x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         unsigned int i, order, nr_pages;
69         struct page *page, *next;
70         LIST_HEAD(tmp_list);
71
72         list_for_each_entry_safe(page, next, list, lru) {
73                 list_del(&page->lru);
74
75                 order = page_private(page);
76                 nr_pages = 1 << order;
77
78                 post_alloc_hook(page, order, __GFP_MOVABLE);
79                 if (order)
80                         split_page(page, order);
81
82                 for (i = 0; i < nr_pages; i++) {
83                         list_add(&page->lru, &tmp_list);
84                         page++;
85                 }
86         }
87
88         list_splice(&tmp_list, list);
89 }
90
91 static inline bool migrate_async_suitable(int migratetype)
92 {
93         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95
96 #ifdef CONFIG_COMPACTION
97
98 int PageMovable(struct page *page)
99 {
100         struct address_space *mapping;
101
102         VM_BUG_ON_PAGE(!PageLocked(page), page);
103         if (!__PageMovable(page))
104                 return 0;
105
106         mapping = page_mapping(page);
107         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108                 return 1;
109
110         return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116         VM_BUG_ON_PAGE(!PageLocked(page), page);
117         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121
122 void __ClearPageMovable(struct page *page)
123 {
124         VM_BUG_ON_PAGE(!PageLocked(page), page);
125         VM_BUG_ON_PAGE(!PageMovable(page), page);
126         /*
127          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128          * flag so that VM can catch up released page by driver after isolation.
129          * With it, VM migration doesn't try to put it back.
130          */
131         page->mapping = (void *)((unsigned long)page->mapping &
132                                 PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138
139 /*
140  * Compaction is deferred when compaction fails to result in a page
141  * allocation success. 1 << compact_defer_limit compactions are skipped up
142  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143  */
144 void defer_compaction(struct zone *zone, int order)
145 {
146         zone->compact_considered = 0;
147         zone->compact_defer_shift++;
148
149         if (order < zone->compact_order_failed)
150                 zone->compact_order_failed = order;
151
152         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155         trace_mm_compaction_defer_compaction(zone, order);
156 }
157
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
160 {
161         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163         if (order < zone->compact_order_failed)
164                 return false;
165
166         /* Avoid possible overflow */
167         if (++zone->compact_considered > defer_limit)
168                 zone->compact_considered = defer_limit;
169
170         if (zone->compact_considered >= defer_limit)
171                 return false;
172
173         trace_mm_compaction_deferred(zone, order);
174
175         return true;
176 }
177
178 /*
179  * Update defer tracking counters after successful compaction of given order,
180  * which means an allocation either succeeded (alloc_success == true) or is
181  * expected to succeed.
182  */
183 void compaction_defer_reset(struct zone *zone, int order,
184                 bool alloc_success)
185 {
186         if (alloc_success) {
187                 zone->compact_considered = 0;
188                 zone->compact_defer_shift = 0;
189         }
190         if (order >= zone->compact_order_failed)
191                 zone->compact_order_failed = order + 1;
192
193         trace_mm_compaction_defer_reset(zone, order);
194 }
195
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
198 {
199         if (order < zone->compact_order_failed)
200                 return false;
201
202         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208                                         struct page *page)
209 {
210         if (cc->ignore_skip_hint)
211                 return true;
212
213         return !get_pageblock_skip(page);
214 }
215
216 static void reset_cached_positions(struct zone *zone)
217 {
218         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220         zone->compact_cached_free_pfn =
221                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223
224 /*
225  * This function is called to clear all cached information on pageblocks that
226  * should be skipped for page isolation when the migrate and free page scanner
227  * meet.
228  */
229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231         unsigned long start_pfn = zone->zone_start_pfn;
232         unsigned long end_pfn = zone_end_pfn(zone);
233         unsigned long pfn;
234
235         zone->compact_blockskip_flush = false;
236
237         /* Walk the zone and mark every pageblock as suitable for isolation */
238         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239                 struct page *page;
240
241                 cond_resched();
242
243                 if (!pfn_valid(pfn))
244                         continue;
245
246                 page = pfn_to_page(pfn);
247                 if (zone != page_zone(page))
248                         continue;
249
250                 clear_pageblock_skip(page);
251         }
252
253         reset_cached_positions(zone);
254 }
255
256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258         int zoneid;
259
260         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261                 struct zone *zone = &pgdat->node_zones[zoneid];
262                 if (!populated_zone(zone))
263                         continue;
264
265                 /* Only flush if a full compaction finished recently */
266                 if (zone->compact_blockskip_flush)
267                         __reset_isolation_suitable(zone);
268         }
269 }
270
271 /*
272  * If no pages were isolated then mark this pageblock to be skipped in the
273  * future. The information is later cleared by __reset_isolation_suitable().
274  */
275 static void update_pageblock_skip(struct compact_control *cc,
276                         struct page *page, unsigned long nr_isolated,
277                         bool migrate_scanner)
278 {
279         struct zone *zone = cc->zone;
280         unsigned long pfn;
281
282         if (cc->ignore_skip_hint)
283                 return;
284
285         if (!page)
286                 return;
287
288         if (nr_isolated)
289                 return;
290
291         set_pageblock_skip(page);
292
293         pfn = page_to_pfn(page);
294
295         /* Update where async and sync compaction should restart */
296         if (migrate_scanner) {
297                 if (pfn > zone->compact_cached_migrate_pfn[0])
298                         zone->compact_cached_migrate_pfn[0] = pfn;
299                 if (cc->mode != MIGRATE_ASYNC &&
300                     pfn > zone->compact_cached_migrate_pfn[1])
301                         zone->compact_cached_migrate_pfn[1] = pfn;
302         } else {
303                 if (pfn < zone->compact_cached_free_pfn)
304                         zone->compact_cached_free_pfn = pfn;
305         }
306 }
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309                                         struct page *page)
310 {
311         return true;
312 }
313
314 static void update_pageblock_skip(struct compact_control *cc,
315                         struct page *page, unsigned long nr_isolated,
316                         bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320
321 /*
322  * Compaction requires the taking of some coarse locks that are potentially
323  * very heavily contended. For async compaction, back out if the lock cannot
324  * be taken immediately. For sync compaction, spin on the lock if needed.
325  *
326  * Returns true if the lock is held
327  * Returns false if the lock is not held and compaction should abort
328  */
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330                                                 struct compact_control *cc)
331 {
332         if (cc->mode == MIGRATE_ASYNC) {
333                 if (!spin_trylock_irqsave(lock, *flags)) {
334                         cc->contended = true;
335                         return false;
336                 }
337         } else {
338                 spin_lock_irqsave(lock, *flags);
339         }
340
341         return true;
342 }
343
344 /*
345  * Compaction requires the taking of some coarse locks that are potentially
346  * very heavily contended. The lock should be periodically unlocked to avoid
347  * having disabled IRQs for a long time, even when there is nobody waiting on
348  * the lock. It might also be that allowing the IRQs will result in
349  * need_resched() becoming true. If scheduling is needed, async compaction
350  * aborts. Sync compaction schedules.
351  * Either compaction type will also abort if a fatal signal is pending.
352  * In either case if the lock was locked, it is dropped and not regained.
353  *
354  * Returns true if compaction should abort due to fatal signal pending, or
355  *              async compaction due to need_resched()
356  * Returns false when compaction can continue (sync compaction might have
357  *              scheduled)
358  */
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360                 unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362         if (*locked) {
363                 spin_unlock_irqrestore(lock, flags);
364                 *locked = false;
365         }
366
367         if (fatal_signal_pending(current)) {
368                 cc->contended = true;
369                 return true;
370         }
371
372         if (need_resched()) {
373                 if (cc->mode == MIGRATE_ASYNC) {
374                         cc->contended = true;
375                         return true;
376                 }
377                 cond_resched();
378         }
379
380         return false;
381 }
382
383 /*
384  * Aside from avoiding lock contention, compaction also periodically checks
385  * need_resched() and either schedules in sync compaction or aborts async
386  * compaction. This is similar to what compact_unlock_should_abort() does, but
387  * is used where no lock is concerned.
388  *
389  * Returns false when no scheduling was needed, or sync compaction scheduled.
390  * Returns true when async compaction should abort.
391  */
392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394         /* async compaction aborts if contended */
395         if (need_resched()) {
396                 if (cc->mode == MIGRATE_ASYNC) {
397                         cc->contended = true;
398                         return true;
399                 }
400
401                 cond_resched();
402         }
403
404         return false;
405 }
406
407 /*
408  * Isolate free pages onto a private freelist. If @strict is true, will abort
409  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410  * (even though it may still end up isolating some pages).
411  */
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413                                 unsigned long *start_pfn,
414                                 unsigned long end_pfn,
415                                 struct list_head *freelist,
416                                 bool strict)
417 {
418         int nr_scanned = 0, total_isolated = 0;
419         struct page *cursor, *valid_page = NULL;
420         unsigned long flags = 0;
421         bool locked = false;
422         unsigned long blockpfn = *start_pfn;
423         unsigned int order;
424
425         cursor = pfn_to_page(blockpfn);
426
427         /* Isolate free pages. */
428         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429                 int isolated;
430                 struct page *page = cursor;
431
432                 /*
433                  * Periodically drop the lock (if held) regardless of its
434                  * contention, to give chance to IRQs. Abort if fatal signal
435                  * pending or async compaction detects need_resched()
436                  */
437                 if (!(blockpfn % SWAP_CLUSTER_MAX)
438                     && compact_unlock_should_abort(&cc->zone->lock, flags,
439                                                                 &locked, cc))
440                         break;
441
442                 nr_scanned++;
443                 if (!pfn_valid_within(blockpfn))
444                         goto isolate_fail;
445
446                 if (!valid_page)
447                         valid_page = page;
448
449                 /*
450                  * For compound pages such as THP and hugetlbfs, we can save
451                  * potentially a lot of iterations if we skip them at once.
452                  * The check is racy, but we can consider only valid values
453                  * and the only danger is skipping too much.
454                  */
455                 if (PageCompound(page)) {
456                         unsigned int comp_order = compound_order(page);
457
458                         if (likely(comp_order < MAX_ORDER)) {
459                                 blockpfn += (1UL << comp_order) - 1;
460                                 cursor += (1UL << comp_order) - 1;
461                         }
462
463                         goto isolate_fail;
464                 }
465
466                 if (!PageBuddy(page))
467                         goto isolate_fail;
468
469                 /*
470                  * If we already hold the lock, we can skip some rechecking.
471                  * Note that if we hold the lock now, checked_pageblock was
472                  * already set in some previous iteration (or strict is true),
473                  * so it is correct to skip the suitable migration target
474                  * recheck as well.
475                  */
476                 if (!locked) {
477                         /*
478                          * The zone lock must be held to isolate freepages.
479                          * Unfortunately this is a very coarse lock and can be
480                          * heavily contended if there are parallel allocations
481                          * or parallel compactions. For async compaction do not
482                          * spin on the lock and we acquire the lock as late as
483                          * possible.
484                          */
485                         locked = compact_trylock_irqsave(&cc->zone->lock,
486                                                                 &flags, cc);
487                         if (!locked)
488                                 break;
489
490                         /* Recheck this is a buddy page under lock */
491                         if (!PageBuddy(page))
492                                 goto isolate_fail;
493                 }
494
495                 /* Found a free page, will break it into order-0 pages */
496                 order = page_order(page);
497                 isolated = __isolate_free_page(page, order);
498                 if (!isolated)
499                         break;
500                 set_page_private(page, order);
501
502                 total_isolated += isolated;
503                 cc->nr_freepages += isolated;
504                 list_add_tail(&page->lru, freelist);
505
506                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507                         blockpfn += isolated;
508                         break;
509                 }
510                 /* Advance to the end of split page */
511                 blockpfn += isolated - 1;
512                 cursor += isolated - 1;
513                 continue;
514
515 isolate_fail:
516                 if (strict)
517                         break;
518                 else
519                         continue;
520
521         }
522
523         if (locked)
524                 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
526         /*
527          * There is a tiny chance that we have read bogus compound_order(),
528          * so be careful to not go outside of the pageblock.
529          */
530         if (unlikely(blockpfn > end_pfn))
531                 blockpfn = end_pfn;
532
533         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534                                         nr_scanned, total_isolated);
535
536         /* Record how far we have got within the block */
537         *start_pfn = blockpfn;
538
539         /*
540          * If strict isolation is requested by CMA then check that all the
541          * pages requested were isolated. If there were any failures, 0 is
542          * returned and CMA will fail.
543          */
544         if (strict && blockpfn < end_pfn)
545                 total_isolated = 0;
546
547         /* Update the pageblock-skip if the whole pageblock was scanned */
548         if (blockpfn == end_pfn)
549                 update_pageblock_skip(cc, valid_page, total_isolated, false);
550
551         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552         if (total_isolated)
553                 count_compact_events(COMPACTISOLATED, total_isolated);
554         return total_isolated;
555 }
556
557 /**
558  * isolate_freepages_range() - isolate free pages.
559  * @start_pfn: The first PFN to start isolating.
560  * @end_pfn:   The one-past-last PFN.
561  *
562  * Non-free pages, invalid PFNs, or zone boundaries within the
563  * [start_pfn, end_pfn) range are considered errors, cause function to
564  * undo its actions and return zero.
565  *
566  * Otherwise, function returns one-past-the-last PFN of isolated page
567  * (which may be greater then end_pfn if end fell in a middle of
568  * a free page).
569  */
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572                         unsigned long start_pfn, unsigned long end_pfn)
573 {
574         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575         LIST_HEAD(freelist);
576
577         pfn = start_pfn;
578         block_start_pfn = pageblock_start_pfn(pfn);
579         if (block_start_pfn < cc->zone->zone_start_pfn)
580                 block_start_pfn = cc->zone->zone_start_pfn;
581         block_end_pfn = pageblock_end_pfn(pfn);
582
583         for (; pfn < end_pfn; pfn += isolated,
584                                 block_start_pfn = block_end_pfn,
585                                 block_end_pfn += pageblock_nr_pages) {
586                 /* Protect pfn from changing by isolate_freepages_block */
587                 unsigned long isolate_start_pfn = pfn;
588
589                 block_end_pfn = min(block_end_pfn, end_pfn);
590
591                 /*
592                  * pfn could pass the block_end_pfn if isolated freepage
593                  * is more than pageblock order. In this case, we adjust
594                  * scanning range to right one.
595                  */
596                 if (pfn >= block_end_pfn) {
597                         block_start_pfn = pageblock_start_pfn(pfn);
598                         block_end_pfn = pageblock_end_pfn(pfn);
599                         block_end_pfn = min(block_end_pfn, end_pfn);
600                 }
601
602                 if (!pageblock_pfn_to_page(block_start_pfn,
603                                         block_end_pfn, cc->zone))
604                         break;
605
606                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607                                                 block_end_pfn, &freelist, true);
608
609                 /*
610                  * In strict mode, isolate_freepages_block() returns 0 if
611                  * there are any holes in the block (ie. invalid PFNs or
612                  * non-free pages).
613                  */
614                 if (!isolated)
615                         break;
616
617                 /*
618                  * If we managed to isolate pages, it is always (1 << n) *
619                  * pageblock_nr_pages for some non-negative n.  (Max order
620                  * page may span two pageblocks).
621                  */
622         }
623
624         /* __isolate_free_page() does not map the pages */
625         map_pages(&freelist);
626
627         if (pfn < end_pfn) {
628                 /* Loop terminated early, cleanup. */
629                 release_freepages(&freelist);
630                 return 0;
631         }
632
633         /* We don't use freelists for anything. */
634         return pfn;
635 }
636
637 /* Update the number of anon and file isolated pages in the zone */
638 static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 {
640         struct page *page;
641         unsigned int count[2] = { 0, };
642
643         if (list_empty(&cc->migratepages))
644                 return;
645
646         list_for_each_entry(page, &cc->migratepages, lru)
647                 count[!!page_is_file_cache(page)]++;
648
649         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 }
652
653 /* Similar to reclaim, but different enough that they don't share logic */
654 static bool too_many_isolated(struct zone *zone)
655 {
656         unsigned long active, inactive, isolated;
657
658         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664
665         return isolated > (inactive + active) / 2;
666 }
667
668 /**
669  * isolate_migratepages_block() - isolate all migrate-able pages within
670  *                                a single pageblock
671  * @cc:         Compaction control structure.
672  * @low_pfn:    The first PFN to isolate
673  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
674  * @isolate_mode: Isolation mode to be used.
675  *
676  * Isolate all pages that can be migrated from the range specified by
677  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678  * Returns zero if there is a fatal signal pending, otherwise PFN of the
679  * first page that was not scanned (which may be both less, equal to or more
680  * than end_pfn).
681  *
682  * The pages are isolated on cc->migratepages list (not required to be empty),
683  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684  * is neither read nor updated.
685  */
686 static unsigned long
687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688                         unsigned long end_pfn, isolate_mode_t isolate_mode)
689 {
690         struct zone *zone = cc->zone;
691         unsigned long nr_scanned = 0, nr_isolated = 0;
692         struct lruvec *lruvec;
693         unsigned long flags = 0;
694         bool locked = false;
695         struct page *page = NULL, *valid_page = NULL;
696         unsigned long start_pfn = low_pfn;
697         bool skip_on_failure = false;
698         unsigned long next_skip_pfn = 0;
699
700         /*
701          * Ensure that there are not too many pages isolated from the LRU
702          * list by either parallel reclaimers or compaction. If there are,
703          * delay for some time until fewer pages are isolated
704          */
705         while (unlikely(too_many_isolated(zone))) {
706                 /* async migration should just abort */
707                 if (cc->mode == MIGRATE_ASYNC)
708                         return 0;
709
710                 congestion_wait(BLK_RW_ASYNC, HZ/10);
711
712                 if (fatal_signal_pending(current))
713                         return 0;
714         }
715
716         if (compact_should_abort(cc))
717                 return 0;
718
719         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720                 skip_on_failure = true;
721                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
722         }
723
724         /* Time to isolate some pages for migration */
725         for (; low_pfn < end_pfn; low_pfn++) {
726
727                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
728                         /*
729                          * We have isolated all migration candidates in the
730                          * previous order-aligned block, and did not skip it due
731                          * to failure. We should migrate the pages now and
732                          * hopefully succeed compaction.
733                          */
734                         if (nr_isolated)
735                                 break;
736
737                         /*
738                          * We failed to isolate in the previous order-aligned
739                          * block. Set the new boundary to the end of the
740                          * current block. Note we can't simply increase
741                          * next_skip_pfn by 1 << order, as low_pfn might have
742                          * been incremented by a higher number due to skipping
743                          * a compound or a high-order buddy page in the
744                          * previous loop iteration.
745                          */
746                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
747                 }
748
749                 /*
750                  * Periodically drop the lock (if held) regardless of its
751                  * contention, to give chance to IRQs. Abort async compaction
752                  * if contended.
753                  */
754                 if (!(low_pfn % SWAP_CLUSTER_MAX)
755                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756                                                                 &locked, cc))
757                         break;
758
759                 if (!pfn_valid_within(low_pfn))
760                         goto isolate_fail;
761                 nr_scanned++;
762
763                 page = pfn_to_page(low_pfn);
764
765                 if (!valid_page)
766                         valid_page = page;
767
768                 /*
769                  * Skip if free. We read page order here without zone lock
770                  * which is generally unsafe, but the race window is small and
771                  * the worst thing that can happen is that we skip some
772                  * potential isolation targets.
773                  */
774                 if (PageBuddy(page)) {
775                         unsigned long freepage_order = page_order_unsafe(page);
776
777                         /*
778                          * Without lock, we cannot be sure that what we got is
779                          * a valid page order. Consider only values in the
780                          * valid order range to prevent low_pfn overflow.
781                          */
782                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
783                                 low_pfn += (1UL << freepage_order) - 1;
784                         continue;
785                 }
786
787                 /*
788                  * Regardless of being on LRU, compound pages such as THP and
789                  * hugetlbfs are not to be compacted. We can potentially save
790                  * a lot of iterations if we skip them at once. The check is
791                  * racy, but we can consider only valid values and the only
792                  * danger is skipping too much.
793                  */
794                 if (PageCompound(page)) {
795                         unsigned int comp_order = compound_order(page);
796
797                         if (likely(comp_order < MAX_ORDER))
798                                 low_pfn += (1UL << comp_order) - 1;
799
800                         goto isolate_fail;
801                 }
802
803                 /*
804                  * Check may be lockless but that's ok as we recheck later.
805                  * It's possible to migrate LRU and non-lru movable pages.
806                  * Skip any other type of page
807                  */
808                 if (!PageLRU(page)) {
809                         /*
810                          * __PageMovable can return false positive so we need
811                          * to verify it under page_lock.
812                          */
813                         if (unlikely(__PageMovable(page)) &&
814                                         !PageIsolated(page)) {
815                                 if (locked) {
816                                         spin_unlock_irqrestore(zone_lru_lock(zone),
817                                                                         flags);
818                                         locked = false;
819                                 }
820
821                                 if (isolate_movable_page(page, isolate_mode))
822                                         goto isolate_success;
823                         }
824
825                         goto isolate_fail;
826                 }
827
828                 /*
829                  * Migration will fail if an anonymous page is pinned in memory,
830                  * so avoid taking lru_lock and isolating it unnecessarily in an
831                  * admittedly racy check.
832                  */
833                 if (!page_mapping(page) &&
834                     page_count(page) > page_mapcount(page))
835                         goto isolate_fail;
836
837                 /* If we already hold the lock, we can skip some rechecking */
838                 if (!locked) {
839                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
840                                                                 &flags, cc);
841                         if (!locked)
842                                 break;
843
844                         /* Recheck PageLRU and PageCompound under lock */
845                         if (!PageLRU(page))
846                                 goto isolate_fail;
847
848                         /*
849                          * Page become compound since the non-locked check,
850                          * and it's on LRU. It can only be a THP so the order
851                          * is safe to read and it's 0 for tail pages.
852                          */
853                         if (unlikely(PageCompound(page))) {
854                                 low_pfn += (1UL << compound_order(page)) - 1;
855                                 goto isolate_fail;
856                         }
857                 }
858
859                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860
861                 /* Try isolate the page */
862                 if (__isolate_lru_page(page, isolate_mode) != 0)
863                         goto isolate_fail;
864
865                 VM_BUG_ON_PAGE(PageCompound(page), page);
866
867                 /* Successfully isolated */
868                 del_page_from_lru_list(page, lruvec, page_lru(page));
869
870 isolate_success:
871                 list_add(&page->lru, &cc->migratepages);
872                 cc->nr_migratepages++;
873                 nr_isolated++;
874
875                 /*
876                  * Record where we could have freed pages by migration and not
877                  * yet flushed them to buddy allocator.
878                  * - this is the lowest page that was isolated and likely be
879                  * then freed by migration.
880                  */
881                 if (!cc->last_migrated_pfn)
882                         cc->last_migrated_pfn = low_pfn;
883
884                 /* Avoid isolating too much */
885                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886                         ++low_pfn;
887                         break;
888                 }
889
890                 continue;
891 isolate_fail:
892                 if (!skip_on_failure)
893                         continue;
894
895                 /*
896                  * We have isolated some pages, but then failed. Release them
897                  * instead of migrating, as we cannot form the cc->order buddy
898                  * page anyway.
899                  */
900                 if (nr_isolated) {
901                         if (locked) {
902                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903                                 locked = false;
904                         }
905                         acct_isolated(zone, cc);
906                         putback_movable_pages(&cc->migratepages);
907                         cc->nr_migratepages = 0;
908                         cc->last_migrated_pfn = 0;
909                         nr_isolated = 0;
910                 }
911
912                 if (low_pfn < next_skip_pfn) {
913                         low_pfn = next_skip_pfn - 1;
914                         /*
915                          * The check near the loop beginning would have updated
916                          * next_skip_pfn too, but this is a bit simpler.
917                          */
918                         next_skip_pfn += 1UL << cc->order;
919                 }
920         }
921
922         /*
923          * The PageBuddy() check could have potentially brought us outside
924          * the range to be scanned.
925          */
926         if (unlikely(low_pfn > end_pfn))
927                 low_pfn = end_pfn;
928
929         if (locked)
930                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931
932         /*
933          * Update the pageblock-skip information and cached scanner pfn,
934          * if the whole pageblock was scanned without isolating any page.
935          */
936         if (low_pfn == end_pfn)
937                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
938
939         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940                                                 nr_scanned, nr_isolated);
941
942         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943         if (nr_isolated)
944                 count_compact_events(COMPACTISOLATED, nr_isolated);
945
946         return low_pfn;
947 }
948
949 /**
950  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951  * @cc:        Compaction control structure.
952  * @start_pfn: The first PFN to start isolating.
953  * @end_pfn:   The one-past-last PFN.
954  *
955  * Returns zero if isolation fails fatally due to e.g. pending signal.
956  * Otherwise, function returns one-past-the-last PFN of isolated page
957  * (which may be greater than end_pfn if end fell in a middle of a THP page).
958  */
959 unsigned long
960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961                                                         unsigned long end_pfn)
962 {
963         unsigned long pfn, block_start_pfn, block_end_pfn;
964
965         /* Scan block by block. First and last block may be incomplete */
966         pfn = start_pfn;
967         block_start_pfn = pageblock_start_pfn(pfn);
968         if (block_start_pfn < cc->zone->zone_start_pfn)
969                 block_start_pfn = cc->zone->zone_start_pfn;
970         block_end_pfn = pageblock_end_pfn(pfn);
971
972         for (; pfn < end_pfn; pfn = block_end_pfn,
973                                 block_start_pfn = block_end_pfn,
974                                 block_end_pfn += pageblock_nr_pages) {
975
976                 block_end_pfn = min(block_end_pfn, end_pfn);
977
978                 if (!pageblock_pfn_to_page(block_start_pfn,
979                                         block_end_pfn, cc->zone))
980                         continue;
981
982                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983                                                         ISOLATE_UNEVICTABLE);
984
985                 if (!pfn)
986                         break;
987
988                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989                         break;
990         }
991         acct_isolated(cc->zone, cc);
992
993         return pfn;
994 }
995
996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
997 #ifdef CONFIG_COMPACTION
998
999 /* Returns true if the page is within a block suitable for migration to */
1000 static bool suitable_migration_target(struct compact_control *cc,
1001                                                         struct page *page)
1002 {
1003         if (cc->ignore_block_suitable)
1004                 return true;
1005
1006         /* If the page is a large free page, then disallow migration */
1007         if (PageBuddy(page)) {
1008                 /*
1009                  * We are checking page_order without zone->lock taken. But
1010                  * the only small danger is that we skip a potentially suitable
1011                  * pageblock, so it's not worth to check order for valid range.
1012                  */
1013                 if (page_order_unsafe(page) >= pageblock_order)
1014                         return false;
1015         }
1016
1017         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1018         if (migrate_async_suitable(get_pageblock_migratetype(page)))
1019                 return true;
1020
1021         /* Otherwise skip the block */
1022         return false;
1023 }
1024
1025 /*
1026  * Test whether the free scanner has reached the same or lower pageblock than
1027  * the migration scanner, and compaction should thus terminate.
1028  */
1029 static inline bool compact_scanners_met(struct compact_control *cc)
1030 {
1031         return (cc->free_pfn >> pageblock_order)
1032                 <= (cc->migrate_pfn >> pageblock_order);
1033 }
1034
1035 /*
1036  * Based on information in the current compact_control, find blocks
1037  * suitable for isolating free pages from and then isolate them.
1038  */
1039 static void isolate_freepages(struct compact_control *cc)
1040 {
1041         struct zone *zone = cc->zone;
1042         struct page *page;
1043         unsigned long block_start_pfn;  /* start of current pageblock */
1044         unsigned long isolate_start_pfn; /* exact pfn we start at */
1045         unsigned long block_end_pfn;    /* end of current pageblock */
1046         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1047         struct list_head *freelist = &cc->freepages;
1048
1049         /*
1050          * Initialise the free scanner. The starting point is where we last
1051          * successfully isolated from, zone-cached value, or the end of the
1052          * zone when isolating for the first time. For looping we also need
1053          * this pfn aligned down to the pageblock boundary, because we do
1054          * block_start_pfn -= pageblock_nr_pages in the for loop.
1055          * For ending point, take care when isolating in last pageblock of a
1056          * a zone which ends in the middle of a pageblock.
1057          * The low boundary is the end of the pageblock the migration scanner
1058          * is using.
1059          */
1060         isolate_start_pfn = cc->free_pfn;
1061         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1062         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1063                                                 zone_end_pfn(zone));
1064         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1065
1066         /*
1067          * Isolate free pages until enough are available to migrate the
1068          * pages on cc->migratepages. We stop searching if the migrate
1069          * and free page scanners meet or enough free pages are isolated.
1070          */
1071         for (; block_start_pfn >= low_pfn;
1072                                 block_end_pfn = block_start_pfn,
1073                                 block_start_pfn -= pageblock_nr_pages,
1074                                 isolate_start_pfn = block_start_pfn) {
1075                 /*
1076                  * This can iterate a massively long zone without finding any
1077                  * suitable migration targets, so periodically check if we need
1078                  * to schedule, or even abort async compaction.
1079                  */
1080                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1081                                                 && compact_should_abort(cc))
1082                         break;
1083
1084                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1085                                                                         zone);
1086                 if (!page)
1087                         continue;
1088
1089                 /* Check the block is suitable for migration */
1090                 if (!suitable_migration_target(cc, page))
1091                         continue;
1092
1093                 /* If isolation recently failed, do not retry */
1094                 if (!isolation_suitable(cc, page))
1095                         continue;
1096
1097                 /* Found a block suitable for isolating free pages from. */
1098                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1099                                         freelist, false);
1100
1101                 /*
1102                  * If we isolated enough freepages, or aborted due to lock
1103                  * contention, terminate.
1104                  */
1105                 if ((cc->nr_freepages >= cc->nr_migratepages)
1106                                                         || cc->contended) {
1107                         if (isolate_start_pfn >= block_end_pfn) {
1108                                 /*
1109                                  * Restart at previous pageblock if more
1110                                  * freepages can be isolated next time.
1111                                  */
1112                                 isolate_start_pfn =
1113                                         block_start_pfn - pageblock_nr_pages;
1114                         }
1115                         break;
1116                 } else if (isolate_start_pfn < block_end_pfn) {
1117                         /*
1118                          * If isolation failed early, do not continue
1119                          * needlessly.
1120                          */
1121                         break;
1122                 }
1123         }
1124
1125         /* __isolate_free_page() does not map the pages */
1126         map_pages(freelist);
1127
1128         /*
1129          * Record where the free scanner will restart next time. Either we
1130          * broke from the loop and set isolate_start_pfn based on the last
1131          * call to isolate_freepages_block(), or we met the migration scanner
1132          * and the loop terminated due to isolate_start_pfn < low_pfn
1133          */
1134         cc->free_pfn = isolate_start_pfn;
1135 }
1136
1137 /*
1138  * This is a migrate-callback that "allocates" freepages by taking pages
1139  * from the isolated freelists in the block we are migrating to.
1140  */
1141 static struct page *compaction_alloc(struct page *migratepage,
1142                                         unsigned long data,
1143                                         int **result)
1144 {
1145         struct compact_control *cc = (struct compact_control *)data;
1146         struct page *freepage;
1147
1148         /*
1149          * Isolate free pages if necessary, and if we are not aborting due to
1150          * contention.
1151          */
1152         if (list_empty(&cc->freepages)) {
1153                 if (!cc->contended)
1154                         isolate_freepages(cc);
1155
1156                 if (list_empty(&cc->freepages))
1157                         return NULL;
1158         }
1159
1160         freepage = list_entry(cc->freepages.next, struct page, lru);
1161         list_del(&freepage->lru);
1162         cc->nr_freepages--;
1163
1164         return freepage;
1165 }
1166
1167 /*
1168  * This is a migrate-callback that "frees" freepages back to the isolated
1169  * freelist.  All pages on the freelist are from the same zone, so there is no
1170  * special handling needed for NUMA.
1171  */
1172 static void compaction_free(struct page *page, unsigned long data)
1173 {
1174         struct compact_control *cc = (struct compact_control *)data;
1175
1176         list_add(&page->lru, &cc->freepages);
1177         cc->nr_freepages++;
1178 }
1179
1180 /* possible outcome of isolate_migratepages */
1181 typedef enum {
1182         ISOLATE_ABORT,          /* Abort compaction now */
1183         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1184         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1185 } isolate_migrate_t;
1186
1187 /*
1188  * Allow userspace to control policy on scanning the unevictable LRU for
1189  * compactable pages.
1190  */
1191 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1192
1193 /*
1194  * Isolate all pages that can be migrated from the first suitable block,
1195  * starting at the block pointed to by the migrate scanner pfn within
1196  * compact_control.
1197  */
1198 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1199                                         struct compact_control *cc)
1200 {
1201         unsigned long block_start_pfn;
1202         unsigned long block_end_pfn;
1203         unsigned long low_pfn;
1204         struct page *page;
1205         const isolate_mode_t isolate_mode =
1206                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1207                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1208
1209         /*
1210          * Start at where we last stopped, or beginning of the zone as
1211          * initialized by compact_zone()
1212          */
1213         low_pfn = cc->migrate_pfn;
1214         block_start_pfn = pageblock_start_pfn(low_pfn);
1215         if (block_start_pfn < zone->zone_start_pfn)
1216                 block_start_pfn = zone->zone_start_pfn;
1217
1218         /* Only scan within a pageblock boundary */
1219         block_end_pfn = pageblock_end_pfn(low_pfn);
1220
1221         /*
1222          * Iterate over whole pageblocks until we find the first suitable.
1223          * Do not cross the free scanner.
1224          */
1225         for (; block_end_pfn <= cc->free_pfn;
1226                         low_pfn = block_end_pfn,
1227                         block_start_pfn = block_end_pfn,
1228                         block_end_pfn += pageblock_nr_pages) {
1229
1230                 /*
1231                  * This can potentially iterate a massively long zone with
1232                  * many pageblocks unsuitable, so periodically check if we
1233                  * need to schedule, or even abort async compaction.
1234                  */
1235                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1236                                                 && compact_should_abort(cc))
1237                         break;
1238
1239                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1240                                                                         zone);
1241                 if (!page)
1242                         continue;
1243
1244                 /* If isolation recently failed, do not retry */
1245                 if (!isolation_suitable(cc, page))
1246                         continue;
1247
1248                 /*
1249                  * For async compaction, also only scan in MOVABLE blocks.
1250                  * Async compaction is optimistic to see if the minimum amount
1251                  * of work satisfies the allocation.
1252                  */
1253                 if (cc->mode == MIGRATE_ASYNC &&
1254                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1255                         continue;
1256
1257                 /* Perform the isolation */
1258                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1259                                                 block_end_pfn, isolate_mode);
1260
1261                 if (!low_pfn || cc->contended) {
1262                         acct_isolated(zone, cc);
1263                         return ISOLATE_ABORT;
1264                 }
1265
1266                 /*
1267                  * Either we isolated something and proceed with migration. Or
1268                  * we failed and compact_zone should decide if we should
1269                  * continue or not.
1270                  */
1271                 break;
1272         }
1273
1274         acct_isolated(zone, cc);
1275         /* Record where migration scanner will be restarted. */
1276         cc->migrate_pfn = low_pfn;
1277
1278         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1279 }
1280
1281 /*
1282  * order == -1 is expected when compacting via
1283  * /proc/sys/vm/compact_memory
1284  */
1285 static inline bool is_via_compact_memory(int order)
1286 {
1287         return order == -1;
1288 }
1289
1290 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1291                             const int migratetype)
1292 {
1293         unsigned int order;
1294         unsigned long watermark;
1295
1296         if (cc->contended || fatal_signal_pending(current))
1297                 return COMPACT_CONTENDED;
1298
1299         /* Compaction run completes if the migrate and free scanner meet */
1300         if (compact_scanners_met(cc)) {
1301                 /* Let the next compaction start anew. */
1302                 reset_cached_positions(zone);
1303
1304                 /*
1305                  * Mark that the PG_migrate_skip information should be cleared
1306                  * by kswapd when it goes to sleep. kcompactd does not set the
1307                  * flag itself as the decision to be clear should be directly
1308                  * based on an allocation request.
1309                  */
1310                 if (cc->direct_compaction)
1311                         zone->compact_blockskip_flush = true;
1312
1313                 if (cc->whole_zone)
1314                         return COMPACT_COMPLETE;
1315                 else
1316                         return COMPACT_PARTIAL_SKIPPED;
1317         }
1318
1319         if (is_via_compact_memory(cc->order))
1320                 return COMPACT_CONTINUE;
1321
1322         /* Compaction run is not finished if the watermark is not met */
1323         watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1324
1325         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1326                                                         cc->alloc_flags))
1327                 return COMPACT_CONTINUE;
1328
1329         /* Direct compactor: Is a suitable page free? */
1330         for (order = cc->order; order < MAX_ORDER; order++) {
1331                 struct free_area *area = &zone->free_area[order];
1332                 bool can_steal;
1333
1334                 /* Job done if page is free of the right migratetype */
1335                 if (!list_empty(&area->free_list[migratetype]))
1336                         return COMPACT_SUCCESS;
1337
1338 #ifdef CONFIG_CMA
1339                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1340                 if (migratetype == MIGRATE_MOVABLE &&
1341                         !list_empty(&area->free_list[MIGRATE_CMA]))
1342                         return COMPACT_SUCCESS;
1343 #endif
1344                 /*
1345                  * Job done if allocation would steal freepages from
1346                  * other migratetype buddy lists.
1347                  */
1348                 if (find_suitable_fallback(area, order, migratetype,
1349                                                 true, &can_steal) != -1)
1350                         return COMPACT_SUCCESS;
1351         }
1352
1353         return COMPACT_NO_SUITABLE_PAGE;
1354 }
1355
1356 static enum compact_result compact_finished(struct zone *zone,
1357                         struct compact_control *cc,
1358                         const int migratetype)
1359 {
1360         int ret;
1361
1362         ret = __compact_finished(zone, cc, migratetype);
1363         trace_mm_compaction_finished(zone, cc->order, ret);
1364         if (ret == COMPACT_NO_SUITABLE_PAGE)
1365                 ret = COMPACT_CONTINUE;
1366
1367         return ret;
1368 }
1369
1370 /*
1371  * compaction_suitable: Is this suitable to run compaction on this zone now?
1372  * Returns
1373  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1374  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1375  *   COMPACT_CONTINUE - If compaction should run now
1376  */
1377 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1378                                         unsigned int alloc_flags,
1379                                         int classzone_idx,
1380                                         unsigned long wmark_target)
1381 {
1382         unsigned long watermark;
1383
1384         if (is_via_compact_memory(order))
1385                 return COMPACT_CONTINUE;
1386
1387         watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1388         /*
1389          * If watermarks for high-order allocation are already met, there
1390          * should be no need for compaction at all.
1391          */
1392         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393                                                                 alloc_flags))
1394                 return COMPACT_SUCCESS;
1395
1396         /*
1397          * Watermarks for order-0 must be met for compaction to be able to
1398          * isolate free pages for migration targets. This means that the
1399          * watermark and alloc_flags have to match, or be more pessimistic than
1400          * the check in __isolate_free_page(). We don't use the direct
1401          * compactor's alloc_flags, as they are not relevant for freepage
1402          * isolation. We however do use the direct compactor's classzone_idx to
1403          * skip over zones where lowmem reserves would prevent allocation even
1404          * if compaction succeeds.
1405          * For costly orders, we require low watermark instead of min for
1406          * compaction to proceed to increase its chances.
1407          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1408          * suitable migration targets
1409          */
1410         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1411                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1412         watermark += compact_gap(order);
1413         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1414                                                 ALLOC_CMA, wmark_target))
1415                 return COMPACT_SKIPPED;
1416
1417         return COMPACT_CONTINUE;
1418 }
1419
1420 enum compact_result compaction_suitable(struct zone *zone, int order,
1421                                         unsigned int alloc_flags,
1422                                         int classzone_idx)
1423 {
1424         enum compact_result ret;
1425         int fragindex;
1426
1427         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428                                     zone_page_state(zone, NR_FREE_PAGES));
1429         /*
1430          * fragmentation index determines if allocation failures are due to
1431          * low memory or external fragmentation
1432          *
1433          * index of -1000 would imply allocations might succeed depending on
1434          * watermarks, but we already failed the high-order watermark check
1435          * index towards 0 implies failure is due to lack of memory
1436          * index towards 1000 implies failure is due to fragmentation
1437          *
1438          * Only compact if a failure would be due to fragmentation. Also
1439          * ignore fragindex for non-costly orders where the alternative to
1440          * a successful reclaim/compaction is OOM. Fragindex and the
1441          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1442          * excessive compaction for costly orders, but it should not be at the
1443          * expense of system stability.
1444          */
1445         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1446                 fragindex = fragmentation_index(zone, order);
1447                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1448                         ret = COMPACT_NOT_SUITABLE_ZONE;
1449         }
1450
1451         trace_mm_compaction_suitable(zone, order, ret);
1452         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1453                 ret = COMPACT_SKIPPED;
1454
1455         return ret;
1456 }
1457
1458 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1459                 int alloc_flags)
1460 {
1461         struct zone *zone;
1462         struct zoneref *z;
1463
1464         /*
1465          * Make sure at least one zone would pass __compaction_suitable if we continue
1466          * retrying the reclaim.
1467          */
1468         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1469                                         ac->nodemask) {
1470                 unsigned long available;
1471                 enum compact_result compact_result;
1472
1473                 /*
1474                  * Do not consider all the reclaimable memory because we do not
1475                  * want to trash just for a single high order allocation which
1476                  * is even not guaranteed to appear even if __compaction_suitable
1477                  * is happy about the watermark check.
1478                  */
1479                 available = zone_reclaimable_pages(zone) / order;
1480                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1481                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1482                                 ac_classzone_idx(ac), available);
1483                 if (compact_result != COMPACT_SKIPPED)
1484                         return true;
1485         }
1486
1487         return false;
1488 }
1489
1490 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1491 {
1492         enum compact_result ret;
1493         unsigned long start_pfn = zone->zone_start_pfn;
1494         unsigned long end_pfn = zone_end_pfn(zone);
1495         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1496         const bool sync = cc->mode != MIGRATE_ASYNC;
1497
1498         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1499                                                         cc->classzone_idx);
1500         /* Compaction is likely to fail */
1501         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1502                 return ret;
1503
1504         /* huh, compaction_suitable is returning something unexpected */
1505         VM_BUG_ON(ret != COMPACT_CONTINUE);
1506
1507         /*
1508          * Clear pageblock skip if there were failures recently and compaction
1509          * is about to be retried after being deferred.
1510          */
1511         if (compaction_restarting(zone, cc->order))
1512                 __reset_isolation_suitable(zone);
1513
1514         /*
1515          * Setup to move all movable pages to the end of the zone. Used cached
1516          * information on where the scanners should start (unless we explicitly
1517          * want to compact the whole zone), but check that it is initialised
1518          * by ensuring the values are within zone boundaries.
1519          */
1520         if (cc->whole_zone) {
1521                 cc->migrate_pfn = start_pfn;
1522                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1523         } else {
1524                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1525                 cc->free_pfn = zone->compact_cached_free_pfn;
1526                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1527                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1528                         zone->compact_cached_free_pfn = cc->free_pfn;
1529                 }
1530                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1531                         cc->migrate_pfn = start_pfn;
1532                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1533                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1534                 }
1535
1536                 if (cc->migrate_pfn == start_pfn)
1537                         cc->whole_zone = true;
1538         }
1539
1540         cc->last_migrated_pfn = 0;
1541
1542         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1543                                 cc->free_pfn, end_pfn, sync);
1544
1545         migrate_prep_local();
1546
1547         while ((ret = compact_finished(zone, cc, migratetype)) ==
1548                                                 COMPACT_CONTINUE) {
1549                 int err;
1550
1551                 switch (isolate_migratepages(zone, cc)) {
1552                 case ISOLATE_ABORT:
1553                         ret = COMPACT_CONTENDED;
1554                         putback_movable_pages(&cc->migratepages);
1555                         cc->nr_migratepages = 0;
1556                         goto out;
1557                 case ISOLATE_NONE:
1558                         /*
1559                          * We haven't isolated and migrated anything, but
1560                          * there might still be unflushed migrations from
1561                          * previous cc->order aligned block.
1562                          */
1563                         goto check_drain;
1564                 case ISOLATE_SUCCESS:
1565                         ;
1566                 }
1567
1568                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1569                                 compaction_free, (unsigned long)cc, cc->mode,
1570                                 MR_COMPACTION);
1571
1572                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1573                                                         &cc->migratepages);
1574
1575                 /* All pages were either migrated or will be released */
1576                 cc->nr_migratepages = 0;
1577                 if (err) {
1578                         putback_movable_pages(&cc->migratepages);
1579                         /*
1580                          * migrate_pages() may return -ENOMEM when scanners meet
1581                          * and we want compact_finished() to detect it
1582                          */
1583                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1584                                 ret = COMPACT_CONTENDED;
1585                                 goto out;
1586                         }
1587                         /*
1588                          * We failed to migrate at least one page in the current
1589                          * order-aligned block, so skip the rest of it.
1590                          */
1591                         if (cc->direct_compaction &&
1592                                                 (cc->mode == MIGRATE_ASYNC)) {
1593                                 cc->migrate_pfn = block_end_pfn(
1594                                                 cc->migrate_pfn - 1, cc->order);
1595                                 /* Draining pcplists is useless in this case */
1596                                 cc->last_migrated_pfn = 0;
1597
1598                         }
1599                 }
1600
1601 check_drain:
1602                 /*
1603                  * Has the migration scanner moved away from the previous
1604                  * cc->order aligned block where we migrated from? If yes,
1605                  * flush the pages that were freed, so that they can merge and
1606                  * compact_finished() can detect immediately if allocation
1607                  * would succeed.
1608                  */
1609                 if (cc->order > 0 && cc->last_migrated_pfn) {
1610                         int cpu;
1611                         unsigned long current_block_start =
1612                                 block_start_pfn(cc->migrate_pfn, cc->order);
1613
1614                         if (cc->last_migrated_pfn < current_block_start) {
1615                                 cpu = get_cpu();
1616                                 lru_add_drain_cpu(cpu);
1617                                 drain_local_pages(zone);
1618                                 put_cpu();
1619                                 /* No more flushing until we migrate again */
1620                                 cc->last_migrated_pfn = 0;
1621                         }
1622                 }
1623
1624         }
1625
1626 out:
1627         /*
1628          * Release free pages and update where the free scanner should restart,
1629          * so we don't leave any returned pages behind in the next attempt.
1630          */
1631         if (cc->nr_freepages > 0) {
1632                 unsigned long free_pfn = release_freepages(&cc->freepages);
1633
1634                 cc->nr_freepages = 0;
1635                 VM_BUG_ON(free_pfn == 0);
1636                 /* The cached pfn is always the first in a pageblock */
1637                 free_pfn = pageblock_start_pfn(free_pfn);
1638                 /*
1639                  * Only go back, not forward. The cached pfn might have been
1640                  * already reset to zone end in compact_finished()
1641                  */
1642                 if (free_pfn > zone->compact_cached_free_pfn)
1643                         zone->compact_cached_free_pfn = free_pfn;
1644         }
1645
1646         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1647                                 cc->free_pfn, end_pfn, sync, ret);
1648
1649         return ret;
1650 }
1651
1652 static enum compact_result compact_zone_order(struct zone *zone, int order,
1653                 gfp_t gfp_mask, enum compact_priority prio,
1654                 unsigned int alloc_flags, int classzone_idx)
1655 {
1656         enum compact_result ret;
1657         struct compact_control cc = {
1658                 .nr_freepages = 0,
1659                 .nr_migratepages = 0,
1660                 .order = order,
1661                 .gfp_mask = gfp_mask,
1662                 .zone = zone,
1663                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1664                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1665                 .alloc_flags = alloc_flags,
1666                 .classzone_idx = classzone_idx,
1667                 .direct_compaction = true,
1668                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1669                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1670                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1671         };
1672         INIT_LIST_HEAD(&cc.freepages);
1673         INIT_LIST_HEAD(&cc.migratepages);
1674
1675         ret = compact_zone(zone, &cc);
1676
1677         VM_BUG_ON(!list_empty(&cc.freepages));
1678         VM_BUG_ON(!list_empty(&cc.migratepages));
1679
1680         return ret;
1681 }
1682
1683 int sysctl_extfrag_threshold = 500;
1684
1685 /**
1686  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1687  * @gfp_mask: The GFP mask of the current allocation
1688  * @order: The order of the current allocation
1689  * @alloc_flags: The allocation flags of the current allocation
1690  * @ac: The context of current allocation
1691  * @mode: The migration mode for async, sync light, or sync migration
1692  *
1693  * This is the main entry point for direct page compaction.
1694  */
1695 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1696                 unsigned int alloc_flags, const struct alloc_context *ac,
1697                 enum compact_priority prio)
1698 {
1699         int may_enter_fs = gfp_mask & __GFP_FS;
1700         int may_perform_io = gfp_mask & __GFP_IO;
1701         struct zoneref *z;
1702         struct zone *zone;
1703         enum compact_result rc = COMPACT_SKIPPED;
1704
1705         /* Check if the GFP flags allow compaction */
1706         if (!may_enter_fs || !may_perform_io)
1707                 return COMPACT_SKIPPED;
1708
1709         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1710
1711         /* Compact each zone in the list */
1712         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1713                                                                 ac->nodemask) {
1714                 enum compact_result status;
1715
1716                 if (prio > MIN_COMPACT_PRIORITY
1717                                         && compaction_deferred(zone, order)) {
1718                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1719                         continue;
1720                 }
1721
1722                 status = compact_zone_order(zone, order, gfp_mask, prio,
1723                                         alloc_flags, ac_classzone_idx(ac));
1724                 rc = max(status, rc);
1725
1726                 /* The allocation should succeed, stop compacting */
1727                 if (status == COMPACT_SUCCESS) {
1728                         /*
1729                          * We think the allocation will succeed in this zone,
1730                          * but it is not certain, hence the false. The caller
1731                          * will repeat this with true if allocation indeed
1732                          * succeeds in this zone.
1733                          */
1734                         compaction_defer_reset(zone, order, false);
1735
1736                         break;
1737                 }
1738
1739                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1740                                         status == COMPACT_PARTIAL_SKIPPED))
1741                         /*
1742                          * We think that allocation won't succeed in this zone
1743                          * so we defer compaction there. If it ends up
1744                          * succeeding after all, it will be reset.
1745                          */
1746                         defer_compaction(zone, order);
1747
1748                 /*
1749                  * We might have stopped compacting due to need_resched() in
1750                  * async compaction, or due to a fatal signal detected. In that
1751                  * case do not try further zones
1752                  */
1753                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1754                                         || fatal_signal_pending(current))
1755                         break;
1756         }
1757
1758         return rc;
1759 }
1760
1761
1762 /* Compact all zones within a node */
1763 static void compact_node(int nid)
1764 {
1765         pg_data_t *pgdat = NODE_DATA(nid);
1766         int zoneid;
1767         struct zone *zone;
1768         struct compact_control cc = {
1769                 .order = -1,
1770                 .mode = MIGRATE_SYNC,
1771                 .ignore_skip_hint = true,
1772                 .whole_zone = true,
1773         };
1774
1775
1776         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1777
1778                 zone = &pgdat->node_zones[zoneid];
1779                 if (!populated_zone(zone))
1780                         continue;
1781
1782                 cc.nr_freepages = 0;
1783                 cc.nr_migratepages = 0;
1784                 cc.zone = zone;
1785                 INIT_LIST_HEAD(&cc.freepages);
1786                 INIT_LIST_HEAD(&cc.migratepages);
1787
1788                 compact_zone(zone, &cc);
1789
1790                 VM_BUG_ON(!list_empty(&cc.freepages));
1791                 VM_BUG_ON(!list_empty(&cc.migratepages));
1792         }
1793 }
1794
1795 /* Compact all nodes in the system */
1796 static void compact_nodes(void)
1797 {
1798         int nid;
1799
1800         /* Flush pending updates to the LRU lists */
1801         lru_add_drain_all();
1802
1803         for_each_online_node(nid)
1804                 compact_node(nid);
1805 }
1806
1807 /* The written value is actually unused, all memory is compacted */
1808 int sysctl_compact_memory;
1809
1810 /*
1811  * This is the entry point for compacting all nodes via
1812  * /proc/sys/vm/compact_memory
1813  */
1814 int sysctl_compaction_handler(struct ctl_table *table, int write,
1815                         void __user *buffer, size_t *length, loff_t *ppos)
1816 {
1817         if (write)
1818                 compact_nodes();
1819
1820         return 0;
1821 }
1822
1823 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1824                         void __user *buffer, size_t *length, loff_t *ppos)
1825 {
1826         proc_dointvec_minmax(table, write, buffer, length, ppos);
1827
1828         return 0;
1829 }
1830
1831 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1832 static ssize_t sysfs_compact_node(struct device *dev,
1833                         struct device_attribute *attr,
1834                         const char *buf, size_t count)
1835 {
1836         int nid = dev->id;
1837
1838         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1839                 /* Flush pending updates to the LRU lists */
1840                 lru_add_drain_all();
1841
1842                 compact_node(nid);
1843         }
1844
1845         return count;
1846 }
1847 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1848
1849 int compaction_register_node(struct node *node)
1850 {
1851         return device_create_file(&node->dev, &dev_attr_compact);
1852 }
1853
1854 void compaction_unregister_node(struct node *node)
1855 {
1856         return device_remove_file(&node->dev, &dev_attr_compact);
1857 }
1858 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1859
1860 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1861 {
1862         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1863 }
1864
1865 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1866 {
1867         int zoneid;
1868         struct zone *zone;
1869         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1870
1871         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1872                 zone = &pgdat->node_zones[zoneid];
1873
1874                 if (!populated_zone(zone))
1875                         continue;
1876
1877                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1878                                         classzone_idx) == COMPACT_CONTINUE)
1879                         return true;
1880         }
1881
1882         return false;
1883 }
1884
1885 static void kcompactd_do_work(pg_data_t *pgdat)
1886 {
1887         /*
1888          * With no special task, compact all zones so that a page of requested
1889          * order is allocatable.
1890          */
1891         int zoneid;
1892         struct zone *zone;
1893         struct compact_control cc = {
1894                 .order = pgdat->kcompactd_max_order,
1895                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1896                 .mode = MIGRATE_SYNC_LIGHT,
1897                 .ignore_skip_hint = true,
1898
1899         };
1900         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1901                                                         cc.classzone_idx);
1902         count_vm_event(KCOMPACTD_WAKE);
1903
1904         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1905                 int status;
1906
1907                 zone = &pgdat->node_zones[zoneid];
1908                 if (!populated_zone(zone))
1909                         continue;
1910
1911                 if (compaction_deferred(zone, cc.order))
1912                         continue;
1913
1914                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1915                                                         COMPACT_CONTINUE)
1916                         continue;
1917
1918                 cc.nr_freepages = 0;
1919                 cc.nr_migratepages = 0;
1920                 cc.zone = zone;
1921                 INIT_LIST_HEAD(&cc.freepages);
1922                 INIT_LIST_HEAD(&cc.migratepages);
1923
1924                 if (kthread_should_stop())
1925                         return;
1926                 status = compact_zone(zone, &cc);
1927
1928                 if (status == COMPACT_SUCCESS) {
1929                         compaction_defer_reset(zone, cc.order, false);
1930                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1931                         /*
1932                          * We use sync migration mode here, so we defer like
1933                          * sync direct compaction does.
1934                          */
1935                         defer_compaction(zone, cc.order);
1936                 }
1937
1938                 VM_BUG_ON(!list_empty(&cc.freepages));
1939                 VM_BUG_ON(!list_empty(&cc.migratepages));
1940         }
1941
1942         /*
1943          * Regardless of success, we are done until woken up next. But remember
1944          * the requested order/classzone_idx in case it was higher/tighter than
1945          * our current ones
1946          */
1947         if (pgdat->kcompactd_max_order <= cc.order)
1948                 pgdat->kcompactd_max_order = 0;
1949         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1950                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1951 }
1952
1953 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1954 {
1955         if (!order)
1956                 return;
1957
1958         if (pgdat->kcompactd_max_order < order)
1959                 pgdat->kcompactd_max_order = order;
1960
1961         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1962                 pgdat->kcompactd_classzone_idx = classzone_idx;
1963
1964         if (!waitqueue_active(&pgdat->kcompactd_wait))
1965                 return;
1966
1967         if (!kcompactd_node_suitable(pgdat))
1968                 return;
1969
1970         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1971                                                         classzone_idx);
1972         wake_up_interruptible(&pgdat->kcompactd_wait);
1973 }
1974
1975 /*
1976  * The background compaction daemon, started as a kernel thread
1977  * from the init process.
1978  */
1979 static int kcompactd(void *p)
1980 {
1981         pg_data_t *pgdat = (pg_data_t*)p;
1982         struct task_struct *tsk = current;
1983
1984         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1985
1986         if (!cpumask_empty(cpumask))
1987                 set_cpus_allowed_ptr(tsk, cpumask);
1988
1989         set_freezable();
1990
1991         pgdat->kcompactd_max_order = 0;
1992         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1993
1994         while (!kthread_should_stop()) {
1995                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1996                 wait_event_freezable(pgdat->kcompactd_wait,
1997                                 kcompactd_work_requested(pgdat));
1998
1999                 kcompactd_do_work(pgdat);
2000         }
2001
2002         return 0;
2003 }
2004
2005 /*
2006  * This kcompactd start function will be called by init and node-hot-add.
2007  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2008  */
2009 int kcompactd_run(int nid)
2010 {
2011         pg_data_t *pgdat = NODE_DATA(nid);
2012         int ret = 0;
2013
2014         if (pgdat->kcompactd)
2015                 return 0;
2016
2017         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2018         if (IS_ERR(pgdat->kcompactd)) {
2019                 pr_err("Failed to start kcompactd on node %d\n", nid);
2020                 ret = PTR_ERR(pgdat->kcompactd);
2021                 pgdat->kcompactd = NULL;
2022         }
2023         return ret;
2024 }
2025
2026 /*
2027  * Called by memory hotplug when all memory in a node is offlined. Caller must
2028  * hold mem_hotplug_begin/end().
2029  */
2030 void kcompactd_stop(int nid)
2031 {
2032         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2033
2034         if (kcompactd) {
2035                 kthread_stop(kcompactd);
2036                 NODE_DATA(nid)->kcompactd = NULL;
2037         }
2038 }
2039
2040 /*
2041  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2042  * not required for correctness. So if the last cpu in a node goes
2043  * away, we get changed to run anywhere: as the first one comes back,
2044  * restore their cpu bindings.
2045  */
2046 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2047                         void *hcpu)
2048 {
2049         int nid;
2050
2051         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2052                 for_each_node_state(nid, N_MEMORY) {
2053                         pg_data_t *pgdat = NODE_DATA(nid);
2054                         const struct cpumask *mask;
2055
2056                         mask = cpumask_of_node(pgdat->node_id);
2057
2058                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2059                                 /* One of our CPUs online: restore mask */
2060                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2061                 }
2062         }
2063         return NOTIFY_OK;
2064 }
2065
2066 static int __init kcompactd_init(void)
2067 {
2068         int nid;
2069
2070         for_each_node_state(nid, N_MEMORY)
2071                 kcompactd_run(nid);
2072         hotcpu_notifier(cpu_callback, 0);
2073         return 0;
2074 }
2075 subsys_initcall(kcompactd_init)
2076
2077 #endif /* CONFIG_COMPACTION */