .spd_release = spd_release_page,
626         };
627
628         if (splice_grow_spd(pipe, &spd))
629                 return -ENOMEM;
630
631         res = -ENOMEM;
632         vec = __vec;
633         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635                 if (!vec)
636                         goto shrink_ret;
637         }
638
639         offset = *ppos & ~PAGE_MASK;
640         nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643                 struct page *page;
644
645                 page = alloc_page(GFP_USER);
646                 error = -ENOMEM;
647                 if (!page)
648                         goto err;
649
650                 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651                 vec[i].iov_base = (void __user *) page_address(page);
652                 vec[i].iov_len = this_len;
653                 spd.pages[i] = page;
654                 spd.nr_pages++;
655                 len -= this_len;
656                 offset = 0;
657         }
658
659         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660         if (res < 0) {
661                 error = res;
662                 goto err;
663         }
664
665         error = 0;
666         if (!res)
667                 goto err;
668
669         nr_freed = 0;
670         for (i = 0; i < spd.nr_pages; i++) {
671                 this_len = min_t(size_t, vec[i].iov_len, res);
672                 spd.partial[i].offset = 0;
673                 spd.partial[i].len = this_len;
674                 if (!this_len) {
675                         __free_page(spd.pages[i]);
676                         spd.pages[i] = NULL;
677                         nr_freed++;
678                 }
679                 res -= this_len;
680         }
681         spd.nr_pages -= nr_freed;
682
683         res = splice_to_pipe(pipe, &spd);
684         if (res > 0)
685                 *ppos += res;
686
687 shrink_ret:
688         if (vec != __vec)
689                 kfree(vec);
690         splice_shrink_spd(&spd);
691         return res;
692
693 err:
694         for (i = 0; i < spd.nr_pages; i++)
695                 __free_page(spd.pages[i]);
696
697         res = error;
698         goto shrink_ret;
699 }
700 EXPORT_SYMBOL(default_file_splice_read);
701
702 /*
703  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704  * using sendpage(). Return the number of bytes sent.
705  */
706 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707                             struct pipe_buffer *buf, struct splice_desc *sd)
708 {
709         struct file *file = sd->u.file;
710         loff_t pos = sd->pos;
711         int more;
712
713         if (!likely(file->f_op->sendpage))
714                 return -EINVAL;
715
716         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718         if (sd->len < sd->total_len && pipe->nrbufs > 1)
719                 more |= MSG_SENDPAGE_NOTLAST;
720
721         return file->f_op->sendpage(file, buf->page, buf->offset,
722                                     sd->len, &pos, more);
723 }
724
725 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726 {
727         smp_mb();
728         if (waitqueue_active(&pipe->wait))
729                 wake_up_interruptible(&pipe->wait);
730         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 }
732
733 /**
734  * splice_from_pipe_feed - feed available data from a pipe to a file
735  * @pipe:       pipe to splice from
736  * @sd:         information to @actor
737  * @actor:      handler that splices the data
738  *
739  * Description:
740  *    This function loops over the pipe and calls @actor to do the
741  *    actual moving of a single struct pipe_buffer to the desired
742  *    destination.  It returns when there's no more buffers left in
743  *    the pipe or if the requested number of bytes (@sd->total_len)
744  *    have been copied.  It returns a positive number (one) if the
745  *    pipe needs to be filled with more data, zero if the required
746  *    number of bytes have been copied and -errno on error.
747  *
748  *    This, together with splice_from_pipe_{begin,end,next}, may be
749  *    used to implement the functionality of __splice_from_pipe() when
750  *    locking is required around copying the pipe buffers to the
751  *    destination.
752  */
753 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754                           splice_actor *actor)
755 {
756         int ret;
757
758         while (pipe->nrbufs) {
759                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760                 const struct pipe_buf_operations *ops = buf->ops;
761
762                 sd->len = buf->len;
763                 if (sd->len > sd->total_len)
764                         sd->len = sd->total_len;
765
766                 ret = buf->ops->confirm(pipe, buf);
767                 if (unlikely(ret)) {
768                         if (ret == -ENODATA)
769                                 ret = 0;
770                         return ret;
771                 }
772
773                 ret = actor(pipe, buf, sd);
774                 if (ret <= 0)
775                         return ret;
776
777                 buf->offset += ret;
778                 buf->len -= ret;
779
780                 sd->num_spliced += ret;
781                 sd->len -= ret;
782                 sd->pos += ret;
783                 sd->total_len -= ret;
784
785                 if (!buf->len) {
786                         buf->ops = NULL;
787                         ops->release(pipe, buf);
788                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789                         pipe->nrbufs--;
790                         if (pipe->files)
791                                 sd->need_wakeup = true;
792                 }
793
794                 if (!sd->total_len)
795                         return 0;
796         }
797
798         return 1;
799 }
800
801 /**
802  * splice_from_pipe_next - wait for some data to splice from
803  * @pipe:       pipe to splice from
804  * @sd:         information about the splice operation
805  *
806  * Description:
807  *    This function will wait for some data and return a positive
808  *    value (one) if pipe buffers are available.  It will return zero
809  *    or -errno if no more data needs to be spliced.
810  */
811 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812 {
813         /*
814          * Check for signal early to make process killable when there are
815          * always buffers available
816          */
817         if (signal_pending(current))
818                 return -ERESTARTSYS;
819
820         while (!pipe->nrbufs) {
821                 if (!pipe->writers)
822                         return 0;
823
824                 if (!pipe->waiting_writers && sd->num_spliced)
825                         return 0;
826
827                 if (sd->flags & SPLICE_F_NONBLOCK)
828                         return -EAGAIN;
829
830                 if (signal_pending(current))
831                         return -ERESTARTSYS;
832
833                 if (sd->need_wakeup) {
834                         wakeup_pipe_writers(pipe);
835                         sd->need_wakeup = false;
836                 }
837
838                 pipe_wait(pipe);
839         }
840
841         return 1;
842 }
843
844 /**
845  * splice_from_pipe_begin - start splicing from pipe
846  * @sd:         information about the splice operation
847  *
848  * Description:
849  *    This function should be called before a loop containing
850  *    splice_from_pipe_next() and splice_from_pipe_feed() to
851  *    initialize the necessary fields of @sd.
852  */
853 static void splice_from_pipe_begin(struct splice_desc *sd)
854 {
855         sd->num_spliced = 0;
856         sd->need_wakeup = false;
857 }
858
859 /**
860  * splice_from_pipe_end - finish splicing from pipe
861  * @pipe:       pipe to splice from
862  * @sd:         information about the splice operation
863  *
864  * Description:
865  *    This function will wake up pipe writers if necessary.  It should
866  *    be called after a loop containing splice_from_pipe_next() and
867  *    splice_from_pipe_feed().
868  */
869 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870 {
871         if (sd->need_wakeup)
872                 wakeup_pipe_writers(pipe);
873 }
874
875 /**
876  * __splice_from_pipe - splice data from a pipe to given actor
877  * @pipe:       pipe to splice from
878  * @sd:         information to @actor
879  * @actor:      handler that splices the data
880  *
881  * Description:
882  *    This function does little more than loop over the pipe and call
883  *    @actor to do the actual moving of a single struct pipe_buffer to
884  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
885  *    pipe_to_user.
886  *
887  */
888 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889                            splice_actor *actor)
890 {
891         int ret;
892
893         splice_from_pipe_begin(sd);
894         do {
895                 cond_resched();
896                 ret = splice_from_pipe_next(pipe, sd);
897                 if (ret > 0)
898                         ret = splice_from_pipe_feed(pipe, sd, actor);
899         } while (ret > 0);
900         splice_from_pipe_end(pipe, sd);
901
902         return sd->num_spliced ? sd->num_spliced : ret;
903 }
904 EXPORT_SYMBOL(__splice_from_pipe);
905
906 /**
907  * splice_from_pipe - splice data from a pipe to a file
908  * @pipe:       pipe to splice from
909  * @out:        file to splice to
910  * @ppos:       position in @out
911  * @len:        how many bytes to splice
912  * @flags:      splice modifier flags
913  * @actor:      handler that splices the data
914  *
915  * Description:
916  *    See __splice_from_pipe. This function locks the pipe inode,
917  *    otherwise it's identical to __splice_from_pipe().
918  *
919  */
920 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921                          loff_t *ppos, size_t len, unsigned int flags,
922                          splice_actor *actor)
923 {
924         ssize_t ret;
925         struct splice_desc sd = {
926                 .total_len = len,
927                 .flags = flags,
928                 .pos = *ppos,
929                 .u.file = out,
930         };
931
932         pipe_lock(pipe);
933         ret = __splice_from_pipe(pipe, &sd, actor);
934         pipe_unlock(pipe);
935
936         return ret;
937 }
938
939 /**
940  * iter_file_splice_write - splice data from a pipe to a file
941  * @pipe:       pipe info
942  * @out:        file to write to
943  * @ppos:       position in @out
944  * @len:        number of bytes to splice
945  * @flags:      splice modifier flags
946  *
947  * Description:
948  *    Will either move or copy pages (determined by @flags options) from
949  *    the given pipe inode to the given file.
950  *    This one is ->write_iter-based.
951  *
952  */
953 ssize_t
954 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955                           loff_t *ppos, size_t len, unsigned int flags)
956 {
957         struct splice_desc sd = {
958                 .total_len = len,
959                 .flags = flags,
960                 .pos = *ppos,
961                 .u.file = out,
962         };
963         int nbufs = pipe->buffers;
964         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965                                         GFP_KERNEL);
966         ssize_t ret;
967
968         if (unlikely(!array))
969                 return -ENOMEM;
970
971         pipe_lock(pipe);
972
973         splice_from_pipe_begin(&sd);
974         while (sd.total_len) {
975                 struct iov_iter from;
976                 size_t left;
977                 int n, idx;
978
979                 ret = splice_from_pipe_next(pipe, &sd);
980                 if (ret <= 0)
981                         break;
982
983                 if (unlikely(nbufs < pipe->buffers)) {
984                         kfree(array);
985                         nbufs = pipe->buffers;
986                         array = kcalloc(nbufs, sizeof(struct bio_vec),
987                                         GFP_KERNEL);
988                         if (!array) {
989                                 ret = -ENOMEM;
990                                 break;
991                         }
992                 }
993
994                 /* build the vector */
995                 left = sd.total_len;
996                 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997                         struct pipe_buffer *buf = pipe->bufs + idx;
998                         size_t this_len = buf->len;
999
1000                         if (this_len > left)
1001                                 this_len = left;
1002
1003                         if (idx == pipe->buffers - 1)
1004                                 idx = -1;
1005
1006                         ret = buf->ops->confirm(pipe, buf);
1007                         if (unlikely(ret)) {
1008                                 if (ret == -ENODATA)
1009                                         ret = 0;
1010                                 goto done;
1011                         }
1012
1013                         array[n].bv_page = buf->page;
1014                         array[n].bv_len = this_len;
1015                         array[n].bv_offset = buf->offset;
1016                         left -= this_len;
1017                 }
1018
1019                 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020                               sd.total_len - left);
1021                 ret = vfs_iter_write(out, &from, &sd.pos);
1022                 if (ret <= 0)
1023                         break;
1024
1025                 sd.num_spliced += ret;
1026                 sd.total_len -= ret;
1027                 *ppos = sd.pos;
1028
1029                 /* dismiss the fully eaten buffers, adjust the partial one */
1030                 while (ret) {
1031                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032                         if (ret >= buf->len) {
1033                                 const struct pipe_buf_operations *ops = buf->ops;
1034                                 ret -= buf->len;
1035                                 buf->len = 0;
1036                                 buf->ops = NULL;
1037                                 ops->release(pipe, buf);
1038                                 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039                                 pipe->nrbufs--;
1040                                 if (pipe->files)
1041                                         sd.need_wakeup = true;
1042                         } else {
1043                                 buf->offset += ret;
1044                                 buf->len -= ret;
1045                                 ret = 0;
1046                         }
1047                 }
1048         }
1049 done:
1050         kfree(array);
1051         splice_from_pipe_end(pipe, &sd);
1052
1053         pipe_unlock(pipe);
1054
1055         if (sd.num_spliced)
1056                 ret = sd.num_spliced;
1057
1058         return ret;
1059 }
1060
1061 EXPORT_SYMBOL(iter_file_splice_write);
1062
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064                           struct splice_desc *sd)
1065 {
1066         int ret;
1067         void *data;
1068         loff_t tmp = sd->pos;
1069
1070         data = kmap(buf->page);
1071         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072         kunmap(buf->page);
1073
1074         return ret;
1075 }
1076
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078                                          struct file *out, loff_t *ppos,
1079                                          size_t len, unsigned int flags)
1080 {
1081         ssize_t ret;
1082
1083         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084         if (ret > 0)
1085                 *ppos += ret;
1086
1087         return ret;
1088 }
1089
1090 /**
1091  * generic_splice_sendpage - splice data from a pipe to a socket
1092  * @pipe:       pipe to splice from
1093  * @out:        socket to write to
1094  * @ppos:       position in @out
1095  * @len:        number of bytes to splice
1096  * @flags:      splice modifier flags
1097  *
1098  * Description:
1099  *    Will send @len bytes from the pipe to a network socket. No data copying
1100  *    is involved.
1101  *
1102  */
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104                                 loff_t *ppos, size_t len, unsigned int flags)
1105 {
1106         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107 }
1108
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111 /*
1112  * Attempt to initiate a splice from pipe to file.
1113  */
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115                            loff_t *ppos, size_t len, unsigned int flags)
1116 {
1117         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118                                 loff_t *, size_t, unsigned int);
1119
1120         if (out->f_op->splice_write)
1121                 splice_write = out->f_op->splice_write;
1122         else
1123                 splice_write = default_file_splice_write;
1124
1125         return splice_write(pipe, out, ppos, len, flags);
1126 }
1127
1128 /*
1129  * Attempt to initiate a splice from a file to a pipe.
1130  */
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132                          struct pipe_inode_info *pipe, size_t len,
1133                          unsigned int flags)
1134 {
1135         ssize_t (*splice_read)(struct file *, loff_t *,
1136                                struct pipe_inode_info *, size_t, unsigned int);
1137         int ret;
1138
1139         if (unlikely(!(in->f_mode & FMODE_READ)))
1140                 return -EBADF;
1141
1142         ret = rw_verify_area(READ, in, ppos, len);
1143         if (unlikely(ret < 0))
1144                 return ret;
1145
1146         if (unlikely(len > MAX_RW_COUNT))
1147                 len = MAX_RW_COUNT;
1148
1149         if (in->f_op->splice_read)
1150                 splice_read = in->f_op->splice_read;
1151         else
1152                 splice_read = default_file_splice_read;
1153
1154         return splice_read(in, ppos, pipe, len, flags);
1155 }
1156
1157 /**
1158  * splice_direct_to_actor - splices data directly between two non-pipes
1159  * @in:         file to splice from
1160  * @sd:         actor information on where to splice to
1161  * @actor:      handles the data splicing
1162  *
1163  * Description:
1164  *    This is a special case helper to splice directly between two
1165  *    points, without requiring an explicit pipe. Internally an allocated
1166  *    pipe is cached in the process, and reused during the lifetime of
1167  *    that process.
1168  *
1169  */
1170 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171                                splice_direct_actor *actor)
1172 {
1173         struct pipe_inode_info *pipe;
1174         long ret, bytes;
1175         umode_t i_mode;
1176         size_t len;
1177         int i, flags, more;
1178
1179         /*
1180          * We require the input being a regular file, as we don't want to
1181          * randomly drop data for eg socket -> socket splicing. Use the
1182          * piped splicing for that!
1183          */
1184         i_mode = file_inode(in)->i_mode;
1185         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186                 return -EINVAL;
1187
1188         /*
1189          * neither in nor out is a pipe, setup an internal pipe attached to
1190          * 'out' and transfer the wanted data from 'in' to 'out' through that
1191          */
1192         pipe = current->splice_pipe;
1193         if (unlikely(!pipe)) {
1194                 pipe = alloc_pipe_info();
1195                 if (!pipe)
1196                         return -ENOMEM;
1197
1198                 /*
1199                  * We don't have an immediate reader, but we'll read the stuff
1200                  * out of the pipe right after the splice_to_pipe(). So set
1201                  * PIPE_READERS appropriately.
1202                  */
1203                 pipe->readers = 1;
1204
1205                 current->splice_pipe = pipe;
1206         }
1207
1208         /*
1209          * Do the splice.
1210          */
1211         ret = 0;
1212         bytes = 0;
1213         len = sd->total_len;
1214         flags = sd->flags;
1215
1216         /*
1217          * Don't block on output, we have to drain the direct pipe.
1218          */
1219         sd->flags &= ~SPLICE_F_NONBLOCK;
1220         more = sd->flags & SPLICE_F_MORE;
1221
1222         while (len) {
1223                 size_t read_len;
1224                 loff_t pos = sd->pos, prev_pos = pos;
1225
1226                 ret = do_splice_to(in, &pos, pipe, len, flags);
1227                 if (unlikely(ret <= 0))
1228                         goto out_release;
1229
1230                 read_len = ret;
1231                 sd->total_len = read_len;
1232
1233                 /*
1234                  * If more data is pending, set SPLICE_F_MORE
1235                  * If this is the last data and SPLICE_F_MORE was not set
1236                  * initially, clears it.
1237                  */
1238                 if (read_len < len)
1239                         sd->flags |= SPLICE_F_MORE;
1240                 else if (!more)
1241                         sd->flags &= ~SPLICE_F_MORE;
1242                 /*
1243                  * NOTE: nonblocking mode only applies to the input. We
1244                  * must not do the output in nonblocking mode as then we
1245                  * could get stuck data in the internal pipe:
1246                  */
1247                 ret = actor(pipe, sd);
1248                 if (unlikely(ret <= 0)) {
1249                         sd->pos = prev_pos;
1250                         goto out_release;
1251                 }
1252
1253                 bytes += ret;
1254                 len -= ret;
1255                 sd->pos = pos;
1256
1257                 if (ret < read_len) {
1258                         sd->pos = prev_pos + ret;
1259                         goto out_release;
1260                 }
1261         }
1262
1263 done:
1264         pipe->nrbufs = pipe->curbuf = 0;
1265         file_accessed(in);
1266         return bytes;
1267
1268 out_release:
1269         /*
1270          * If we did an incomplete transfer we must release
1271          * the pipe buffers in question:
1272          */
1273         for (i = 0; i < pipe->buffers; i++) {
1274                 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276                 if (buf->ops) {
1277                         buf->ops->release(pipe, buf);
1278                         buf->ops = NULL;
1279                 }
1280         }
1281
1282         if (!bytes)
1283                 bytes = ret;
1284
1285         goto done;
1286 }
1287 EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289 static int direct_splice_actor(struct pipe_inode_info *pipe,
1290                                struct splice_desc *sd)
1291 {
1292         struct file *file = sd->u.file;
1293
1294         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295                               sd->flags);
1296 }
1297
1298 /**
1299  * do_splice_direct - splices data directly between two files
1300  * @in:         file to splice from
1301  * @ppos:       input file offset
1302  * @out:        file to splice to
1303  * @opos:       output file offset
1304  * @len:        number of bytes to splice
1305  * @flags:      splice modifier flags
1306  *
1307  * Description:
1308  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1309  *    doing it in the application would incur an extra system call
1310  *    (splice in + splice out, as compared to just sendfile()). So this helper
1311  *    can splice directly through a process-private pipe.
1312  *
1313  */
1314 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315                       loff_t *opos, size_t len, unsigned int flags)
1316 {
1317         struct splice_desc sd = {
1318                 .len            = len,
1319                 .total_len      = len,
1320                 .flags          = flags,
1321                 .pos            = *ppos,
1322                 .u.file         = out,
1323                 .opos           = opos,
1324         };
1325         long ret;
1326
1327         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328                 return -EBADF;
1329
1330         if (unlikely(out->f_flags & O_APPEND))
1331                 return -EINVAL;
1332
1333         ret = rw_verify_area(WRITE, out, opos, len);
1334         if (unlikely(ret < 0))
1335                 return ret;
1336
1337         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338         if (ret > 0)
1339                 *ppos = sd.pos;
1340
1341         return ret;
1342 }
1343 EXPORT_SYMBOL(do_splice_direct);
1344
1345 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346                                struct pipe_inode_info *opipe,
1347                                size_t len, unsigned int flags);
1348
1349 /*
1350  * Determine where to splice to/from.
1351  */
1352 static long do_splice(struct file *in, loff_t __user *off_in,
1353                       struct file *out, loff_t __user *off_out,
1354                       size_t len, unsigned int flags)
1355 {
1356         struct pipe_inode_info *ipipe;
1357         struct pipe_inode_info *opipe;
1358         loff_t offset;
1359         long ret;
1360
1361         ipipe = get_pipe_info(in);
1362         opipe = get_pipe_info(out);
1363
1364         if (ipipe && opipe) {
1365                 if (off_in || off_out)
1366                         return -ESPIPE;
1367
1368                 if (!(in->f_mode & FMODE_READ))
1369                         return -EBADF;
1370
1371                 if (!(out->f_mode & FMODE_WRITE))
1372                         return -EBADF;
1373
1374                 /* Splicing to self would be fun, but... */
1375                 if (ipipe == opipe)
1376                         return -EINVAL;
1377
1378                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379         }
1380
1381         if (ipipe) {
1382                 if (off_in)
1383                         return -ESPIPE;
1384                 if (off_out) {
1385                         if (!(out->f_mode & FMODE_PWRITE))
1386                                 return -EINVAL;
1387                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388                                 return -EFAULT;
1389                 } else {
1390                         offset = out->f_pos;
1391                 }
1392
1393                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394                         return -EBADF;
1395
1396                 if (unlikely(out->f_flags & O_APPEND))
1397                         return -EINVAL;
1398
1399                 ret = rw_verify_area(WRITE, out, &offset, len);
1400                 if (unlikely(ret < 0))
1401                         return ret;
1402
1403                 file_start_write(out);
1404                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405                 file_end_write(out);
1406
1407                 if (!off_out)
1408                         out->f_pos = offset;
1409                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410                         ret = -EFAULT;
1411
1412                 return ret;
1413         }
1414
1415         if (opipe) {
1416                 if (off_out)
1417                         return -ESPIPE;
1418                 if (off_in) {
1419                         if (!(in->f_mode & FMODE_PREAD))
1420                                 return -EINVAL;
1421                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422                                 return -EFAULT;
1423                 } else {
1424                         offset = in->f_pos;
1425                 }
1426
1427                 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429                 if (!off_in)
1430                         in->f_pos = offset;
1431                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432                         ret = -EFAULT;
1433
1434                 return ret;
1435         }
1436
1437         return -EINVAL;
1438 }
1439
1440 /*
1441  * Map an iov into an array of pages and offset/length tupples. With the
1442  * partial_page structure, we can map several non-contiguous ranges into
1443  * our ones pages[] map instead of splitting that operation into pieces.
1444  * Could easily be exported as a generic helper for other users, in which
1445  * case one would probably want to add a 'max_nr_pages' parameter as well.
1446  */
1447 static int get_iovec_page_array(const struct iovec __user *iov,
1448                                 unsigned int nr_vecs, struct page **pages,
1449                                 struct partial_page *partial, bool aligned,
1450                                 unsigned int pipe_buffers)
1451 {
1452         int buffers = 0, error = 0;
1453
1454         while (nr_vecs) {
1455                 unsigned long off, npages;
1456                 struct iovec entry;
1457                 void __user *base;
1458                 size_t len;
1459                 int i;
1460
1461                 error = -EFAULT;
1462                 if (copy_from_user(&entry, iov, sizeof(entry)))
1463                         break;
1464
1465                 base = entry.iov_base;
1466                 len = entry.iov_len;
1467
1468                 /*
1469                  * Sanity check this iovec. 0 read succeeds.
1470                  */
1471                 error = 0;
1472                 if (unlikely(!len))
1473                         break;
1474                 error = -EFAULT;
1475                 if (!access_ok(VERIFY_READ, base, len))
1476                         break;
1477
1478                 /*
1479                  * Get this base offset and number of pages, then map
1480                  * in the user pages.
1481                  */
1482                 off = (unsigned long) base & ~PAGE_MASK;
1483
1484                 /*
1485                  * If asked for alignment, the offset must be zero and the
1486                  * length a multiple of the PAGE_SIZE.
1487                  */
1488                 error = -EINVAL;
1489                 if (aligned && (off || len & ~PAGE_MASK))
1490                         break;
1491
1492                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493                 if (npages > pipe_buffers - buffers)
1494                         npages = pipe_buffers - buffers;
1495
1496                 error = get_user_pages_fast((unsigned long)base, npages,
1497                                         0, &pages[buffers]);
1498
1499                 if (unlikely(error <= 0))
1500                         break;
1501
1502                 /*
1503                  * Fill this contiguous range into the partial page map.
1504                  */
1505                 for (i = 0; i < error; i++) {
1506                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508                         partial[buffers].offset = off;
1509                         partial[buffers].len = plen;
1510
1511                         off = 0;
1512                         len -= plen;
1513                         buffers++;
1514                 }
1515
1516                 /*
1517                  * We didn't complete this iov, stop here since it probably
1518                  * means we have to move some of this into a pipe to
1519                  * be able to continue.
1520                  */
1521                 if (len)
1522                         break;
1523
1524                 /*
1525                  * Don't continue if we mapped fewer pages than we asked for,
1526                  * or if we mapped the max number of pages that we have
1527                  * room for.
1528                  */
1529                 if (error < npages || buffers == pipe_buffers)
1530                         break;
1531
1532                 nr_vecs--;
1533                 iov++;
1534         }
1535
1536         if (buffers)
1537                 return buffers;
1538
1539         return error;
1540 }
1541
1542 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543                         struct splice_desc *sd)
1544 {
1545         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546         return n == sd->len ? n : -EFAULT;
1547 }
1548
1549 /*
1550  * For lack of a better implementation, implement vmsplice() to userspace
1551  * as a simple copy of the pipes pages to the user iov.
1552  */
1553 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554                              unsigned long nr_segs, unsigned int flags)
1555 {
1556         struct pipe_inode_info *pipe;
1557         struct splice_desc sd;
1558         long ret;
1559         struct iovec iovstack[UIO_FASTIOV];
1560         struct iovec *iov = iovstack;
1561         struct iov_iter iter;
1562
1563         pipe = get_pipe_info(file);
1564         if (!pipe)
1565                 return -EBADF;
1566
1567         ret = import_iovec(READ, uiov, nr_segs,
1568                            ARRAY_SIZE(iovstack), &iov, &iter);
1569         if (ret < 0)
1570                 return ret;
1571
1572         sd.total_len = iov_iter_count(&iter);
1573         sd.len = 0;
1574         sd.flags = flags;
1575         sd.u.data = &iter;
1576         sd.pos = 0;
1577
1578         if (sd.total_len) {
1579                 pipe_lock(pipe);
1580                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581                 pipe_unlock(pipe);
1582         }
1583
1584         kfree(iov);
1585         return ret;
1586 }
1587
1588 /*
1589  * vmsplice splices a user address range into a pipe. It can be thought of
1590  * as splice-from-memory, where the regular splice is splice-from-file (or
1591  * to file). In both cases the output is a pipe, naturally.
1592  */
1593 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594                              unsigned long nr_segs, unsigned int flags)
1595 {
1596         struct pipe_inode_info *pipe;
1597         struct page *pages[PIPE_DEF_BUFFERS];
1598         struct partial_page partial[PIPE_DEF_BUFFERS];
1599         struct splice_pipe_desc spd = {
1600                 .pages = pages,
1601                 .partial = partial,
1602                 .nr_pages_max = PIPE_DEF_BUFFERS,
1603                 .flags = flags,
1604                 .ops = &user_page_pipe_buf_ops,
1605                 .spd_release = spd_release_page,
1606         };
1607         long ret;
1608
1609         pipe = get_pipe_info(file);
1610         if (!pipe)
1611                 return -EBADF;
1612
1613         if (splice_grow_spd(pipe, &spd))
1614                 return -ENOMEM;
1615
1616         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617                                             spd.partial, false,
1618                                             spd.nr_pages_max);
1619         if (spd.nr_pages <= 0)
1620                 ret = spd.nr_pages;
1621         else
1622                 ret = splice_to_pipe(pipe, &spd);
1623
1624         splice_shrink_spd(&spd);
1625         return ret;
1626 }
1627
1628 /*
1629  * Note that vmsplice only really supports true splicing _from_ user memory
1630  * to a pipe, not the other way around. Splicing from user memory is a simple
1631  * operation that can be supported without any funky alignment restrictions
1632  * or nasty vm tricks. We simply map in the user memory and fill them into
1633  * a pipe. The reverse isn't quite as easy, though. There are two possible
1634  * solutions for that:
1635  *
1636  *      - memcpy() the data internally, at which point we might as well just
1637  *        do a regular read() on the buffer anyway.
1638  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639  *        has restriction limitations on both ends of the pipe).
1640  *
1641  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642  *
1643  */
1644 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645                 unsigned long, nr_segs, unsigned int, flags)
1646 {
1647         struct fd f;
1648         long error;
1649
1650         if (unlikely(nr_segs > UIO_MAXIOV))
1651                 return -EINVAL;
1652         else if (unlikely(!nr_segs))
1653                 return 0;
1654
1655         error = -EBADF;
1656         f = fdget(fd);
1657         if (f.file) {
1658                 if (f.file->f_mode & FMODE_WRITE)
1659                         error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660                 else if (f.file->f_mode & FMODE_READ)
1661                         error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663                 fdput(f);
1664         }
1665
1666         return error;
1667 }
1668
1669 #ifdef CONFIG_COMPAT
1670 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671                     unsigned int, nr_segs, unsigned int, flags)
1672 {
1673         unsigned i;
1674         struct iovec __user *iov;
1675         if (nr_segs > UIO_MAXIOV)
1676                 return -EINVAL;
1677         iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678         for (i = 0; i < nr_segs; i++) {
1679                 struct compat_iovec v;
1680                 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681                     get_user(v.iov_len, &iov32[i].iov_len) ||
1682                     put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683                     put_user(v.iov_len, &iov[i].iov_len))
1684                         return -EFAULT;
1685         }
1686         return sys_vmsplice(fd, iov, nr_segs, flags);
1687 }
1688 #endif
1689
1690 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691                 int, fd_out, loff_t __user *, off_out,
1692                 size_t, len, unsigned int, flags)
1693 {
1694         struct fd in, out;
1695         long error;
1696
1697         if (unlikely(!len))
1698                 return 0;
1699
1700         error = -EBADF;
1701         in = fdget(fd_in);
1702         if (in.file) {
1703                 if (in.file->f_mode & FMODE_READ) {
1704                         out = fdget(fd_out);
1705                         if (out.file) {
1706                                 if (out.file->f_mode & FMODE_WRITE)
1707                                         error = do_splice(in.file, off_in,
1708                                                           out.file, off_out,
1709                                                           len, flags);
1710                                 fdput(out);
1711                         }
1712                 }
1713                 fdput(in);
1714         }
1715         return error;
1716 }
1717
1718 /*
1719  * Make sure there's data to read. Wait for input if we can, otherwise
1720  * return an appropriate error.
1721  */
1722 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723 {
1724         int ret;
1725
1726         /*
1727          * Check ->nrbufs without the inode lock first. This function
1728          * is speculative anyways, so missing one is ok.
1729          */
1730         if (pipe->nrbufs)
1731                 return 0;
1732
1733         ret = 0;
1734         pipe_lock(pipe);
1735
1736         while (!pipe->nrbufs) {
1737                 if (signal_pending(current)) {
1738                         ret = -ERESTARTSYS;
1739                         break;
1740                 }
1741                 if (!pipe->writers)
1742                         break;
1743                 if (!pipe->waiting_writers) {
1744                         if (flags & SPLICE_F_NONBLOCK) {
1745                                 ret = -EAGAIN;
1746                                 break;
1747                         }
1748                 }
1749                 pipe_wait(pipe);
1750         }
1751
1752         pipe_unlock(pipe);
1753         return ret;
1754 }
1755
1756 /*
1757  * Make sure there's writeable room. Wait for room if we can, otherwise
1758  * return an appropriate error.
1759  */
1760 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761 {
1762         int ret;
1763
1764         /*
1765          * Check ->nrbufs without the inode lock first. This function
1766          * is speculative anyways, so missing one is ok.
1767          */
1768         if (pipe->nrbufs < pipe->buffers)
1769                 return 0;
1770
1771         ret = 0;
1772         pipe_lock(pipe);
1773
1774         while (pipe->nrbufs >= pipe->buffers) {
1775                 if (!pipe->readers) {
1776                         send_sig(SIGPIPE, current, 0);
1777                         ret = -EPIPE;
1778                         break;
1779                 }
1780                 if (flags & SPLICE_F_NONBLOCK) {
1781                         ret = -EAGAIN;
1782                         break;
1783                 }
1784                 if (signal_pending(current)) {
1785                         ret = -ERESTARTSYS;
1786                         break;
1787                 }
1788                 pipe->waiting_writers++;
1789                 pipe_wait(pipe);
1790                 pipe->waiting_writers--;
1791         }
1792
1793         pipe_unlock(pipe);
1794         return ret;
1795 }
1796
1797 /*
1798  * Splice contents of ipipe to opipe.
1799  */
1800 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801                                struct pipe_inode_info *opipe,
1802                                size_t len, unsigned int flags)
1803 {
1804         struct pipe_buffer *ibuf, *obuf;
1805         int ret = 0, nbuf;
1806         bool input_wakeup = false;
1807
1808
1809 retry:
1810         ret = ipipe_prep(ipipe, flags);
1811         if (ret)
1812                 return ret;
1813
1814         ret = opipe_prep(opipe, flags);
1815         if (ret)
1816                 return ret;
1817
1818         /*
1819          * Potential ABBA deadlock, work around it by ordering lock
1820          * grabbing by pipe info address. Otherwise two different processes
1821          * could deadlock (one doing tee from A -> B, the other from B -> A).
1822          */
1823         pipe_double_lock(ipipe, opipe);
1824
1825         do {
1826                 if (!opipe->readers) {
1827                         send_sig(SIGPIPE, current, 0);
1828                         if (!ret)
1829                                 ret = -EPIPE;
1830                         break;
1831                 }
1832
1833                 if (!ipipe->nrbufs && !ipipe->writers)
1834                         break;
1835
1836                 /*
1837                  * Cannot make any progress, because either the input
1838                  * pipe is empty or the output pipe is full.
1839                  */
1840                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841                         /* Already processed some buffers, break */
1842                         if (ret)
1843                                 break;
1844
1845                         if (flags & SPLICE_F_NONBLOCK) {
1846                                 ret = -EAGAIN;
1847                                 break;
1848                         }
1849
1850                         /*
1851                          * We raced with another reader/writer and haven't
1852                          * managed to process any buffers.  A zero return
1853                          * value means EOF, so retry instead.
1854                          */
1855                         pipe_unlock(ipipe);
1856                         pipe_unlock(opipe);
1857                         goto retry;
1858                 }
1859
1860                 ibuf = ipipe->bufs + ipipe->curbuf;
1861                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862                 obuf = opipe->bufs + nbuf;
1863
1864                 if (len >= ibuf->len) {
1865                         /*
1866                          * Simply move the whole buffer from ipipe to opipe
1867                          */
1868                         *obuf = *ibuf;
1869                         ibuf->ops = NULL;
1870                         opipe->nrbufs++;
1871                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872                         ipipe->nrbufs--;
1873                         input_wakeup = true;
1874                 } else {
1875                         /*
1876                          * Get a reference to this pipe buffer,
1877                          * so we can copy the contents over.
1878                          */
1879                         ibuf->ops->get(ipipe, ibuf);
1880                         *obuf = *ibuf;
1881
1882                         /*
1883                          * Don't inherit the gift flag, we need to
1884                          * prevent multiple steals of this page.
1885                          */
1886                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888                         obuf->len = len;
1889                         opipe->nrbufs++;
1890                         ibuf->offset += obuf->len;
1891                         ibuf->len -= obuf->len;
1892                 }
1893                 ret += obuf->len;
1894                 len -= obuf->len;
1895         } while (len);
1896
1897         pipe_unlock(ipipe);
1898         pipe_unlock(opipe);
1899
1900         /*
1901          * If we put data in the output pipe, wakeup any potential readers.
1902          */
1903         if (ret > 0)
1904                 wakeup_pipe_readers(opipe);
1905
1906         if (input_wakeup)
1907                 wakeup_pipe_writers(ipipe);
1908
1909         return ret;
1910 }
1911
1912 /*
1913  * Link contents of ipipe to opipe.
1914  */
1915 static int link_pipe(struct pipe_inode_info *ipipe,
1916                      struct pipe_inode_info *opipe,
1917                      size_t len, unsigned int flags)
1918 {
1919         struct pipe_buffer *ibuf, *obuf;
1920         int ret = 0, i = 0, nbuf;
1921
1922         /*
1923          * Potential ABBA deadlock, work around it by ordering lock
1924          * grabbing by pipe info address. Otherwise two different processes
1925          * could deadlock (one doing tee from A -> B, the other from B -> A).
1926          */
1927         pipe_double_lock(ipipe, opipe);
1928
1929         do {
1930                 if (!opipe->readers) {
1931                         send_sig(SIGPIPE, current, 0);
1932                         if (!ret)
1933                                 ret = -EPIPE;
1934                         break;
1935                 }
1936
1937                 /*
1938                  * If we have iterated all input buffers or ran out of
1939                  * output room, break.
1940                  */
1941                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942                         break;
1943
1944                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947                 /*
1948                  * Get a reference to this pipe buffer,
1949                  * so we can copy the contents over.
1950                  */
1951                 ibuf->ops->get(ipipe, ibuf);
1952
1953                 obuf = opipe->bufs + nbuf;
1954                 *obuf = *ibuf;
1955
1956                 /*
1957                  * Don't inherit the gift flag, we need to
1958                  * prevent multiple steals of this page.
1959                  */
1960                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962                 if (obuf->len > len)
1963                         obuf->len = len;
1964
1965                 opipe->nrbufs++;
1966                 ret += obuf->len;
1967                 len -= obuf->len;
1968                 i++;
1969         } while (len);
1970
1971         /*
1972          * return EAGAIN if we have the potential of some data in the
1973          * future, otherwise just return 0
1974          */
1975         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976                 ret = -EAGAIN;
1977
1978         pipe_unlock(ipipe);
1979         pipe_unlock(opipe);
1980
1981         /*
1982          * If we put data in the output pipe, wakeup any potential readers.
1983          */
1984         if (ret > 0)
1985                 wakeup_pipe_readers(opipe);
1986
1987         return ret;
1988 }
1989
1990 /*
1991  * This is a tee(1) implementation that works on pipes. It doesn't copy
1992  * any data, it simply references the 'in' pages on the 'out' pipe.
1993  * The 'flags' used are the SPLICE_F_* variants, currently the only
1994  * applicable one is SPLICE_F_NONBLOCK.
1995  */
1996 static long do_tee(struct file *in, struct file *out, size_t len,
1997                    unsigned int flags)
1998 {
1999         struct pipe_inode_info *ipipe = get_pipe_info(in);
2000         struct pipe_inode_info *opipe = get_pipe_info(out);
2001         int ret = -EINVAL;
2002
2003         /*
2004          * Duplicate the contents of ipipe to opipe without actually
2005          * copying the data.
2006          */
2007         if (ipipe && opipe && ipipe != opipe) {
2008                 /*
2009                  * Keep going, unless we encounter an error. The ipipe/opipe
2010                  * ordering doesn't really matter.
2011                  */
2012                 ret = ipipe_prep(ipipe, flags);
2013                 if (!ret) {
2014                         ret = opipe_prep(opipe, flags);
2015                         if (!ret)
2016                                 ret = link_pipe(ipipe, opipe, len, flags);
2017                 }
2018         }
2019
2020         return ret;
2021 }
2022
2023 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024 {
2025         struct fd in;
2026         int error;
2027
2028         if (unlikely(!len))
2029                 return 0;
2030
2031         error = -EBADF;
2032         in = fdget(fdin);
2033         if (in.file) {
2034                 if (in.file->f_mode & FMODE_READ) {
2035                         struct fd out = fdget(fdout);
2036                         if (out.file) {
2037                                 if (out.file->f_mode & FMODE_WRITE)
2038                                         error = do_tee(in.file, out.file,
2039                                                         len, flags);
2040                                 fdput(out);
2041                         }
2042                 }
2043                 fdput(in);
2044         }
2045
2046         return error;
2047 }