x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17
18 #include "internal.h"
19
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22         return addr >= (unsigned long)__start_rodata &&
23                 addr < (unsigned long)__end_rodata;
24 }
25
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
32 void kfree_const(const void *x)
33 {
34         if (!is_kernel_rodata((unsigned long)x))
35                 kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46         size_t len;
47         char *buf;
48
49         if (!s)
50                 return NULL;
51
52         len = strlen(s) + 1;
53         buf = kmalloc_track_caller(len, gfp);
54         if (buf)
55                 memcpy(buf, s, len);
56         return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71         if (is_kernel_rodata((unsigned long)s))
72                 return s;
73
74         return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86         size_t len;
87         char *buf;
88
89         if (!s)
90                 return NULL;
91
92         len = strnlen(s, max);
93         buf = kmalloc_track_caller(len+1, gfp);
94         if (buf) {
95                 memcpy(buf, s, len);
96                 buf[len] = '\0';
97         }
98         return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101
102 /**
103  * kmemdup - duplicate region of memory
104  *
105  * @src: memory region to duplicate
106  * @len: memory region length
107  * @gfp: GFP mask to use
108  */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111         void *p;
112
113         p = kmalloc_track_caller(len, gfp);
114         if (p)
115                 memcpy(p, src, len);
116         return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119
120 /**
121  * memdup_user - duplicate memory region from user space
122  *
123  * @src: source address in user space
124  * @len: number of bytes to copy
125  *
126  * Returns an ERR_PTR() on failure.
127  */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130         void *p;
131
132         /*
133          * Always use GFP_KERNEL, since copy_from_user() can sleep and
134          * cause pagefault, which makes it pointless to use GFP_NOFS
135          * or GFP_ATOMIC.
136          */
137         p = kmalloc_track_caller(len, GFP_KERNEL);
138         if (!p)
139                 return ERR_PTR(-ENOMEM);
140
141         if (copy_from_user(p, src, len)) {
142                 kfree(p);
143                 return ERR_PTR(-EFAULT);
144         }
145
146         return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149
150 /*
151  * strndup_user - duplicate an existing string from user space
152  * @s: The string to duplicate
153  * @n: Maximum number of bytes to copy, including the trailing NUL.
154  */
155 char *strndup_user(const char __user *s, long n)
156 {
157         char *p;
158         long length;
159
160         length = strnlen_user(s, n);
161
162         if (!length)
163                 return ERR_PTR(-EFAULT);
164
165         if (length > n)
166                 return ERR_PTR(-EINVAL);
167
168         p = memdup_user(s, length);
169
170         if (IS_ERR(p))
171                 return p;
172
173         p[length - 1] = '\0';
174
175         return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178
179 /**
180  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181  *
182  * @src: source address in user space
183  * @len: number of bytes to copy
184  *
185  * Returns an ERR_PTR() on failure.
186  */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189         char *p;
190
191         /*
192          * Always use GFP_KERNEL, since copy_from_user() can sleep and
193          * cause pagefault, which makes it pointless to use GFP_NOFS
194          * or GFP_ATOMIC.
195          */
196         p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197         if (!p)
198                 return ERR_PTR(-ENOMEM);
199
200         if (copy_from_user(p, src, len)) {
201                 kfree(p);
202                 return ERR_PTR(-EFAULT);
203         }
204         p[len] = '\0';
205
206         return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211                 struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213         struct vm_area_struct *next;
214
215         vma->vm_prev = prev;
216         if (prev) {
217                 next = prev->vm_next;
218                 prev->vm_next = vma;
219         } else {
220                 mm->mmap = vma;
221                 if (rb_parent)
222                         next = rb_entry(rb_parent,
223                                         struct vm_area_struct, vm_rb);
224                 else
225                         next = NULL;
226         }
227         vma->vm_next = next;
228         if (next)
229                 next->vm_prev = vma;
230 }
231
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_current(struct vm_area_struct *vma)
234 {
235         struct task_struct * __maybe_unused t = current;
236
237         return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
238 }
239
240 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
241 void arch_pick_mmap_layout(struct mm_struct *mm)
242 {
243         mm->mmap_base = TASK_UNMAPPED_BASE;
244         mm->get_unmapped_area = arch_get_unmapped_area;
245 }
246 #endif
247
248 /*
249  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
250  * back to the regular GUP.
251  * If the architecture not support this function, simply return with no
252  * page pinned
253  */
254 int __weak __get_user_pages_fast(unsigned long start,
255                                  int nr_pages, int write, struct page **pages)
256 {
257         return 0;
258 }
259 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
260
261 /**
262  * get_user_pages_fast() - pin user pages in memory
263  * @start:      starting user address
264  * @nr_pages:   number of pages from start to pin
265  * @write:      whether pages will be written to
266  * @pages:      array that receives pointers to the pages pinned.
267  *              Should be at least nr_pages long.
268  *
269  * Returns number of pages pinned. This may be fewer than the number
270  * requested. If nr_pages is 0 or negative, returns 0. If no pages
271  * were pinned, returns -errno.
272  *
273  * get_user_pages_fast provides equivalent functionality to get_user_pages,
274  * operating on current and current->mm, with force=0 and vma=NULL. However
275  * unlike get_user_pages, it must be called without mmap_sem held.
276  *
277  * get_user_pages_fast may take mmap_sem and page table locks, so no
278  * assumptions can be made about lack of locking. get_user_pages_fast is to be
279  * implemented in a way that is advantageous (vs get_user_pages()) when the
280  * user memory area is already faulted in and present in ptes. However if the
281  * pages have to be faulted in, it may turn out to be slightly slower so
282  * callers need to carefully consider what to use. On many architectures,
283  * get_user_pages_fast simply falls back to get_user_pages.
284  */
285 int __weak get_user_pages_fast(unsigned long start,
286                                 int nr_pages, int write, struct page **pages)
287 {
288         return get_user_pages_unlocked(start, nr_pages, pages,
289                                        write ? FOLL_WRITE : 0);
290 }
291 EXPORT_SYMBOL_GPL(get_user_pages_fast);
292
293 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
294         unsigned long len, unsigned long prot,
295         unsigned long flag, unsigned long pgoff)
296 {
297         unsigned long ret;
298         struct mm_struct *mm = current->mm;
299         unsigned long populate;
300
301         ret = security_mmap_file(file, prot, flag);
302         if (!ret) {
303                 if (down_write_killable(&mm->mmap_sem))
304                         return -EINTR;
305                 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
306                                     &populate);
307                 up_write(&mm->mmap_sem);
308                 if (populate)
309                         mm_populate(ret, populate);
310         }
311         return ret;
312 }
313
314 unsigned long vm_mmap(struct file *file, unsigned long addr,
315         unsigned long len, unsigned long prot,
316         unsigned long flag, unsigned long offset)
317 {
318         if (unlikely(offset + PAGE_ALIGN(len) < offset))
319                 return -EINVAL;
320         if (unlikely(offset_in_page(offset)))
321                 return -EINVAL;
322
323         return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL(vm_mmap);
326
327 void kvfree(const void *addr)
328 {
329         if (is_vmalloc_addr(addr))
330                 vfree(addr);
331         else
332                 kfree(addr);
333 }
334 EXPORT_SYMBOL(kvfree);
335
336 static inline void *__page_rmapping(struct page *page)
337 {
338         unsigned long mapping;
339
340         mapping = (unsigned long)page->mapping;
341         mapping &= ~PAGE_MAPPING_FLAGS;
342
343         return (void *)mapping;
344 }
345
346 /* Neutral page->mapping pointer to address_space or anon_vma or other */
347 void *page_rmapping(struct page *page)
348 {
349         page = compound_head(page);
350         return __page_rmapping(page);
351 }
352
353 /*
354  * Return true if this page is mapped into pagetables.
355  * For compound page it returns true if any subpage of compound page is mapped.
356  */
357 bool page_mapped(struct page *page)
358 {
359         int i;
360
361         if (likely(!PageCompound(page)))
362                 return atomic_read(&page->_mapcount) >= 0;
363         page = compound_head(page);
364         if (atomic_read(compound_mapcount_ptr(page)) >= 0)
365                 return true;
366         if (PageHuge(page))
367                 return false;
368         for (i = 0; i < hpage_nr_pages(page); i++) {
369                 if (atomic_read(&page[i]._mapcount) >= 0)
370                         return true;
371         }
372         return false;
373 }
374 EXPORT_SYMBOL(page_mapped);
375
376 struct anon_vma *page_anon_vma(struct page *page)
377 {
378         unsigned long mapping;
379
380         page = compound_head(page);
381         mapping = (unsigned long)page->mapping;
382         if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
383                 return NULL;
384         return __page_rmapping(page);
385 }
386
387 struct address_space *page_mapping(struct page *page)
388 {
389         struct address_space *mapping;
390
391         page = compound_head(page);
392
393         /* This happens if someone calls flush_dcache_page on slab page */
394         if (unlikely(PageSlab(page)))
395                 return NULL;
396
397         if (unlikely(PageSwapCache(page))) {
398                 swp_entry_t entry;
399
400                 entry.val = page_private(page);
401                 return swap_address_space(entry);
402         }
403
404         mapping = page->mapping;
405         if ((unsigned long)mapping & PAGE_MAPPING_ANON)
406                 return NULL;
407
408         return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
409 }
410 EXPORT_SYMBOL(page_mapping);
411
412 /* Slow path of page_mapcount() for compound pages */
413 int __page_mapcount(struct page *page)
414 {
415         int ret;
416
417         ret = atomic_read(&page->_mapcount) + 1;
418         /*
419          * For file THP page->_mapcount contains total number of mapping
420          * of the page: no need to look into compound_mapcount.
421          */
422         if (!PageAnon(page) && !PageHuge(page))
423                 return ret;
424         page = compound_head(page);
425         ret += atomic_read(compound_mapcount_ptr(page)) + 1;
426         if (PageDoubleMap(page))
427                 ret--;
428         return ret;
429 }
430 EXPORT_SYMBOL_GPL(__page_mapcount);
431
432 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
433 int sysctl_overcommit_ratio __read_mostly = 50;
434 unsigned long sysctl_overcommit_kbytes __read_mostly;
435 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
436 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
437 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
438
439 int overcommit_ratio_handler(struct ctl_table *table, int write,
440                              void __user *buffer, size_t *lenp,
441                              loff_t *ppos)
442 {
443         int ret;
444
445         ret = proc_dointvec(table, write, buffer, lenp, ppos);
446         if (ret == 0 && write)
447                 sysctl_overcommit_kbytes = 0;
448         return ret;
449 }
450
451 int overcommit_kbytes_handler(struct ctl_table *table, int write,
452                              void __user *buffer, size_t *lenp,
453                              loff_t *ppos)
454 {
455         int ret;
456
457         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
458         if (ret == 0 && write)
459                 sysctl_overcommit_ratio = 0;
460         return ret;
461 }
462
463 /*
464  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
465  */
466 unsigned long vm_commit_limit(void)
467 {
468         unsigned long allowed;
469
470         if (sysctl_overcommit_kbytes)
471                 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
472         else
473                 allowed = ((totalram_pages - hugetlb_total_pages())
474                            * sysctl_overcommit_ratio / 100);
475         allowed += total_swap_pages;
476
477         return allowed;
478 }
479
480 /*
481  * Make sure vm_committed_as in one cacheline and not cacheline shared with
482  * other variables. It can be updated by several CPUs frequently.
483  */
484 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
485
486 /*
487  * The global memory commitment made in the system can be a metric
488  * that can be used to drive ballooning decisions when Linux is hosted
489  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
490  * balancing memory across competing virtual machines that are hosted.
491  * Several metrics drive this policy engine including the guest reported
492  * memory commitment.
493  */
494 unsigned long vm_memory_committed(void)
495 {
496         return percpu_counter_read_positive(&vm_committed_as);
497 }
498 EXPORT_SYMBOL_GPL(vm_memory_committed);
499
500 /*
501  * Check that a process has enough memory to allocate a new virtual
502  * mapping. 0 means there is enough memory for the allocation to
503  * succeed and -ENOMEM implies there is not.
504  *
505  * We currently support three overcommit policies, which are set via the
506  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
507  *
508  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
509  * Additional code 2002 Jul 20 by Robert Love.
510  *
511  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
512  *
513  * Note this is a helper function intended to be used by LSMs which
514  * wish to use this logic.
515  */
516 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
517 {
518         long free, allowed, reserve;
519
520         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
521                         -(s64)vm_committed_as_batch * num_online_cpus(),
522                         "memory commitment underflow");
523
524         vm_acct_memory(pages);
525
526         /*
527          * Sometimes we want to use more memory than we have
528          */
529         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
530                 return 0;
531
532         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
533                 free = global_page_state(NR_FREE_PAGES);
534                 free += global_node_page_state(NR_FILE_PAGES);
535
536                 /*
537                  * shmem pages shouldn't be counted as free in this
538                  * case, they can't be purged, only swapped out, and
539                  * that won't affect the overall amount of available
540                  * memory in the system.
541                  */
542                 free -= global_node_page_state(NR_SHMEM);
543
544                 free += get_nr_swap_pages();
545
546                 /*
547                  * Any slabs which are created with the
548                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
549                  * which are reclaimable, under pressure.  The dentry
550                  * cache and most inode caches should fall into this
551                  */
552                 free += global_page_state(NR_SLAB_RECLAIMABLE);
553
554                 /*
555                  * Leave reserved pages. The pages are not for anonymous pages.
556                  */
557                 if (free <= totalreserve_pages)
558                         goto error;
559                 else
560                         free -= totalreserve_pages;
561
562                 /*
563                  * Reserve some for root
564                  */
565                 if (!cap_sys_admin)
566                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
567
568                 if (free > pages)
569                         return 0;
570
571                 goto error;
572         }
573
574         allowed = vm_commit_limit();
575         /*
576          * Reserve some for root
577          */
578         if (!cap_sys_admin)
579                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
580
581         /*
582          * Don't let a single process grow so big a user can't recover
583          */
584         if (mm) {
585                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
586                 allowed -= min_t(long, mm->total_vm / 32, reserve);
587         }
588
589         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
590                 return 0;
591 error:
592         vm_unacct_memory(pages);
593
594         return -ENOMEM;
595 }
596
597 /**
598  * get_cmdline() - copy the cmdline value to a buffer.
599  * @task:     the task whose cmdline value to copy.
600  * @buffer:   the buffer to copy to.
601  * @buflen:   the length of the buffer. Larger cmdline values are truncated
602  *            to this length.
603  * Returns the size of the cmdline field copied. Note that the copy does
604  * not guarantee an ending NULL byte.
605  */
606 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
607 {
608         int res = 0;
609         unsigned int len;
610         struct mm_struct *mm = get_task_mm(task);
611         unsigned long arg_start, arg_end, env_start, env_end;
612         if (!mm)
613                 goto out;
614         if (!mm->arg_end)
615                 goto out_mm;    /* Shh! No looking before we're done */
616
617         down_read(&mm->mmap_sem);
618         arg_start = mm->arg_start;
619         arg_end = mm->arg_end;
620         env_start = mm->env_start;
621         env_end = mm->env_end;
622         up_read(&mm->mmap_sem);
623
624         len = arg_end - arg_start;
625
626         if (len > buflen)
627                 len = buflen;
628
629         res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
630
631         /*
632          * If the nul at the end of args has been overwritten, then
633          * assume application is using setproctitle(3).
634          */
635         if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
636                 len = strnlen(buffer, res);
637                 if (len < res) {
638                         res = len;
639                 } else {
640                         len = env_end - env_start;
641                         if (len > buflen - res)
642                                 len = buflen - res;
643                         res += access_process_vm(task, env_start,
644                                                  buffer+res, len,
645                                                  FOLL_FORCE);
646                         res = strnlen(buffer, res);
647                 }
648         }
649 out_mm:
650         mmput(mm);
651 out:
652         return res;
653 }