mm: filemap: don't plant shadow entries without radix tree node
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                         if (node)
136                                 workingset_node_shadows_dec(node);
137                 } else {
138                         /* DAX can replace empty locked entry with a hole */
139                         WARN_ON_ONCE(p !=
140                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141                                          RADIX_DAX_ENTRY_LOCK));
142                         /* DAX accounts exceptional entries as normal pages */
143                         if (node)
144                                 workingset_node_pages_dec(node);
145                         /* Wakeup waiters for exceptional entry lock */
146                         dax_wake_mapping_entry_waiter(mapping, page->index,
147                                                       false);
148                 }
149         }
150         radix_tree_replace_slot(slot, page);
151         mapping->nrpages++;
152         if (node) {
153                 workingset_node_pages_inc(node);
154                 /*
155                  * Don't track node that contains actual pages.
156                  *
157                  * Avoid acquiring the list_lru lock if already
158                  * untracked.  The list_empty() test is safe as
159                  * node->private_list is protected by
160                  * mapping->tree_lock.
161                  */
162                 if (!list_empty(&node->private_list))
163                         list_lru_del(&workingset_shadow_nodes,
164                                      &node->private_list);
165         }
166         return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170                                    struct page *page, void *shadow)
171 {
172         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174         VM_BUG_ON_PAGE(!PageLocked(page), page);
175         VM_BUG_ON_PAGE(PageTail(page), page);
176         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178         for (i = 0; i < nr; i++) {
179                 struct radix_tree_node *node;
180                 void **slot;
181
182                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183                                     &node, &slot);
184
185                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187                 if (!node) {
188                         VM_BUG_ON_PAGE(nr != 1, page);
189                         /*
190                          * We need a node to properly account shadow
191                          * entries. Don't plant any without. XXX
192                          */
193                         shadow = NULL;
194                 }
195
196                 radix_tree_replace_slot(slot, shadow);
197
198                 if (!node)
199                         break;
200
201                 workingset_node_pages_dec(node);
202                 if (shadow)
203                         workingset_node_shadows_inc(node);
204                 else
205                         if (__radix_tree_delete_node(&mapping->page_tree, node))
206                                 continue;
207
208                 /*
209                  * Track node that only contains shadow entries. DAX mappings
210                  * contain no shadow entries and may contain other exceptional
211                  * entries so skip those.
212                  *
213                  * Avoid acquiring the list_lru lock if already tracked.
214                  * The list_empty() test is safe as node->private_list is
215                  * protected by mapping->tree_lock.
216                  */
217                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218                                 list_empty(&node->private_list)) {
219                         node->private_data = mapping;
220                         list_lru_add(&workingset_shadow_nodes,
221                                         &node->private_list);
222                 }
223         }
224
225         if (shadow) {
226                 mapping->nrexceptional += nr;
227                 /*
228                  * Make sure the nrexceptional update is committed before
229                  * the nrpages update so that final truncate racing
230                  * with reclaim does not see both counters 0 at the
231                  * same time and miss a shadow entry.
232                  */
233                 smp_wmb();
234         }
235         mapping->nrpages -= nr;
236 }
237
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245         struct address_space *mapping = page->mapping;
246         int nr = hpage_nr_pages(page);
247
248         trace_mm_filemap_delete_from_page_cache(page);
249         /*
250          * if we're uptodate, flush out into the cleancache, otherwise
251          * invalidate any existing cleancache entries.  We can't leave
252          * stale data around in the cleancache once our page is gone
253          */
254         if (PageUptodate(page) && PageMappedToDisk(page))
255                 cleancache_put_page(page);
256         else
257                 cleancache_invalidate_page(mapping, page);
258
259         VM_BUG_ON_PAGE(PageTail(page), page);
260         VM_BUG_ON_PAGE(page_mapped(page), page);
261         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262                 int mapcount;
263
264                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265                          current->comm, page_to_pfn(page));
266                 dump_page(page, "still mapped when deleted");
267                 dump_stack();
268                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270                 mapcount = page_mapcount(page);
271                 if (mapping_exiting(mapping) &&
272                     page_count(page) >= mapcount + 2) {
273                         /*
274                          * All vmas have already been torn down, so it's
275                          * a good bet that actually the page is unmapped,
276                          * and we'd prefer not to leak it: if we're wrong,
277                          * some other bad page check should catch it later.
278                          */
279                         page_mapcount_reset(page);
280                         page_ref_sub(page, mapcount);
281                 }
282         }
283
284         page_cache_tree_delete(mapping, page, shadow);
285
286         page->mapping = NULL;
287         /* Leave page->index set: truncation lookup relies upon it */
288
289         /* hugetlb pages do not participate in page cache accounting. */
290         if (!PageHuge(page))
291                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292         if (PageSwapBacked(page)) {
293                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294                 if (PageTransHuge(page))
295                         __dec_node_page_state(page, NR_SHMEM_THPS);
296         } else {
297                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298         }
299
300         /*
301          * At this point page must be either written or cleaned by truncate.
302          * Dirty page here signals a bug and loss of unwritten data.
303          *
304          * This fixes dirty accounting after removing the page entirely but
305          * leaves PageDirty set: it has no effect for truncated page and
306          * anyway will be cleared before returning page into buddy allocator.
307          */
308         if (WARN_ON_ONCE(PageDirty(page)))
309                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322         struct address_space *mapping = page_mapping(page);
323         unsigned long flags;
324         void (*freepage)(struct page *);
325
326         BUG_ON(!PageLocked(page));
327
328         freepage = mapping->a_ops->freepage;
329
330         spin_lock_irqsave(&mapping->tree_lock, flags);
331         __delete_from_page_cache(page, NULL);
332         spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334         if (freepage)
335                 freepage(page);
336
337         if (PageTransHuge(page) && !PageHuge(page)) {
338                 page_ref_sub(page, HPAGE_PMD_NR);
339                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340         } else {
341                 put_page(page);
342         }
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348         int ret = 0;
349         /* Check for outstanding write errors */
350         if (test_bit(AS_ENOSPC, &mapping->flags) &&
351             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352                 ret = -ENOSPC;
353         if (test_bit(AS_EIO, &mapping->flags) &&
354             test_and_clear_bit(AS_EIO, &mapping->flags))
355                 ret = -EIO;
356         return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:    address space structure to write
363  * @start:      offset in bytes where the range starts
364  * @end:        offset in bytes where the range ends (inclusive)
365  * @sync_mode:  enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376                                 loff_t end, int sync_mode)
377 {
378         int ret;
379         struct writeback_control wbc = {
380                 .sync_mode = sync_mode,
381                 .nr_to_write = LONG_MAX,
382                 .range_start = start,
383                 .range_end = end,
384         };
385
386         if (!mapping_cap_writeback_dirty(mapping))
387                 return 0;
388
389         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390         ret = do_writepages(mapping, &wbc);
391         wbc_detach_inode(&wbc);
392         return ret;
393 }
394
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396         int sync_mode)
397 {
398         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408                                 loff_t end)
409 {
410         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:    target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
421 int filemap_flush(struct address_space *mapping)
422 {
423         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428                                      loff_t start_byte, loff_t end_byte)
429 {
430         pgoff_t index = start_byte >> PAGE_SHIFT;
431         pgoff_t end = end_byte >> PAGE_SHIFT;
432         struct pagevec pvec;
433         int nr_pages;
434         int ret = 0;
435
436         if (end_byte < start_byte)
437                 goto out;
438
439         pagevec_init(&pvec, 0);
440         while ((index <= end) &&
441                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442                         PAGECACHE_TAG_WRITEBACK,
443                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444                 unsigned i;
445
446                 for (i = 0; i < nr_pages; i++) {
447                         struct page *page = pvec.pages[i];
448
449                         /* until radix tree lookup accepts end_index */
450                         if (page->index > end)
451                                 continue;
452
453                         wait_on_page_writeback(page);
454                         if (TestClearPageError(page))
455                                 ret = -EIO;
456                 }
457                 pagevec_release(&pvec);
458                 cond_resched();
459         }
460 out:
461         return ret;
462 }
463
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:            address space structure to wait for
467  * @start_byte:         offset in bytes where the range starts
468  * @end_byte:           offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479                             loff_t end_byte)
480 {
481         int ret, ret2;
482
483         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484         ret2 = filemap_check_errors(mapping);
485         if (!ret)
486                 ret = ret2;
487
488         return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506         loff_t i_size = i_size_read(mapping->host);
507
508         if (i_size == 0)
509                 return;
510
511         __filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528         loff_t i_size = i_size_read(mapping->host);
529
530         if (i_size == 0)
531                 return 0;
532
533         return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539         int err = 0;
540
541         if ((!dax_mapping(mapping) && mapping->nrpages) ||
542             (dax_mapping(mapping) && mapping->nrexceptional)) {
543                 err = filemap_fdatawrite(mapping);
544                 /*
545                  * Even if the above returned error, the pages may be
546                  * written partially (e.g. -ENOSPC), so we wait for it.
547                  * But the -EIO is special case, it may indicate the worst
548                  * thing (e.g. bug) happened, so we avoid waiting for it.
549                  */
550                 if (err != -EIO) {
551                         int err2 = filemap_fdatawait(mapping);
552                         if (!err)
553                                 err = err2;
554                 }
555         } else {
556                 err = filemap_check_errors(mapping);
557         }
558         return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:    the address_space for the pages
565  * @lstart:     offset in bytes where the range starts
566  * @lend:       offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574                                  loff_t lstart, loff_t lend)
575 {
576         int err = 0;
577
578         if ((!dax_mapping(mapping) && mapping->nrpages) ||
579             (dax_mapping(mapping) && mapping->nrexceptional)) {
580                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581                                                  WB_SYNC_ALL);
582                 /* See comment of filemap_write_and_wait() */
583                 if (err != -EIO) {
584                         int err2 = filemap_fdatawait_range(mapping,
585                                                 lstart, lend);
586                         if (!err)
587                                 err = err2;
588                 }
589         } else {
590                 err = filemap_check_errors(mapping);
591         }
592         return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:        page to be replaced
599  * @new:        page to replace with
600  * @gfp_mask:   allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613         int error;
614
615         VM_BUG_ON_PAGE(!PageLocked(old), old);
616         VM_BUG_ON_PAGE(!PageLocked(new), new);
617         VM_BUG_ON_PAGE(new->mapping, new);
618
619         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620         if (!error) {
621                 struct address_space *mapping = old->mapping;
622                 void (*freepage)(struct page *);
623                 unsigned long flags;
624
625                 pgoff_t offset = old->index;
626                 freepage = mapping->a_ops->freepage;
627
628                 get_page(new);
629                 new->mapping = mapping;
630                 new->index = offset;
631
632                 spin_lock_irqsave(&mapping->tree_lock, flags);
633                 __delete_from_page_cache(old, NULL);
634                 error = page_cache_tree_insert(mapping, new, NULL);
635                 BUG_ON(error);
636                 mapping->nrpages++;
637
638                 /*
639                  * hugetlb pages do not participate in page cache accounting.
640                  */
641                 if (!PageHuge(new))
642                         __inc_node_page_state(new, NR_FILE_PAGES);
643                 if (PageSwapBacked(new))
644                         __inc_node_page_state(new, NR_SHMEM);
645                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
646                 mem_cgroup_migrate(old, new);
647                 radix_tree_preload_end();
648                 if (freepage)
649                         freepage(old);
650                 put_page(old);
651         }
652
653         return error;
654 }
655 EXPORT_SYMBOL_GPL(replace_page_cache_page);
656
657 static int __add_to_page_cache_locked(struct page *page,
658                                       struct address_space *mapping,
659                                       pgoff_t offset, gfp_t gfp_mask,
660                                       void **shadowp)
661 {
662         int huge = PageHuge(page);
663         struct mem_cgroup *memcg;
664         int error;
665
666         VM_BUG_ON_PAGE(!PageLocked(page), page);
667         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
668
669         if (!huge) {
670                 error = mem_cgroup_try_charge(page, current->mm,
671                                               gfp_mask, &memcg, false);
672                 if (error)
673                         return error;
674         }
675
676         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
677         if (error) {
678                 if (!huge)
679                         mem_cgroup_cancel_charge(page, memcg, false);
680                 return error;
681         }
682
683         get_page(page);
684         page->mapping = mapping;
685         page->index = offset;
686
687         spin_lock_irq(&mapping->tree_lock);
688         error = page_cache_tree_insert(mapping, page, shadowp);
689         radix_tree_preload_end();
690         if (unlikely(error))
691                 goto err_insert;
692
693         /* hugetlb pages do not participate in page cache accounting. */
694         if (!huge)
695                 __inc_node_page_state(page, NR_FILE_PAGES);
696         spin_unlock_irq(&mapping->tree_lock);
697         if (!huge)
698                 mem_cgroup_commit_charge(page, memcg, false, false);
699         trace_mm_filemap_add_to_page_cache(page);
700         return 0;
701 err_insert:
702         page->mapping = NULL;
703         /* Leave page->index set: truncation relies upon it */
704         spin_unlock_irq(&mapping->tree_lock);
705         if (!huge)
706                 mem_cgroup_cancel_charge(page, memcg, false);
707         put_page(page);
708         return error;
709 }
710
711 /**
712  * add_to_page_cache_locked - add a locked page to the pagecache
713  * @page:       page to add
714  * @mapping:    the page's address_space
715  * @offset:     page index
716  * @gfp_mask:   page allocation mode
717  *
718  * This function is used to add a page to the pagecache. It must be locked.
719  * This function does not add the page to the LRU.  The caller must do that.
720  */
721 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
722                 pgoff_t offset, gfp_t gfp_mask)
723 {
724         return __add_to_page_cache_locked(page, mapping, offset,
725                                           gfp_mask, NULL);
726 }
727 EXPORT_SYMBOL(add_to_page_cache_locked);
728
729 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
730                                 pgoff_t offset, gfp_t gfp_mask)
731 {
732         void *shadow = NULL;
733         int ret;
734
735         __SetPageLocked(page);
736         ret = __add_to_page_cache_locked(page, mapping, offset,
737                                          gfp_mask, &shadow);
738         if (unlikely(ret))
739                 __ClearPageLocked(page);
740         else {
741                 /*
742                  * The page might have been evicted from cache only
743                  * recently, in which case it should be activated like
744                  * any other repeatedly accessed page.
745                  * The exception is pages getting rewritten; evicting other
746                  * data from the working set, only to cache data that will
747                  * get overwritten with something else, is a waste of memory.
748                  */
749                 if (!(gfp_mask & __GFP_WRITE) &&
750                     shadow && workingset_refault(shadow)) {
751                         SetPageActive(page);
752                         workingset_activation(page);
753                 } else
754                         ClearPageActive(page);
755                 lru_cache_add(page);
756         }
757         return ret;
758 }
759 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
760
761 #ifdef CONFIG_NUMA
762 struct page *__page_cache_alloc(gfp_t gfp)
763 {
764         int n;
765         struct page *page;
766
767         if (cpuset_do_page_mem_spread()) {
768                 unsigned int cpuset_mems_cookie;
769                 do {
770                         cpuset_mems_cookie = read_mems_allowed_begin();
771                         n = cpuset_mem_spread_node();
772                         page = __alloc_pages_node(n, gfp, 0);
773                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
774
775                 return page;
776         }
777         return alloc_pages(gfp, 0);
778 }
779 EXPORT_SYMBOL(__page_cache_alloc);
780 #endif
781
782 /*
783  * In order to wait for pages to become available there must be
784  * waitqueues associated with pages. By using a hash table of
785  * waitqueues where the bucket discipline is to maintain all
786  * waiters on the same queue and wake all when any of the pages
787  * become available, and for the woken contexts to check to be
788  * sure the appropriate page became available, this saves space
789  * at a cost of "thundering herd" phenomena during rare hash
790  * collisions.
791  */
792 wait_queue_head_t *page_waitqueue(struct page *page)
793 {
794         const struct zone *zone = page_zone(page);
795
796         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
797 }
798 EXPORT_SYMBOL(page_waitqueue);
799
800 void wait_on_page_bit(struct page *page, int bit_nr)
801 {
802         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
803
804         if (test_bit(bit_nr, &page->flags))
805                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
806                                                         TASK_UNINTERRUPTIBLE);
807 }
808 EXPORT_SYMBOL(wait_on_page_bit);
809
810 int wait_on_page_bit_killable(struct page *page, int bit_nr)
811 {
812         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
813
814         if (!test_bit(bit_nr, &page->flags))
815                 return 0;
816
817         return __wait_on_bit(page_waitqueue(page), &wait,
818                              bit_wait_io, TASK_KILLABLE);
819 }
820
821 int wait_on_page_bit_killable_timeout(struct page *page,
822                                        int bit_nr, unsigned long timeout)
823 {
824         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
825
826         wait.key.timeout = jiffies + timeout;
827         if (!test_bit(bit_nr, &page->flags))
828                 return 0;
829         return __wait_on_bit(page_waitqueue(page), &wait,
830                              bit_wait_io_timeout, TASK_KILLABLE);
831 }
832 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
833
834 /**
835  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
836  * @page: Page defining the wait queue of interest
837  * @waiter: Waiter to add to the queue
838  *
839  * Add an arbitrary @waiter to the wait queue for the nominated @page.
840  */
841 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
842 {
843         wait_queue_head_t *q = page_waitqueue(page);
844         unsigned long flags;
845
846         spin_lock_irqsave(&q->lock, flags);
847         __add_wait_queue(q, waiter);
848         spin_unlock_irqrestore(&q->lock, flags);
849 }
850 EXPORT_SYMBOL_GPL(add_page_wait_queue);
851
852 /**
853  * unlock_page - unlock a locked page
854  * @page: the page
855  *
856  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
857  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
858  * mechanism between PageLocked pages and PageWriteback pages is shared.
859  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
860  *
861  * The mb is necessary to enforce ordering between the clear_bit and the read
862  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
863  */
864 void unlock_page(struct page *page)
865 {
866         page = compound_head(page);
867         VM_BUG_ON_PAGE(!PageLocked(page), page);
868         clear_bit_unlock(PG_locked, &page->flags);
869         smp_mb__after_atomic();
870         wake_up_page(page, PG_locked);
871 }
872 EXPORT_SYMBOL(unlock_page);
873
874 /**
875  * end_page_writeback - end writeback against a page
876  * @page: the page
877  */
878 void end_page_writeback(struct page *page)
879 {
880         /*
881          * TestClearPageReclaim could be used here but it is an atomic
882          * operation and overkill in this particular case. Failing to
883          * shuffle a page marked for immediate reclaim is too mild to
884          * justify taking an atomic operation penalty at the end of
885          * ever page writeback.
886          */
887         if (PageReclaim(page)) {
888                 ClearPageReclaim(page);
889                 rotate_reclaimable_page(page);
890         }
891
892         if (!test_clear_page_writeback(page))
893                 BUG();
894
895         smp_mb__after_atomic();
896         wake_up_page(page, PG_writeback);
897 }
898 EXPORT_SYMBOL(end_page_writeback);
899
900 /*
901  * After completing I/O on a page, call this routine to update the page
902  * flags appropriately
903  */
904 void page_endio(struct page *page, bool is_write, int err)
905 {
906         if (!is_write) {
907                 if (!err) {
908                         SetPageUptodate(page);
909                 } else {
910                         ClearPageUptodate(page);
911                         SetPageError(page);
912                 }
913                 unlock_page(page);
914         } else {
915                 if (err) {
916                         SetPageError(page);
917                         if (page->mapping)
918                                 mapping_set_error(page->mapping, err);
919                 }
920                 end_page_writeback(page);
921         }
922 }
923 EXPORT_SYMBOL_GPL(page_endio);
924
925 /**
926  * __lock_page - get a lock on the page, assuming we need to sleep to get it
927  * @page: the page to lock
928  */
929 void __lock_page(struct page *page)
930 {
931         struct page *page_head = compound_head(page);
932         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
933
934         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
935                                                         TASK_UNINTERRUPTIBLE);
936 }
937 EXPORT_SYMBOL(__lock_page);
938
939 int __lock_page_killable(struct page *page)
940 {
941         struct page *page_head = compound_head(page);
942         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
943
944         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
945                                         bit_wait_io, TASK_KILLABLE);
946 }
947 EXPORT_SYMBOL_GPL(__lock_page_killable);
948
949 /*
950  * Return values:
951  * 1 - page is locked; mmap_sem is still held.
952  * 0 - page is not locked.
953  *     mmap_sem has been released (up_read()), unless flags had both
954  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
955  *     which case mmap_sem is still held.
956  *
957  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
958  * with the page locked and the mmap_sem unperturbed.
959  */
960 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
961                          unsigned int flags)
962 {
963         if (flags & FAULT_FLAG_ALLOW_RETRY) {
964                 /*
965                  * CAUTION! In this case, mmap_sem is not released
966                  * even though return 0.
967                  */
968                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
969                         return 0;
970
971                 up_read(&mm->mmap_sem);
972                 if (flags & FAULT_FLAG_KILLABLE)
973                         wait_on_page_locked_killable(page);
974                 else
975                         wait_on_page_locked(page);
976                 return 0;
977         } else {
978                 if (flags & FAULT_FLAG_KILLABLE) {
979                         int ret;
980
981                         ret = __lock_page_killable(page);
982                         if (ret) {
983                                 up_read(&mm->mmap_sem);
984                                 return 0;
985                         }
986                 } else
987                         __lock_page(page);
988                 return 1;
989         }
990 }
991
992 /**
993  * page_cache_next_hole - find the next hole (not-present entry)
994  * @mapping: mapping
995  * @index: index
996  * @max_scan: maximum range to search
997  *
998  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
999  * lowest indexed hole.
1000  *
1001  * Returns: the index of the hole if found, otherwise returns an index
1002  * outside of the set specified (in which case 'return - index >=
1003  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1004  * be returned.
1005  *
1006  * page_cache_next_hole may be called under rcu_read_lock. However,
1007  * like radix_tree_gang_lookup, this will not atomically search a
1008  * snapshot of the tree at a single point in time. For example, if a
1009  * hole is created at index 5, then subsequently a hole is created at
1010  * index 10, page_cache_next_hole covering both indexes may return 10
1011  * if called under rcu_read_lock.
1012  */
1013 pgoff_t page_cache_next_hole(struct address_space *mapping,
1014                              pgoff_t index, unsigned long max_scan)
1015 {
1016         unsigned long i;
1017
1018         for (i = 0; i < max_scan; i++) {
1019                 struct page *page;
1020
1021                 page = radix_tree_lookup(&mapping->page_tree, index);
1022                 if (!page || radix_tree_exceptional_entry(page))
1023                         break;
1024                 index++;
1025                 if (index == 0)
1026                         break;
1027         }
1028
1029         return index;
1030 }
1031 EXPORT_SYMBOL(page_cache_next_hole);
1032
1033 /**
1034  * page_cache_prev_hole - find the prev hole (not-present entry)
1035  * @mapping: mapping
1036  * @index: index
1037  * @max_scan: maximum range to search
1038  *
1039  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1040  * the first hole.
1041  *
1042  * Returns: the index of the hole if found, otherwise returns an index
1043  * outside of the set specified (in which case 'index - return >=
1044  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1045  * will be returned.
1046  *
1047  * page_cache_prev_hole may be called under rcu_read_lock. However,
1048  * like radix_tree_gang_lookup, this will not atomically search a
1049  * snapshot of the tree at a single point in time. For example, if a
1050  * hole is created at index 10, then subsequently a hole is created at
1051  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1052  * called under rcu_read_lock.
1053  */
1054 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1055                              pgoff_t index, unsigned long max_scan)
1056 {
1057         unsigned long i;
1058
1059         for (i = 0; i < max_scan; i++) {
1060                 struct page *page;
1061
1062                 page = radix_tree_lookup(&mapping->page_tree, index);
1063                 if (!page || radix_tree_exceptional_entry(page))
1064                         break;
1065                 index--;
1066                 if (index == ULONG_MAX)
1067                         break;
1068         }
1069
1070         return index;
1071 }
1072 EXPORT_SYMBOL(page_cache_prev_hole);
1073
1074 /**
1075  * find_get_entry - find and get a page cache entry
1076  * @mapping: the address_space to search
1077  * @offset: the page cache index
1078  *
1079  * Looks up the page cache slot at @mapping & @offset.  If there is a
1080  * page cache page, it is returned with an increased refcount.
1081  *
1082  * If the slot holds a shadow entry of a previously evicted page, or a
1083  * swap entry from shmem/tmpfs, it is returned.
1084  *
1085  * Otherwise, %NULL is returned.
1086  */
1087 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1088 {
1089         void **pagep;
1090         struct page *head, *page;
1091
1092         rcu_read_lock();
1093 repeat:
1094         page = NULL;
1095         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096         if (pagep) {
1097                 page = radix_tree_deref_slot(pagep);
1098                 if (unlikely(!page))
1099                         goto out;
1100                 if (radix_tree_exception(page)) {
1101                         if (radix_tree_deref_retry(page))
1102                                 goto repeat;
1103                         /*
1104                          * A shadow entry of a recently evicted page,
1105                          * or a swap entry from shmem/tmpfs.  Return
1106                          * it without attempting to raise page count.
1107                          */
1108                         goto out;
1109                 }
1110
1111                 head = compound_head(page);
1112                 if (!page_cache_get_speculative(head))
1113                         goto repeat;
1114
1115                 /* The page was split under us? */
1116                 if (compound_head(page) != head) {
1117                         put_page(head);
1118                         goto repeat;
1119                 }
1120
1121                 /*
1122                  * Has the page moved?
1123                  * This is part of the lockless pagecache protocol. See
1124                  * include/linux/pagemap.h for details.
1125                  */
1126                 if (unlikely(page != *pagep)) {
1127                         put_page(head);
1128                         goto repeat;
1129                 }
1130         }
1131 out:
1132         rcu_read_unlock();
1133
1134         return page;
1135 }
1136 EXPORT_SYMBOL(find_get_entry);
1137
1138 /**
1139  * find_lock_entry - locate, pin and lock a page cache entry
1140  * @mapping: the address_space to search
1141  * @offset: the page cache index
1142  *
1143  * Looks up the page cache slot at @mapping & @offset.  If there is a
1144  * page cache page, it is returned locked and with an increased
1145  * refcount.
1146  *
1147  * If the slot holds a shadow entry of a previously evicted page, or a
1148  * swap entry from shmem/tmpfs, it is returned.
1149  *
1150  * Otherwise, %NULL is returned.
1151  *
1152  * find_lock_entry() may sleep.
1153  */
1154 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1155 {
1156         struct page *page;
1157
1158 repeat:
1159         page = find_get_entry(mapping, offset);
1160         if (page && !radix_tree_exception(page)) {
1161                 lock_page(page);
1162                 /* Has the page been truncated? */
1163                 if (unlikely(page_mapping(page) != mapping)) {
1164                         unlock_page(page);
1165                         put_page(page);
1166                         goto repeat;
1167                 }
1168                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1169         }
1170         return page;
1171 }
1172 EXPORT_SYMBOL(find_lock_entry);
1173
1174 /**
1175  * pagecache_get_page - find and get a page reference
1176  * @mapping: the address_space to search
1177  * @offset: the page index
1178  * @fgp_flags: PCG flags
1179  * @gfp_mask: gfp mask to use for the page cache data page allocation
1180  *
1181  * Looks up the page cache slot at @mapping & @offset.
1182  *
1183  * PCG flags modify how the page is returned.
1184  *
1185  * FGP_ACCESSED: the page will be marked accessed
1186  * FGP_LOCK: Page is return locked
1187  * FGP_CREAT: If page is not present then a new page is allocated using
1188  *              @gfp_mask and added to the page cache and the VM's LRU
1189  *              list. The page is returned locked and with an increased
1190  *              refcount. Otherwise, %NULL is returned.
1191  *
1192  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1193  * if the GFP flags specified for FGP_CREAT are atomic.
1194  *
1195  * If there is a page cache page, it is returned with an increased refcount.
1196  */
1197 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1198         int fgp_flags, gfp_t gfp_mask)
1199 {
1200         struct page *page;
1201
1202 repeat:
1203         page = find_get_entry(mapping, offset);
1204         if (radix_tree_exceptional_entry(page))
1205                 page = NULL;
1206         if (!page)
1207                 goto no_page;
1208
1209         if (fgp_flags & FGP_LOCK) {
1210                 if (fgp_flags & FGP_NOWAIT) {
1211                         if (!trylock_page(page)) {
1212                                 put_page(page);
1213                                 return NULL;
1214                         }
1215                 } else {
1216                         lock_page(page);
1217                 }
1218
1219                 /* Has the page been truncated? */
1220                 if (unlikely(page->mapping != mapping)) {
1221                         unlock_page(page);
1222                         put_page(page);
1223                         goto repeat;
1224                 }
1225                 VM_BUG_ON_PAGE(page->index != offset, page);
1226         }
1227
1228         if (page && (fgp_flags & FGP_ACCESSED))
1229                 mark_page_accessed(page);
1230
1231 no_page:
1232         if (!page && (fgp_flags & FGP_CREAT)) {
1233                 int err;
1234                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1235                         gfp_mask |= __GFP_WRITE;
1236                 if (fgp_flags & FGP_NOFS)
1237                         gfp_mask &= ~__GFP_FS;
1238
1239                 page = __page_cache_alloc(gfp_mask);
1240                 if (!page)
1241                         return NULL;
1242
1243                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1244                         fgp_flags |= FGP_LOCK;
1245
1246                 /* Init accessed so avoid atomic mark_page_accessed later */
1247                 if (fgp_flags & FGP_ACCESSED)
1248                         __SetPageReferenced(page);
1249
1250                 err = add_to_page_cache_lru(page, mapping, offset,
1251                                 gfp_mask & GFP_RECLAIM_MASK);
1252                 if (unlikely(err)) {
1253                         put_page(page);
1254                         page = NULL;
1255                         if (err == -EEXIST)
1256                                 goto repeat;
1257                 }
1258         }
1259
1260         return page;
1261 }
1262 EXPORT_SYMBOL(pagecache_get_page);
1263
1264 /**
1265  * find_get_entries - gang pagecache lookup
1266  * @mapping:    The address_space to search
1267  * @start:      The starting page cache index
1268  * @nr_entries: The maximum number of entries
1269  * @entries:    Where the resulting entries are placed
1270  * @indices:    The cache indices corresponding to the entries in @entries
1271  *
1272  * find_get_entries() will search for and return a group of up to
1273  * @nr_entries entries in the mapping.  The entries are placed at
1274  * @entries.  find_get_entries() takes a reference against any actual
1275  * pages it returns.
1276  *
1277  * The search returns a group of mapping-contiguous page cache entries
1278  * with ascending indexes.  There may be holes in the indices due to
1279  * not-present pages.
1280  *
1281  * Any shadow entries of evicted pages, or swap entries from
1282  * shmem/tmpfs, are included in the returned array.
1283  *
1284  * find_get_entries() returns the number of pages and shadow entries
1285  * which were found.
1286  */
1287 unsigned find_get_entries(struct address_space *mapping,
1288                           pgoff_t start, unsigned int nr_entries,
1289                           struct page **entries, pgoff_t *indices)
1290 {
1291         void **slot;
1292         unsigned int ret = 0;
1293         struct radix_tree_iter iter;
1294
1295         if (!nr_entries)
1296                 return 0;
1297
1298         rcu_read_lock();
1299         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1300                 struct page *head, *page;
1301 repeat:
1302                 page = radix_tree_deref_slot(slot);
1303                 if (unlikely(!page))
1304                         continue;
1305                 if (radix_tree_exception(page)) {
1306                         if (radix_tree_deref_retry(page)) {
1307                                 slot = radix_tree_iter_retry(&iter);
1308                                 continue;
1309                         }
1310                         /*
1311                          * A shadow entry of a recently evicted page, a swap
1312                          * entry from shmem/tmpfs or a DAX entry.  Return it
1313                          * without attempting to raise page count.
1314                          */
1315                         goto export;
1316                 }
1317
1318                 head = compound_head(page);
1319                 if (!page_cache_get_speculative(head))
1320                         goto repeat;
1321
1322                 /* The page was split under us? */
1323                 if (compound_head(page) != head) {
1324                         put_page(head);
1325                         goto repeat;
1326                 }
1327
1328                 /* Has the page moved? */
1329                 if (unlikely(page != *slot)) {
1330                         put_page(head);
1331                         goto repeat;
1332                 }
1333 export:
1334                 indices[ret] = iter.index;
1335                 entries[ret] = page;
1336                 if (++ret == nr_entries)
1337                         break;
1338         }
1339         rcu_read_unlock();
1340         return ret;
1341 }
1342
1343 /**
1344  * find_get_pages - gang pagecache lookup
1345  * @mapping:    The address_space to search
1346  * @start:      The starting page index
1347  * @nr_pages:   The maximum number of pages
1348  * @pages:      Where the resulting pages are placed
1349  *
1350  * find_get_pages() will search for and return a group of up to
1351  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1352  * find_get_pages() takes a reference against the returned pages.
1353  *
1354  * The search returns a group of mapping-contiguous pages with ascending
1355  * indexes.  There may be holes in the indices due to not-present pages.
1356  *
1357  * find_get_pages() returns the number of pages which were found.
1358  */
1359 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1360                             unsigned int nr_pages, struct page **pages)
1361 {
1362         struct radix_tree_iter iter;
1363         void **slot;
1364         unsigned ret = 0;
1365
1366         if (unlikely(!nr_pages))
1367                 return 0;
1368
1369         rcu_read_lock();
1370         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1371                 struct page *head, *page;
1372 repeat:
1373                 page = radix_tree_deref_slot(slot);
1374                 if (unlikely(!page))
1375                         continue;
1376
1377                 if (radix_tree_exception(page)) {
1378                         if (radix_tree_deref_retry(page)) {
1379                                 slot = radix_tree_iter_retry(&iter);
1380                                 continue;
1381                         }
1382                         /*
1383                          * A shadow entry of a recently evicted page,
1384                          * or a swap entry from shmem/tmpfs.  Skip
1385                          * over it.
1386                          */
1387                         continue;
1388                 }
1389
1390                 head = compound_head(page);
1391                 if (!page_cache_get_speculative(head))
1392                         goto repeat;
1393
1394                 /* The page was split under us? */
1395                 if (compound_head(page) != head) {
1396                         put_page(head);
1397                         goto repeat;
1398                 }
1399
1400                 /* Has the page moved? */
1401                 if (unlikely(page != *slot)) {
1402                         put_page(head);
1403                         goto repeat;
1404                 }
1405
1406                 pages[ret] = page;
1407                 if (++ret == nr_pages)
1408                         break;
1409         }
1410
1411         rcu_read_unlock();
1412         return ret;
1413 }
1414
1415 /**
1416  * find_get_pages_contig - gang contiguous pagecache lookup
1417  * @mapping:    The address_space to search
1418  * @index:      The starting page index
1419  * @nr_pages:   The maximum number of pages
1420  * @pages:      Where the resulting pages are placed
1421  *
1422  * find_get_pages_contig() works exactly like find_get_pages(), except
1423  * that the returned number of pages are guaranteed to be contiguous.
1424  *
1425  * find_get_pages_contig() returns the number of pages which were found.
1426  */
1427 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1428                                unsigned int nr_pages, struct page **pages)
1429 {
1430         struct radix_tree_iter iter;
1431         void **slot;
1432         unsigned int ret = 0;
1433
1434         if (unlikely(!nr_pages))
1435                 return 0;
1436
1437         rcu_read_lock();
1438         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1439                 struct page *head, *page;
1440 repeat:
1441                 page = radix_tree_deref_slot(slot);
1442                 /* The hole, there no reason to continue */
1443                 if (unlikely(!page))
1444                         break;
1445
1446                 if (radix_tree_exception(page)) {
1447                         if (radix_tree_deref_retry(page)) {
1448                                 slot = radix_tree_iter_retry(&iter);
1449                                 continue;
1450                         }
1451                         /*
1452                          * A shadow entry of a recently evicted page,
1453                          * or a swap entry from shmem/tmpfs.  Stop
1454                          * looking for contiguous pages.
1455                          */
1456                         break;
1457                 }
1458
1459                 head = compound_head(page);
1460                 if (!page_cache_get_speculative(head))
1461                         goto repeat;
1462
1463                 /* The page was split under us? */
1464                 if (compound_head(page) != head) {
1465                         put_page(head);
1466                         goto repeat;
1467                 }
1468
1469                 /* Has the page moved? */
1470                 if (unlikely(page != *slot)) {
1471                         put_page(head);
1472                         goto repeat;
1473                 }
1474
1475                 /*
1476                  * must check mapping and index after taking the ref.
1477                  * otherwise we can get both false positives and false
1478                  * negatives, which is just confusing to the caller.
1479                  */
1480                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1481                         put_page(page);
1482                         break;
1483                 }
1484
1485                 pages[ret] = page;
1486                 if (++ret == nr_pages)
1487                         break;
1488         }
1489         rcu_read_unlock();
1490         return ret;
1491 }
1492 EXPORT_SYMBOL(find_get_pages_contig);
1493
1494 /**
1495  * find_get_pages_tag - find and return pages that match @tag
1496  * @mapping:    the address_space to search
1497  * @index:      the starting page index
1498  * @tag:        the tag index
1499  * @nr_pages:   the maximum number of pages
1500  * @pages:      where the resulting pages are placed
1501  *
1502  * Like find_get_pages, except we only return pages which are tagged with
1503  * @tag.   We update @index to index the next page for the traversal.
1504  */
1505 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1506                         int tag, unsigned int nr_pages, struct page **pages)
1507 {
1508         struct radix_tree_iter iter;
1509         void **slot;
1510         unsigned ret = 0;
1511
1512         if (unlikely(!nr_pages))
1513                 return 0;
1514
1515         rcu_read_lock();
1516         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1517                                    &iter, *index, tag) {
1518                 struct page *head, *page;
1519 repeat:
1520                 page = radix_tree_deref_slot(slot);
1521                 if (unlikely(!page))
1522                         continue;
1523
1524                 if (radix_tree_exception(page)) {
1525                         if (radix_tree_deref_retry(page)) {
1526                                 slot = radix_tree_iter_retry(&iter);
1527                                 continue;
1528                         }
1529                         /*
1530                          * A shadow entry of a recently evicted page.
1531                          *
1532                          * Those entries should never be tagged, but
1533                          * this tree walk is lockless and the tags are
1534                          * looked up in bulk, one radix tree node at a
1535                          * time, so there is a sizable window for page
1536                          * reclaim to evict a page we saw tagged.
1537                          *
1538                          * Skip over it.
1539                          */
1540                         continue;
1541                 }
1542
1543                 head = compound_head(page);
1544                 if (!page_cache_get_speculative(head))
1545                         goto repeat;
1546
1547                 /* The page was split under us? */
1548                 if (compound_head(page) != head) {
1549                         put_page(head);
1550                         goto repeat;
1551                 }
1552
1553                 /* Has the page moved? */
1554                 if (unlikely(page != *slot)) {
1555                         put_page(head);
1556                         goto repeat;
1557                 }
1558
1559                 pages[ret] = page;
1560                 if (++ret == nr_pages)
1561                         break;
1562         }
1563
1564         rcu_read_unlock();
1565
1566         if (ret)
1567                 *index = pages[ret - 1]->index + 1;
1568
1569         return ret;
1570 }
1571 EXPORT_SYMBOL(find_get_pages_tag);
1572
1573 /**
1574  * find_get_entries_tag - find and return entries that match @tag
1575  * @mapping:    the address_space to search
1576  * @start:      the starting page cache index
1577  * @tag:        the tag index
1578  * @nr_entries: the maximum number of entries
1579  * @entries:    where the resulting entries are placed
1580  * @indices:    the cache indices corresponding to the entries in @entries
1581  *
1582  * Like find_get_entries, except we only return entries which are tagged with
1583  * @tag.
1584  */
1585 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1586                         int tag, unsigned int nr_entries,
1587                         struct page **entries, pgoff_t *indices)
1588 {
1589         void **slot;
1590         unsigned int ret = 0;
1591         struct radix_tree_iter iter;
1592
1593         if (!nr_entries)
1594                 return 0;
1595
1596         rcu_read_lock();
1597         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1598                                    &iter, start, tag) {
1599                 struct page *head, *page;
1600 repeat:
1601                 page = radix_tree_deref_slot(slot);
1602                 if (unlikely(!page))
1603                         continue;
1604                 if (radix_tree_exception(page)) {
1605                         if (radix_tree_deref_retry(page)) {
1606                                 slot = radix_tree_iter_retry(&iter);
1607                                 continue;
1608                         }
1609
1610                         /*
1611                          * A shadow entry of a recently evicted page, a swap
1612                          * entry from shmem/tmpfs or a DAX entry.  Return it
1613                          * without attempting to raise page count.
1614                          */
1615                         goto export;
1616                 }
1617
1618                 head = compound_head(page);
1619                 if (!page_cache_get_speculative(head))
1620                         goto repeat;
1621
1622                 /* The page was split under us? */
1623                 if (compound_head(page) != head) {
1624                         put_page(head);
1625                         goto repeat;
1626                 }
1627
1628                 /* Has the page moved? */
1629                 if (unlikely(page != *slot)) {
1630                         put_page(head);
1631                         goto repeat;
1632                 }
1633 export:
1634                 indices[ret] = iter.index;
1635                 entries[ret] = page;
1636                 if (++ret == nr_entries)
1637                         break;
1638         }
1639         rcu_read_unlock();
1640         return ret;
1641 }
1642 EXPORT_SYMBOL(find_get_entries_tag);
1643
1644 /*
1645  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1646  * a _large_ part of the i/o request. Imagine the worst scenario:
1647  *
1648  *      ---R__________________________________________B__________
1649  *         ^ reading here                             ^ bad block(assume 4k)
1650  *
1651  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1652  * => failing the whole request => read(R) => read(R+1) =>
1653  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1654  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1655  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1656  *
1657  * It is going insane. Fix it by quickly scaling down the readahead size.
1658  */
1659 static void shrink_readahead_size_eio(struct file *filp,
1660                                         struct file_ra_state *ra)
1661 {
1662         ra->ra_pages /= 4;
1663 }
1664
1665 /**
1666  * do_generic_file_read - generic file read routine
1667  * @filp:       the file to read
1668  * @ppos:       current file position
1669  * @iter:       data destination
1670  * @written:    already copied
1671  *
1672  * This is a generic file read routine, and uses the
1673  * mapping->a_ops->readpage() function for the actual low-level stuff.
1674  *
1675  * This is really ugly. But the goto's actually try to clarify some
1676  * of the logic when it comes to error handling etc.
1677  */
1678 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1679                 struct iov_iter *iter, ssize_t written)
1680 {
1681         struct address_space *mapping = filp->f_mapping;
1682         struct inode *inode = mapping->host;
1683         struct file_ra_state *ra = &filp->f_ra;
1684         pgoff_t index;
1685         pgoff_t last_index;
1686         pgoff_t prev_index;
1687         unsigned long offset;      /* offset into pagecache page */
1688         unsigned int prev_offset;
1689         int error = 0;
1690
1691         index = *ppos >> PAGE_SHIFT;
1692         prev_index = ra->prev_pos >> PAGE_SHIFT;
1693         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1694         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1695         offset = *ppos & ~PAGE_MASK;
1696
1697         for (;;) {
1698                 struct page *page;
1699                 pgoff_t end_index;
1700                 loff_t isize;
1701                 unsigned long nr, ret;
1702
1703                 cond_resched();
1704 find_page:
1705                 page = find_get_page(mapping, index);
1706                 if (!page) {
1707                         page_cache_sync_readahead(mapping,
1708                                         ra, filp,
1709                                         index, last_index - index);
1710                         page = find_get_page(mapping, index);
1711                         if (unlikely(page == NULL))
1712                                 goto no_cached_page;
1713                 }
1714                 if (PageReadahead(page)) {
1715                         page_cache_async_readahead(mapping,
1716                                         ra, filp, page,
1717                                         index, last_index - index);
1718                 }
1719                 if (!PageUptodate(page)) {
1720                         /*
1721                          * See comment in do_read_cache_page on why
1722                          * wait_on_page_locked is used to avoid unnecessarily
1723                          * serialisations and why it's safe.
1724                          */
1725                         wait_on_page_locked_killable(page);
1726                         if (PageUptodate(page))
1727                                 goto page_ok;
1728
1729                         if (inode->i_blkbits == PAGE_SHIFT ||
1730                                         !mapping->a_ops->is_partially_uptodate)
1731                                 goto page_not_up_to_date;
1732                         if (!trylock_page(page))
1733                                 goto page_not_up_to_date;
1734                         /* Did it get truncated before we got the lock? */
1735                         if (!page->mapping)
1736                                 goto page_not_up_to_date_locked;
1737                         if (!mapping->a_ops->is_partially_uptodate(page,
1738                                                         offset, iter->count))
1739                                 goto page_not_up_to_date_locked;
1740                         unlock_page(page);
1741                 }
1742 page_ok:
1743                 /*
1744                  * i_size must be checked after we know the page is Uptodate.
1745                  *
1746                  * Checking i_size after the check allows us to calculate
1747                  * the correct value for "nr", which means the zero-filled
1748                  * part of the page is not copied back to userspace (unless
1749                  * another truncate extends the file - this is desired though).
1750                  */
1751
1752                 isize = i_size_read(inode);
1753                 end_index = (isize - 1) >> PAGE_SHIFT;
1754                 if (unlikely(!isize || index > end_index)) {
1755                         put_page(page);
1756                         goto out;
1757                 }
1758
1759                 /* nr is the maximum number of bytes to copy from this page */
1760                 nr = PAGE_SIZE;
1761                 if (index == end_index) {
1762                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1763                         if (nr <= offset) {
1764                                 put_page(page);
1765                                 goto out;
1766                         }
1767                 }
1768                 nr = nr - offset;
1769
1770                 /* If users can be writing to this page using arbitrary
1771                  * virtual addresses, take care about potential aliasing
1772                  * before reading the page on the kernel side.
1773                  */
1774                 if (mapping_writably_mapped(mapping))
1775                         flush_dcache_page(page);
1776
1777                 /*
1778                  * When a sequential read accesses a page several times,
1779                  * only mark it as accessed the first time.
1780                  */
1781                 if (prev_index != index || offset != prev_offset)
1782                         mark_page_accessed(page);
1783                 prev_index = index;
1784
1785                 /*
1786                  * Ok, we have the page, and it's up-to-date, so
1787                  * now we can copy it to user space...
1788                  */
1789
1790                 ret = copy_page_to_iter(page, offset, nr, iter);
1791                 offset += ret;
1792                 index += offset >> PAGE_SHIFT;
1793                 offset &= ~PAGE_MASK;
1794                 prev_offset = offset;
1795
1796                 put_page(page);
1797                 written += ret;
1798                 if (!iov_iter_count(iter))
1799                         goto out;
1800                 if (ret < nr) {
1801                         error = -EFAULT;
1802                         goto out;
1803                 }
1804                 continue;
1805
1806 page_not_up_to_date:
1807                 /* Get exclusive access to the page ... */
1808                 error = lock_page_killable(page);
1809                 if (unlikely(error))
1810                         goto readpage_error;
1811
1812 page_not_up_to_date_locked:
1813                 /* Did it get truncated before we got the lock? */
1814                 if (!page->mapping) {
1815                         unlock_page(page);
1816                         put_page(page);
1817                         continue;
1818                 }
1819
1820                 /* Did somebody else fill it already? */
1821                 if (PageUptodate(page)) {
1822                         unlock_page(page);
1823                         goto page_ok;
1824                 }
1825
1826 readpage:
1827                 /*
1828                  * A previous I/O error may have been due to temporary
1829                  * failures, eg. multipath errors.
1830                  * PG_error will be set again if readpage fails.
1831                  */
1832                 ClearPageError(page);
1833                 /* Start the actual read. The read will unlock the page. */
1834                 error = mapping->a_ops->readpage(filp, page);
1835
1836                 if (unlikely(error)) {
1837                         if (error == AOP_TRUNCATED_PAGE) {
1838                                 put_page(page);
1839                                 error = 0;
1840                                 goto find_page;
1841                         }
1842                         goto readpage_error;
1843                 }
1844
1845                 if (!PageUptodate(page)) {
1846                         error = lock_page_killable(page);
1847                         if (unlikely(error))
1848                                 goto readpage_error;
1849                         if (!PageUptodate(page)) {
1850                                 if (page->mapping == NULL) {
1851                                         /*
1852                                          * invalidate_mapping_pages got it
1853                                          */
1854                                         unlock_page(page);
1855                                         put_page(page);
1856                                         goto find_page;
1857                                 }
1858                                 unlock_page(page);
1859                                 shrink_readahead_size_eio(filp, ra);
1860                                 error = -EIO;
1861                                 goto readpage_error;
1862                         }
1863                         unlock_page(page);
1864                 }
1865
1866                 goto page_ok;
1867
1868 readpage_error:
1869                 /* UHHUH! A synchronous read error occurred. Report it */
1870                 put_page(page);
1871                 goto out;
1872
1873 no_cached_page:
1874                 /*
1875                  * Ok, it wasn't cached, so we need to create a new
1876                  * page..
1877                  */
1878                 page = page_cache_alloc_cold(mapping);
1879                 if (!page) {
1880                         error = -ENOMEM;
1881                         goto out;
1882                 }
1883                 error = add_to_page_cache_lru(page, mapping, index,
1884                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1885                 if (error) {
1886                         put_page(page);
1887                         if (error == -EEXIST) {
1888                                 error = 0;
1889                                 goto find_page;
1890                         }
1891                         goto out;
1892                 }
1893                 goto readpage;
1894         }
1895
1896 out:
1897         ra->prev_pos = prev_index;
1898         ra->prev_pos <<= PAGE_SHIFT;
1899         ra->prev_pos |= prev_offset;
1900
1901         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1902         file_accessed(filp);
1903         return written ? written : error;
1904 }
1905
1906 /**
1907  * generic_file_read_iter - generic filesystem read routine
1908  * @iocb:       kernel I/O control block
1909  * @iter:       destination for the data read
1910  *
1911  * This is the "read_iter()" routine for all filesystems
1912  * that can use the page cache directly.
1913  */
1914 ssize_t
1915 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1916 {
1917         struct file *file = iocb->ki_filp;
1918         ssize_t retval = 0;
1919         size_t count = iov_iter_count(iter);
1920
1921         if (!count)
1922                 goto out; /* skip atime */
1923
1924         if (iocb->ki_flags & IOCB_DIRECT) {
1925                 struct address_space *mapping = file->f_mapping;
1926                 struct inode *inode = mapping->host;
1927                 loff_t size;
1928
1929                 size = i_size_read(inode);
1930                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1931                                         iocb->ki_pos + count - 1);
1932                 if (!retval) {
1933                         struct iov_iter data = *iter;
1934                         retval = mapping->a_ops->direct_IO(iocb, &data);
1935                 }
1936
1937                 if (retval > 0) {
1938                         iocb->ki_pos += retval;
1939                         iov_iter_advance(iter, retval);
1940                 }
1941
1942                 /*
1943                  * Btrfs can have a short DIO read if we encounter
1944                  * compressed extents, so if there was an error, or if
1945                  * we've already read everything we wanted to, or if
1946                  * there was a short read because we hit EOF, go ahead
1947                  * and return.  Otherwise fallthrough to buffered io for
1948                  * the rest of the read.  Buffered reads will not work for
1949                  * DAX files, so don't bother trying.
1950                  */
1951                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1952                     IS_DAX(inode)) {
1953                         file_accessed(file);
1954                         goto out;
1955                 }
1956         }
1957
1958         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1959 out:
1960         return retval;
1961 }
1962 EXPORT_SYMBOL(generic_file_read_iter);
1963
1964 #ifdef CONFIG_MMU
1965 /**
1966  * page_cache_read - adds requested page to the page cache if not already there
1967  * @file:       file to read
1968  * @offset:     page index
1969  * @gfp_mask:   memory allocation flags
1970  *
1971  * This adds the requested page to the page cache if it isn't already there,
1972  * and schedules an I/O to read in its contents from disk.
1973  */
1974 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1975 {
1976         struct address_space *mapping = file->f_mapping;
1977         struct page *page;
1978         int ret;
1979
1980         do {
1981                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1982                 if (!page)
1983                         return -ENOMEM;
1984
1985                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1986                 if (ret == 0)
1987                         ret = mapping->a_ops->readpage(file, page);
1988                 else if (ret == -EEXIST)
1989                         ret = 0; /* losing race to add is OK */
1990
1991                 put_page(page);
1992
1993         } while (ret == AOP_TRUNCATED_PAGE);
1994
1995         return ret;
1996 }
1997
1998 #define MMAP_LOTSAMISS  (100)
1999
2000 /*
2001  * Synchronous readahead happens when we don't even find
2002  * a page in the page cache at all.
2003  */
2004 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2005                                    struct file_ra_state *ra,
2006                                    struct file *file,
2007                                    pgoff_t offset)
2008 {
2009         struct address_space *mapping = file->f_mapping;
2010
2011         /* If we don't want any read-ahead, don't bother */
2012         if (vma->vm_flags & VM_RAND_READ)
2013                 return;
2014         if (!ra->ra_pages)
2015                 return;
2016
2017         if (vma->vm_flags & VM_SEQ_READ) {
2018                 page_cache_sync_readahead(mapping, ra, file, offset,
2019                                           ra->ra_pages);
2020                 return;
2021         }
2022
2023         /* Avoid banging the cache line if not needed */
2024         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2025                 ra->mmap_miss++;
2026
2027         /*
2028          * Do we miss much more than hit in this file? If so,
2029          * stop bothering with read-ahead. It will only hurt.
2030          */
2031         if (ra->mmap_miss > MMAP_LOTSAMISS)
2032                 return;
2033
2034         /*
2035          * mmap read-around
2036          */
2037         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2038         ra->size = ra->ra_pages;
2039         ra->async_size = ra->ra_pages / 4;
2040         ra_submit(ra, mapping, file);
2041 }
2042
2043 /*
2044  * Asynchronous readahead happens when we find the page and PG_readahead,
2045  * so we want to possibly extend the readahead further..
2046  */
2047 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2048                                     struct file_ra_state *ra,
2049                                     struct file *file,
2050                                     struct page *page,
2051                                     pgoff_t offset)
2052 {
2053         struct address_space *mapping = file->f_mapping;
2054
2055         /* If we don't want any read-ahead, don't bother */
2056         if (vma->vm_flags & VM_RAND_READ)
2057                 return;
2058         if (ra->mmap_miss > 0)
2059                 ra->mmap_miss--;
2060         if (PageReadahead(page))
2061                 page_cache_async_readahead(mapping, ra, file,
2062                                            page, offset, ra->ra_pages);
2063 }
2064
2065 /**
2066  * filemap_fault - read in file data for page fault handling
2067  * @vma:        vma in which the fault was taken
2068  * @vmf:        struct vm_fault containing details of the fault
2069  *
2070  * filemap_fault() is invoked via the vma operations vector for a
2071  * mapped memory region to read in file data during a page fault.
2072  *
2073  * The goto's are kind of ugly, but this streamlines the normal case of having
2074  * it in the page cache, and handles the special cases reasonably without
2075  * having a lot of duplicated code.
2076  *
2077  * vma->vm_mm->mmap_sem must be held on entry.
2078  *
2079  * If our return value has VM_FAULT_RETRY set, it's because
2080  * lock_page_or_retry() returned 0.
2081  * The mmap_sem has usually been released in this case.
2082  * See __lock_page_or_retry() for the exception.
2083  *
2084  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2085  * has not been released.
2086  *
2087  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2088  */
2089 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2090 {
2091         int error;
2092         struct file *file = vma->vm_file;
2093         struct address_space *mapping = file->f_mapping;
2094         struct file_ra_state *ra = &file->f_ra;
2095         struct inode *inode = mapping->host;
2096         pgoff_t offset = vmf->pgoff;
2097         struct page *page;
2098         loff_t size;
2099         int ret = 0;
2100
2101         size = round_up(i_size_read(inode), PAGE_SIZE);
2102         if (offset >= size >> PAGE_SHIFT)
2103                 return VM_FAULT_SIGBUS;
2104
2105         /*
2106          * Do we have something in the page cache already?
2107          */
2108         page = find_get_page(mapping, offset);
2109         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2110                 /*
2111                  * We found the page, so try async readahead before
2112                  * waiting for the lock.
2113                  */
2114                 do_async_mmap_readahead(vma, ra, file, page, offset);
2115         } else if (!page) {
2116                 /* No page in the page cache at all */
2117                 do_sync_mmap_readahead(vma, ra, file, offset);
2118                 count_vm_event(PGMAJFAULT);
2119                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2120                 ret = VM_FAULT_MAJOR;
2121 retry_find:
2122                 page = find_get_page(mapping, offset);
2123                 if (!page)
2124                         goto no_cached_page;
2125         }
2126
2127         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2128                 put_page(page);
2129                 return ret | VM_FAULT_RETRY;
2130         }
2131
2132         /* Did it get truncated? */
2133         if (unlikely(page->mapping != mapping)) {
2134                 unlock_page(page);
2135                 put_page(page);
2136                 goto retry_find;
2137         }
2138         VM_BUG_ON_PAGE(page->index != offset, page);
2139
2140         /*
2141          * We have a locked page in the page cache, now we need to check
2142          * that it's up-to-date. If not, it is going to be due to an error.
2143          */
2144         if (unlikely(!PageUptodate(page)))
2145                 goto page_not_uptodate;
2146
2147         /*
2148          * Found the page and have a reference on it.
2149          * We must recheck i_size under page lock.
2150          */
2151         size = round_up(i_size_read(inode), PAGE_SIZE);
2152         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2153                 unlock_page(page);
2154                 put_page(page);
2155                 return VM_FAULT_SIGBUS;
2156         }
2157
2158         vmf->page = page;
2159         return ret | VM_FAULT_LOCKED;
2160
2161 no_cached_page:
2162         /*
2163          * We're only likely to ever get here if MADV_RANDOM is in
2164          * effect.
2165          */
2166         error = page_cache_read(file, offset, vmf->gfp_mask);
2167
2168         /*
2169          * The page we want has now been added to the page cache.
2170          * In the unlikely event that someone removed it in the
2171          * meantime, we'll just come back here and read it again.
2172          */
2173         if (error >= 0)
2174                 goto retry_find;
2175
2176         /*
2177          * An error return from page_cache_read can result if the
2178          * system is low on memory, or a problem occurs while trying
2179          * to schedule I/O.
2180          */
2181         if (error == -ENOMEM)
2182                 return VM_FAULT_OOM;
2183         return VM_FAULT_SIGBUS;
2184
2185 page_not_uptodate:
2186         /*
2187          * Umm, take care of errors if the page isn't up-to-date.
2188          * Try to re-read it _once_. We do this synchronously,
2189          * because there really aren't any performance issues here
2190          * and we need to check for errors.
2191          */
2192         ClearPageError(page);
2193         error = mapping->a_ops->readpage(file, page);
2194         if (!error) {
2195                 wait_on_page_locked(page);
2196                 if (!PageUptodate(page))
2197                         error = -EIO;
2198         }
2199         put_page(page);
2200
2201         if (!error || error == AOP_TRUNCATED_PAGE)
2202                 goto retry_find;
2203
2204         /* Things didn't work out. Return zero to tell the mm layer so. */
2205         shrink_readahead_size_eio(file, ra);
2206         return VM_FAULT_SIGBUS;
2207 }
2208 EXPORT_SYMBOL(filemap_fault);
2209
2210 void filemap_map_pages(struct fault_env *fe,
2211                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2212 {
2213         struct radix_tree_iter iter;
2214         void **slot;
2215         struct file *file = fe->vma->vm_file;
2216         struct address_space *mapping = file->f_mapping;
2217         pgoff_t last_pgoff = start_pgoff;
2218         loff_t size;
2219         struct page *head, *page;
2220
2221         rcu_read_lock();
2222         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2223                         start_pgoff) {
2224                 if (iter.index > end_pgoff)
2225                         break;
2226 repeat:
2227                 page = radix_tree_deref_slot(slot);
2228                 if (unlikely(!page))
2229                         goto next;
2230                 if (radix_tree_exception(page)) {
2231                         if (radix_tree_deref_retry(page)) {
2232                                 slot = radix_tree_iter_retry(&iter);
2233                                 continue;
2234                         }
2235                         goto next;
2236                 }
2237
2238                 head = compound_head(page);
2239                 if (!page_cache_get_speculative(head))
2240                         goto repeat;
2241
2242                 /* The page was split under us? */
2243                 if (compound_head(page) != head) {
2244                         put_page(head);
2245                         goto repeat;
2246                 }
2247
2248                 /* Has the page moved? */
2249                 if (unlikely(page != *slot)) {
2250                         put_page(head);
2251                         goto repeat;
2252                 }
2253
2254                 if (!PageUptodate(page) ||
2255                                 PageReadahead(page) ||
2256                                 PageHWPoison(page))
2257                         goto skip;
2258                 if (!trylock_page(page))
2259                         goto skip;
2260
2261                 if (page->mapping != mapping || !PageUptodate(page))
2262                         goto unlock;
2263
2264                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2265                 if (page->index >= size >> PAGE_SHIFT)
2266                         goto unlock;
2267
2268                 if (file->f_ra.mmap_miss > 0)
2269                         file->f_ra.mmap_miss--;
2270
2271                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2272                 if (fe->pte)
2273                         fe->pte += iter.index - last_pgoff;
2274                 last_pgoff = iter.index;
2275                 if (alloc_set_pte(fe, NULL, page))
2276                         goto unlock;
2277                 unlock_page(page);
2278                 goto next;
2279 unlock:
2280                 unlock_page(page);
2281 skip:
2282                 put_page(page);
2283 next:
2284                 /* Huge page is mapped? No need to proceed. */
2285                 if (pmd_trans_huge(*fe->pmd))
2286                         break;
2287                 if (iter.index == end_pgoff)
2288                         break;
2289         }
2290         rcu_read_unlock();
2291 }
2292 EXPORT_SYMBOL(filemap_map_pages);
2293
2294 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2295 {
2296         struct page *page = vmf->page;
2297         struct inode *inode = file_inode(vma->vm_file);
2298         int ret = VM_FAULT_LOCKED;
2299
2300         sb_start_pagefault(inode->i_sb);
2301         file_update_time(vma->vm_file);
2302         lock_page(page);
2303         if (page->mapping != inode->i_mapping) {
2304                 unlock_page(page);
2305                 ret = VM_FAULT_NOPAGE;
2306                 goto out;
2307         }
2308         /*
2309          * We mark the page dirty already here so that when freeze is in
2310          * progress, we are guaranteed that writeback during freezing will
2311          * see the dirty page and writeprotect it again.
2312          */
2313         set_page_dirty(page);
2314         wait_for_stable_page(page);
2315 out:
2316         sb_end_pagefault(inode->i_sb);
2317         return ret;
2318 }
2319 EXPORT_SYMBOL(filemap_page_mkwrite);
2320
2321 const struct vm_operations_struct generic_file_vm_ops = {
2322         .fault          = filemap_fault,
2323         .map_pages      = filemap_map_pages,
2324         .page_mkwrite   = filemap_page_mkwrite,
2325 };
2326
2327 /* This is used for a general mmap of a disk file */
2328
2329 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2330 {
2331         struct address_space *mapping = file->f_mapping;
2332
2333         if (!mapping->a_ops->readpage)
2334                 return -ENOEXEC;
2335         file_accessed(file);
2336         vma->vm_ops = &generic_file_vm_ops;
2337         return 0;
2338 }
2339
2340 /*
2341  * This is for filesystems which do not implement ->writepage.
2342  */
2343 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2344 {
2345         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2346                 return -EINVAL;
2347         return generic_file_mmap(file, vma);
2348 }
2349 #else
2350 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2351 {
2352         return -ENOSYS;
2353 }
2354 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2355 {
2356         return -ENOSYS;
2357 }
2358 #endif /* CONFIG_MMU */
2359
2360 EXPORT_SYMBOL(generic_file_mmap);
2361 EXPORT_SYMBOL(generic_file_readonly_mmap);
2362
2363 static struct page *wait_on_page_read(struct page *page)
2364 {
2365         if (!IS_ERR(page)) {
2366                 wait_on_page_locked(page);
2367                 if (!PageUptodate(page)) {
2368                         put_page(page);
2369                         page = ERR_PTR(-EIO);
2370                 }
2371         }
2372         return page;
2373 }
2374
2375 static struct page *do_read_cache_page(struct address_space *mapping,
2376                                 pgoff_t index,
2377                                 int (*filler)(void *, struct page *),
2378                                 void *data,
2379                                 gfp_t gfp)
2380 {
2381         struct page *page;
2382         int err;
2383 repeat:
2384         page = find_get_page(mapping, index);
2385         if (!page) {
2386                 page = __page_cache_alloc(gfp | __GFP_COLD);
2387                 if (!page)
2388                         return ERR_PTR(-ENOMEM);
2389                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2390                 if (unlikely(err)) {
2391                         put_page(page);
2392                         if (err == -EEXIST)
2393                                 goto repeat;
2394                         /* Presumably ENOMEM for radix tree node */
2395                         return ERR_PTR(err);
2396                 }
2397
2398 filler:
2399                 err = filler(data, page);
2400                 if (err < 0) {
2401                         put_page(page);
2402                         return ERR_PTR(err);
2403                 }
2404
2405                 page = wait_on_page_read(page);
2406                 if (IS_ERR(page))
2407                         return page;
2408                 goto out;
2409         }
2410         if (PageUptodate(page))
2411                 goto out;
2412
2413         /*
2414          * Page is not up to date and may be locked due one of the following
2415          * case a: Page is being filled and the page lock is held
2416          * case b: Read/write error clearing the page uptodate status
2417          * case c: Truncation in progress (page locked)
2418          * case d: Reclaim in progress
2419          *
2420          * Case a, the page will be up to date when the page is unlocked.
2421          *    There is no need to serialise on the page lock here as the page
2422          *    is pinned so the lock gives no additional protection. Even if the
2423          *    the page is truncated, the data is still valid if PageUptodate as
2424          *    it's a race vs truncate race.
2425          * Case b, the page will not be up to date
2426          * Case c, the page may be truncated but in itself, the data may still
2427          *    be valid after IO completes as it's a read vs truncate race. The
2428          *    operation must restart if the page is not uptodate on unlock but
2429          *    otherwise serialising on page lock to stabilise the mapping gives
2430          *    no additional guarantees to the caller as the page lock is
2431          *    released before return.
2432          * Case d, similar to truncation. If reclaim holds the page lock, it
2433          *    will be a race with remove_mapping that determines if the mapping
2434          *    is valid on unlock but otherwise the data is valid and there is
2435          *    no need to serialise with page lock.
2436          *
2437          * As the page lock gives no additional guarantee, we optimistically
2438          * wait on the page to be unlocked and check if it's up to date and
2439          * use the page if it is. Otherwise, the page lock is required to
2440          * distinguish between the different cases. The motivation is that we
2441          * avoid spurious serialisations and wakeups when multiple processes
2442          * wait on the same page for IO to complete.
2443          */
2444         wait_on_page_locked(page);
2445         if (PageUptodate(page))
2446                 goto out;
2447
2448         /* Distinguish between all the cases under the safety of the lock */
2449         lock_page(page);
2450
2451         /* Case c or d, restart the operation */
2452         if (!page->mapping) {
2453                 unlock_page(page);
2454                 put_page(page);
2455                 goto repeat;
2456         }
2457
2458         /* Someone else locked and filled the page in a very small window */
2459         if (PageUptodate(page)) {
2460                 unlock_page(page);
2461                 goto out;
2462         }
2463         goto filler;
2464
2465 out:
2466         mark_page_accessed(page);
2467         return page;
2468 }
2469
2470 /**
2471  * read_cache_page - read into page cache, fill it if needed
2472  * @mapping:    the page's address_space
2473  * @index:      the page index
2474  * @filler:     function to perform the read
2475  * @data:       first arg to filler(data, page) function, often left as NULL
2476  *
2477  * Read into the page cache. If a page already exists, and PageUptodate() is
2478  * not set, try to fill the page and wait for it to become unlocked.
2479  *
2480  * If the page does not get brought uptodate, return -EIO.
2481  */
2482 struct page *read_cache_page(struct address_space *mapping,
2483                                 pgoff_t index,
2484                                 int (*filler)(void *, struct page *),
2485                                 void *data)
2486 {
2487         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2488 }
2489 EXPORT_SYMBOL(read_cache_page);
2490
2491 /**
2492  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2493  * @mapping:    the page's address_space
2494  * @index:      the page index
2495  * @gfp:        the page allocator flags to use if allocating
2496  *
2497  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2498  * any new page allocations done using the specified allocation flags.
2499  *
2500  * If the page does not get brought uptodate, return -EIO.
2501  */
2502 struct page *read_cache_page_gfp(struct address_space *mapping,
2503                                 pgoff_t index,
2504                                 gfp_t gfp)
2505 {
2506         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2507
2508         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2509 }
2510 EXPORT_SYMBOL(read_cache_page_gfp);
2511
2512 /*
2513  * Performs necessary checks before doing a write
2514  *
2515  * Can adjust writing position or amount of bytes to write.
2516  * Returns appropriate error code that caller should return or
2517  * zero in case that write should be allowed.
2518  */
2519 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2520 {
2521         struct file *file = iocb->ki_filp;
2522         struct inode *inode = file->f_mapping->host;
2523         unsigned long limit = rlimit(RLIMIT_FSIZE);
2524         loff_t pos;
2525
2526         if (!iov_iter_count(from))
2527                 return 0;
2528
2529         /* FIXME: this is for backwards compatibility with 2.4 */
2530         if (iocb->ki_flags & IOCB_APPEND)
2531                 iocb->ki_pos = i_size_read(inode);
2532
2533         pos = iocb->ki_pos;
2534
2535         if (limit != RLIM_INFINITY) {
2536                 if (iocb->ki_pos >= limit) {
2537                         send_sig(SIGXFSZ, current, 0);
2538                         return -EFBIG;
2539                 }
2540                 iov_iter_truncate(from, limit - (unsigned long)pos);
2541         }
2542
2543         /*
2544          * LFS rule
2545          */
2546         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2547                                 !(file->f_flags & O_LARGEFILE))) {
2548                 if (pos >= MAX_NON_LFS)
2549                         return -EFBIG;
2550                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2551         }
2552
2553         /*
2554          * Are we about to exceed the fs block limit ?
2555          *
2556          * If we have written data it becomes a short write.  If we have
2557          * exceeded without writing data we send a signal and return EFBIG.
2558          * Linus frestrict idea will clean these up nicely..
2559          */
2560         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2561                 return -EFBIG;
2562
2563         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2564         return iov_iter_count(from);
2565 }
2566 EXPORT_SYMBOL(generic_write_checks);
2567
2568 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2569                                 loff_t pos, unsigned len, unsigned flags,
2570                                 struct page **pagep, void **fsdata)
2571 {
2572         const struct address_space_operations *aops = mapping->a_ops;
2573
2574         return aops->write_begin(file, mapping, pos, len, flags,
2575                                                         pagep, fsdata);
2576 }
2577 EXPORT_SYMBOL(pagecache_write_begin);
2578
2579 int pagecache_write_end(struct file *file, struct address_space *mapping,
2580                                 loff_t pos, unsigned len, unsigned copied,
2581                                 struct page *page, void *fsdata)
2582 {
2583         const struct address_space_operations *aops = mapping->a_ops;
2584
2585         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2586 }
2587 EXPORT_SYMBOL(pagecache_write_end);
2588
2589 ssize_t
2590 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2591 {
2592         struct file     *file = iocb->ki_filp;
2593         struct address_space *mapping = file->f_mapping;
2594         struct inode    *inode = mapping->host;
2595         loff_t          pos = iocb->ki_pos;
2596         ssize_t         written;
2597         size_t          write_len;
2598         pgoff_t         end;
2599         struct iov_iter data;
2600
2601         write_len = iov_iter_count(from);
2602         end = (pos + write_len - 1) >> PAGE_SHIFT;
2603
2604         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2605         if (written)
2606                 goto out;
2607
2608         /*
2609          * After a write we want buffered reads to be sure to go to disk to get
2610          * the new data.  We invalidate clean cached page from the region we're
2611          * about to write.  We do this *before* the write so that we can return
2612          * without clobbering -EIOCBQUEUED from ->direct_IO().
2613          */
2614         if (mapping->nrpages) {
2615                 written = invalidate_inode_pages2_range(mapping,
2616                                         pos >> PAGE_SHIFT, end);
2617                 /*
2618                  * If a page can not be invalidated, return 0 to fall back
2619                  * to buffered write.
2620                  */
2621                 if (written) {
2622                         if (written == -EBUSY)
2623                                 return 0;
2624                         goto out;
2625                 }
2626         }
2627
2628         data = *from;
2629         written = mapping->a_ops->direct_IO(iocb, &data);
2630
2631         /*
2632          * Finally, try again to invalidate clean pages which might have been
2633          * cached by non-direct readahead, or faulted in by get_user_pages()
2634          * if the source of the write was an mmap'ed region of the file
2635          * we're writing.  Either one is a pretty crazy thing to do,
2636          * so we don't support it 100%.  If this invalidation
2637          * fails, tough, the write still worked...
2638          */
2639         if (mapping->nrpages) {
2640                 invalidate_inode_pages2_range(mapping,
2641                                               pos >> PAGE_SHIFT, end);
2642         }
2643
2644         if (written > 0) {
2645                 pos += written;
2646                 iov_iter_advance(from, written);
2647                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2648                         i_size_write(inode, pos);
2649                         mark_inode_dirty(inode);
2650                 }
2651                 iocb->ki_pos = pos;
2652         }
2653 out:
2654         return written;
2655 }
2656 EXPORT_SYMBOL(generic_file_direct_write);
2657
2658 /*
2659  * Find or create a page at the given pagecache position. Return the locked
2660  * page. This function is specifically for buffered writes.
2661  */
2662 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2663                                         pgoff_t index, unsigned flags)
2664 {
2665         struct page *page;
2666         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2667
2668         if (flags & AOP_FLAG_NOFS)
2669                 fgp_flags |= FGP_NOFS;
2670
2671         page = pagecache_get_page(mapping, index, fgp_flags,
2672                         mapping_gfp_mask(mapping));
2673         if (page)
2674                 wait_for_stable_page(page);
2675
2676         return page;
2677 }
2678 EXPORT_SYMBOL(grab_cache_page_write_begin);
2679
2680 ssize_t generic_perform_write(struct file *file,
2681                                 struct iov_iter *i, loff_t pos)
2682 {
2683         struct address_space *mapping = file->f_mapping;
2684         const struct address_space_operations *a_ops = mapping->a_ops;
2685         long status = 0;
2686         ssize_t written = 0;
2687         unsigned int flags = 0;
2688
2689         /*
2690          * Copies from kernel address space cannot fail (NFSD is a big user).
2691          */
2692         if (!iter_is_iovec(i))
2693                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2694
2695         do {
2696                 struct page *page;
2697                 unsigned long offset;   /* Offset into pagecache page */
2698                 unsigned long bytes;    /* Bytes to write to page */
2699                 size_t copied;          /* Bytes copied from user */
2700                 void *fsdata;
2701
2702                 offset = (pos & (PAGE_SIZE - 1));
2703                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2704                                                 iov_iter_count(i));
2705
2706 again:
2707                 /*
2708                  * Bring in the user page that we will copy from _first_.
2709                  * Otherwise there's a nasty deadlock on copying from the
2710                  * same page as we're writing to, without it being marked
2711                  * up-to-date.
2712                  *
2713                  * Not only is this an optimisation, but it is also required
2714                  * to check that the address is actually valid, when atomic
2715                  * usercopies are used, below.
2716                  */
2717                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2718                         status = -EFAULT;
2719                         break;
2720                 }
2721
2722                 if (fatal_signal_pending(current)) {
2723                         status = -EINTR;
2724                         break;
2725                 }
2726
2727                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2728                                                 &page, &fsdata);
2729                 if (unlikely(status < 0))
2730                         break;
2731
2732                 if (mapping_writably_mapped(mapping))
2733                         flush_dcache_page(page);
2734
2735                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2736                 flush_dcache_page(page);
2737
2738                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2739                                                 page, fsdata);
2740                 if (unlikely(status < 0))
2741                         break;
2742                 copied = status;
2743
2744                 cond_resched();
2745
2746                 iov_iter_advance(i, copied);
2747                 if (unlikely(copied == 0)) {
2748                         /*
2749                          * If we were unable to copy any data at all, we must
2750                          * fall back to a single segment length write.
2751                          *
2752                          * If we didn't fallback here, we could livelock
2753                          * because not all segments in the iov can be copied at
2754                          * once without a pagefault.
2755                          */
2756                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2757                                                 iov_iter_single_seg_count(i));
2758                         goto again;
2759                 }
2760                 pos += copied;
2761                 written += copied;
2762
2763                 balance_dirty_pages_ratelimited(mapping);
2764         } while (iov_iter_count(i));
2765
2766         return written ? written : status;
2767 }
2768 EXPORT_SYMBOL(generic_perform_write);
2769
2770 /**
2771  * __generic_file_write_iter - write data to a file
2772  * @iocb:       IO state structure (file, offset, etc.)
2773  * @from:       iov_iter with data to write
2774  *
2775  * This function does all the work needed for actually writing data to a
2776  * file. It does all basic checks, removes SUID from the file, updates
2777  * modification times and calls proper subroutines depending on whether we
2778  * do direct IO or a standard buffered write.
2779  *
2780  * It expects i_mutex to be grabbed unless we work on a block device or similar
2781  * object which does not need locking at all.
2782  *
2783  * This function does *not* take care of syncing data in case of O_SYNC write.
2784  * A caller has to handle it. This is mainly due to the fact that we want to
2785  * avoid syncing under i_mutex.
2786  */
2787 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2788 {
2789         struct file *file = iocb->ki_filp;
2790         struct address_space * mapping = file->f_mapping;
2791         struct inode    *inode = mapping->host;
2792         ssize_t         written = 0;
2793         ssize_t         err;
2794         ssize_t         status;
2795
2796         /* We can write back this queue in page reclaim */
2797         current->backing_dev_info = inode_to_bdi(inode);
2798         err = file_remove_privs(file);
2799         if (err)
2800                 goto out;
2801
2802         err = file_update_time(file);
2803         if (err)
2804                 goto out;
2805
2806         if (iocb->ki_flags & IOCB_DIRECT) {
2807                 loff_t pos, endbyte;
2808
2809                 written = generic_file_direct_write(iocb, from);
2810                 /*
2811                  * If the write stopped short of completing, fall back to
2812                  * buffered writes.  Some filesystems do this for writes to
2813                  * holes, for example.  For DAX files, a buffered write will
2814                  * not succeed (even if it did, DAX does not handle dirty
2815                  * page-cache pages correctly).
2816                  */
2817                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2818                         goto out;
2819
2820                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2821                 /*
2822                  * If generic_perform_write() returned a synchronous error
2823                  * then we want to return the number of bytes which were
2824                  * direct-written, or the error code if that was zero.  Note
2825                  * that this differs from normal direct-io semantics, which
2826                  * will return -EFOO even if some bytes were written.
2827                  */
2828                 if (unlikely(status < 0)) {
2829                         err = status;
2830                         goto out;
2831                 }
2832                 /*
2833                  * We need to ensure that the page cache pages are written to
2834                  * disk and invalidated to preserve the expected O_DIRECT
2835                  * semantics.
2836                  */
2837                 endbyte = pos + status - 1;
2838                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2839                 if (err == 0) {
2840                         iocb->ki_pos = endbyte + 1;
2841                         written += status;
2842                         invalidate_mapping_pages(mapping,
2843                                                  pos >> PAGE_SHIFT,
2844                                                  endbyte >> PAGE_SHIFT);
2845                 } else {
2846                         /*
2847                          * We don't know how much we wrote, so just return
2848                          * the number of bytes which were direct-written
2849                          */
2850                 }
2851         } else {
2852                 written = generic_perform_write(file, from, iocb->ki_pos);
2853                 if (likely(written > 0))
2854                         iocb->ki_pos += written;
2855         }
2856 out:
2857         current->backing_dev_info = NULL;
2858         return written ? written : err;
2859 }
2860 EXPORT_SYMBOL(__generic_file_write_iter);
2861
2862 /**
2863  * generic_file_write_iter - write data to a file
2864  * @iocb:       IO state structure
2865  * @from:       iov_iter with data to write
2866  *
2867  * This is a wrapper around __generic_file_write_iter() to be used by most
2868  * filesystems. It takes care of syncing the file in case of O_SYNC file
2869  * and acquires i_mutex as needed.
2870  */
2871 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2872 {
2873         struct file *file = iocb->ki_filp;
2874         struct inode *inode = file->f_mapping->host;
2875         ssize_t ret;
2876
2877         inode_lock(inode);
2878         ret = generic_write_checks(iocb, from);
2879         if (ret > 0)
2880                 ret = __generic_file_write_iter(iocb, from);
2881         inode_unlock(inode);
2882
2883         if (ret > 0)
2884                 ret = generic_write_sync(iocb, ret);
2885         return ret;
2886 }
2887 EXPORT_SYMBOL(generic_file_write_iter);
2888
2889 /**
2890  * try_to_release_page() - release old fs-specific metadata on a page
2891  *
2892  * @page: the page which the kernel is trying to free
2893  * @gfp_mask: memory allocation flags (and I/O mode)
2894  *
2895  * The address_space is to try to release any data against the page
2896  * (presumably at page->private).  If the release was successful, return `1'.
2897  * Otherwise return zero.
2898  *
2899  * This may also be called if PG_fscache is set on a page, indicating that the
2900  * page is known to the local caching routines.
2901  *
2902  * The @gfp_mask argument specifies whether I/O may be performed to release
2903  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2904  *
2905  */
2906 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2907 {
2908         struct address_space * const mapping = page->mapping;
2909
2910         BUG_ON(!PageLocked(page));
2911         if (PageWriteback(page))
2912                 return 0;
2913
2914         if (mapping && mapping->a_ops->releasepage)
2915                 return mapping->a_ops->releasepage(page, gfp_mask);
2916         return try_to_free_buffers(page);
2917 }
2918
2919 EXPORT_SYMBOL(try_to_release_page);