x86/mm, sched/core: Uninline switch_mm()
[cascardo/linux.git] / arch / x86 / include / asm / mmu_context.h
index 8428002..bb911dd 100644 (file)
@@ -115,103 +115,9 @@ static inline void destroy_context(struct mm_struct *mm)
        destroy_context_ldt(mm);
 }
 
-static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
-                            struct task_struct *tsk)
-{
-       unsigned cpu = smp_processor_id();
+extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
+                     struct task_struct *tsk);
 
-       if (likely(prev != next)) {
-#ifdef CONFIG_SMP
-               this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
-               this_cpu_write(cpu_tlbstate.active_mm, next);
-#endif
-               cpumask_set_cpu(cpu, mm_cpumask(next));
-
-               /*
-                * Re-load page tables.
-                *
-                * This logic has an ordering constraint:
-                *
-                *  CPU 0: Write to a PTE for 'next'
-                *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
-                *  CPU 1: set bit 1 in next's mm_cpumask
-                *  CPU 1: load from the PTE that CPU 0 writes (implicit)
-                *
-                * We need to prevent an outcome in which CPU 1 observes
-                * the new PTE value and CPU 0 observes bit 1 clear in
-                * mm_cpumask.  (If that occurs, then the IPI will never
-                * be sent, and CPU 0's TLB will contain a stale entry.)
-                *
-                * The bad outcome can occur if either CPU's load is
-                * reordered before that CPU's store, so both CPUs must
-                * execute full barriers to prevent this from happening.
-                *
-                * Thus, switch_mm needs a full barrier between the
-                * store to mm_cpumask and any operation that could load
-                * from next->pgd.  TLB fills are special and can happen
-                * due to instruction fetches or for no reason at all,
-                * and neither LOCK nor MFENCE orders them.
-                * Fortunately, load_cr3() is serializing and gives the
-                * ordering guarantee we need.
-                *
-                */
-               load_cr3(next->pgd);
-
-               trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
-
-               /* Stop flush ipis for the previous mm */
-               cpumask_clear_cpu(cpu, mm_cpumask(prev));
-
-               /* Load per-mm CR4 state */
-               load_mm_cr4(next);
-
-#ifdef CONFIG_MODIFY_LDT_SYSCALL
-               /*
-                * Load the LDT, if the LDT is different.
-                *
-                * It's possible that prev->context.ldt doesn't match
-                * the LDT register.  This can happen if leave_mm(prev)
-                * was called and then modify_ldt changed
-                * prev->context.ldt but suppressed an IPI to this CPU.
-                * In this case, prev->context.ldt != NULL, because we
-                * never set context.ldt to NULL while the mm still
-                * exists.  That means that next->context.ldt !=
-                * prev->context.ldt, because mms never share an LDT.
-                */
-               if (unlikely(prev->context.ldt != next->context.ldt))
-                       load_mm_ldt(next);
-#endif
-       }
-#ifdef CONFIG_SMP
-         else {
-               this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
-               BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
-
-               if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
-                       /*
-                        * On established mms, the mm_cpumask is only changed
-                        * from irq context, from ptep_clear_flush() while in
-                        * lazy tlb mode, and here. Irqs are blocked during
-                        * schedule, protecting us from simultaneous changes.
-                        */
-                       cpumask_set_cpu(cpu, mm_cpumask(next));
-
-                       /*
-                        * We were in lazy tlb mode and leave_mm disabled
-                        * tlb flush IPI delivery. We must reload CR3
-                        * to make sure to use no freed page tables.
-                        *
-                        * As above, load_cr3() is serializing and orders TLB
-                        * fills with respect to the mm_cpumask write.
-                        */
-                       load_cr3(next->pgd);
-                       trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
-                       load_mm_cr4(next);
-                       load_mm_ldt(next);
-               }
-       }
-#endif
-}
 
 #define activate_mm(prev, next)                        \
 do {                                           \