Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / arch / arm / kvm / mmu.c
index 8664ff1..1dc9778 100644 (file)
@@ -612,6 +612,71 @@ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
        unmap_range(kvm, kvm->arch.pgd, start, size);
 }
 
+static void stage2_unmap_memslot(struct kvm *kvm,
+                                struct kvm_memory_slot *memslot)
+{
+       hva_t hva = memslot->userspace_addr;
+       phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+       phys_addr_t size = PAGE_SIZE * memslot->npages;
+       hva_t reg_end = hva + size;
+
+       /*
+        * A memory region could potentially cover multiple VMAs, and any holes
+        * between them, so iterate over all of them to find out if we should
+        * unmap any of them.
+        *
+        *     +--------------------------------------------+
+        * +---------------+----------------+   +----------------+
+        * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
+        * +---------------+----------------+   +----------------+
+        *     |               memory region                |
+        *     +--------------------------------------------+
+        */
+       do {
+               struct vm_area_struct *vma = find_vma(current->mm, hva);
+               hva_t vm_start, vm_end;
+
+               if (!vma || vma->vm_start >= reg_end)
+                       break;
+
+               /*
+                * Take the intersection of this VMA with the memory region
+                */
+               vm_start = max(hva, vma->vm_start);
+               vm_end = min(reg_end, vma->vm_end);
+
+               if (!(vma->vm_flags & VM_PFNMAP)) {
+                       gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+                       unmap_stage2_range(kvm, gpa, vm_end - vm_start);
+               }
+               hva = vm_end;
+       } while (hva < reg_end);
+}
+
+/**
+ * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the memregions and unmap any reguler RAM
+ * backing memory already mapped to the VM.
+ */
+void stage2_unmap_vm(struct kvm *kvm)
+{
+       struct kvm_memslots *slots;
+       struct kvm_memory_slot *memslot;
+       int idx;
+
+       idx = srcu_read_lock(&kvm->srcu);
+       spin_lock(&kvm->mmu_lock);
+
+       slots = kvm_memslots(kvm);
+       kvm_for_each_memslot(memslot, slots)
+               stage2_unmap_memslot(kvm, memslot);
+
+       spin_unlock(&kvm->mmu_lock);
+       srcu_read_unlock(&kvm->srcu, idx);
+}
+
 /**
  * kvm_free_stage2_pgd - free all stage-2 tables
  * @kvm:       The KVM struct pointer for the VM.
@@ -853,6 +918,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
        struct vm_area_struct *vma;
        pfn_t pfn;
        pgprot_t mem_type = PAGE_S2;
+       bool fault_ipa_uncached;
 
        write_fault = kvm_is_write_fault(vcpu);
        if (fault_status == FSC_PERM && !write_fault) {
@@ -919,6 +985,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
        if (!hugetlb && !force_pte)
                hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
 
+       fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
+
        if (hugetlb) {
                pmd_t new_pmd = pfn_pmd(pfn, mem_type);
                new_pmd = pmd_mkhuge(new_pmd);
@@ -926,7 +994,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
                        kvm_set_s2pmd_writable(&new_pmd);
                        kvm_set_pfn_dirty(pfn);
                }
-               coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
+               coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE,
+                                         fault_ipa_uncached);
                ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
        } else {
                pte_t new_pte = pfn_pte(pfn, mem_type);
@@ -934,7 +1003,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
                        kvm_set_s2pte_writable(&new_pte);
                        kvm_set_pfn_dirty(pfn);
                }
-               coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
+               coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
+                                         fault_ipa_uncached);
                ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
                        pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE));
        }
@@ -1294,11 +1364,12 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
                hva = vm_end;
        } while (hva < reg_end);
 
-       if (ret) {
-               spin_lock(&kvm->mmu_lock);
+       spin_lock(&kvm->mmu_lock);
+       if (ret)
                unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
-               spin_unlock(&kvm->mmu_lock);
-       }
+       else
+               stage2_flush_memslot(kvm, memslot);
+       spin_unlock(&kvm->mmu_lock);
        return ret;
 }
 
@@ -1310,6 +1381,15 @@ void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
                            unsigned long npages)
 {
+       /*
+        * Readonly memslots are not incoherent with the caches by definition,
+        * but in practice, they are used mostly to emulate ROMs or NOR flashes
+        * that the guest may consider devices and hence map as uncached.
+        * To prevent incoherency issues in these cases, tag all readonly
+        * regions as incoherent.
+        */
+       if (slot->flags & KVM_MEM_READONLY)
+               slot->flags |= KVM_MEMSLOT_INCOHERENT;
        return 0;
 }