x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32
33 #include "smpboot.h"
34
35 /**
36  * cpuhp_cpu_state - Per cpu hotplug state storage
37  * @state:      The current cpu state
38  * @target:     The target state
39  * @thread:     Pointer to the hotplug thread
40  * @should_run: Thread should execute
41  * @rollback:   Perform a rollback
42  * @single:     Single callback invocation
43  * @bringup:    Single callback bringup or teardown selector
44  * @cb_state:   The state for a single callback (install/uninstall)
45  * @result:     Result of the operation
46  * @done:       Signal completion to the issuer of the task
47  */
48 struct cpuhp_cpu_state {
49         enum cpuhp_state        state;
50         enum cpuhp_state        target;
51 #ifdef CONFIG_SMP
52         struct task_struct      *thread;
53         bool                    should_run;
54         bool                    rollback;
55         bool                    single;
56         bool                    bringup;
57         struct hlist_node       *node;
58         enum cpuhp_state        cb_state;
59         int                     result;
60         struct completion       done;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65
66 /**
67  * cpuhp_step - Hotplug state machine step
68  * @name:       Name of the step
69  * @startup:    Startup function of the step
70  * @teardown:   Teardown function of the step
71  * @skip_onerr: Do not invoke the functions on error rollback
72  *              Will go away once the notifiers are gone
73  * @cant_stop:  Bringup/teardown can't be stopped at this step
74  */
75 struct cpuhp_step {
76         const char              *name;
77         union {
78                 int             (*single)(unsigned int cpu);
79                 int             (*multi)(unsigned int cpu,
80                                          struct hlist_node *node);
81         } startup;
82         union {
83                 int             (*single)(unsigned int cpu);
84                 int             (*multi)(unsigned int cpu,
85                                          struct hlist_node *node);
86         } teardown;
87         struct hlist_head       list;
88         bool                    skip_onerr;
89         bool                    cant_stop;
90         bool                    multi_instance;
91 };
92
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
96
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
98 {
99         /*
100          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101          * purposes as that state is handled explicitly in cpu_down.
102          */
103         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104 }
105
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107 {
108         struct cpuhp_step *sp;
109
110         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111         return sp + state;
112 }
113
114 /**
115  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116  * @cpu:        The cpu for which the callback should be invoked
117  * @step:       The step in the state machine
118  * @bringup:    True if the bringup callback should be invoked
119  *
120  * Called from cpu hotplug and from the state register machinery.
121  */
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123                                  bool bringup, struct hlist_node *node)
124 {
125         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126         struct cpuhp_step *step = cpuhp_get_step(state);
127         int (*cbm)(unsigned int cpu, struct hlist_node *node);
128         int (*cb)(unsigned int cpu);
129         int ret, cnt;
130
131         if (!step->multi_instance) {
132                 cb = bringup ? step->startup.single : step->teardown.single;
133                 if (!cb)
134                         return 0;
135                 trace_cpuhp_enter(cpu, st->target, state, cb);
136                 ret = cb(cpu);
137                 trace_cpuhp_exit(cpu, st->state, state, ret);
138                 return ret;
139         }
140         cbm = bringup ? step->startup.multi : step->teardown.multi;
141         if (!cbm)
142                 return 0;
143
144         /* Single invocation for instance add/remove */
145         if (node) {
146                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147                 ret = cbm(cpu, node);
148                 trace_cpuhp_exit(cpu, st->state, state, ret);
149                 return ret;
150         }
151
152         /* State transition. Invoke on all instances */
153         cnt = 0;
154         hlist_for_each(node, &step->list) {
155                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156                 ret = cbm(cpu, node);
157                 trace_cpuhp_exit(cpu, st->state, state, ret);
158                 if (ret)
159                         goto err;
160                 cnt++;
161         }
162         return 0;
163 err:
164         /* Rollback the instances if one failed */
165         cbm = !bringup ? step->startup.multi : step->teardown.multi;
166         if (!cbm)
167                 return ret;
168
169         hlist_for_each(node, &step->list) {
170                 if (!cnt--)
171                         break;
172                 cbm(cpu, node);
173         }
174         return ret;
175 }
176
177 #ifdef CONFIG_SMP
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182
183 /*
184  * The following two APIs (cpu_maps_update_begin/done) must be used when
185  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
187  * hotplug callback (un)registration performed using __register_cpu_notifier()
188  * or __unregister_cpu_notifier().
189  */
190 void cpu_maps_update_begin(void)
191 {
192         mutex_lock(&cpu_add_remove_lock);
193 }
194 EXPORT_SYMBOL(cpu_notifier_register_begin);
195
196 void cpu_maps_update_done(void)
197 {
198         mutex_unlock(&cpu_add_remove_lock);
199 }
200 EXPORT_SYMBOL(cpu_notifier_register_done);
201
202 static RAW_NOTIFIER_HEAD(cpu_chain);
203
204 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
205  * Should always be manipulated under cpu_add_remove_lock
206  */
207 static int cpu_hotplug_disabled;
208
209 #ifdef CONFIG_HOTPLUG_CPU
210
211 static struct {
212         struct task_struct *active_writer;
213         /* wait queue to wake up the active_writer */
214         wait_queue_head_t wq;
215         /* verifies that no writer will get active while readers are active */
216         struct mutex lock;
217         /*
218          * Also blocks the new readers during
219          * an ongoing cpu hotplug operation.
220          */
221         atomic_t refcount;
222
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224         struct lockdep_map dep_map;
225 #endif
226 } cpu_hotplug = {
227         .active_writer = NULL,
228         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
229         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
230 #ifdef CONFIG_DEBUG_LOCK_ALLOC
231         .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
232 #endif
233 };
234
235 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
236 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
237 #define cpuhp_lock_acquire_tryread() \
238                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
239 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
240 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
241
242
243 void get_online_cpus(void)
244 {
245         might_sleep();
246         if (cpu_hotplug.active_writer == current)
247                 return;
248         cpuhp_lock_acquire_read();
249         mutex_lock(&cpu_hotplug.lock);
250         atomic_inc(&cpu_hotplug.refcount);
251         mutex_unlock(&cpu_hotplug.lock);
252 }
253 EXPORT_SYMBOL_GPL(get_online_cpus);
254
255 void put_online_cpus(void)
256 {
257         int refcount;
258
259         if (cpu_hotplug.active_writer == current)
260                 return;
261
262         refcount = atomic_dec_return(&cpu_hotplug.refcount);
263         if (WARN_ON(refcount < 0)) /* try to fix things up */
264                 atomic_inc(&cpu_hotplug.refcount);
265
266         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
267                 wake_up(&cpu_hotplug.wq);
268
269         cpuhp_lock_release();
270
271 }
272 EXPORT_SYMBOL_GPL(put_online_cpus);
273
274 /*
275  * This ensures that the hotplug operation can begin only when the
276  * refcount goes to zero.
277  *
278  * Note that during a cpu-hotplug operation, the new readers, if any,
279  * will be blocked by the cpu_hotplug.lock
280  *
281  * Since cpu_hotplug_begin() is always called after invoking
282  * cpu_maps_update_begin(), we can be sure that only one writer is active.
283  *
284  * Note that theoretically, there is a possibility of a livelock:
285  * - Refcount goes to zero, last reader wakes up the sleeping
286  *   writer.
287  * - Last reader unlocks the cpu_hotplug.lock.
288  * - A new reader arrives at this moment, bumps up the refcount.
289  * - The writer acquires the cpu_hotplug.lock finds the refcount
290  *   non zero and goes to sleep again.
291  *
292  * However, this is very difficult to achieve in practice since
293  * get_online_cpus() not an api which is called all that often.
294  *
295  */
296 void cpu_hotplug_begin(void)
297 {
298         DEFINE_WAIT(wait);
299
300         cpu_hotplug.active_writer = current;
301         cpuhp_lock_acquire();
302
303         for (;;) {
304                 mutex_lock(&cpu_hotplug.lock);
305                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
306                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
307                                 break;
308                 mutex_unlock(&cpu_hotplug.lock);
309                 schedule();
310         }
311         finish_wait(&cpu_hotplug.wq, &wait);
312 }
313
314 void cpu_hotplug_done(void)
315 {
316         cpu_hotplug.active_writer = NULL;
317         mutex_unlock(&cpu_hotplug.lock);
318         cpuhp_lock_release();
319 }
320
321 /*
322  * Wait for currently running CPU hotplug operations to complete (if any) and
323  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
324  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
325  * hotplug path before performing hotplug operations. So acquiring that lock
326  * guarantees mutual exclusion from any currently running hotplug operations.
327  */
328 void cpu_hotplug_disable(void)
329 {
330         cpu_maps_update_begin();
331         cpu_hotplug_disabled++;
332         cpu_maps_update_done();
333 }
334 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
335
336 static void __cpu_hotplug_enable(void)
337 {
338         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
339                 return;
340         cpu_hotplug_disabled--;
341 }
342
343 void cpu_hotplug_enable(void)
344 {
345         cpu_maps_update_begin();
346         __cpu_hotplug_enable();
347         cpu_maps_update_done();
348 }
349 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
350 #endif  /* CONFIG_HOTPLUG_CPU */
351
352 /* Need to know about CPUs going up/down? */
353 int register_cpu_notifier(struct notifier_block *nb)
354 {
355         int ret;
356         cpu_maps_update_begin();
357         ret = raw_notifier_chain_register(&cpu_chain, nb);
358         cpu_maps_update_done();
359         return ret;
360 }
361
362 int __register_cpu_notifier(struct notifier_block *nb)
363 {
364         return raw_notifier_chain_register(&cpu_chain, nb);
365 }
366
367 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
368                         int *nr_calls)
369 {
370         unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
371         void *hcpu = (void *)(long)cpu;
372
373         int ret;
374
375         ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
376                                         nr_calls);
377
378         return notifier_to_errno(ret);
379 }
380
381 static int cpu_notify(unsigned long val, unsigned int cpu)
382 {
383         return __cpu_notify(val, cpu, -1, NULL);
384 }
385
386 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
387 {
388         BUG_ON(cpu_notify(val, cpu));
389 }
390
391 /* Notifier wrappers for transitioning to state machine */
392 static int notify_prepare(unsigned int cpu)
393 {
394         int nr_calls = 0;
395         int ret;
396
397         ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
398         if (ret) {
399                 nr_calls--;
400                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
401                                 __func__, cpu);
402                 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
403         }
404         return ret;
405 }
406
407 static int notify_online(unsigned int cpu)
408 {
409         cpu_notify(CPU_ONLINE, cpu);
410         return 0;
411 }
412
413 static int bringup_wait_for_ap(unsigned int cpu)
414 {
415         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
416
417         wait_for_completion(&st->done);
418         return st->result;
419 }
420
421 static int bringup_cpu(unsigned int cpu)
422 {
423         struct task_struct *idle = idle_thread_get(cpu);
424         int ret;
425
426         /*
427          * Some architectures have to walk the irq descriptors to
428          * setup the vector space for the cpu which comes online.
429          * Prevent irq alloc/free across the bringup.
430          */
431         irq_lock_sparse();
432
433         /* Arch-specific enabling code. */
434         ret = __cpu_up(cpu, idle);
435         irq_unlock_sparse();
436         if (ret) {
437                 cpu_notify(CPU_UP_CANCELED, cpu);
438                 return ret;
439         }
440         ret = bringup_wait_for_ap(cpu);
441         BUG_ON(!cpu_online(cpu));
442         return ret;
443 }
444
445 /*
446  * Hotplug state machine related functions
447  */
448 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
449 {
450         for (st->state++; st->state < st->target; st->state++) {
451                 struct cpuhp_step *step = cpuhp_get_step(st->state);
452
453                 if (!step->skip_onerr)
454                         cpuhp_invoke_callback(cpu, st->state, true, NULL);
455         }
456 }
457
458 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
459                                 enum cpuhp_state target)
460 {
461         enum cpuhp_state prev_state = st->state;
462         int ret = 0;
463
464         for (; st->state > target; st->state--) {
465                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
466                 if (ret) {
467                         st->target = prev_state;
468                         undo_cpu_down(cpu, st);
469                         break;
470                 }
471         }
472         return ret;
473 }
474
475 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
476 {
477         for (st->state--; st->state > st->target; st->state--) {
478                 struct cpuhp_step *step = cpuhp_get_step(st->state);
479
480                 if (!step->skip_onerr)
481                         cpuhp_invoke_callback(cpu, st->state, false, NULL);
482         }
483 }
484
485 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
486                               enum cpuhp_state target)
487 {
488         enum cpuhp_state prev_state = st->state;
489         int ret = 0;
490
491         while (st->state < target) {
492                 st->state++;
493                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
494                 if (ret) {
495                         st->target = prev_state;
496                         undo_cpu_up(cpu, st);
497                         break;
498                 }
499         }
500         return ret;
501 }
502
503 /*
504  * The cpu hotplug threads manage the bringup and teardown of the cpus
505  */
506 static void cpuhp_create(unsigned int cpu)
507 {
508         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
509
510         init_completion(&st->done);
511 }
512
513 static int cpuhp_should_run(unsigned int cpu)
514 {
515         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
516
517         return st->should_run;
518 }
519
520 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
521 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
522 {
523         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
524
525         return cpuhp_down_callbacks(cpu, st, target);
526 }
527
528 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
529 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
530 {
531         return cpuhp_up_callbacks(cpu, st, st->target);
532 }
533
534 /*
535  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
536  * callbacks when a state gets [un]installed at runtime.
537  */
538 static void cpuhp_thread_fun(unsigned int cpu)
539 {
540         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
541         int ret = 0;
542
543         /*
544          * Paired with the mb() in cpuhp_kick_ap_work and
545          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
546          */
547         smp_mb();
548         if (!st->should_run)
549                 return;
550
551         st->should_run = false;
552
553         /* Single callback invocation for [un]install ? */
554         if (st->single) {
555                 if (st->cb_state < CPUHP_AP_ONLINE) {
556                         local_irq_disable();
557                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
558                                                     st->bringup, st->node);
559                         local_irq_enable();
560                 } else {
561                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
562                                                     st->bringup, st->node);
563                 }
564         } else if (st->rollback) {
565                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
566
567                 undo_cpu_down(cpu, st);
568                 /*
569                  * This is a momentary workaround to keep the notifier users
570                  * happy. Will go away once we got rid of the notifiers.
571                  */
572                 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
573                 st->rollback = false;
574         } else {
575                 /* Cannot happen .... */
576                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
577
578                 /* Regular hotplug work */
579                 if (st->state < st->target)
580                         ret = cpuhp_ap_online(cpu, st);
581                 else if (st->state > st->target)
582                         ret = cpuhp_ap_offline(cpu, st);
583         }
584         st->result = ret;
585         complete(&st->done);
586 }
587
588 /* Invoke a single callback on a remote cpu */
589 static int
590 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
591                          struct hlist_node *node)
592 {
593         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
594
595         if (!cpu_online(cpu))
596                 return 0;
597
598         /*
599          * If we are up and running, use the hotplug thread. For early calls
600          * we invoke the thread function directly.
601          */
602         if (!st->thread)
603                 return cpuhp_invoke_callback(cpu, state, bringup, node);
604
605         st->cb_state = state;
606         st->single = true;
607         st->bringup = bringup;
608         st->node = node;
609
610         /*
611          * Make sure the above stores are visible before should_run becomes
612          * true. Paired with the mb() above in cpuhp_thread_fun()
613          */
614         smp_mb();
615         st->should_run = true;
616         wake_up_process(st->thread);
617         wait_for_completion(&st->done);
618         return st->result;
619 }
620
621 /* Regular hotplug invocation of the AP hotplug thread */
622 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
623 {
624         st->result = 0;
625         st->single = false;
626         /*
627          * Make sure the above stores are visible before should_run becomes
628          * true. Paired with the mb() above in cpuhp_thread_fun()
629          */
630         smp_mb();
631         st->should_run = true;
632         wake_up_process(st->thread);
633 }
634
635 static int cpuhp_kick_ap_work(unsigned int cpu)
636 {
637         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
638         enum cpuhp_state state = st->state;
639
640         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
641         __cpuhp_kick_ap_work(st);
642         wait_for_completion(&st->done);
643         trace_cpuhp_exit(cpu, st->state, state, st->result);
644         return st->result;
645 }
646
647 static struct smp_hotplug_thread cpuhp_threads = {
648         .store                  = &cpuhp_state.thread,
649         .create                 = &cpuhp_create,
650         .thread_should_run      = cpuhp_should_run,
651         .thread_fn              = cpuhp_thread_fun,
652         .thread_comm            = "cpuhp/%u",
653         .selfparking            = true,
654 };
655
656 void __init cpuhp_threads_init(void)
657 {
658         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
659         kthread_unpark(this_cpu_read(cpuhp_state.thread));
660 }
661
662 #ifdef CONFIG_HOTPLUG_CPU
663 EXPORT_SYMBOL(register_cpu_notifier);
664 EXPORT_SYMBOL(__register_cpu_notifier);
665 void unregister_cpu_notifier(struct notifier_block *nb)
666 {
667         cpu_maps_update_begin();
668         raw_notifier_chain_unregister(&cpu_chain, nb);
669         cpu_maps_update_done();
670 }
671 EXPORT_SYMBOL(unregister_cpu_notifier);
672
673 void __unregister_cpu_notifier(struct notifier_block *nb)
674 {
675         raw_notifier_chain_unregister(&cpu_chain, nb);
676 }
677 EXPORT_SYMBOL(__unregister_cpu_notifier);
678
679 /**
680  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
681  * @cpu: a CPU id
682  *
683  * This function walks all processes, finds a valid mm struct for each one and
684  * then clears a corresponding bit in mm's cpumask.  While this all sounds
685  * trivial, there are various non-obvious corner cases, which this function
686  * tries to solve in a safe manner.
687  *
688  * Also note that the function uses a somewhat relaxed locking scheme, so it may
689  * be called only for an already offlined CPU.
690  */
691 void clear_tasks_mm_cpumask(int cpu)
692 {
693         struct task_struct *p;
694
695         /*
696          * This function is called after the cpu is taken down and marked
697          * offline, so its not like new tasks will ever get this cpu set in
698          * their mm mask. -- Peter Zijlstra
699          * Thus, we may use rcu_read_lock() here, instead of grabbing
700          * full-fledged tasklist_lock.
701          */
702         WARN_ON(cpu_online(cpu));
703         rcu_read_lock();
704         for_each_process(p) {
705                 struct task_struct *t;
706
707                 /*
708                  * Main thread might exit, but other threads may still have
709                  * a valid mm. Find one.
710                  */
711                 t = find_lock_task_mm(p);
712                 if (!t)
713                         continue;
714                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
715                 task_unlock(t);
716         }
717         rcu_read_unlock();
718 }
719
720 static inline void check_for_tasks(int dead_cpu)
721 {
722         struct task_struct *g, *p;
723
724         read_lock(&tasklist_lock);
725         for_each_process_thread(g, p) {
726                 if (!p->on_rq)
727                         continue;
728                 /*
729                  * We do the check with unlocked task_rq(p)->lock.
730                  * Order the reading to do not warn about a task,
731                  * which was running on this cpu in the past, and
732                  * it's just been woken on another cpu.
733                  */
734                 rmb();
735                 if (task_cpu(p) != dead_cpu)
736                         continue;
737
738                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
739                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
740         }
741         read_unlock(&tasklist_lock);
742 }
743
744 static int notify_down_prepare(unsigned int cpu)
745 {
746         int err, nr_calls = 0;
747
748         err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
749         if (err) {
750                 nr_calls--;
751                 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
752                 pr_warn("%s: attempt to take down CPU %u failed\n",
753                                 __func__, cpu);
754         }
755         return err;
756 }
757
758 /* Take this CPU down. */
759 static int take_cpu_down(void *_param)
760 {
761         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
762         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
763         int err, cpu = smp_processor_id();
764
765         /* Ensure this CPU doesn't handle any more interrupts. */
766         err = __cpu_disable();
767         if (err < 0)
768                 return err;
769
770         /*
771          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
772          * do this step again.
773          */
774         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
775         st->state--;
776         /* Invoke the former CPU_DYING callbacks */
777         for (; st->state > target; st->state--)
778                 cpuhp_invoke_callback(cpu, st->state, false, NULL);
779
780         /* Give up timekeeping duties */
781         tick_handover_do_timer();
782         /* Park the stopper thread */
783         stop_machine_park(cpu);
784         return 0;
785 }
786
787 static int takedown_cpu(unsigned int cpu)
788 {
789         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
790         int err;
791
792         /* Park the smpboot threads */
793         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
794         smpboot_park_threads(cpu);
795
796         /*
797          * Prevent irq alloc/free while the dying cpu reorganizes the
798          * interrupt affinities.
799          */
800         irq_lock_sparse();
801
802         /*
803          * So now all preempt/rcu users must observe !cpu_active().
804          */
805         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
806         if (err) {
807                 /* CPU refused to die */
808                 irq_unlock_sparse();
809                 /* Unpark the hotplug thread so we can rollback there */
810                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
811                 return err;
812         }
813         BUG_ON(cpu_online(cpu));
814
815         /*
816          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
817          * runnable tasks from the cpu, there's only the idle task left now
818          * that the migration thread is done doing the stop_machine thing.
819          *
820          * Wait for the stop thread to go away.
821          */
822         wait_for_completion(&st->done);
823         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
824
825         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
826         irq_unlock_sparse();
827
828         hotplug_cpu__broadcast_tick_pull(cpu);
829         /* This actually kills the CPU. */
830         __cpu_die(cpu);
831
832         tick_cleanup_dead_cpu(cpu);
833         return 0;
834 }
835
836 static int notify_dead(unsigned int cpu)
837 {
838         cpu_notify_nofail(CPU_DEAD, cpu);
839         check_for_tasks(cpu);
840         return 0;
841 }
842
843 static void cpuhp_complete_idle_dead(void *arg)
844 {
845         struct cpuhp_cpu_state *st = arg;
846
847         complete(&st->done);
848 }
849
850 void cpuhp_report_idle_dead(void)
851 {
852         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
853
854         BUG_ON(st->state != CPUHP_AP_OFFLINE);
855         rcu_report_dead(smp_processor_id());
856         st->state = CPUHP_AP_IDLE_DEAD;
857         /*
858          * We cannot call complete after rcu_report_dead() so we delegate it
859          * to an online cpu.
860          */
861         smp_call_function_single(cpumask_first(cpu_online_mask),
862                                  cpuhp_complete_idle_dead, st, 0);
863 }
864
865 #else
866 #define notify_down_prepare     NULL
867 #define takedown_cpu            NULL
868 #define notify_dead             NULL
869 #endif
870
871 #ifdef CONFIG_HOTPLUG_CPU
872
873 /* Requires cpu_add_remove_lock to be held */
874 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
875                            enum cpuhp_state target)
876 {
877         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
878         int prev_state, ret = 0;
879         bool hasdied = false;
880
881         if (num_online_cpus() == 1)
882                 return -EBUSY;
883
884         if (!cpu_present(cpu))
885                 return -EINVAL;
886
887         cpu_hotplug_begin();
888
889         cpuhp_tasks_frozen = tasks_frozen;
890
891         prev_state = st->state;
892         st->target = target;
893         /*
894          * If the current CPU state is in the range of the AP hotplug thread,
895          * then we need to kick the thread.
896          */
897         if (st->state > CPUHP_TEARDOWN_CPU) {
898                 ret = cpuhp_kick_ap_work(cpu);
899                 /*
900                  * The AP side has done the error rollback already. Just
901                  * return the error code..
902                  */
903                 if (ret)
904                         goto out;
905
906                 /*
907                  * We might have stopped still in the range of the AP hotplug
908                  * thread. Nothing to do anymore.
909                  */
910                 if (st->state > CPUHP_TEARDOWN_CPU)
911                         goto out;
912         }
913         /*
914          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
915          * to do the further cleanups.
916          */
917         ret = cpuhp_down_callbacks(cpu, st, target);
918         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
919                 st->target = prev_state;
920                 st->rollback = true;
921                 cpuhp_kick_ap_work(cpu);
922         }
923
924         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
925 out:
926         cpu_hotplug_done();
927         /* This post dead nonsense must die */
928         if (!ret && hasdied)
929                 cpu_notify_nofail(CPU_POST_DEAD, cpu);
930         return ret;
931 }
932
933 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
934 {
935         int err;
936
937         cpu_maps_update_begin();
938
939         if (cpu_hotplug_disabled) {
940                 err = -EBUSY;
941                 goto out;
942         }
943
944         err = _cpu_down(cpu, 0, target);
945
946 out:
947         cpu_maps_update_done();
948         return err;
949 }
950 int cpu_down(unsigned int cpu)
951 {
952         return do_cpu_down(cpu, CPUHP_OFFLINE);
953 }
954 EXPORT_SYMBOL(cpu_down);
955 #endif /*CONFIG_HOTPLUG_CPU*/
956
957 /**
958  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
959  * @cpu: cpu that just started
960  *
961  * It must be called by the arch code on the new cpu, before the new cpu
962  * enables interrupts and before the "boot" cpu returns from __cpu_up().
963  */
964 void notify_cpu_starting(unsigned int cpu)
965 {
966         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
967         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
968
969         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
970         while (st->state < target) {
971                 st->state++;
972                 cpuhp_invoke_callback(cpu, st->state, true, NULL);
973         }
974 }
975
976 /*
977  * Called from the idle task. We need to set active here, so we can kick off
978  * the stopper thread and unpark the smpboot threads. If the target state is
979  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
980  * cpu further.
981  */
982 void cpuhp_online_idle(enum cpuhp_state state)
983 {
984         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
985         unsigned int cpu = smp_processor_id();
986
987         /* Happens for the boot cpu */
988         if (state != CPUHP_AP_ONLINE_IDLE)
989                 return;
990
991         st->state = CPUHP_AP_ONLINE_IDLE;
992
993         /* Unpark the stopper thread and the hotplug thread of this cpu */
994         stop_machine_unpark(cpu);
995         kthread_unpark(st->thread);
996
997         /* Should we go further up ? */
998         if (st->target > CPUHP_AP_ONLINE_IDLE)
999                 __cpuhp_kick_ap_work(st);
1000         else
1001                 complete(&st->done);
1002 }
1003
1004 /* Requires cpu_add_remove_lock to be held */
1005 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1006 {
1007         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008         struct task_struct *idle;
1009         int ret = 0;
1010
1011         cpu_hotplug_begin();
1012
1013         if (!cpu_present(cpu)) {
1014                 ret = -EINVAL;
1015                 goto out;
1016         }
1017
1018         /*
1019          * The caller of do_cpu_up might have raced with another
1020          * caller. Ignore it for now.
1021          */
1022         if (st->state >= target)
1023                 goto out;
1024
1025         if (st->state == CPUHP_OFFLINE) {
1026                 /* Let it fail before we try to bring the cpu up */
1027                 idle = idle_thread_get(cpu);
1028                 if (IS_ERR(idle)) {
1029                         ret = PTR_ERR(idle);
1030                         goto out;
1031                 }
1032         }
1033
1034         cpuhp_tasks_frozen = tasks_frozen;
1035
1036         st->target = target;
1037         /*
1038          * If the current CPU state is in the range of the AP hotplug thread,
1039          * then we need to kick the thread once more.
1040          */
1041         if (st->state > CPUHP_BRINGUP_CPU) {
1042                 ret = cpuhp_kick_ap_work(cpu);
1043                 /*
1044                  * The AP side has done the error rollback already. Just
1045                  * return the error code..
1046                  */
1047                 if (ret)
1048                         goto out;
1049         }
1050
1051         /*
1052          * Try to reach the target state. We max out on the BP at
1053          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1054          * responsible for bringing it up to the target state.
1055          */
1056         target = min((int)target, CPUHP_BRINGUP_CPU);
1057         ret = cpuhp_up_callbacks(cpu, st, target);
1058 out:
1059         cpu_hotplug_done();
1060         return ret;
1061 }
1062
1063 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1064 {
1065         int err = 0;
1066
1067         if (!cpu_possible(cpu)) {
1068                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1069                        cpu);
1070 #if defined(CONFIG_IA64)
1071                 pr_err("please check additional_cpus= boot parameter\n");
1072 #endif
1073                 return -EINVAL;
1074         }
1075
1076         err = try_online_node(cpu_to_node(cpu));
1077         if (err)
1078                 return err;
1079
1080         cpu_maps_update_begin();
1081
1082         if (cpu_hotplug_disabled) {
1083                 err = -EBUSY;
1084                 goto out;
1085         }
1086
1087         err = _cpu_up(cpu, 0, target);
1088 out:
1089         cpu_maps_update_done();
1090         return err;
1091 }
1092
1093 int cpu_up(unsigned int cpu)
1094 {
1095         return do_cpu_up(cpu, CPUHP_ONLINE);
1096 }
1097 EXPORT_SYMBOL_GPL(cpu_up);
1098
1099 #ifdef CONFIG_PM_SLEEP_SMP
1100 static cpumask_var_t frozen_cpus;
1101
1102 int freeze_secondary_cpus(int primary)
1103 {
1104         int cpu, error = 0;
1105
1106         cpu_maps_update_begin();
1107         if (!cpu_online(primary))
1108                 primary = cpumask_first(cpu_online_mask);
1109         /*
1110          * We take down all of the non-boot CPUs in one shot to avoid races
1111          * with the userspace trying to use the CPU hotplug at the same time
1112          */
1113         cpumask_clear(frozen_cpus);
1114
1115         pr_info("Disabling non-boot CPUs ...\n");
1116         for_each_online_cpu(cpu) {
1117                 if (cpu == primary)
1118                         continue;
1119                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1120                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1121                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1122                 if (!error)
1123                         cpumask_set_cpu(cpu, frozen_cpus);
1124                 else {
1125                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1126                         break;
1127                 }
1128         }
1129
1130         if (!error)
1131                 BUG_ON(num_online_cpus() > 1);
1132         else
1133                 pr_err("Non-boot CPUs are not disabled\n");
1134
1135         /*
1136          * Make sure the CPUs won't be enabled by someone else. We need to do
1137          * this even in case of failure as all disable_nonboot_cpus() users are
1138          * supposed to do enable_nonboot_cpus() on the failure path.
1139          */
1140         cpu_hotplug_disabled++;
1141
1142         cpu_maps_update_done();
1143         return error;
1144 }
1145
1146 void __weak arch_enable_nonboot_cpus_begin(void)
1147 {
1148 }
1149
1150 void __weak arch_enable_nonboot_cpus_end(void)
1151 {
1152 }
1153
1154 void enable_nonboot_cpus(void)
1155 {
1156         int cpu, error;
1157
1158         /* Allow everyone to use the CPU hotplug again */
1159         cpu_maps_update_begin();
1160         __cpu_hotplug_enable();
1161         if (cpumask_empty(frozen_cpus))
1162                 goto out;
1163
1164         pr_info("Enabling non-boot CPUs ...\n");
1165
1166         arch_enable_nonboot_cpus_begin();
1167
1168         for_each_cpu(cpu, frozen_cpus) {
1169                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1170                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1171                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1172                 if (!error) {
1173                         pr_info("CPU%d is up\n", cpu);
1174                         continue;
1175                 }
1176                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1177         }
1178
1179         arch_enable_nonboot_cpus_end();
1180
1181         cpumask_clear(frozen_cpus);
1182 out:
1183         cpu_maps_update_done();
1184 }
1185
1186 static int __init alloc_frozen_cpus(void)
1187 {
1188         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1189                 return -ENOMEM;
1190         return 0;
1191 }
1192 core_initcall(alloc_frozen_cpus);
1193
1194 /*
1195  * When callbacks for CPU hotplug notifications are being executed, we must
1196  * ensure that the state of the system with respect to the tasks being frozen
1197  * or not, as reported by the notification, remains unchanged *throughout the
1198  * duration* of the execution of the callbacks.
1199  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1200  *
1201  * This synchronization is implemented by mutually excluding regular CPU
1202  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1203  * Hibernate notifications.
1204  */
1205 static int
1206 cpu_hotplug_pm_callback(struct notifier_block *nb,
1207                         unsigned long action, void *ptr)
1208 {
1209         switch (action) {
1210
1211         case PM_SUSPEND_PREPARE:
1212         case PM_HIBERNATION_PREPARE:
1213                 cpu_hotplug_disable();
1214                 break;
1215
1216         case PM_POST_SUSPEND:
1217         case PM_POST_HIBERNATION:
1218                 cpu_hotplug_enable();
1219                 break;
1220
1221         default:
1222                 return NOTIFY_DONE;
1223         }
1224
1225         return NOTIFY_OK;
1226 }
1227
1228
1229 static int __init cpu_hotplug_pm_sync_init(void)
1230 {
1231         /*
1232          * cpu_hotplug_pm_callback has higher priority than x86
1233          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1234          * to disable cpu hotplug to avoid cpu hotplug race.
1235          */
1236         pm_notifier(cpu_hotplug_pm_callback, 0);
1237         return 0;
1238 }
1239 core_initcall(cpu_hotplug_pm_sync_init);
1240
1241 #endif /* CONFIG_PM_SLEEP_SMP */
1242
1243 #endif /* CONFIG_SMP */
1244
1245 /* Boot processor state steps */
1246 static struct cpuhp_step cpuhp_bp_states[] = {
1247         [CPUHP_OFFLINE] = {
1248                 .name                   = "offline",
1249                 .startup.single         = NULL,
1250                 .teardown.single        = NULL,
1251         },
1252 #ifdef CONFIG_SMP
1253         [CPUHP_CREATE_THREADS]= {
1254                 .name                   = "threads:prepare",
1255                 .startup.single         = smpboot_create_threads,
1256                 .teardown.single        = NULL,
1257                 .cant_stop              = true,
1258         },
1259         [CPUHP_PERF_PREPARE] = {
1260                 .name                   = "perf:prepare",
1261                 .startup.single         = perf_event_init_cpu,
1262                 .teardown.single        = perf_event_exit_cpu,
1263         },
1264         [CPUHP_WORKQUEUE_PREP] = {
1265                 .name                   = "workqueue:prepare",
1266                 .startup.single         = workqueue_prepare_cpu,
1267                 .teardown.single        = NULL,
1268         },
1269         [CPUHP_HRTIMERS_PREPARE] = {
1270                 .name                   = "hrtimers:prepare",
1271                 .startup.single         = hrtimers_prepare_cpu,
1272                 .teardown.single        = hrtimers_dead_cpu,
1273         },
1274         [CPUHP_SMPCFD_PREPARE] = {
1275                 .name                   = "smpcfd:prepare",
1276                 .startup.single         = smpcfd_prepare_cpu,
1277                 .teardown.single        = smpcfd_dead_cpu,
1278         },
1279         [CPUHP_RELAY_PREPARE] = {
1280                 .name                   = "relay:prepare",
1281                 .startup.single         = relay_prepare_cpu,
1282                 .teardown.single        = NULL,
1283         },
1284         [CPUHP_SLAB_PREPARE] = {
1285                 .name                   = "slab:prepare",
1286                 .startup.single         = slab_prepare_cpu,
1287                 .teardown.single        = slab_dead_cpu,
1288         },
1289         [CPUHP_RCUTREE_PREP] = {
1290                 .name                   = "RCU/tree:prepare",
1291                 .startup.single         = rcutree_prepare_cpu,
1292                 .teardown.single        = rcutree_dead_cpu,
1293         },
1294         /*
1295          * Preparatory and dead notifiers. Will be replaced once the notifiers
1296          * are converted to states.
1297          */
1298         [CPUHP_NOTIFY_PREPARE] = {
1299                 .name                   = "notify:prepare",
1300                 .startup.single         = notify_prepare,
1301                 .teardown.single        = notify_dead,
1302                 .skip_onerr             = true,
1303                 .cant_stop              = true,
1304         },
1305         /*
1306          * On the tear-down path, timers_dead_cpu() must be invoked
1307          * before blk_mq_queue_reinit_notify() from notify_dead(),
1308          * otherwise a RCU stall occurs.
1309          */
1310         [CPUHP_TIMERS_DEAD] = {
1311                 .name                   = "timers:dead",
1312                 .startup.single         = NULL,
1313                 .teardown.single        = timers_dead_cpu,
1314         },
1315         /* Kicks the plugged cpu into life */
1316         [CPUHP_BRINGUP_CPU] = {
1317                 .name                   = "cpu:bringup",
1318                 .startup.single         = bringup_cpu,
1319                 .teardown.single        = NULL,
1320                 .cant_stop              = true,
1321         },
1322         [CPUHP_AP_SMPCFD_DYING] = {
1323                 .name                   = "smpcfd:dying",
1324                 .startup.single         = NULL,
1325                 .teardown.single        = smpcfd_dying_cpu,
1326         },
1327         /*
1328          * Handled on controll processor until the plugged processor manages
1329          * this itself.
1330          */
1331         [CPUHP_TEARDOWN_CPU] = {
1332                 .name                   = "cpu:teardown",
1333                 .startup.single         = NULL,
1334                 .teardown.single        = takedown_cpu,
1335                 .cant_stop              = true,
1336         },
1337 #else
1338         [CPUHP_BRINGUP_CPU] = { },
1339 #endif
1340 };
1341
1342 /* Application processor state steps */
1343 static struct cpuhp_step cpuhp_ap_states[] = {
1344 #ifdef CONFIG_SMP
1345         /* Final state before CPU kills itself */
1346         [CPUHP_AP_IDLE_DEAD] = {
1347                 .name                   = "idle:dead",
1348         },
1349         /*
1350          * Last state before CPU enters the idle loop to die. Transient state
1351          * for synchronization.
1352          */
1353         [CPUHP_AP_OFFLINE] = {
1354                 .name                   = "ap:offline",
1355                 .cant_stop              = true,
1356         },
1357         /* First state is scheduler control. Interrupts are disabled */
1358         [CPUHP_AP_SCHED_STARTING] = {
1359                 .name                   = "sched:starting",
1360                 .startup.single         = sched_cpu_starting,
1361                 .teardown.single        = sched_cpu_dying,
1362         },
1363         [CPUHP_AP_RCUTREE_DYING] = {
1364                 .name                   = "RCU/tree:dying",
1365                 .startup.single         = NULL,
1366                 .teardown.single        = rcutree_dying_cpu,
1367         },
1368         /* Entry state on starting. Interrupts enabled from here on. Transient
1369          * state for synchronsization */
1370         [CPUHP_AP_ONLINE] = {
1371                 .name                   = "ap:online",
1372         },
1373         /* Handle smpboot threads park/unpark */
1374         [CPUHP_AP_SMPBOOT_THREADS] = {
1375                 .name                   = "smpboot/threads:online",
1376                 .startup.single         = smpboot_unpark_threads,
1377                 .teardown.single        = NULL,
1378         },
1379         [CPUHP_AP_PERF_ONLINE] = {
1380                 .name                   = "perf:online",
1381                 .startup.single         = perf_event_init_cpu,
1382                 .teardown.single        = perf_event_exit_cpu,
1383         },
1384         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1385                 .name                   = "workqueue:online",
1386                 .startup.single         = workqueue_online_cpu,
1387                 .teardown.single        = workqueue_offline_cpu,
1388         },
1389         [CPUHP_AP_RCUTREE_ONLINE] = {
1390                 .name                   = "RCU/tree:online",
1391                 .startup.single         = rcutree_online_cpu,
1392                 .teardown.single        = rcutree_offline_cpu,
1393         },
1394
1395         /*
1396          * Online/down_prepare notifiers. Will be removed once the notifiers
1397          * are converted to states.
1398          */
1399         [CPUHP_AP_NOTIFY_ONLINE] = {
1400                 .name                   = "notify:online",
1401                 .startup.single         = notify_online,
1402                 .teardown.single        = notify_down_prepare,
1403                 .skip_onerr             = true,
1404         },
1405 #endif
1406         /*
1407          * The dynamically registered state space is here
1408          */
1409
1410 #ifdef CONFIG_SMP
1411         /* Last state is scheduler control setting the cpu active */
1412         [CPUHP_AP_ACTIVE] = {
1413                 .name                   = "sched:active",
1414                 .startup.single         = sched_cpu_activate,
1415                 .teardown.single        = sched_cpu_deactivate,
1416         },
1417 #endif
1418
1419         /* CPU is fully up and running. */
1420         [CPUHP_ONLINE] = {
1421                 .name                   = "online",
1422                 .startup.single         = NULL,
1423                 .teardown.single        = NULL,
1424         },
1425 };
1426
1427 /* Sanity check for callbacks */
1428 static int cpuhp_cb_check(enum cpuhp_state state)
1429 {
1430         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1431                 return -EINVAL;
1432         return 0;
1433 }
1434
1435 static void cpuhp_store_callbacks(enum cpuhp_state state,
1436                                   const char *name,
1437                                   int (*startup)(unsigned int cpu),
1438                                   int (*teardown)(unsigned int cpu),
1439                                   bool multi_instance)
1440 {
1441         /* (Un)Install the callbacks for further cpu hotplug operations */
1442         struct cpuhp_step *sp;
1443
1444         mutex_lock(&cpuhp_state_mutex);
1445         sp = cpuhp_get_step(state);
1446         sp->startup.single = startup;
1447         sp->teardown.single = teardown;
1448         sp->name = name;
1449         sp->multi_instance = multi_instance;
1450         INIT_HLIST_HEAD(&sp->list);
1451         mutex_unlock(&cpuhp_state_mutex);
1452 }
1453
1454 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1455 {
1456         return cpuhp_get_step(state)->teardown.single;
1457 }
1458
1459 /*
1460  * Call the startup/teardown function for a step either on the AP or
1461  * on the current CPU.
1462  */
1463 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1464                             struct hlist_node *node)
1465 {
1466         struct cpuhp_step *sp = cpuhp_get_step(state);
1467         int ret;
1468
1469         if ((bringup && !sp->startup.single) ||
1470             (!bringup && !sp->teardown.single))
1471                 return 0;
1472         /*
1473          * The non AP bound callbacks can fail on bringup. On teardown
1474          * e.g. module removal we crash for now.
1475          */
1476 #ifdef CONFIG_SMP
1477         if (cpuhp_is_ap_state(state))
1478                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1479         else
1480                 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1481 #else
1482         ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1483 #endif
1484         BUG_ON(ret && !bringup);
1485         return ret;
1486 }
1487
1488 /*
1489  * Called from __cpuhp_setup_state on a recoverable failure.
1490  *
1491  * Note: The teardown callbacks for rollback are not allowed to fail!
1492  */
1493 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1494                                    struct hlist_node *node)
1495 {
1496         int cpu;
1497
1498         /* Roll back the already executed steps on the other cpus */
1499         for_each_present_cpu(cpu) {
1500                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501                 int cpustate = st->state;
1502
1503                 if (cpu >= failedcpu)
1504                         break;
1505
1506                 /* Did we invoke the startup call on that cpu ? */
1507                 if (cpustate >= state)
1508                         cpuhp_issue_call(cpu, state, false, node);
1509         }
1510 }
1511
1512 /*
1513  * Returns a free for dynamic slot assignment of the Online state. The states
1514  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515  * by having no name assigned.
1516  */
1517 static int cpuhp_reserve_state(enum cpuhp_state state)
1518 {
1519         enum cpuhp_state i;
1520
1521         mutex_lock(&cpuhp_state_mutex);
1522         for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1523                 if (cpuhp_ap_states[i].name)
1524                         continue;
1525
1526                 cpuhp_ap_states[i].name = "Reserved";
1527                 mutex_unlock(&cpuhp_state_mutex);
1528                 return i;
1529         }
1530         mutex_unlock(&cpuhp_state_mutex);
1531         WARN(1, "No more dynamic states available for CPU hotplug\n");
1532         return -ENOSPC;
1533 }
1534
1535 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1536                                bool invoke)
1537 {
1538         struct cpuhp_step *sp;
1539         int cpu;
1540         int ret;
1541
1542         sp = cpuhp_get_step(state);
1543         if (sp->multi_instance == false)
1544                 return -EINVAL;
1545
1546         get_online_cpus();
1547
1548         if (!invoke || !sp->startup.multi)
1549                 goto add_node;
1550
1551         /*
1552          * Try to call the startup callback for each present cpu
1553          * depending on the hotplug state of the cpu.
1554          */
1555         for_each_present_cpu(cpu) {
1556                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557                 int cpustate = st->state;
1558
1559                 if (cpustate < state)
1560                         continue;
1561
1562                 ret = cpuhp_issue_call(cpu, state, true, node);
1563                 if (ret) {
1564                         if (sp->teardown.multi)
1565                                 cpuhp_rollback_install(cpu, state, node);
1566                         goto err;
1567                 }
1568         }
1569 add_node:
1570         ret = 0;
1571         mutex_lock(&cpuhp_state_mutex);
1572         hlist_add_head(node, &sp->list);
1573         mutex_unlock(&cpuhp_state_mutex);
1574
1575 err:
1576         put_online_cpus();
1577         return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1580
1581 /**
1582  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1583  * @state:      The state to setup
1584  * @invoke:     If true, the startup function is invoked for cpus where
1585  *              cpu state >= @state
1586  * @startup:    startup callback function
1587  * @teardown:   teardown callback function
1588  *
1589  * Returns 0 if successful, otherwise a proper error code
1590  */
1591 int __cpuhp_setup_state(enum cpuhp_state state,
1592                         const char *name, bool invoke,
1593                         int (*startup)(unsigned int cpu),
1594                         int (*teardown)(unsigned int cpu),
1595                         bool multi_instance)
1596 {
1597         int cpu, ret = 0;
1598         int dyn_state = 0;
1599
1600         if (cpuhp_cb_check(state) || !name)
1601                 return -EINVAL;
1602
1603         get_online_cpus();
1604
1605         /* currently assignments for the ONLINE state are possible */
1606         if (state == CPUHP_AP_ONLINE_DYN) {
1607                 dyn_state = 1;
1608                 ret = cpuhp_reserve_state(state);
1609                 if (ret < 0)
1610                         goto out;
1611                 state = ret;
1612         }
1613
1614         cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
1615
1616         if (!invoke || !startup)
1617                 goto out;
1618
1619         /*
1620          * Try to call the startup callback for each present cpu
1621          * depending on the hotplug state of the cpu.
1622          */
1623         for_each_present_cpu(cpu) {
1624                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625                 int cpustate = st->state;
1626
1627                 if (cpustate < state)
1628                         continue;
1629
1630                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1631                 if (ret) {
1632                         if (teardown)
1633                                 cpuhp_rollback_install(cpu, state, NULL);
1634                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635                         goto out;
1636                 }
1637         }
1638 out:
1639         put_online_cpus();
1640         if (!ret && dyn_state)
1641                 return state;
1642         return ret;
1643 }
1644 EXPORT_SYMBOL(__cpuhp_setup_state);
1645
1646 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1647                                   struct hlist_node *node, bool invoke)
1648 {
1649         struct cpuhp_step *sp = cpuhp_get_step(state);
1650         int cpu;
1651
1652         BUG_ON(cpuhp_cb_check(state));
1653
1654         if (!sp->multi_instance)
1655                 return -EINVAL;
1656
1657         get_online_cpus();
1658         if (!invoke || !cpuhp_get_teardown_cb(state))
1659                 goto remove;
1660         /*
1661          * Call the teardown callback for each present cpu depending
1662          * on the hotplug state of the cpu. This function is not
1663          * allowed to fail currently!
1664          */
1665         for_each_present_cpu(cpu) {
1666                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667                 int cpustate = st->state;
1668
1669                 if (cpustate >= state)
1670                         cpuhp_issue_call(cpu, state, false, node);
1671         }
1672
1673 remove:
1674         mutex_lock(&cpuhp_state_mutex);
1675         hlist_del(node);
1676         mutex_unlock(&cpuhp_state_mutex);
1677         put_online_cpus();
1678
1679         return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1682 /**
1683  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1684  * @state:      The state to remove
1685  * @invoke:     If true, the teardown function is invoked for cpus where
1686  *              cpu state >= @state
1687  *
1688  * The teardown callback is currently not allowed to fail. Think
1689  * about module removal!
1690  */
1691 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1692 {
1693         struct cpuhp_step *sp = cpuhp_get_step(state);
1694         int cpu;
1695
1696         BUG_ON(cpuhp_cb_check(state));
1697
1698         get_online_cpus();
1699
1700         if (sp->multi_instance) {
1701                 WARN(!hlist_empty(&sp->list),
1702                      "Error: Removing state %d which has instances left.\n",
1703                      state);
1704                 goto remove;
1705         }
1706
1707         if (!invoke || !cpuhp_get_teardown_cb(state))
1708                 goto remove;
1709
1710         /*
1711          * Call the teardown callback for each present cpu depending
1712          * on the hotplug state of the cpu. This function is not
1713          * allowed to fail currently!
1714          */
1715         for_each_present_cpu(cpu) {
1716                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1717                 int cpustate = st->state;
1718
1719                 if (cpustate >= state)
1720                         cpuhp_issue_call(cpu, state, false, NULL);
1721         }
1722 remove:
1723         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1724         put_online_cpus();
1725 }
1726 EXPORT_SYMBOL(__cpuhp_remove_state);
1727
1728 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1729 static ssize_t show_cpuhp_state(struct device *dev,
1730                                 struct device_attribute *attr, char *buf)
1731 {
1732         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1733
1734         return sprintf(buf, "%d\n", st->state);
1735 }
1736 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1737
1738 static ssize_t write_cpuhp_target(struct device *dev,
1739                                   struct device_attribute *attr,
1740                                   const char *buf, size_t count)
1741 {
1742         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1743         struct cpuhp_step *sp;
1744         int target, ret;
1745
1746         ret = kstrtoint(buf, 10, &target);
1747         if (ret)
1748                 return ret;
1749
1750 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1751         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1752                 return -EINVAL;
1753 #else
1754         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1755                 return -EINVAL;
1756 #endif
1757
1758         ret = lock_device_hotplug_sysfs();
1759         if (ret)
1760                 return ret;
1761
1762         mutex_lock(&cpuhp_state_mutex);
1763         sp = cpuhp_get_step(target);
1764         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1765         mutex_unlock(&cpuhp_state_mutex);
1766         if (ret)
1767                 return ret;
1768
1769         if (st->state < target)
1770                 ret = do_cpu_up(dev->id, target);
1771         else
1772                 ret = do_cpu_down(dev->id, target);
1773
1774         unlock_device_hotplug();
1775         return ret ? ret : count;
1776 }
1777
1778 static ssize_t show_cpuhp_target(struct device *dev,
1779                                  struct device_attribute *attr, char *buf)
1780 {
1781         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1782
1783         return sprintf(buf, "%d\n", st->target);
1784 }
1785 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1786
1787 static struct attribute *cpuhp_cpu_attrs[] = {
1788         &dev_attr_state.attr,
1789         &dev_attr_target.attr,
1790         NULL
1791 };
1792
1793 static struct attribute_group cpuhp_cpu_attr_group = {
1794         .attrs = cpuhp_cpu_attrs,
1795         .name = "hotplug",
1796         NULL
1797 };
1798
1799 static ssize_t show_cpuhp_states(struct device *dev,
1800                                  struct device_attribute *attr, char *buf)
1801 {
1802         ssize_t cur, res = 0;
1803         int i;
1804
1805         mutex_lock(&cpuhp_state_mutex);
1806         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1807                 struct cpuhp_step *sp = cpuhp_get_step(i);
1808
1809                 if (sp->name) {
1810                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1811                         buf += cur;
1812                         res += cur;
1813                 }
1814         }
1815         mutex_unlock(&cpuhp_state_mutex);
1816         return res;
1817 }
1818 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1819
1820 static struct attribute *cpuhp_cpu_root_attrs[] = {
1821         &dev_attr_states.attr,
1822         NULL
1823 };
1824
1825 static struct attribute_group cpuhp_cpu_root_attr_group = {
1826         .attrs = cpuhp_cpu_root_attrs,
1827         .name = "hotplug",
1828         NULL
1829 };
1830
1831 static int __init cpuhp_sysfs_init(void)
1832 {
1833         int cpu, ret;
1834
1835         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1836                                  &cpuhp_cpu_root_attr_group);
1837         if (ret)
1838                 return ret;
1839
1840         for_each_possible_cpu(cpu) {
1841                 struct device *dev = get_cpu_device(cpu);
1842
1843                 if (!dev)
1844                         continue;
1845                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1846                 if (ret)
1847                         return ret;
1848         }
1849         return 0;
1850 }
1851 device_initcall(cpuhp_sysfs_init);
1852 #endif
1853
1854 /*
1855  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1856  * represents all NR_CPUS bits binary values of 1<<nr.
1857  *
1858  * It is used by cpumask_of() to get a constant address to a CPU
1859  * mask value that has a single bit set only.
1860  */
1861
1862 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1863 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1864 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1865 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1866 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1867
1868 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1869
1870         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1871         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1872 #if BITS_PER_LONG > 32
1873         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1874         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1875 #endif
1876 };
1877 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1878
1879 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1880 EXPORT_SYMBOL(cpu_all_bits);
1881
1882 #ifdef CONFIG_INIT_ALL_POSSIBLE
1883 struct cpumask __cpu_possible_mask __read_mostly
1884         = {CPU_BITS_ALL};
1885 #else
1886 struct cpumask __cpu_possible_mask __read_mostly;
1887 #endif
1888 EXPORT_SYMBOL(__cpu_possible_mask);
1889
1890 struct cpumask __cpu_online_mask __read_mostly;
1891 EXPORT_SYMBOL(__cpu_online_mask);
1892
1893 struct cpumask __cpu_present_mask __read_mostly;
1894 EXPORT_SYMBOL(__cpu_present_mask);
1895
1896 struct cpumask __cpu_active_mask __read_mostly;
1897 EXPORT_SYMBOL(__cpu_active_mask);
1898
1899 void init_cpu_present(const struct cpumask *src)
1900 {
1901         cpumask_copy(&__cpu_present_mask, src);
1902 }
1903
1904 void init_cpu_possible(const struct cpumask *src)
1905 {
1906         cpumask_copy(&__cpu_possible_mask, src);
1907 }
1908
1909 void init_cpu_online(const struct cpumask *src)
1910 {
1911         cpumask_copy(&__cpu_online_mask, src);
1912 }
1913
1914 /*
1915  * Activate the first processor.
1916  */
1917 void __init boot_cpu_init(void)
1918 {
1919         int cpu = smp_processor_id();
1920
1921         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1922         set_cpu_online(cpu, true);
1923         set_cpu_active(cpu, true);
1924         set_cpu_present(cpu, true);
1925         set_cpu_possible(cpu, true);
1926 }
1927
1928 /*
1929  * Must be called _AFTER_ setting up the per_cpu areas
1930  */
1931 void __init boot_cpu_state_init(void)
1932 {
1933         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1934 }