min/max: remove sparse warnings when they're nested
[cascardo/linux.git] / include / linux / kernel.h
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3
4
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <asm/byteorder.h>
15 #include <uapi/linux/kernel.h>
16
17 #define USHRT_MAX       ((u16)(~0U))
18 #define SHRT_MAX        ((s16)(USHRT_MAX>>1))
19 #define SHRT_MIN        ((s16)(-SHRT_MAX - 1))
20 #define INT_MAX         ((int)(~0U>>1))
21 #define INT_MIN         (-INT_MAX - 1)
22 #define UINT_MAX        (~0U)
23 #define LONG_MAX        ((long)(~0UL>>1))
24 #define LONG_MIN        (-LONG_MAX - 1)
25 #define ULONG_MAX       (~0UL)
26 #define LLONG_MAX       ((long long)(~0ULL>>1))
27 #define LLONG_MIN       (-LLONG_MAX - 1)
28 #define ULLONG_MAX      (~0ULL)
29 #define SIZE_MAX        (~(size_t)0)
30
31 #define U8_MAX          ((u8)~0U)
32 #define S8_MAX          ((s8)(U8_MAX>>1))
33 #define S8_MIN          ((s8)(-S8_MAX - 1))
34 #define U16_MAX         ((u16)~0U)
35 #define S16_MAX         ((s16)(U16_MAX>>1))
36 #define S16_MIN         ((s16)(-S16_MAX - 1))
37 #define U32_MAX         ((u32)~0U)
38 #define S32_MAX         ((s32)(U32_MAX>>1))
39 #define S32_MIN         ((s32)(-S32_MAX - 1))
40 #define U64_MAX         ((u64)~0ULL)
41 #define S64_MAX         ((s64)(U64_MAX>>1))
42 #define S64_MIN         ((s64)(-S64_MAX - 1))
43
44 #define STACK_MAGIC     0xdeadbeef
45
46 #define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
47
48 #define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
49 #define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
50 #define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
51 #define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
52
53 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
54
55 #define u64_to_user_ptr(x) (            \
56 {                                       \
57         typecheck(u64, x);              \
58         (void __user *)(uintptr_t)x;    \
59 }                                       \
60 )
61
62 /*
63  * This looks more complex than it should be. But we need to
64  * get the type for the ~ right in round_down (it needs to be
65  * as wide as the result!), and we want to evaluate the macro
66  * arguments just once each.
67  */
68 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
69 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
70 #define round_down(x, y) ((x) & ~__round_mask(x, y))
71
72 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
73 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
74 #define DIV_ROUND_UP_ULL(ll,d) \
75         ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
76
77 #if BITS_PER_LONG == 32
78 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
79 #else
80 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
81 #endif
82
83 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
84 #define roundup(x, y) (                                 \
85 {                                                       \
86         const typeof(y) __y = y;                        \
87         (((x) + (__y - 1)) / __y) * __y;                \
88 }                                                       \
89 )
90 #define rounddown(x, y) (                               \
91 {                                                       \
92         typeof(x) __x = (x);                            \
93         __x - (__x % (y));                              \
94 }                                                       \
95 )
96
97 /*
98  * Divide positive or negative dividend by positive divisor and round
99  * to closest integer. Result is undefined for negative divisors and
100  * for negative dividends if the divisor variable type is unsigned.
101  */
102 #define DIV_ROUND_CLOSEST(x, divisor)(                  \
103 {                                                       \
104         typeof(x) __x = x;                              \
105         typeof(divisor) __d = divisor;                  \
106         (((typeof(x))-1) > 0 ||                         \
107          ((typeof(divisor))-1) > 0 || (__x) > 0) ?      \
108                 (((__x) + ((__d) / 2)) / (__d)) :       \
109                 (((__x) - ((__d) / 2)) / (__d));        \
110 }                                                       \
111 )
112 /*
113  * Same as above but for u64 dividends. divisor must be a 32-bit
114  * number.
115  */
116 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
117 {                                                       \
118         typeof(divisor) __d = divisor;                  \
119         unsigned long long _tmp = (x) + (__d) / 2;      \
120         do_div(_tmp, __d);                              \
121         _tmp;                                           \
122 }                                                       \
123 )
124
125 /*
126  * Multiplies an integer by a fraction, while avoiding unnecessary
127  * overflow or loss of precision.
128  */
129 #define mult_frac(x, numer, denom)(                     \
130 {                                                       \
131         typeof(x) quot = (x) / (denom);                 \
132         typeof(x) rem  = (x) % (denom);                 \
133         (quot * (numer)) + ((rem * (numer)) / (denom)); \
134 }                                                       \
135 )
136
137
138 #define _RET_IP_                (unsigned long)__builtin_return_address(0)
139 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
140
141 #ifdef CONFIG_LBDAF
142 # include <asm/div64.h>
143 # define sector_div(a, b) do_div(a, b)
144 #else
145 # define sector_div(n, b)( \
146 { \
147         int _res; \
148         _res = (n) % (b); \
149         (n) /= (b); \
150         _res; \
151 } \
152 )
153 #endif
154
155 /**
156  * upper_32_bits - return bits 32-63 of a number
157  * @n: the number we're accessing
158  *
159  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
160  * the "right shift count >= width of type" warning when that quantity is
161  * 32-bits.
162  */
163 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
164
165 /**
166  * lower_32_bits - return bits 0-31 of a number
167  * @n: the number we're accessing
168  */
169 #define lower_32_bits(n) ((u32)(n))
170
171 struct completion;
172 struct pt_regs;
173 struct user;
174
175 #ifdef CONFIG_PREEMPT_VOLUNTARY
176 extern int _cond_resched(void);
177 # define might_resched() _cond_resched()
178 #else
179 # define might_resched() do { } while (0)
180 #endif
181
182 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
183   void ___might_sleep(const char *file, int line, int preempt_offset);
184   void __might_sleep(const char *file, int line, int preempt_offset);
185 /**
186  * might_sleep - annotation for functions that can sleep
187  *
188  * this macro will print a stack trace if it is executed in an atomic
189  * context (spinlock, irq-handler, ...).
190  *
191  * This is a useful debugging help to be able to catch problems early and not
192  * be bitten later when the calling function happens to sleep when it is not
193  * supposed to.
194  */
195 # define might_sleep() \
196         do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
197 # define sched_annotate_sleep() (current->task_state_change = 0)
198 #else
199   static inline void ___might_sleep(const char *file, int line,
200                                    int preempt_offset) { }
201   static inline void __might_sleep(const char *file, int line,
202                                    int preempt_offset) { }
203 # define might_sleep() do { might_resched(); } while (0)
204 # define sched_annotate_sleep() do { } while (0)
205 #endif
206
207 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
208
209 /**
210  * abs - return absolute value of an argument
211  * @x: the value.  If it is unsigned type, it is converted to signed type first.
212  *     char is treated as if it was signed (regardless of whether it really is)
213  *     but the macro's return type is preserved as char.
214  *
215  * Return: an absolute value of x.
216  */
217 #define abs(x)  __abs_choose_expr(x, long long,                         \
218                 __abs_choose_expr(x, long,                              \
219                 __abs_choose_expr(x, int,                               \
220                 __abs_choose_expr(x, short,                             \
221                 __abs_choose_expr(x, char,                              \
222                 __builtin_choose_expr(                                  \
223                         __builtin_types_compatible_p(typeof(x), char),  \
224                         (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
225                         ((void)0)))))))
226
227 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
228         __builtin_types_compatible_p(typeof(x),   signed type) ||       \
229         __builtin_types_compatible_p(typeof(x), unsigned type),         \
230         ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
231
232 /**
233  * reciprocal_scale - "scale" a value into range [0, ep_ro)
234  * @val: value
235  * @ep_ro: right open interval endpoint
236  *
237  * Perform a "reciprocal multiplication" in order to "scale" a value into
238  * range [0, ep_ro), where the upper interval endpoint is right-open.
239  * This is useful, e.g. for accessing a index of an array containing
240  * ep_ro elements, for example. Think of it as sort of modulus, only that
241  * the result isn't that of modulo. ;) Note that if initial input is a
242  * small value, then result will return 0.
243  *
244  * Return: a result based on val in interval [0, ep_ro).
245  */
246 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
247 {
248         return (u32)(((u64) val * ep_ro) >> 32);
249 }
250
251 #if defined(CONFIG_MMU) && \
252         (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
253 #define might_fault() __might_fault(__FILE__, __LINE__)
254 void __might_fault(const char *file, int line);
255 #else
256 static inline void might_fault(void) { }
257 #endif
258
259 extern struct atomic_notifier_head panic_notifier_list;
260 extern long (*panic_blink)(int state);
261 __printf(1, 2)
262 void panic(const char *fmt, ...) __noreturn __cold;
263 void nmi_panic(struct pt_regs *regs, const char *msg);
264 extern void oops_enter(void);
265 extern void oops_exit(void);
266 void print_oops_end_marker(void);
267 extern int oops_may_print(void);
268 void do_exit(long error_code) __noreturn;
269 void complete_and_exit(struct completion *, long) __noreturn;
270
271 /* Internal, do not use. */
272 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
273 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
274
275 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
276 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
277
278 /**
279  * kstrtoul - convert a string to an unsigned long
280  * @s: The start of the string. The string must be null-terminated, and may also
281  *  include a single newline before its terminating null. The first character
282  *  may also be a plus sign, but not a minus sign.
283  * @base: The number base to use. The maximum supported base is 16. If base is
284  *  given as 0, then the base of the string is automatically detected with the
285  *  conventional semantics - If it begins with 0x the number will be parsed as a
286  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
287  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
288  * @res: Where to write the result of the conversion on success.
289  *
290  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
291  * Used as a replacement for the obsolete simple_strtoull. Return code must
292  * be checked.
293 */
294 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
295 {
296         /*
297          * We want to shortcut function call, but
298          * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
299          */
300         if (sizeof(unsigned long) == sizeof(unsigned long long) &&
301             __alignof__(unsigned long) == __alignof__(unsigned long long))
302                 return kstrtoull(s, base, (unsigned long long *)res);
303         else
304                 return _kstrtoul(s, base, res);
305 }
306
307 /**
308  * kstrtol - convert a string to a long
309  * @s: The start of the string. The string must be null-terminated, and may also
310  *  include a single newline before its terminating null. The first character
311  *  may also be a plus sign or a minus sign.
312  * @base: The number base to use. The maximum supported base is 16. If base is
313  *  given as 0, then the base of the string is automatically detected with the
314  *  conventional semantics - If it begins with 0x the number will be parsed as a
315  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
316  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
317  * @res: Where to write the result of the conversion on success.
318  *
319  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
320  * Used as a replacement for the obsolete simple_strtoull. Return code must
321  * be checked.
322  */
323 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
324 {
325         /*
326          * We want to shortcut function call, but
327          * __builtin_types_compatible_p(long, long long) = 0.
328          */
329         if (sizeof(long) == sizeof(long long) &&
330             __alignof__(long) == __alignof__(long long))
331                 return kstrtoll(s, base, (long long *)res);
332         else
333                 return _kstrtol(s, base, res);
334 }
335
336 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
337 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
338
339 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
340 {
341         return kstrtoull(s, base, res);
342 }
343
344 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
345 {
346         return kstrtoll(s, base, res);
347 }
348
349 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
350 {
351         return kstrtouint(s, base, res);
352 }
353
354 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
355 {
356         return kstrtoint(s, base, res);
357 }
358
359 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
360 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
361 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
362 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
363 int __must_check kstrtobool(const char *s, bool *res);
364
365 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
366 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
367 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
368 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
369 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
370 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
371 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
372 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
373 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
374 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
375 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
376
377 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
378 {
379         return kstrtoull_from_user(s, count, base, res);
380 }
381
382 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
383 {
384         return kstrtoll_from_user(s, count, base, res);
385 }
386
387 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
388 {
389         return kstrtouint_from_user(s, count, base, res);
390 }
391
392 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
393 {
394         return kstrtoint_from_user(s, count, base, res);
395 }
396
397 /* Obsolete, do not use.  Use kstrto<foo> instead */
398
399 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
400 extern long simple_strtol(const char *,char **,unsigned int);
401 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
402 extern long long simple_strtoll(const char *,char **,unsigned int);
403
404 extern int num_to_str(char *buf, int size, unsigned long long num);
405
406 /* lib/printf utilities */
407
408 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
409 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
410 extern __printf(3, 4)
411 int snprintf(char *buf, size_t size, const char *fmt, ...);
412 extern __printf(3, 0)
413 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
414 extern __printf(3, 4)
415 int scnprintf(char *buf, size_t size, const char *fmt, ...);
416 extern __printf(3, 0)
417 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
418 extern __printf(2, 3) __malloc
419 char *kasprintf(gfp_t gfp, const char *fmt, ...);
420 extern __printf(2, 0) __malloc
421 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
422 extern __printf(2, 0)
423 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
424
425 extern __scanf(2, 3)
426 int sscanf(const char *, const char *, ...);
427 extern __scanf(2, 0)
428 int vsscanf(const char *, const char *, va_list);
429
430 extern int get_option(char **str, int *pint);
431 extern char *get_options(const char *str, int nints, int *ints);
432 extern unsigned long long memparse(const char *ptr, char **retptr);
433 extern bool parse_option_str(const char *str, const char *option);
434
435 extern int core_kernel_text(unsigned long addr);
436 extern int core_kernel_data(unsigned long addr);
437 extern int __kernel_text_address(unsigned long addr);
438 extern int kernel_text_address(unsigned long addr);
439 extern int func_ptr_is_kernel_text(void *ptr);
440
441 unsigned long int_sqrt(unsigned long);
442
443 extern void bust_spinlocks(int yes);
444 extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
445 extern int panic_timeout;
446 extern int panic_on_oops;
447 extern int panic_on_unrecovered_nmi;
448 extern int panic_on_io_nmi;
449 extern int panic_on_warn;
450 extern int sysctl_panic_on_rcu_stall;
451 extern int sysctl_panic_on_stackoverflow;
452
453 extern bool crash_kexec_post_notifiers;
454
455 /*
456  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
457  * holds a CPU number which is executing panic() currently. A value of
458  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
459  */
460 extern atomic_t panic_cpu;
461 #define PANIC_CPU_INVALID       -1
462
463 /*
464  * Only to be used by arch init code. If the user over-wrote the default
465  * CONFIG_PANIC_TIMEOUT, honor it.
466  */
467 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
468 {
469         if (panic_timeout == arch_default_timeout)
470                 panic_timeout = timeout;
471 }
472 extern const char *print_tainted(void);
473 enum lockdep_ok {
474         LOCKDEP_STILL_OK,
475         LOCKDEP_NOW_UNRELIABLE
476 };
477 extern void add_taint(unsigned flag, enum lockdep_ok);
478 extern int test_taint(unsigned flag);
479 extern unsigned long get_taint(void);
480 extern int root_mountflags;
481
482 extern bool early_boot_irqs_disabled;
483
484 /* Values used for system_state */
485 extern enum system_states {
486         SYSTEM_BOOTING,
487         SYSTEM_RUNNING,
488         SYSTEM_HALT,
489         SYSTEM_POWER_OFF,
490         SYSTEM_RESTART,
491 } system_state;
492
493 #define TAINT_PROPRIETARY_MODULE        0
494 #define TAINT_FORCED_MODULE             1
495 #define TAINT_CPU_OUT_OF_SPEC           2
496 #define TAINT_FORCED_RMMOD              3
497 #define TAINT_MACHINE_CHECK             4
498 #define TAINT_BAD_PAGE                  5
499 #define TAINT_USER                      6
500 #define TAINT_DIE                       7
501 #define TAINT_OVERRIDDEN_ACPI_TABLE     8
502 #define TAINT_WARN                      9
503 #define TAINT_CRAP                      10
504 #define TAINT_FIRMWARE_WORKAROUND       11
505 #define TAINT_OOT_MODULE                12
506 #define TAINT_UNSIGNED_MODULE           13
507 #define TAINT_SOFTLOCKUP                14
508 #define TAINT_LIVEPATCH                 15
509
510 extern const char hex_asc[];
511 #define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
512 #define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
513
514 static inline char *hex_byte_pack(char *buf, u8 byte)
515 {
516         *buf++ = hex_asc_hi(byte);
517         *buf++ = hex_asc_lo(byte);
518         return buf;
519 }
520
521 extern const char hex_asc_upper[];
522 #define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
523 #define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
524
525 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
526 {
527         *buf++ = hex_asc_upper_hi(byte);
528         *buf++ = hex_asc_upper_lo(byte);
529         return buf;
530 }
531
532 extern int hex_to_bin(char ch);
533 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
534 extern char *bin2hex(char *dst, const void *src, size_t count);
535
536 bool mac_pton(const char *s, u8 *mac);
537
538 /*
539  * General tracing related utility functions - trace_printk(),
540  * tracing_on/tracing_off and tracing_start()/tracing_stop
541  *
542  * Use tracing_on/tracing_off when you want to quickly turn on or off
543  * tracing. It simply enables or disables the recording of the trace events.
544  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
545  * file, which gives a means for the kernel and userspace to interact.
546  * Place a tracing_off() in the kernel where you want tracing to end.
547  * From user space, examine the trace, and then echo 1 > tracing_on
548  * to continue tracing.
549  *
550  * tracing_stop/tracing_start has slightly more overhead. It is used
551  * by things like suspend to ram where disabling the recording of the
552  * trace is not enough, but tracing must actually stop because things
553  * like calling smp_processor_id() may crash the system.
554  *
555  * Most likely, you want to use tracing_on/tracing_off.
556  */
557
558 enum ftrace_dump_mode {
559         DUMP_NONE,
560         DUMP_ALL,
561         DUMP_ORIG,
562 };
563
564 #ifdef CONFIG_TRACING
565 void tracing_on(void);
566 void tracing_off(void);
567 int tracing_is_on(void);
568 void tracing_snapshot(void);
569 void tracing_snapshot_alloc(void);
570
571 extern void tracing_start(void);
572 extern void tracing_stop(void);
573
574 static inline __printf(1, 2)
575 void ____trace_printk_check_format(const char *fmt, ...)
576 {
577 }
578 #define __trace_printk_check_format(fmt, args...)                       \
579 do {                                                                    \
580         if (0)                                                          \
581                 ____trace_printk_check_format(fmt, ##args);             \
582 } while (0)
583
584 /**
585  * trace_printk - printf formatting in the ftrace buffer
586  * @fmt: the printf format for printing
587  *
588  * Note: __trace_printk is an internal function for trace_printk and
589  *       the @ip is passed in via the trace_printk macro.
590  *
591  * This function allows a kernel developer to debug fast path sections
592  * that printk is not appropriate for. By scattering in various
593  * printk like tracing in the code, a developer can quickly see
594  * where problems are occurring.
595  *
596  * This is intended as a debugging tool for the developer only.
597  * Please refrain from leaving trace_printks scattered around in
598  * your code. (Extra memory is used for special buffers that are
599  * allocated when trace_printk() is used)
600  *
601  * A little optization trick is done here. If there's only one
602  * argument, there's no need to scan the string for printf formats.
603  * The trace_puts() will suffice. But how can we take advantage of
604  * using trace_puts() when trace_printk() has only one argument?
605  * By stringifying the args and checking the size we can tell
606  * whether or not there are args. __stringify((__VA_ARGS__)) will
607  * turn into "()\0" with a size of 3 when there are no args, anything
608  * else will be bigger. All we need to do is define a string to this,
609  * and then take its size and compare to 3. If it's bigger, use
610  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
611  * let gcc optimize the rest.
612  */
613
614 #define trace_printk(fmt, ...)                          \
615 do {                                                    \
616         char _______STR[] = __stringify((__VA_ARGS__)); \
617         if (sizeof(_______STR) > 3)                     \
618                 do_trace_printk(fmt, ##__VA_ARGS__);    \
619         else                                            \
620                 trace_puts(fmt);                        \
621 } while (0)
622
623 #define do_trace_printk(fmt, args...)                                   \
624 do {                                                                    \
625         static const char *trace_printk_fmt __used                      \
626                 __attribute__((section("__trace_printk_fmt"))) =        \
627                 __builtin_constant_p(fmt) ? fmt : NULL;                 \
628                                                                         \
629         __trace_printk_check_format(fmt, ##args);                       \
630                                                                         \
631         if (__builtin_constant_p(fmt))                                  \
632                 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
633         else                                                            \
634                 __trace_printk(_THIS_IP_, fmt, ##args);                 \
635 } while (0)
636
637 extern __printf(2, 3)
638 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
639
640 extern __printf(2, 3)
641 int __trace_printk(unsigned long ip, const char *fmt, ...);
642
643 /**
644  * trace_puts - write a string into the ftrace buffer
645  * @str: the string to record
646  *
647  * Note: __trace_bputs is an internal function for trace_puts and
648  *       the @ip is passed in via the trace_puts macro.
649  *
650  * This is similar to trace_printk() but is made for those really fast
651  * paths that a developer wants the least amount of "Heisenbug" affects,
652  * where the processing of the print format is still too much.
653  *
654  * This function allows a kernel developer to debug fast path sections
655  * that printk is not appropriate for. By scattering in various
656  * printk like tracing in the code, a developer can quickly see
657  * where problems are occurring.
658  *
659  * This is intended as a debugging tool for the developer only.
660  * Please refrain from leaving trace_puts scattered around in
661  * your code. (Extra memory is used for special buffers that are
662  * allocated when trace_puts() is used)
663  *
664  * Returns: 0 if nothing was written, positive # if string was.
665  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
666  */
667
668 #define trace_puts(str) ({                                              \
669         static const char *trace_printk_fmt __used                      \
670                 __attribute__((section("__trace_printk_fmt"))) =        \
671                 __builtin_constant_p(str) ? str : NULL;                 \
672                                                                         \
673         if (__builtin_constant_p(str))                                  \
674                 __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
675         else                                                            \
676                 __trace_puts(_THIS_IP_, str, strlen(str));              \
677 })
678 extern int __trace_bputs(unsigned long ip, const char *str);
679 extern int __trace_puts(unsigned long ip, const char *str, int size);
680
681 extern void trace_dump_stack(int skip);
682
683 /*
684  * The double __builtin_constant_p is because gcc will give us an error
685  * if we try to allocate the static variable to fmt if it is not a
686  * constant. Even with the outer if statement.
687  */
688 #define ftrace_vprintk(fmt, vargs)                                      \
689 do {                                                                    \
690         if (__builtin_constant_p(fmt)) {                                \
691                 static const char *trace_printk_fmt __used              \
692                   __attribute__((section("__trace_printk_fmt"))) =      \
693                         __builtin_constant_p(fmt) ? fmt : NULL;         \
694                                                                         \
695                 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
696         } else                                                          \
697                 __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
698 } while (0)
699
700 extern __printf(2, 0) int
701 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
702
703 extern __printf(2, 0) int
704 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
705
706 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
707 #else
708 static inline void tracing_start(void) { }
709 static inline void tracing_stop(void) { }
710 static inline void trace_dump_stack(int skip) { }
711
712 static inline void tracing_on(void) { }
713 static inline void tracing_off(void) { }
714 static inline int tracing_is_on(void) { return 0; }
715 static inline void tracing_snapshot(void) { }
716 static inline void tracing_snapshot_alloc(void) { }
717
718 static inline __printf(1, 2)
719 int trace_printk(const char *fmt, ...)
720 {
721         return 0;
722 }
723 static __printf(1, 0) inline int
724 ftrace_vprintk(const char *fmt, va_list ap)
725 {
726         return 0;
727 }
728 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
729 #endif /* CONFIG_TRACING */
730
731 /*
732  * min()/max()/clamp() macros that also do
733  * strict type-checking.. See the
734  * "unnecessary" pointer comparison.
735  */
736 #define __min(t1, t2, min1, min2, x, y) ({              \
737         t1 min1 = (x);                                  \
738         t2 min2 = (y);                                  \
739         (void) (&min1 == &min2);                        \
740         min1 < min2 ? min1 : min2; })
741 #define min(x, y)                                       \
742         __min(typeof(x), typeof(y),                     \
743               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
744               x, y)
745
746 #define __max(t1, t2, max1, max2, x, y) ({              \
747         t1 max1 = (x);                                  \
748         t2 max2 = (y);                                  \
749         (void) (&max1 == &max2);                        \
750         max1 > max2 ? max1 : max2; })
751 #define max(x, y)                                       \
752         __max(typeof(x), typeof(y),                     \
753               __UNIQUE_ID(max1_), __UNIQUE_ID(max2_),   \
754               x, y)
755
756 #define min3(x, y, z) min((typeof(x))min(x, y), z)
757 #define max3(x, y, z) max((typeof(x))max(x, y), z)
758
759 /**
760  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
761  * @x: value1
762  * @y: value2
763  */
764 #define min_not_zero(x, y) ({                   \
765         typeof(x) __x = (x);                    \
766         typeof(y) __y = (y);                    \
767         __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
768
769 /**
770  * clamp - return a value clamped to a given range with strict typechecking
771  * @val: current value
772  * @lo: lowest allowable value
773  * @hi: highest allowable value
774  *
775  * This macro does strict typechecking of lo/hi to make sure they are of the
776  * same type as val.  See the unnecessary pointer comparisons.
777  */
778 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
779
780 /*
781  * ..and if you can't take the strict
782  * types, you can specify one yourself.
783  *
784  * Or not use min/max/clamp at all, of course.
785  */
786 #define min_t(type, x, y)                               \
787         __min(type, type,                               \
788               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
789               x, y)
790
791 #define max_t(type, x, y)                               \
792         __max(type, type,                               \
793               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
794               x, y)
795
796 /**
797  * clamp_t - return a value clamped to a given range using a given type
798  * @type: the type of variable to use
799  * @val: current value
800  * @lo: minimum allowable value
801  * @hi: maximum allowable value
802  *
803  * This macro does no typechecking and uses temporary variables of type
804  * 'type' to make all the comparisons.
805  */
806 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
807
808 /**
809  * clamp_val - return a value clamped to a given range using val's type
810  * @val: current value
811  * @lo: minimum allowable value
812  * @hi: maximum allowable value
813  *
814  * This macro does no typechecking and uses temporary variables of whatever
815  * type the input argument 'val' is.  This is useful when val is an unsigned
816  * type and min and max are literals that will otherwise be assigned a signed
817  * integer type.
818  */
819 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
820
821
822 /*
823  * swap - swap value of @a and @b
824  */
825 #define swap(a, b) \
826         do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
827
828 /**
829  * container_of - cast a member of a structure out to the containing structure
830  * @ptr:        the pointer to the member.
831  * @type:       the type of the container struct this is embedded in.
832  * @member:     the name of the member within the struct.
833  *
834  */
835 #define container_of(ptr, type, member) ({                      \
836         const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
837         (type *)( (char *)__mptr - offsetof(type,member) );})
838
839 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
840 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
841 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
842 #endif
843
844 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
845 #define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
846         (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
847          BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
848          /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
849          BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
850          BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
851          /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
852          BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
853          /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
854          BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
855          (perms))
856 #endif