KVM: x86: use get_desc_base() and get_desc_limit()
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
59                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
60                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81                                     struct kvm_cpuid_entry2 __user *entries);
82
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
85
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
88
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90         { "pf_fixed", VCPU_STAT(pf_fixed) },
91         { "pf_guest", VCPU_STAT(pf_guest) },
92         { "tlb_flush", VCPU_STAT(tlb_flush) },
93         { "invlpg", VCPU_STAT(invlpg) },
94         { "exits", VCPU_STAT(exits) },
95         { "io_exits", VCPU_STAT(io_exits) },
96         { "mmio_exits", VCPU_STAT(mmio_exits) },
97         { "signal_exits", VCPU_STAT(signal_exits) },
98         { "irq_window", VCPU_STAT(irq_window_exits) },
99         { "nmi_window", VCPU_STAT(nmi_window_exits) },
100         { "halt_exits", VCPU_STAT(halt_exits) },
101         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102         { "hypercalls", VCPU_STAT(hypercalls) },
103         { "request_irq", VCPU_STAT(request_irq_exits) },
104         { "irq_exits", VCPU_STAT(irq_exits) },
105         { "host_state_reload", VCPU_STAT(host_state_reload) },
106         { "efer_reload", VCPU_STAT(efer_reload) },
107         { "fpu_reload", VCPU_STAT(fpu_reload) },
108         { "insn_emulation", VCPU_STAT(insn_emulation) },
109         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110         { "irq_injections", VCPU_STAT(irq_injections) },
111         { "nmi_injections", VCPU_STAT(nmi_injections) },
112         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116         { "mmu_flooded", VM_STAT(mmu_flooded) },
117         { "mmu_recycled", VM_STAT(mmu_recycled) },
118         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119         { "mmu_unsync", VM_STAT(mmu_unsync) },
120         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121         { "largepages", VM_STAT(lpages) },
122         { NULL }
123 };
124
125 unsigned long segment_base(u16 selector)
126 {
127         struct descriptor_table gdt;
128         struct desc_struct *d;
129         unsigned long table_base;
130         unsigned long v;
131
132         if (selector == 0)
133                 return 0;
134
135         asm("sgdt %0" : "=m"(gdt));
136         table_base = gdt.base;
137
138         if (selector & 4) {           /* from ldt */
139                 u16 ldt_selector;
140
141                 asm("sldt %0" : "=g"(ldt_selector));
142                 table_base = segment_base(ldt_selector);
143         }
144         d = (struct desc_struct *)(table_base + (selector & ~7));
145         v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150         return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156         if (irqchip_in_kernel(vcpu->kvm))
157                 return vcpu->arch.apic_base;
158         else
159                 return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165         /* TODO: reserve bits check */
166         if (irqchip_in_kernel(vcpu->kvm))
167                 kvm_lapic_set_base(vcpu, data);
168         else
169                 vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175         WARN_ON(vcpu->arch.exception.pending);
176         vcpu->arch.exception.pending = true;
177         vcpu->arch.exception.has_error_code = false;
178         vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183                            u32 error_code)
184 {
185         ++vcpu->stat.pf_guest;
186
187         if (vcpu->arch.exception.pending) {
188                 switch(vcpu->arch.exception.nr) {
189                 case DF_VECTOR:
190                         /* triple fault -> shutdown */
191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192                         return;
193                 case PF_VECTOR:
194                         vcpu->arch.exception.nr = DF_VECTOR;
195                         vcpu->arch.exception.error_code = 0;
196                         return;
197                 default:
198                         /* replace previous exception with a new one in a hope
199                            that instruction re-execution will regenerate lost
200                            exception */
201                         vcpu->arch.exception.pending = false;
202                         break;
203                 }
204         }
205         vcpu->arch.cr2 = addr;
206         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211         vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217         WARN_ON(vcpu->arch.exception.pending);
218         vcpu->arch.exception.pending = true;
219         vcpu->arch.exception.has_error_code = true;
220         vcpu->arch.exception.nr = nr;
221         vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224
225 /*
226  * Load the pae pdptrs.  Return true is they are all valid.
227  */
228 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
229 {
230         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
231         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
232         int i;
233         int ret;
234         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235
236         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
237                                   offset * sizeof(u64), sizeof(pdpte));
238         if (ret < 0) {
239                 ret = 0;
240                 goto out;
241         }
242         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
243                 if (is_present_gpte(pdpte[i]) &&
244                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
245                         ret = 0;
246                         goto out;
247                 }
248         }
249         ret = 1;
250
251         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
252         __set_bit(VCPU_EXREG_PDPTR,
253                   (unsigned long *)&vcpu->arch.regs_avail);
254         __set_bit(VCPU_EXREG_PDPTR,
255                   (unsigned long *)&vcpu->arch.regs_dirty);
256 out:
257
258         return ret;
259 }
260 EXPORT_SYMBOL_GPL(load_pdptrs);
261
262 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
263 {
264         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
265         bool changed = true;
266         int r;
267
268         if (is_long_mode(vcpu) || !is_pae(vcpu))
269                 return false;
270
271         if (!test_bit(VCPU_EXREG_PDPTR,
272                       (unsigned long *)&vcpu->arch.regs_avail))
273                 return true;
274
275         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
276         if (r < 0)
277                 goto out;
278         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
279 out:
280
281         return changed;
282 }
283
284 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
285 {
286         if (cr0 & CR0_RESERVED_BITS) {
287                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
288                        cr0, vcpu->arch.cr0);
289                 kvm_inject_gp(vcpu, 0);
290                 return;
291         }
292
293         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
294                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
295                 kvm_inject_gp(vcpu, 0);
296                 return;
297         }
298
299         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
300                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
301                        "and a clear PE flag\n");
302                 kvm_inject_gp(vcpu, 0);
303                 return;
304         }
305
306         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
307 #ifdef CONFIG_X86_64
308                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
309                         int cs_db, cs_l;
310
311                         if (!is_pae(vcpu)) {
312                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
313                                        "in long mode while PAE is disabled\n");
314                                 kvm_inject_gp(vcpu, 0);
315                                 return;
316                         }
317                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
318                         if (cs_l) {
319                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
320                                        "in long mode while CS.L == 1\n");
321                                 kvm_inject_gp(vcpu, 0);
322                                 return;
323
324                         }
325                 } else
326 #endif
327                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
328                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
329                                "reserved bits\n");
330                         kvm_inject_gp(vcpu, 0);
331                         return;
332                 }
333
334         }
335
336         kvm_x86_ops->set_cr0(vcpu, cr0);
337         vcpu->arch.cr0 = cr0;
338
339         kvm_mmu_reset_context(vcpu);
340         return;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_cr0);
343
344 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
345 {
346         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
347 }
348 EXPORT_SYMBOL_GPL(kvm_lmsw);
349
350 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
351 {
352         unsigned long old_cr4 = vcpu->arch.cr4;
353         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
354
355         if (cr4 & CR4_RESERVED_BITS) {
356                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
357                 kvm_inject_gp(vcpu, 0);
358                 return;
359         }
360
361         if (is_long_mode(vcpu)) {
362                 if (!(cr4 & X86_CR4_PAE)) {
363                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
364                                "in long mode\n");
365                         kvm_inject_gp(vcpu, 0);
366                         return;
367                 }
368         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
369                    && ((cr4 ^ old_cr4) & pdptr_bits)
370                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
371                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
372                 kvm_inject_gp(vcpu, 0);
373                 return;
374         }
375
376         if (cr4 & X86_CR4_VMXE) {
377                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
378                 kvm_inject_gp(vcpu, 0);
379                 return;
380         }
381         kvm_x86_ops->set_cr4(vcpu, cr4);
382         vcpu->arch.cr4 = cr4;
383         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
384         kvm_mmu_reset_context(vcpu);
385 }
386 EXPORT_SYMBOL_GPL(kvm_set_cr4);
387
388 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
389 {
390         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
391                 kvm_mmu_sync_roots(vcpu);
392                 kvm_mmu_flush_tlb(vcpu);
393                 return;
394         }
395
396         if (is_long_mode(vcpu)) {
397                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
398                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
399                         kvm_inject_gp(vcpu, 0);
400                         return;
401                 }
402         } else {
403                 if (is_pae(vcpu)) {
404                         if (cr3 & CR3_PAE_RESERVED_BITS) {
405                                 printk(KERN_DEBUG
406                                        "set_cr3: #GP, reserved bits\n");
407                                 kvm_inject_gp(vcpu, 0);
408                                 return;
409                         }
410                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
411                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
412                                        "reserved bits\n");
413                                 kvm_inject_gp(vcpu, 0);
414                                 return;
415                         }
416                 }
417                 /*
418                  * We don't check reserved bits in nonpae mode, because
419                  * this isn't enforced, and VMware depends on this.
420                  */
421         }
422
423         /*
424          * Does the new cr3 value map to physical memory? (Note, we
425          * catch an invalid cr3 even in real-mode, because it would
426          * cause trouble later on when we turn on paging anyway.)
427          *
428          * A real CPU would silently accept an invalid cr3 and would
429          * attempt to use it - with largely undefined (and often hard
430          * to debug) behavior on the guest side.
431          */
432         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
433                 kvm_inject_gp(vcpu, 0);
434         else {
435                 vcpu->arch.cr3 = cr3;
436                 vcpu->arch.mmu.new_cr3(vcpu);
437         }
438 }
439 EXPORT_SYMBOL_GPL(kvm_set_cr3);
440
441 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
442 {
443         if (cr8 & CR8_RESERVED_BITS) {
444                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
445                 kvm_inject_gp(vcpu, 0);
446                 return;
447         }
448         if (irqchip_in_kernel(vcpu->kvm))
449                 kvm_lapic_set_tpr(vcpu, cr8);
450         else
451                 vcpu->arch.cr8 = cr8;
452 }
453 EXPORT_SYMBOL_GPL(kvm_set_cr8);
454
455 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
456 {
457         if (irqchip_in_kernel(vcpu->kvm))
458                 return kvm_lapic_get_cr8(vcpu);
459         else
460                 return vcpu->arch.cr8;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_cr8);
463
464 static inline u32 bit(int bitno)
465 {
466         return 1 << (bitno & 31);
467 }
468
469 /*
470  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
471  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
472  *
473  * This list is modified at module load time to reflect the
474  * capabilities of the host cpu.
475  */
476 static u32 msrs_to_save[] = {
477         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
478         MSR_K6_STAR,
479 #ifdef CONFIG_X86_64
480         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
481 #endif
482         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
483         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
484 };
485
486 static unsigned num_msrs_to_save;
487
488 static u32 emulated_msrs[] = {
489         MSR_IA32_MISC_ENABLE,
490 };
491
492 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
493 {
494         if (efer & efer_reserved_bits) {
495                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
496                        efer);
497                 kvm_inject_gp(vcpu, 0);
498                 return;
499         }
500
501         if (is_paging(vcpu)
502             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
503                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
504                 kvm_inject_gp(vcpu, 0);
505                 return;
506         }
507
508         if (efer & EFER_FFXSR) {
509                 struct kvm_cpuid_entry2 *feat;
510
511                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
512                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
513                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
514                         kvm_inject_gp(vcpu, 0);
515                         return;
516                 }
517         }
518
519         if (efer & EFER_SVME) {
520                 struct kvm_cpuid_entry2 *feat;
521
522                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
523                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
524                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
525                         kvm_inject_gp(vcpu, 0);
526                         return;
527                 }
528         }
529
530         kvm_x86_ops->set_efer(vcpu, efer);
531
532         efer &= ~EFER_LMA;
533         efer |= vcpu->arch.shadow_efer & EFER_LMA;
534
535         vcpu->arch.shadow_efer = efer;
536
537         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
538         kvm_mmu_reset_context(vcpu);
539 }
540
541 void kvm_enable_efer_bits(u64 mask)
542 {
543        efer_reserved_bits &= ~mask;
544 }
545 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
546
547
548 /*
549  * Writes msr value into into the appropriate "register".
550  * Returns 0 on success, non-0 otherwise.
551  * Assumes vcpu_load() was already called.
552  */
553 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
554 {
555         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
556 }
557
558 /*
559  * Adapt set_msr() to msr_io()'s calling convention
560  */
561 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
562 {
563         return kvm_set_msr(vcpu, index, *data);
564 }
565
566 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
567 {
568         static int version;
569         struct pvclock_wall_clock wc;
570         struct timespec now, sys, boot;
571
572         if (!wall_clock)
573                 return;
574
575         version++;
576
577         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
578
579         /*
580          * The guest calculates current wall clock time by adding
581          * system time (updated by kvm_write_guest_time below) to the
582          * wall clock specified here.  guest system time equals host
583          * system time for us, thus we must fill in host boot time here.
584          */
585         now = current_kernel_time();
586         ktime_get_ts(&sys);
587         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
588
589         wc.sec = boot.tv_sec;
590         wc.nsec = boot.tv_nsec;
591         wc.version = version;
592
593         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
594
595         version++;
596         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
597 }
598
599 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
600 {
601         uint32_t quotient, remainder;
602
603         /* Don't try to replace with do_div(), this one calculates
604          * "(dividend << 32) / divisor" */
605         __asm__ ( "divl %4"
606                   : "=a" (quotient), "=d" (remainder)
607                   : "0" (0), "1" (dividend), "r" (divisor) );
608         return quotient;
609 }
610
611 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
612 {
613         uint64_t nsecs = 1000000000LL;
614         int32_t  shift = 0;
615         uint64_t tps64;
616         uint32_t tps32;
617
618         tps64 = tsc_khz * 1000LL;
619         while (tps64 > nsecs*2) {
620                 tps64 >>= 1;
621                 shift--;
622         }
623
624         tps32 = (uint32_t)tps64;
625         while (tps32 <= (uint32_t)nsecs) {
626                 tps32 <<= 1;
627                 shift++;
628         }
629
630         hv_clock->tsc_shift = shift;
631         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
632
633         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
634                  __func__, tsc_khz, hv_clock->tsc_shift,
635                  hv_clock->tsc_to_system_mul);
636 }
637
638 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
639
640 static void kvm_write_guest_time(struct kvm_vcpu *v)
641 {
642         struct timespec ts;
643         unsigned long flags;
644         struct kvm_vcpu_arch *vcpu = &v->arch;
645         void *shared_kaddr;
646         unsigned long this_tsc_khz;
647
648         if ((!vcpu->time_page))
649                 return;
650
651         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
652         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
653                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
654                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
655         }
656         put_cpu_var(cpu_tsc_khz);
657
658         /* Keep irq disabled to prevent changes to the clock */
659         local_irq_save(flags);
660         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
661         ktime_get_ts(&ts);
662         local_irq_restore(flags);
663
664         /* With all the info we got, fill in the values */
665
666         vcpu->hv_clock.system_time = ts.tv_nsec +
667                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
668         /*
669          * The interface expects us to write an even number signaling that the
670          * update is finished. Since the guest won't see the intermediate
671          * state, we just increase by 2 at the end.
672          */
673         vcpu->hv_clock.version += 2;
674
675         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
676
677         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
678                sizeof(vcpu->hv_clock));
679
680         kunmap_atomic(shared_kaddr, KM_USER0);
681
682         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
683 }
684
685 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
686 {
687         struct kvm_vcpu_arch *vcpu = &v->arch;
688
689         if (!vcpu->time_page)
690                 return 0;
691         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
692         return 1;
693 }
694
695 static bool msr_mtrr_valid(unsigned msr)
696 {
697         switch (msr) {
698         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
699         case MSR_MTRRfix64K_00000:
700         case MSR_MTRRfix16K_80000:
701         case MSR_MTRRfix16K_A0000:
702         case MSR_MTRRfix4K_C0000:
703         case MSR_MTRRfix4K_C8000:
704         case MSR_MTRRfix4K_D0000:
705         case MSR_MTRRfix4K_D8000:
706         case MSR_MTRRfix4K_E0000:
707         case MSR_MTRRfix4K_E8000:
708         case MSR_MTRRfix4K_F0000:
709         case MSR_MTRRfix4K_F8000:
710         case MSR_MTRRdefType:
711         case MSR_IA32_CR_PAT:
712                 return true;
713         case 0x2f8:
714                 return true;
715         }
716         return false;
717 }
718
719 static bool valid_pat_type(unsigned t)
720 {
721         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
722 }
723
724 static bool valid_mtrr_type(unsigned t)
725 {
726         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
727 }
728
729 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
730 {
731         int i;
732
733         if (!msr_mtrr_valid(msr))
734                 return false;
735
736         if (msr == MSR_IA32_CR_PAT) {
737                 for (i = 0; i < 8; i++)
738                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
739                                 return false;
740                 return true;
741         } else if (msr == MSR_MTRRdefType) {
742                 if (data & ~0xcff)
743                         return false;
744                 return valid_mtrr_type(data & 0xff);
745         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
746                 for (i = 0; i < 8 ; i++)
747                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
748                                 return false;
749                 return true;
750         }
751
752         /* variable MTRRs */
753         return valid_mtrr_type(data & 0xff);
754 }
755
756 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
757 {
758         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
759
760         if (!mtrr_valid(vcpu, msr, data))
761                 return 1;
762
763         if (msr == MSR_MTRRdefType) {
764                 vcpu->arch.mtrr_state.def_type = data;
765                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
766         } else if (msr == MSR_MTRRfix64K_00000)
767                 p[0] = data;
768         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
769                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
770         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
771                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
772         else if (msr == MSR_IA32_CR_PAT)
773                 vcpu->arch.pat = data;
774         else {  /* Variable MTRRs */
775                 int idx, is_mtrr_mask;
776                 u64 *pt;
777
778                 idx = (msr - 0x200) / 2;
779                 is_mtrr_mask = msr - 0x200 - 2 * idx;
780                 if (!is_mtrr_mask)
781                         pt =
782                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
783                 else
784                         pt =
785                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
786                 *pt = data;
787         }
788
789         kvm_mmu_reset_context(vcpu);
790         return 0;
791 }
792
793 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
794 {
795         u64 mcg_cap = vcpu->arch.mcg_cap;
796         unsigned bank_num = mcg_cap & 0xff;
797
798         switch (msr) {
799         case MSR_IA32_MCG_STATUS:
800                 vcpu->arch.mcg_status = data;
801                 break;
802         case MSR_IA32_MCG_CTL:
803                 if (!(mcg_cap & MCG_CTL_P))
804                         return 1;
805                 if (data != 0 && data != ~(u64)0)
806                         return -1;
807                 vcpu->arch.mcg_ctl = data;
808                 break;
809         default:
810                 if (msr >= MSR_IA32_MC0_CTL &&
811                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
812                         u32 offset = msr - MSR_IA32_MC0_CTL;
813                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
814                         if ((offset & 0x3) == 0 &&
815                             data != 0 && data != ~(u64)0)
816                                 return -1;
817                         vcpu->arch.mce_banks[offset] = data;
818                         break;
819                 }
820                 return 1;
821         }
822         return 0;
823 }
824
825 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
826 {
827         switch (msr) {
828         case MSR_EFER:
829                 set_efer(vcpu, data);
830                 break;
831         case MSR_K7_HWCR:
832                 data &= ~(u64)0x40;     /* ignore flush filter disable */
833                 if (data != 0) {
834                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
835                                 data);
836                         return 1;
837                 }
838                 break;
839         case MSR_FAM10H_MMIO_CONF_BASE:
840                 if (data != 0) {
841                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
842                                 "0x%llx\n", data);
843                         return 1;
844                 }
845                 break;
846         case MSR_AMD64_NB_CFG:
847                 break;
848         case MSR_IA32_DEBUGCTLMSR:
849                 if (!data) {
850                         /* We support the non-activated case already */
851                         break;
852                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
853                         /* Values other than LBR and BTF are vendor-specific,
854                            thus reserved and should throw a #GP */
855                         return 1;
856                 }
857                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
858                         __func__, data);
859                 break;
860         case MSR_IA32_UCODE_REV:
861         case MSR_IA32_UCODE_WRITE:
862         case MSR_VM_HSAVE_PA:
863         case MSR_AMD64_PATCH_LOADER:
864                 break;
865         case 0x200 ... 0x2ff:
866                 return set_msr_mtrr(vcpu, msr, data);
867         case MSR_IA32_APICBASE:
868                 kvm_set_apic_base(vcpu, data);
869                 break;
870         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
871                 return kvm_x2apic_msr_write(vcpu, msr, data);
872         case MSR_IA32_MISC_ENABLE:
873                 vcpu->arch.ia32_misc_enable_msr = data;
874                 break;
875         case MSR_KVM_WALL_CLOCK:
876                 vcpu->kvm->arch.wall_clock = data;
877                 kvm_write_wall_clock(vcpu->kvm, data);
878                 break;
879         case MSR_KVM_SYSTEM_TIME: {
880                 if (vcpu->arch.time_page) {
881                         kvm_release_page_dirty(vcpu->arch.time_page);
882                         vcpu->arch.time_page = NULL;
883                 }
884
885                 vcpu->arch.time = data;
886
887                 /* we verify if the enable bit is set... */
888                 if (!(data & 1))
889                         break;
890
891                 /* ...but clean it before doing the actual write */
892                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
893
894                 vcpu->arch.time_page =
895                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
896
897                 if (is_error_page(vcpu->arch.time_page)) {
898                         kvm_release_page_clean(vcpu->arch.time_page);
899                         vcpu->arch.time_page = NULL;
900                 }
901
902                 kvm_request_guest_time_update(vcpu);
903                 break;
904         }
905         case MSR_IA32_MCG_CTL:
906         case MSR_IA32_MCG_STATUS:
907         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
908                 return set_msr_mce(vcpu, msr, data);
909
910         /* Performance counters are not protected by a CPUID bit,
911          * so we should check all of them in the generic path for the sake of
912          * cross vendor migration.
913          * Writing a zero into the event select MSRs disables them,
914          * which we perfectly emulate ;-). Any other value should be at least
915          * reported, some guests depend on them.
916          */
917         case MSR_P6_EVNTSEL0:
918         case MSR_P6_EVNTSEL1:
919         case MSR_K7_EVNTSEL0:
920         case MSR_K7_EVNTSEL1:
921         case MSR_K7_EVNTSEL2:
922         case MSR_K7_EVNTSEL3:
923                 if (data != 0)
924                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
925                                 "0x%x data 0x%llx\n", msr, data);
926                 break;
927         /* at least RHEL 4 unconditionally writes to the perfctr registers,
928          * so we ignore writes to make it happy.
929          */
930         case MSR_P6_PERFCTR0:
931         case MSR_P6_PERFCTR1:
932         case MSR_K7_PERFCTR0:
933         case MSR_K7_PERFCTR1:
934         case MSR_K7_PERFCTR2:
935         case MSR_K7_PERFCTR3:
936                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
937                         "0x%x data 0x%llx\n", msr, data);
938                 break;
939         default:
940                 if (!ignore_msrs) {
941                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
942                                 msr, data);
943                         return 1;
944                 } else {
945                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
946                                 msr, data);
947                         break;
948                 }
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
953
954
955 /*
956  * Reads an msr value (of 'msr_index') into 'pdata'.
957  * Returns 0 on success, non-0 otherwise.
958  * Assumes vcpu_load() was already called.
959  */
960 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
961 {
962         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
963 }
964
965 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
966 {
967         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
968
969         if (!msr_mtrr_valid(msr))
970                 return 1;
971
972         if (msr == MSR_MTRRdefType)
973                 *pdata = vcpu->arch.mtrr_state.def_type +
974                          (vcpu->arch.mtrr_state.enabled << 10);
975         else if (msr == MSR_MTRRfix64K_00000)
976                 *pdata = p[0];
977         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
978                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
979         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
980                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
981         else if (msr == MSR_IA32_CR_PAT)
982                 *pdata = vcpu->arch.pat;
983         else {  /* Variable MTRRs */
984                 int idx, is_mtrr_mask;
985                 u64 *pt;
986
987                 idx = (msr - 0x200) / 2;
988                 is_mtrr_mask = msr - 0x200 - 2 * idx;
989                 if (!is_mtrr_mask)
990                         pt =
991                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
992                 else
993                         pt =
994                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
995                 *pdata = *pt;
996         }
997
998         return 0;
999 }
1000
1001 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1002 {
1003         u64 data;
1004         u64 mcg_cap = vcpu->arch.mcg_cap;
1005         unsigned bank_num = mcg_cap & 0xff;
1006
1007         switch (msr) {
1008         case MSR_IA32_P5_MC_ADDR:
1009         case MSR_IA32_P5_MC_TYPE:
1010                 data = 0;
1011                 break;
1012         case MSR_IA32_MCG_CAP:
1013                 data = vcpu->arch.mcg_cap;
1014                 break;
1015         case MSR_IA32_MCG_CTL:
1016                 if (!(mcg_cap & MCG_CTL_P))
1017                         return 1;
1018                 data = vcpu->arch.mcg_ctl;
1019                 break;
1020         case MSR_IA32_MCG_STATUS:
1021                 data = vcpu->arch.mcg_status;
1022                 break;
1023         default:
1024                 if (msr >= MSR_IA32_MC0_CTL &&
1025                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1026                         u32 offset = msr - MSR_IA32_MC0_CTL;
1027                         data = vcpu->arch.mce_banks[offset];
1028                         break;
1029                 }
1030                 return 1;
1031         }
1032         *pdata = data;
1033         return 0;
1034 }
1035
1036 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1037 {
1038         u64 data;
1039
1040         switch (msr) {
1041         case MSR_IA32_PLATFORM_ID:
1042         case MSR_IA32_UCODE_REV:
1043         case MSR_IA32_EBL_CR_POWERON:
1044         case MSR_IA32_DEBUGCTLMSR:
1045         case MSR_IA32_LASTBRANCHFROMIP:
1046         case MSR_IA32_LASTBRANCHTOIP:
1047         case MSR_IA32_LASTINTFROMIP:
1048         case MSR_IA32_LASTINTTOIP:
1049         case MSR_K8_SYSCFG:
1050         case MSR_K7_HWCR:
1051         case MSR_VM_HSAVE_PA:
1052         case MSR_P6_EVNTSEL0:
1053         case MSR_P6_EVNTSEL1:
1054         case MSR_K7_EVNTSEL0:
1055         case MSR_K8_INT_PENDING_MSG:
1056         case MSR_AMD64_NB_CFG:
1057         case MSR_FAM10H_MMIO_CONF_BASE:
1058                 data = 0;
1059                 break;
1060         case MSR_MTRRcap:
1061                 data = 0x500 | KVM_NR_VAR_MTRR;
1062                 break;
1063         case 0x200 ... 0x2ff:
1064                 return get_msr_mtrr(vcpu, msr, pdata);
1065         case 0xcd: /* fsb frequency */
1066                 data = 3;
1067                 break;
1068         case MSR_IA32_APICBASE:
1069                 data = kvm_get_apic_base(vcpu);
1070                 break;
1071         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1072                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1073                 break;
1074         case MSR_IA32_MISC_ENABLE:
1075                 data = vcpu->arch.ia32_misc_enable_msr;
1076                 break;
1077         case MSR_IA32_PERF_STATUS:
1078                 /* TSC increment by tick */
1079                 data = 1000ULL;
1080                 /* CPU multiplier */
1081                 data |= (((uint64_t)4ULL) << 40);
1082                 break;
1083         case MSR_EFER:
1084                 data = vcpu->arch.shadow_efer;
1085                 break;
1086         case MSR_KVM_WALL_CLOCK:
1087                 data = vcpu->kvm->arch.wall_clock;
1088                 break;
1089         case MSR_KVM_SYSTEM_TIME:
1090                 data = vcpu->arch.time;
1091                 break;
1092         case MSR_IA32_P5_MC_ADDR:
1093         case MSR_IA32_P5_MC_TYPE:
1094         case MSR_IA32_MCG_CAP:
1095         case MSR_IA32_MCG_CTL:
1096         case MSR_IA32_MCG_STATUS:
1097         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1098                 return get_msr_mce(vcpu, msr, pdata);
1099         default:
1100                 if (!ignore_msrs) {
1101                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1102                         return 1;
1103                 } else {
1104                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1105                         data = 0;
1106                 }
1107                 break;
1108         }
1109         *pdata = data;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1113
1114 /*
1115  * Read or write a bunch of msrs. All parameters are kernel addresses.
1116  *
1117  * @return number of msrs set successfully.
1118  */
1119 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1120                     struct kvm_msr_entry *entries,
1121                     int (*do_msr)(struct kvm_vcpu *vcpu,
1122                                   unsigned index, u64 *data))
1123 {
1124         int i;
1125
1126         vcpu_load(vcpu);
1127
1128         down_read(&vcpu->kvm->slots_lock);
1129         for (i = 0; i < msrs->nmsrs; ++i)
1130                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1131                         break;
1132         up_read(&vcpu->kvm->slots_lock);
1133
1134         vcpu_put(vcpu);
1135
1136         return i;
1137 }
1138
1139 /*
1140  * Read or write a bunch of msrs. Parameters are user addresses.
1141  *
1142  * @return number of msrs set successfully.
1143  */
1144 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1145                   int (*do_msr)(struct kvm_vcpu *vcpu,
1146                                 unsigned index, u64 *data),
1147                   int writeback)
1148 {
1149         struct kvm_msrs msrs;
1150         struct kvm_msr_entry *entries;
1151         int r, n;
1152         unsigned size;
1153
1154         r = -EFAULT;
1155         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1156                 goto out;
1157
1158         r = -E2BIG;
1159         if (msrs.nmsrs >= MAX_IO_MSRS)
1160                 goto out;
1161
1162         r = -ENOMEM;
1163         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1164         entries = vmalloc(size);
1165         if (!entries)
1166                 goto out;
1167
1168         r = -EFAULT;
1169         if (copy_from_user(entries, user_msrs->entries, size))
1170                 goto out_free;
1171
1172         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1173         if (r < 0)
1174                 goto out_free;
1175
1176         r = -EFAULT;
1177         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1178                 goto out_free;
1179
1180         r = n;
1181
1182 out_free:
1183         vfree(entries);
1184 out:
1185         return r;
1186 }
1187
1188 int kvm_dev_ioctl_check_extension(long ext)
1189 {
1190         int r;
1191
1192         switch (ext) {
1193         case KVM_CAP_IRQCHIP:
1194         case KVM_CAP_HLT:
1195         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1196         case KVM_CAP_SET_TSS_ADDR:
1197         case KVM_CAP_EXT_CPUID:
1198         case KVM_CAP_CLOCKSOURCE:
1199         case KVM_CAP_PIT:
1200         case KVM_CAP_NOP_IO_DELAY:
1201         case KVM_CAP_MP_STATE:
1202         case KVM_CAP_SYNC_MMU:
1203         case KVM_CAP_REINJECT_CONTROL:
1204         case KVM_CAP_IRQ_INJECT_STATUS:
1205         case KVM_CAP_ASSIGN_DEV_IRQ:
1206         case KVM_CAP_IRQFD:
1207         case KVM_CAP_IOEVENTFD:
1208         case KVM_CAP_PIT2:
1209         case KVM_CAP_PIT_STATE2:
1210                 r = 1;
1211                 break;
1212         case KVM_CAP_COALESCED_MMIO:
1213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1214                 break;
1215         case KVM_CAP_VAPIC:
1216                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1217                 break;
1218         case KVM_CAP_NR_VCPUS:
1219                 r = KVM_MAX_VCPUS;
1220                 break;
1221         case KVM_CAP_NR_MEMSLOTS:
1222                 r = KVM_MEMORY_SLOTS;
1223                 break;
1224         case KVM_CAP_PV_MMU:
1225                 r = !tdp_enabled;
1226                 break;
1227         case KVM_CAP_IOMMU:
1228                 r = iommu_found();
1229                 break;
1230         case KVM_CAP_MCE:
1231                 r = KVM_MAX_MCE_BANKS;
1232                 break;
1233         default:
1234                 r = 0;
1235                 break;
1236         }
1237         return r;
1238
1239 }
1240
1241 long kvm_arch_dev_ioctl(struct file *filp,
1242                         unsigned int ioctl, unsigned long arg)
1243 {
1244         void __user *argp = (void __user *)arg;
1245         long r;
1246
1247         switch (ioctl) {
1248         case KVM_GET_MSR_INDEX_LIST: {
1249                 struct kvm_msr_list __user *user_msr_list = argp;
1250                 struct kvm_msr_list msr_list;
1251                 unsigned n;
1252
1253                 r = -EFAULT;
1254                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1255                         goto out;
1256                 n = msr_list.nmsrs;
1257                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1258                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1259                         goto out;
1260                 r = -E2BIG;
1261                 if (n < msr_list.nmsrs)
1262                         goto out;
1263                 r = -EFAULT;
1264                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1265                                  num_msrs_to_save * sizeof(u32)))
1266                         goto out;
1267                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1268                                  &emulated_msrs,
1269                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1270                         goto out;
1271                 r = 0;
1272                 break;
1273         }
1274         case KVM_GET_SUPPORTED_CPUID: {
1275                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1276                 struct kvm_cpuid2 cpuid;
1277
1278                 r = -EFAULT;
1279                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1280                         goto out;
1281                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1282                                                       cpuid_arg->entries);
1283                 if (r)
1284                         goto out;
1285
1286                 r = -EFAULT;
1287                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1288                         goto out;
1289                 r = 0;
1290                 break;
1291         }
1292         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1293                 u64 mce_cap;
1294
1295                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1296                 r = -EFAULT;
1297                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1298                         goto out;
1299                 r = 0;
1300                 break;
1301         }
1302         default:
1303                 r = -EINVAL;
1304         }
1305 out:
1306         return r;
1307 }
1308
1309 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311         kvm_x86_ops->vcpu_load(vcpu, cpu);
1312         kvm_request_guest_time_update(vcpu);
1313 }
1314
1315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1316 {
1317         kvm_x86_ops->vcpu_put(vcpu);
1318         kvm_put_guest_fpu(vcpu);
1319 }
1320
1321 static int is_efer_nx(void)
1322 {
1323         unsigned long long efer = 0;
1324
1325         rdmsrl_safe(MSR_EFER, &efer);
1326         return efer & EFER_NX;
1327 }
1328
1329 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1330 {
1331         int i;
1332         struct kvm_cpuid_entry2 *e, *entry;
1333
1334         entry = NULL;
1335         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1336                 e = &vcpu->arch.cpuid_entries[i];
1337                 if (e->function == 0x80000001) {
1338                         entry = e;
1339                         break;
1340                 }
1341         }
1342         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1343                 entry->edx &= ~(1 << 20);
1344                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1345         }
1346 }
1347
1348 /* when an old userspace process fills a new kernel module */
1349 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1350                                     struct kvm_cpuid *cpuid,
1351                                     struct kvm_cpuid_entry __user *entries)
1352 {
1353         int r, i;
1354         struct kvm_cpuid_entry *cpuid_entries;
1355
1356         r = -E2BIG;
1357         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1358                 goto out;
1359         r = -ENOMEM;
1360         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1361         if (!cpuid_entries)
1362                 goto out;
1363         r = -EFAULT;
1364         if (copy_from_user(cpuid_entries, entries,
1365                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1366                 goto out_free;
1367         for (i = 0; i < cpuid->nent; i++) {
1368                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1369                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1370                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1371                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1372                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1373                 vcpu->arch.cpuid_entries[i].index = 0;
1374                 vcpu->arch.cpuid_entries[i].flags = 0;
1375                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1376                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1377                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1378         }
1379         vcpu->arch.cpuid_nent = cpuid->nent;
1380         cpuid_fix_nx_cap(vcpu);
1381         r = 0;
1382         kvm_apic_set_version(vcpu);
1383
1384 out_free:
1385         vfree(cpuid_entries);
1386 out:
1387         return r;
1388 }
1389
1390 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1391                                      struct kvm_cpuid2 *cpuid,
1392                                      struct kvm_cpuid_entry2 __user *entries)
1393 {
1394         int r;
1395
1396         r = -E2BIG;
1397         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1398                 goto out;
1399         r = -EFAULT;
1400         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1401                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1402                 goto out;
1403         vcpu->arch.cpuid_nent = cpuid->nent;
1404         kvm_apic_set_version(vcpu);
1405         return 0;
1406
1407 out:
1408         return r;
1409 }
1410
1411 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1412                                      struct kvm_cpuid2 *cpuid,
1413                                      struct kvm_cpuid_entry2 __user *entries)
1414 {
1415         int r;
1416
1417         r = -E2BIG;
1418         if (cpuid->nent < vcpu->arch.cpuid_nent)
1419                 goto out;
1420         r = -EFAULT;
1421         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1422                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1423                 goto out;
1424         return 0;
1425
1426 out:
1427         cpuid->nent = vcpu->arch.cpuid_nent;
1428         return r;
1429 }
1430
1431 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1432                            u32 index)
1433 {
1434         entry->function = function;
1435         entry->index = index;
1436         cpuid_count(entry->function, entry->index,
1437                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1438         entry->flags = 0;
1439 }
1440
1441 #define F(x) bit(X86_FEATURE_##x)
1442
1443 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1444                          u32 index, int *nent, int maxnent)
1445 {
1446         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1447 #ifdef CONFIG_X86_64
1448         unsigned f_lm = F(LM);
1449 #else
1450         unsigned f_lm = 0;
1451 #endif
1452
1453         /* cpuid 1.edx */
1454         const u32 kvm_supported_word0_x86_features =
1455                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1456                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1457                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1458                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1459                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1460                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1461                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1462                 0 /* HTT, TM, Reserved, PBE */;
1463         /* cpuid 0x80000001.edx */
1464         const u32 kvm_supported_word1_x86_features =
1465                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1466                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1467                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1468                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1469                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1470                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1471                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1472                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1473         /* cpuid 1.ecx */
1474         const u32 kvm_supported_word4_x86_features =
1475                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1476                 0 /* DS-CPL, VMX, SMX, EST */ |
1477                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1478                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1479                 0 /* Reserved, DCA */ | F(XMM4_1) |
1480                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1481                 0 /* Reserved, XSAVE, OSXSAVE */;
1482         /* cpuid 0x80000001.ecx */
1483         const u32 kvm_supported_word6_x86_features =
1484                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1485                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1486                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1487                 0 /* SKINIT */ | 0 /* WDT */;
1488
1489         /* all calls to cpuid_count() should be made on the same cpu */
1490         get_cpu();
1491         do_cpuid_1_ent(entry, function, index);
1492         ++*nent;
1493
1494         switch (function) {
1495         case 0:
1496                 entry->eax = min(entry->eax, (u32)0xb);
1497                 break;
1498         case 1:
1499                 entry->edx &= kvm_supported_word0_x86_features;
1500                 entry->ecx &= kvm_supported_word4_x86_features;
1501                 /* we support x2apic emulation even if host does not support
1502                  * it since we emulate x2apic in software */
1503                 entry->ecx |= F(X2APIC);
1504                 break;
1505         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1506          * may return different values. This forces us to get_cpu() before
1507          * issuing the first command, and also to emulate this annoying behavior
1508          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1509         case 2: {
1510                 int t, times = entry->eax & 0xff;
1511
1512                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1513                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1514                 for (t = 1; t < times && *nent < maxnent; ++t) {
1515                         do_cpuid_1_ent(&entry[t], function, 0);
1516                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1517                         ++*nent;
1518                 }
1519                 break;
1520         }
1521         /* function 4 and 0xb have additional index. */
1522         case 4: {
1523                 int i, cache_type;
1524
1525                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1526                 /* read more entries until cache_type is zero */
1527                 for (i = 1; *nent < maxnent; ++i) {
1528                         cache_type = entry[i - 1].eax & 0x1f;
1529                         if (!cache_type)
1530                                 break;
1531                         do_cpuid_1_ent(&entry[i], function, i);
1532                         entry[i].flags |=
1533                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1534                         ++*nent;
1535                 }
1536                 break;
1537         }
1538         case 0xb: {
1539                 int i, level_type;
1540
1541                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1542                 /* read more entries until level_type is zero */
1543                 for (i = 1; *nent < maxnent; ++i) {
1544                         level_type = entry[i - 1].ecx & 0xff00;
1545                         if (!level_type)
1546                                 break;
1547                         do_cpuid_1_ent(&entry[i], function, i);
1548                         entry[i].flags |=
1549                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1550                         ++*nent;
1551                 }
1552                 break;
1553         }
1554         case 0x80000000:
1555                 entry->eax = min(entry->eax, 0x8000001a);
1556                 break;
1557         case 0x80000001:
1558                 entry->edx &= kvm_supported_word1_x86_features;
1559                 entry->ecx &= kvm_supported_word6_x86_features;
1560                 break;
1561         }
1562         put_cpu();
1563 }
1564
1565 #undef F
1566
1567 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1568                                      struct kvm_cpuid_entry2 __user *entries)
1569 {
1570         struct kvm_cpuid_entry2 *cpuid_entries;
1571         int limit, nent = 0, r = -E2BIG;
1572         u32 func;
1573
1574         if (cpuid->nent < 1)
1575                 goto out;
1576         r = -ENOMEM;
1577         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1578         if (!cpuid_entries)
1579                 goto out;
1580
1581         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1582         limit = cpuid_entries[0].eax;
1583         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1584                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1585                              &nent, cpuid->nent);
1586         r = -E2BIG;
1587         if (nent >= cpuid->nent)
1588                 goto out_free;
1589
1590         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1591         limit = cpuid_entries[nent - 1].eax;
1592         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1593                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1594                              &nent, cpuid->nent);
1595         r = -E2BIG;
1596         if (nent >= cpuid->nent)
1597                 goto out_free;
1598
1599         r = -EFAULT;
1600         if (copy_to_user(entries, cpuid_entries,
1601                          nent * sizeof(struct kvm_cpuid_entry2)))
1602                 goto out_free;
1603         cpuid->nent = nent;
1604         r = 0;
1605
1606 out_free:
1607         vfree(cpuid_entries);
1608 out:
1609         return r;
1610 }
1611
1612 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1613                                     struct kvm_lapic_state *s)
1614 {
1615         vcpu_load(vcpu);
1616         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1617         vcpu_put(vcpu);
1618
1619         return 0;
1620 }
1621
1622 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1623                                     struct kvm_lapic_state *s)
1624 {
1625         vcpu_load(vcpu);
1626         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1627         kvm_apic_post_state_restore(vcpu);
1628         vcpu_put(vcpu);
1629
1630         return 0;
1631 }
1632
1633 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1634                                     struct kvm_interrupt *irq)
1635 {
1636         if (irq->irq < 0 || irq->irq >= 256)
1637                 return -EINVAL;
1638         if (irqchip_in_kernel(vcpu->kvm))
1639                 return -ENXIO;
1640         vcpu_load(vcpu);
1641
1642         kvm_queue_interrupt(vcpu, irq->irq, false);
1643
1644         vcpu_put(vcpu);
1645
1646         return 0;
1647 }
1648
1649 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1650 {
1651         vcpu_load(vcpu);
1652         kvm_inject_nmi(vcpu);
1653         vcpu_put(vcpu);
1654
1655         return 0;
1656 }
1657
1658 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1659                                            struct kvm_tpr_access_ctl *tac)
1660 {
1661         if (tac->flags)
1662                 return -EINVAL;
1663         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1664         return 0;
1665 }
1666
1667 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1668                                         u64 mcg_cap)
1669 {
1670         int r;
1671         unsigned bank_num = mcg_cap & 0xff, bank;
1672
1673         r = -EINVAL;
1674         if (!bank_num)
1675                 goto out;
1676         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1677                 goto out;
1678         r = 0;
1679         vcpu->arch.mcg_cap = mcg_cap;
1680         /* Init IA32_MCG_CTL to all 1s */
1681         if (mcg_cap & MCG_CTL_P)
1682                 vcpu->arch.mcg_ctl = ~(u64)0;
1683         /* Init IA32_MCi_CTL to all 1s */
1684         for (bank = 0; bank < bank_num; bank++)
1685                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1686 out:
1687         return r;
1688 }
1689
1690 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1691                                       struct kvm_x86_mce *mce)
1692 {
1693         u64 mcg_cap = vcpu->arch.mcg_cap;
1694         unsigned bank_num = mcg_cap & 0xff;
1695         u64 *banks = vcpu->arch.mce_banks;
1696
1697         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1698                 return -EINVAL;
1699         /*
1700          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1701          * reporting is disabled
1702          */
1703         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1704             vcpu->arch.mcg_ctl != ~(u64)0)
1705                 return 0;
1706         banks += 4 * mce->bank;
1707         /*
1708          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1709          * reporting is disabled for the bank
1710          */
1711         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1712                 return 0;
1713         if (mce->status & MCI_STATUS_UC) {
1714                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1715                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1716                         printk(KERN_DEBUG "kvm: set_mce: "
1717                                "injects mce exception while "
1718                                "previous one is in progress!\n");
1719                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1720                         return 0;
1721                 }
1722                 if (banks[1] & MCI_STATUS_VAL)
1723                         mce->status |= MCI_STATUS_OVER;
1724                 banks[2] = mce->addr;
1725                 banks[3] = mce->misc;
1726                 vcpu->arch.mcg_status = mce->mcg_status;
1727                 banks[1] = mce->status;
1728                 kvm_queue_exception(vcpu, MC_VECTOR);
1729         } else if (!(banks[1] & MCI_STATUS_VAL)
1730                    || !(banks[1] & MCI_STATUS_UC)) {
1731                 if (banks[1] & MCI_STATUS_VAL)
1732                         mce->status |= MCI_STATUS_OVER;
1733                 banks[2] = mce->addr;
1734                 banks[3] = mce->misc;
1735                 banks[1] = mce->status;
1736         } else
1737                 banks[1] |= MCI_STATUS_OVER;
1738         return 0;
1739 }
1740
1741 long kvm_arch_vcpu_ioctl(struct file *filp,
1742                          unsigned int ioctl, unsigned long arg)
1743 {
1744         struct kvm_vcpu *vcpu = filp->private_data;
1745         void __user *argp = (void __user *)arg;
1746         int r;
1747         struct kvm_lapic_state *lapic = NULL;
1748
1749         switch (ioctl) {
1750         case KVM_GET_LAPIC: {
1751                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1752
1753                 r = -ENOMEM;
1754                 if (!lapic)
1755                         goto out;
1756                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1757                 if (r)
1758                         goto out;
1759                 r = -EFAULT;
1760                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1761                         goto out;
1762                 r = 0;
1763                 break;
1764         }
1765         case KVM_SET_LAPIC: {
1766                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1767                 r = -ENOMEM;
1768                 if (!lapic)
1769                         goto out;
1770                 r = -EFAULT;
1771                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1772                         goto out;
1773                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1774                 if (r)
1775                         goto out;
1776                 r = 0;
1777                 break;
1778         }
1779         case KVM_INTERRUPT: {
1780                 struct kvm_interrupt irq;
1781
1782                 r = -EFAULT;
1783                 if (copy_from_user(&irq, argp, sizeof irq))
1784                         goto out;
1785                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1786                 if (r)
1787                         goto out;
1788                 r = 0;
1789                 break;
1790         }
1791         case KVM_NMI: {
1792                 r = kvm_vcpu_ioctl_nmi(vcpu);
1793                 if (r)
1794                         goto out;
1795                 r = 0;
1796                 break;
1797         }
1798         case KVM_SET_CPUID: {
1799                 struct kvm_cpuid __user *cpuid_arg = argp;
1800                 struct kvm_cpuid cpuid;
1801
1802                 r = -EFAULT;
1803                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1804                         goto out;
1805                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1806                 if (r)
1807                         goto out;
1808                 break;
1809         }
1810         case KVM_SET_CPUID2: {
1811                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1812                 struct kvm_cpuid2 cpuid;
1813
1814                 r = -EFAULT;
1815                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1816                         goto out;
1817                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1818                                               cpuid_arg->entries);
1819                 if (r)
1820                         goto out;
1821                 break;
1822         }
1823         case KVM_GET_CPUID2: {
1824                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1825                 struct kvm_cpuid2 cpuid;
1826
1827                 r = -EFAULT;
1828                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1829                         goto out;
1830                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1831                                               cpuid_arg->entries);
1832                 if (r)
1833                         goto out;
1834                 r = -EFAULT;
1835                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1836                         goto out;
1837                 r = 0;
1838                 break;
1839         }
1840         case KVM_GET_MSRS:
1841                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1842                 break;
1843         case KVM_SET_MSRS:
1844                 r = msr_io(vcpu, argp, do_set_msr, 0);
1845                 break;
1846         case KVM_TPR_ACCESS_REPORTING: {
1847                 struct kvm_tpr_access_ctl tac;
1848
1849                 r = -EFAULT;
1850                 if (copy_from_user(&tac, argp, sizeof tac))
1851                         goto out;
1852                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1853                 if (r)
1854                         goto out;
1855                 r = -EFAULT;
1856                 if (copy_to_user(argp, &tac, sizeof tac))
1857                         goto out;
1858                 r = 0;
1859                 break;
1860         };
1861         case KVM_SET_VAPIC_ADDR: {
1862                 struct kvm_vapic_addr va;
1863
1864                 r = -EINVAL;
1865                 if (!irqchip_in_kernel(vcpu->kvm))
1866                         goto out;
1867                 r = -EFAULT;
1868                 if (copy_from_user(&va, argp, sizeof va))
1869                         goto out;
1870                 r = 0;
1871                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1872                 break;
1873         }
1874         case KVM_X86_SETUP_MCE: {
1875                 u64 mcg_cap;
1876
1877                 r = -EFAULT;
1878                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1879                         goto out;
1880                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1881                 break;
1882         }
1883         case KVM_X86_SET_MCE: {
1884                 struct kvm_x86_mce mce;
1885
1886                 r = -EFAULT;
1887                 if (copy_from_user(&mce, argp, sizeof mce))
1888                         goto out;
1889                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1890                 break;
1891         }
1892         default:
1893                 r = -EINVAL;
1894         }
1895 out:
1896         kfree(lapic);
1897         return r;
1898 }
1899
1900 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1901 {
1902         int ret;
1903
1904         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1905                 return -1;
1906         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1907         return ret;
1908 }
1909
1910 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1911                                           u32 kvm_nr_mmu_pages)
1912 {
1913         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1914                 return -EINVAL;
1915
1916         down_write(&kvm->slots_lock);
1917         spin_lock(&kvm->mmu_lock);
1918
1919         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1920         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1921
1922         spin_unlock(&kvm->mmu_lock);
1923         up_write(&kvm->slots_lock);
1924         return 0;
1925 }
1926
1927 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1928 {
1929         return kvm->arch.n_alloc_mmu_pages;
1930 }
1931
1932 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1933 {
1934         int i;
1935         struct kvm_mem_alias *alias;
1936
1937         for (i = 0; i < kvm->arch.naliases; ++i) {
1938                 alias = &kvm->arch.aliases[i];
1939                 if (gfn >= alias->base_gfn
1940                     && gfn < alias->base_gfn + alias->npages)
1941                         return alias->target_gfn + gfn - alias->base_gfn;
1942         }
1943         return gfn;
1944 }
1945
1946 /*
1947  * Set a new alias region.  Aliases map a portion of physical memory into
1948  * another portion.  This is useful for memory windows, for example the PC
1949  * VGA region.
1950  */
1951 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1952                                          struct kvm_memory_alias *alias)
1953 {
1954         int r, n;
1955         struct kvm_mem_alias *p;
1956
1957         r = -EINVAL;
1958         /* General sanity checks */
1959         if (alias->memory_size & (PAGE_SIZE - 1))
1960                 goto out;
1961         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1962                 goto out;
1963         if (alias->slot >= KVM_ALIAS_SLOTS)
1964                 goto out;
1965         if (alias->guest_phys_addr + alias->memory_size
1966             < alias->guest_phys_addr)
1967                 goto out;
1968         if (alias->target_phys_addr + alias->memory_size
1969             < alias->target_phys_addr)
1970                 goto out;
1971
1972         down_write(&kvm->slots_lock);
1973         spin_lock(&kvm->mmu_lock);
1974
1975         p = &kvm->arch.aliases[alias->slot];
1976         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1977         p->npages = alias->memory_size >> PAGE_SHIFT;
1978         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1979
1980         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1981                 if (kvm->arch.aliases[n - 1].npages)
1982                         break;
1983         kvm->arch.naliases = n;
1984
1985         spin_unlock(&kvm->mmu_lock);
1986         kvm_mmu_zap_all(kvm);
1987
1988         up_write(&kvm->slots_lock);
1989
1990         return 0;
1991
1992 out:
1993         return r;
1994 }
1995
1996 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1997 {
1998         int r;
1999
2000         r = 0;
2001         switch (chip->chip_id) {
2002         case KVM_IRQCHIP_PIC_MASTER:
2003                 memcpy(&chip->chip.pic,
2004                         &pic_irqchip(kvm)->pics[0],
2005                         sizeof(struct kvm_pic_state));
2006                 break;
2007         case KVM_IRQCHIP_PIC_SLAVE:
2008                 memcpy(&chip->chip.pic,
2009                         &pic_irqchip(kvm)->pics[1],
2010                         sizeof(struct kvm_pic_state));
2011                 break;
2012         case KVM_IRQCHIP_IOAPIC:
2013                 memcpy(&chip->chip.ioapic,
2014                         ioapic_irqchip(kvm),
2015                         sizeof(struct kvm_ioapic_state));
2016                 break;
2017         default:
2018                 r = -EINVAL;
2019                 break;
2020         }
2021         return r;
2022 }
2023
2024 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2025 {
2026         int r;
2027
2028         r = 0;
2029         switch (chip->chip_id) {
2030         case KVM_IRQCHIP_PIC_MASTER:
2031                 spin_lock(&pic_irqchip(kvm)->lock);
2032                 memcpy(&pic_irqchip(kvm)->pics[0],
2033                         &chip->chip.pic,
2034                         sizeof(struct kvm_pic_state));
2035                 spin_unlock(&pic_irqchip(kvm)->lock);
2036                 break;
2037         case KVM_IRQCHIP_PIC_SLAVE:
2038                 spin_lock(&pic_irqchip(kvm)->lock);
2039                 memcpy(&pic_irqchip(kvm)->pics[1],
2040                         &chip->chip.pic,
2041                         sizeof(struct kvm_pic_state));
2042                 spin_unlock(&pic_irqchip(kvm)->lock);
2043                 break;
2044         case KVM_IRQCHIP_IOAPIC:
2045                 mutex_lock(&kvm->irq_lock);
2046                 memcpy(ioapic_irqchip(kvm),
2047                         &chip->chip.ioapic,
2048                         sizeof(struct kvm_ioapic_state));
2049                 mutex_unlock(&kvm->irq_lock);
2050                 break;
2051         default:
2052                 r = -EINVAL;
2053                 break;
2054         }
2055         kvm_pic_update_irq(pic_irqchip(kvm));
2056         return r;
2057 }
2058
2059 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2060 {
2061         int r = 0;
2062
2063         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2064         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2065         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2066         return r;
2067 }
2068
2069 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2070 {
2071         int r = 0;
2072
2073         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2074         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2075         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2076         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2077         return r;
2078 }
2079
2080 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2081 {
2082         int r = 0;
2083
2084         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2085         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2086                 sizeof(ps->channels));
2087         ps->flags = kvm->arch.vpit->pit_state.flags;
2088         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2089         return r;
2090 }
2091
2092 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2093 {
2094         int r = 0, start = 0;
2095         u32 prev_legacy, cur_legacy;
2096         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2097         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2098         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2099         if (!prev_legacy && cur_legacy)
2100                 start = 1;
2101         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2102                sizeof(kvm->arch.vpit->pit_state.channels));
2103         kvm->arch.vpit->pit_state.flags = ps->flags;
2104         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2105         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2106         return r;
2107 }
2108
2109 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2110                                  struct kvm_reinject_control *control)
2111 {
2112         if (!kvm->arch.vpit)
2113                 return -ENXIO;
2114         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2115         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2116         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2117         return 0;
2118 }
2119
2120 /*
2121  * Get (and clear) the dirty memory log for a memory slot.
2122  */
2123 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2124                                       struct kvm_dirty_log *log)
2125 {
2126         int r;
2127         int n;
2128         struct kvm_memory_slot *memslot;
2129         int is_dirty = 0;
2130
2131         down_write(&kvm->slots_lock);
2132
2133         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2134         if (r)
2135                 goto out;
2136
2137         /* If nothing is dirty, don't bother messing with page tables. */
2138         if (is_dirty) {
2139                 spin_lock(&kvm->mmu_lock);
2140                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2141                 spin_unlock(&kvm->mmu_lock);
2142                 kvm_flush_remote_tlbs(kvm);
2143                 memslot = &kvm->memslots[log->slot];
2144                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2145                 memset(memslot->dirty_bitmap, 0, n);
2146         }
2147         r = 0;
2148 out:
2149         up_write(&kvm->slots_lock);
2150         return r;
2151 }
2152
2153 long kvm_arch_vm_ioctl(struct file *filp,
2154                        unsigned int ioctl, unsigned long arg)
2155 {
2156         struct kvm *kvm = filp->private_data;
2157         void __user *argp = (void __user *)arg;
2158         int r = -EINVAL;
2159         /*
2160          * This union makes it completely explicit to gcc-3.x
2161          * that these two variables' stack usage should be
2162          * combined, not added together.
2163          */
2164         union {
2165                 struct kvm_pit_state ps;
2166                 struct kvm_pit_state2 ps2;
2167                 struct kvm_memory_alias alias;
2168                 struct kvm_pit_config pit_config;
2169         } u;
2170
2171         switch (ioctl) {
2172         case KVM_SET_TSS_ADDR:
2173                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2174                 if (r < 0)
2175                         goto out;
2176                 break;
2177         case KVM_SET_MEMORY_REGION: {
2178                 struct kvm_memory_region kvm_mem;
2179                 struct kvm_userspace_memory_region kvm_userspace_mem;
2180
2181                 r = -EFAULT;
2182                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2183                         goto out;
2184                 kvm_userspace_mem.slot = kvm_mem.slot;
2185                 kvm_userspace_mem.flags = kvm_mem.flags;
2186                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2187                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2188                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2189                 if (r)
2190                         goto out;
2191                 break;
2192         }
2193         case KVM_SET_NR_MMU_PAGES:
2194                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2195                 if (r)
2196                         goto out;
2197                 break;
2198         case KVM_GET_NR_MMU_PAGES:
2199                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2200                 break;
2201         case KVM_SET_MEMORY_ALIAS:
2202                 r = -EFAULT;
2203                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2204                         goto out;
2205                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2206                 if (r)
2207                         goto out;
2208                 break;
2209         case KVM_CREATE_IRQCHIP:
2210                 r = -ENOMEM;
2211                 kvm->arch.vpic = kvm_create_pic(kvm);
2212                 if (kvm->arch.vpic) {
2213                         r = kvm_ioapic_init(kvm);
2214                         if (r) {
2215                                 kfree(kvm->arch.vpic);
2216                                 kvm->arch.vpic = NULL;
2217                                 goto out;
2218                         }
2219                 } else
2220                         goto out;
2221                 r = kvm_setup_default_irq_routing(kvm);
2222                 if (r) {
2223                         kfree(kvm->arch.vpic);
2224                         kfree(kvm->arch.vioapic);
2225                         goto out;
2226                 }
2227                 break;
2228         case KVM_CREATE_PIT:
2229                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2230                 goto create_pit;
2231         case KVM_CREATE_PIT2:
2232                 r = -EFAULT;
2233                 if (copy_from_user(&u.pit_config, argp,
2234                                    sizeof(struct kvm_pit_config)))
2235                         goto out;
2236         create_pit:
2237                 down_write(&kvm->slots_lock);
2238                 r = -EEXIST;
2239                 if (kvm->arch.vpit)
2240                         goto create_pit_unlock;
2241                 r = -ENOMEM;
2242                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2243                 if (kvm->arch.vpit)
2244                         r = 0;
2245         create_pit_unlock:
2246                 up_write(&kvm->slots_lock);
2247                 break;
2248         case KVM_IRQ_LINE_STATUS:
2249         case KVM_IRQ_LINE: {
2250                 struct kvm_irq_level irq_event;
2251
2252                 r = -EFAULT;
2253                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2254                         goto out;
2255                 if (irqchip_in_kernel(kvm)) {
2256                         __s32 status;
2257                         mutex_lock(&kvm->irq_lock);
2258                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2259                                         irq_event.irq, irq_event.level);
2260                         mutex_unlock(&kvm->irq_lock);
2261                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2262                                 irq_event.status = status;
2263                                 if (copy_to_user(argp, &irq_event,
2264                                                         sizeof irq_event))
2265                                         goto out;
2266                         }
2267                         r = 0;
2268                 }
2269                 break;
2270         }
2271         case KVM_GET_IRQCHIP: {
2272                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2273                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2274
2275                 r = -ENOMEM;
2276                 if (!chip)
2277                         goto out;
2278                 r = -EFAULT;
2279                 if (copy_from_user(chip, argp, sizeof *chip))
2280                         goto get_irqchip_out;
2281                 r = -ENXIO;
2282                 if (!irqchip_in_kernel(kvm))
2283                         goto get_irqchip_out;
2284                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2285                 if (r)
2286                         goto get_irqchip_out;
2287                 r = -EFAULT;
2288                 if (copy_to_user(argp, chip, sizeof *chip))
2289                         goto get_irqchip_out;
2290                 r = 0;
2291         get_irqchip_out:
2292                 kfree(chip);
2293                 if (r)
2294                         goto out;
2295                 break;
2296         }
2297         case KVM_SET_IRQCHIP: {
2298                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2299                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2300
2301                 r = -ENOMEM;
2302                 if (!chip)
2303                         goto out;
2304                 r = -EFAULT;
2305                 if (copy_from_user(chip, argp, sizeof *chip))
2306                         goto set_irqchip_out;
2307                 r = -ENXIO;
2308                 if (!irqchip_in_kernel(kvm))
2309                         goto set_irqchip_out;
2310                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2311                 if (r)
2312                         goto set_irqchip_out;
2313                 r = 0;
2314         set_irqchip_out:
2315                 kfree(chip);
2316                 if (r)
2317                         goto out;
2318                 break;
2319         }
2320         case KVM_GET_PIT: {
2321                 r = -EFAULT;
2322                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2323                         goto out;
2324                 r = -ENXIO;
2325                 if (!kvm->arch.vpit)
2326                         goto out;
2327                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2328                 if (r)
2329                         goto out;
2330                 r = -EFAULT;
2331                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2332                         goto out;
2333                 r = 0;
2334                 break;
2335         }
2336         case KVM_SET_PIT: {
2337                 r = -EFAULT;
2338                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2339                         goto out;
2340                 r = -ENXIO;
2341                 if (!kvm->arch.vpit)
2342                         goto out;
2343                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2344                 if (r)
2345                         goto out;
2346                 r = 0;
2347                 break;
2348         }
2349         case KVM_GET_PIT2: {
2350                 r = -ENXIO;
2351                 if (!kvm->arch.vpit)
2352                         goto out;
2353                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2354                 if (r)
2355                         goto out;
2356                 r = -EFAULT;
2357                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2358                         goto out;
2359                 r = 0;
2360                 break;
2361         }
2362         case KVM_SET_PIT2: {
2363                 r = -EFAULT;
2364                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2365                         goto out;
2366                 r = -ENXIO;
2367                 if (!kvm->arch.vpit)
2368                         goto out;
2369                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2370                 if (r)
2371                         goto out;
2372                 r = 0;
2373                 break;
2374         }
2375         case KVM_REINJECT_CONTROL: {
2376                 struct kvm_reinject_control control;
2377                 r =  -EFAULT;
2378                 if (copy_from_user(&control, argp, sizeof(control)))
2379                         goto out;
2380                 r = kvm_vm_ioctl_reinject(kvm, &control);
2381                 if (r)
2382                         goto out;
2383                 r = 0;
2384                 break;
2385         }
2386         default:
2387                 ;
2388         }
2389 out:
2390         return r;
2391 }
2392
2393 static void kvm_init_msr_list(void)
2394 {
2395         u32 dummy[2];
2396         unsigned i, j;
2397
2398         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2399                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2400                         continue;
2401                 if (j < i)
2402                         msrs_to_save[j] = msrs_to_save[i];
2403                 j++;
2404         }
2405         num_msrs_to_save = j;
2406 }
2407
2408 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2409                            const void *v)
2410 {
2411         if (vcpu->arch.apic &&
2412             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2413                 return 0;
2414
2415         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2416 }
2417
2418 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2419 {
2420         if (vcpu->arch.apic &&
2421             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2422                 return 0;
2423
2424         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2425 }
2426
2427 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2428                                struct kvm_vcpu *vcpu)
2429 {
2430         void *data = val;
2431         int r = X86EMUL_CONTINUE;
2432
2433         while (bytes) {
2434                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2435                 unsigned offset = addr & (PAGE_SIZE-1);
2436                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2437                 int ret;
2438
2439                 if (gpa == UNMAPPED_GVA) {
2440                         r = X86EMUL_PROPAGATE_FAULT;
2441                         goto out;
2442                 }
2443                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2444                 if (ret < 0) {
2445                         r = X86EMUL_UNHANDLEABLE;
2446                         goto out;
2447                 }
2448
2449                 bytes -= toread;
2450                 data += toread;
2451                 addr += toread;
2452         }
2453 out:
2454         return r;
2455 }
2456
2457 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2458                                 struct kvm_vcpu *vcpu)
2459 {
2460         void *data = val;
2461         int r = X86EMUL_CONTINUE;
2462
2463         while (bytes) {
2464                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2465                 unsigned offset = addr & (PAGE_SIZE-1);
2466                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2467                 int ret;
2468
2469                 if (gpa == UNMAPPED_GVA) {
2470                         r = X86EMUL_PROPAGATE_FAULT;
2471                         goto out;
2472                 }
2473                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2474                 if (ret < 0) {
2475                         r = X86EMUL_UNHANDLEABLE;
2476                         goto out;
2477                 }
2478
2479                 bytes -= towrite;
2480                 data += towrite;
2481                 addr += towrite;
2482         }
2483 out:
2484         return r;
2485 }
2486
2487
2488 static int emulator_read_emulated(unsigned long addr,
2489                                   void *val,
2490                                   unsigned int bytes,
2491                                   struct kvm_vcpu *vcpu)
2492 {
2493         gpa_t                 gpa;
2494
2495         if (vcpu->mmio_read_completed) {
2496                 memcpy(val, vcpu->mmio_data, bytes);
2497                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2498                                vcpu->mmio_phys_addr, *(u64 *)val);
2499                 vcpu->mmio_read_completed = 0;
2500                 return X86EMUL_CONTINUE;
2501         }
2502
2503         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2504
2505         /* For APIC access vmexit */
2506         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2507                 goto mmio;
2508
2509         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2510                                 == X86EMUL_CONTINUE)
2511                 return X86EMUL_CONTINUE;
2512         if (gpa == UNMAPPED_GVA)
2513                 return X86EMUL_PROPAGATE_FAULT;
2514
2515 mmio:
2516         /*
2517          * Is this MMIO handled locally?
2518          */
2519         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2520                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2521                 return X86EMUL_CONTINUE;
2522         }
2523
2524         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2525
2526         vcpu->mmio_needed = 1;
2527         vcpu->mmio_phys_addr = gpa;
2528         vcpu->mmio_size = bytes;
2529         vcpu->mmio_is_write = 0;
2530
2531         return X86EMUL_UNHANDLEABLE;
2532 }
2533
2534 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2535                           const void *val, int bytes)
2536 {
2537         int ret;
2538
2539         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2540         if (ret < 0)
2541                 return 0;
2542         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2543         return 1;
2544 }
2545
2546 static int emulator_write_emulated_onepage(unsigned long addr,
2547                                            const void *val,
2548                                            unsigned int bytes,
2549                                            struct kvm_vcpu *vcpu)
2550 {
2551         gpa_t                 gpa;
2552
2553         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2554
2555         if (gpa == UNMAPPED_GVA) {
2556                 kvm_inject_page_fault(vcpu, addr, 2);
2557                 return X86EMUL_PROPAGATE_FAULT;
2558         }
2559
2560         /* For APIC access vmexit */
2561         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2562                 goto mmio;
2563
2564         if (emulator_write_phys(vcpu, gpa, val, bytes))
2565                 return X86EMUL_CONTINUE;
2566
2567 mmio:
2568         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2569         /*
2570          * Is this MMIO handled locally?
2571          */
2572         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2573                 return X86EMUL_CONTINUE;
2574
2575         vcpu->mmio_needed = 1;
2576         vcpu->mmio_phys_addr = gpa;
2577         vcpu->mmio_size = bytes;
2578         vcpu->mmio_is_write = 1;
2579         memcpy(vcpu->mmio_data, val, bytes);
2580
2581         return X86EMUL_CONTINUE;
2582 }
2583
2584 int emulator_write_emulated(unsigned long addr,
2585                                    const void *val,
2586                                    unsigned int bytes,
2587                                    struct kvm_vcpu *vcpu)
2588 {
2589         /* Crossing a page boundary? */
2590         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2591                 int rc, now;
2592
2593                 now = -addr & ~PAGE_MASK;
2594                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2595                 if (rc != X86EMUL_CONTINUE)
2596                         return rc;
2597                 addr += now;
2598                 val += now;
2599                 bytes -= now;
2600         }
2601         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2602 }
2603 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2604
2605 static int emulator_cmpxchg_emulated(unsigned long addr,
2606                                      const void *old,
2607                                      const void *new,
2608                                      unsigned int bytes,
2609                                      struct kvm_vcpu *vcpu)
2610 {
2611         static int reported;
2612
2613         if (!reported) {
2614                 reported = 1;
2615                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2616         }
2617 #ifndef CONFIG_X86_64
2618         /* guests cmpxchg8b have to be emulated atomically */
2619         if (bytes == 8) {
2620                 gpa_t gpa;
2621                 struct page *page;
2622                 char *kaddr;
2623                 u64 val;
2624
2625                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2626
2627                 if (gpa == UNMAPPED_GVA ||
2628                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2629                         goto emul_write;
2630
2631                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2632                         goto emul_write;
2633
2634                 val = *(u64 *)new;
2635
2636                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2637
2638                 kaddr = kmap_atomic(page, KM_USER0);
2639                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2640                 kunmap_atomic(kaddr, KM_USER0);
2641                 kvm_release_page_dirty(page);
2642         }
2643 emul_write:
2644 #endif
2645
2646         return emulator_write_emulated(addr, new, bytes, vcpu);
2647 }
2648
2649 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2650 {
2651         return kvm_x86_ops->get_segment_base(vcpu, seg);
2652 }
2653
2654 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2655 {
2656         kvm_mmu_invlpg(vcpu, address);
2657         return X86EMUL_CONTINUE;
2658 }
2659
2660 int emulate_clts(struct kvm_vcpu *vcpu)
2661 {
2662         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2663         return X86EMUL_CONTINUE;
2664 }
2665
2666 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2667 {
2668         struct kvm_vcpu *vcpu = ctxt->vcpu;
2669
2670         switch (dr) {
2671         case 0 ... 3:
2672                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2673                 return X86EMUL_CONTINUE;
2674         default:
2675                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2676                 return X86EMUL_UNHANDLEABLE;
2677         }
2678 }
2679
2680 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2681 {
2682         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2683         int exception;
2684
2685         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2686         if (exception) {
2687                 /* FIXME: better handling */
2688                 return X86EMUL_UNHANDLEABLE;
2689         }
2690         return X86EMUL_CONTINUE;
2691 }
2692
2693 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2694 {
2695         u8 opcodes[4];
2696         unsigned long rip = kvm_rip_read(vcpu);
2697         unsigned long rip_linear;
2698
2699         if (!printk_ratelimit())
2700                 return;
2701
2702         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2703
2704         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2705
2706         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2707                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2708 }
2709 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2710
2711 static struct x86_emulate_ops emulate_ops = {
2712         .read_std            = kvm_read_guest_virt,
2713         .read_emulated       = emulator_read_emulated,
2714         .write_emulated      = emulator_write_emulated,
2715         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2716 };
2717
2718 static void cache_all_regs(struct kvm_vcpu *vcpu)
2719 {
2720         kvm_register_read(vcpu, VCPU_REGS_RAX);
2721         kvm_register_read(vcpu, VCPU_REGS_RSP);
2722         kvm_register_read(vcpu, VCPU_REGS_RIP);
2723         vcpu->arch.regs_dirty = ~0;
2724 }
2725
2726 int emulate_instruction(struct kvm_vcpu *vcpu,
2727                         struct kvm_run *run,
2728                         unsigned long cr2,
2729                         u16 error_code,
2730                         int emulation_type)
2731 {
2732         int r, shadow_mask;
2733         struct decode_cache *c;
2734
2735         kvm_clear_exception_queue(vcpu);
2736         vcpu->arch.mmio_fault_cr2 = cr2;
2737         /*
2738          * TODO: fix x86_emulate.c to use guest_read/write_register
2739          * instead of direct ->regs accesses, can save hundred cycles
2740          * on Intel for instructions that don't read/change RSP, for
2741          * for example.
2742          */
2743         cache_all_regs(vcpu);
2744
2745         vcpu->mmio_is_write = 0;
2746         vcpu->arch.pio.string = 0;
2747
2748         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2749                 int cs_db, cs_l;
2750                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2751
2752                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2753                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2754                 vcpu->arch.emulate_ctxt.mode =
2755                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2756                         ? X86EMUL_MODE_REAL : cs_l
2757                         ? X86EMUL_MODE_PROT64 : cs_db
2758                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2759
2760                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2761
2762                 /* Only allow emulation of specific instructions on #UD
2763                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2764                 c = &vcpu->arch.emulate_ctxt.decode;
2765                 if (emulation_type & EMULTYPE_TRAP_UD) {
2766                         if (!c->twobyte)
2767                                 return EMULATE_FAIL;
2768                         switch (c->b) {
2769                         case 0x01: /* VMMCALL */
2770                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2771                                         return EMULATE_FAIL;
2772                                 break;
2773                         case 0x34: /* sysenter */
2774                         case 0x35: /* sysexit */
2775                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2776                                         return EMULATE_FAIL;
2777                                 break;
2778                         case 0x05: /* syscall */
2779                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2780                                         return EMULATE_FAIL;
2781                                 break;
2782                         default:
2783                                 return EMULATE_FAIL;
2784                         }
2785
2786                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2787                                 return EMULATE_FAIL;
2788                 }
2789
2790                 ++vcpu->stat.insn_emulation;
2791                 if (r)  {
2792                         ++vcpu->stat.insn_emulation_fail;
2793                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2794                                 return EMULATE_DONE;
2795                         return EMULATE_FAIL;
2796                 }
2797         }
2798
2799         if (emulation_type & EMULTYPE_SKIP) {
2800                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2801                 return EMULATE_DONE;
2802         }
2803
2804         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2805         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2806
2807         if (r == 0)
2808                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2809
2810         if (vcpu->arch.pio.string)
2811                 return EMULATE_DO_MMIO;
2812
2813         if ((r || vcpu->mmio_is_write) && run) {
2814                 run->exit_reason = KVM_EXIT_MMIO;
2815                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2816                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2817                 run->mmio.len = vcpu->mmio_size;
2818                 run->mmio.is_write = vcpu->mmio_is_write;
2819         }
2820
2821         if (r) {
2822                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2823                         return EMULATE_DONE;
2824                 if (!vcpu->mmio_needed) {
2825                         kvm_report_emulation_failure(vcpu, "mmio");
2826                         return EMULATE_FAIL;
2827                 }
2828                 return EMULATE_DO_MMIO;
2829         }
2830
2831         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2832
2833         if (vcpu->mmio_is_write) {
2834                 vcpu->mmio_needed = 0;
2835                 return EMULATE_DO_MMIO;
2836         }
2837
2838         return EMULATE_DONE;
2839 }
2840 EXPORT_SYMBOL_GPL(emulate_instruction);
2841
2842 static int pio_copy_data(struct kvm_vcpu *vcpu)
2843 {
2844         void *p = vcpu->arch.pio_data;
2845         gva_t q = vcpu->arch.pio.guest_gva;
2846         unsigned bytes;
2847         int ret;
2848
2849         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2850         if (vcpu->arch.pio.in)
2851                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2852         else
2853                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2854         return ret;
2855 }
2856
2857 int complete_pio(struct kvm_vcpu *vcpu)
2858 {
2859         struct kvm_pio_request *io = &vcpu->arch.pio;
2860         long delta;
2861         int r;
2862         unsigned long val;
2863
2864         if (!io->string) {
2865                 if (io->in) {
2866                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2867                         memcpy(&val, vcpu->arch.pio_data, io->size);
2868                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2869                 }
2870         } else {
2871                 if (io->in) {
2872                         r = pio_copy_data(vcpu);
2873                         if (r)
2874                                 return r;
2875                 }
2876
2877                 delta = 1;
2878                 if (io->rep) {
2879                         delta *= io->cur_count;
2880                         /*
2881                          * The size of the register should really depend on
2882                          * current address size.
2883                          */
2884                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2885                         val -= delta;
2886                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2887                 }
2888                 if (io->down)
2889                         delta = -delta;
2890                 delta *= io->size;
2891                 if (io->in) {
2892                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2893                         val += delta;
2894                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2895                 } else {
2896                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2897                         val += delta;
2898                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2899                 }
2900         }
2901
2902         io->count -= io->cur_count;
2903         io->cur_count = 0;
2904
2905         return 0;
2906 }
2907
2908 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2909 {
2910         /* TODO: String I/O for in kernel device */
2911         int r;
2912
2913         if (vcpu->arch.pio.in)
2914                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2915                                     vcpu->arch.pio.size, pd);
2916         else
2917                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2918                                      vcpu->arch.pio.size, pd);
2919         return r;
2920 }
2921
2922 static int pio_string_write(struct kvm_vcpu *vcpu)
2923 {
2924         struct kvm_pio_request *io = &vcpu->arch.pio;
2925         void *pd = vcpu->arch.pio_data;
2926         int i, r = 0;
2927
2928         for (i = 0; i < io->cur_count; i++) {
2929                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2930                                      io->port, io->size, pd)) {
2931                         r = -EOPNOTSUPP;
2932                         break;
2933                 }
2934                 pd += io->size;
2935         }
2936         return r;
2937 }
2938
2939 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2940                   int size, unsigned port)
2941 {
2942         unsigned long val;
2943
2944         vcpu->run->exit_reason = KVM_EXIT_IO;
2945         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2946         vcpu->run->io.size = vcpu->arch.pio.size = size;
2947         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2948         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2949         vcpu->run->io.port = vcpu->arch.pio.port = port;
2950         vcpu->arch.pio.in = in;
2951         vcpu->arch.pio.string = 0;
2952         vcpu->arch.pio.down = 0;
2953         vcpu->arch.pio.rep = 0;
2954
2955         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2956                       size, 1);
2957
2958         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2959         memcpy(vcpu->arch.pio_data, &val, 4);
2960
2961         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2962                 complete_pio(vcpu);
2963                 return 1;
2964         }
2965         return 0;
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2968
2969 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2970                   int size, unsigned long count, int down,
2971                   gva_t address, int rep, unsigned port)
2972 {
2973         unsigned now, in_page;
2974         int ret = 0;
2975
2976         vcpu->run->exit_reason = KVM_EXIT_IO;
2977         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2978         vcpu->run->io.size = vcpu->arch.pio.size = size;
2979         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2980         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2981         vcpu->run->io.port = vcpu->arch.pio.port = port;
2982         vcpu->arch.pio.in = in;
2983         vcpu->arch.pio.string = 1;
2984         vcpu->arch.pio.down = down;
2985         vcpu->arch.pio.rep = rep;
2986
2987         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2988                       size, count);
2989
2990         if (!count) {
2991                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2992                 return 1;
2993         }
2994
2995         if (!down)
2996                 in_page = PAGE_SIZE - offset_in_page(address);
2997         else
2998                 in_page = offset_in_page(address) + size;
2999         now = min(count, (unsigned long)in_page / size);
3000         if (!now)
3001                 now = 1;
3002         if (down) {
3003                 /*
3004                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3005                  */
3006                 pr_unimpl(vcpu, "guest string pio down\n");
3007                 kvm_inject_gp(vcpu, 0);
3008                 return 1;
3009         }
3010         vcpu->run->io.count = now;
3011         vcpu->arch.pio.cur_count = now;
3012
3013         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3014                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3015
3016         vcpu->arch.pio.guest_gva = address;
3017
3018         if (!vcpu->arch.pio.in) {
3019                 /* string PIO write */
3020                 ret = pio_copy_data(vcpu);
3021                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3022                         kvm_inject_gp(vcpu, 0);
3023                         return 1;
3024                 }
3025                 if (ret == 0 && !pio_string_write(vcpu)) {
3026                         complete_pio(vcpu);
3027                         if (vcpu->arch.pio.count == 0)
3028                                 ret = 1;
3029                 }
3030         }
3031         /* no string PIO read support yet */
3032
3033         return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3036
3037 static void bounce_off(void *info)
3038 {
3039         /* nothing */
3040 }
3041
3042 static unsigned int  ref_freq;
3043 static unsigned long tsc_khz_ref;
3044
3045 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3046                                      void *data)
3047 {
3048         struct cpufreq_freqs *freq = data;
3049         struct kvm *kvm;
3050         struct kvm_vcpu *vcpu;
3051         int i, send_ipi = 0;
3052
3053         if (!ref_freq)
3054                 ref_freq = freq->old;
3055
3056         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3057                 return 0;
3058         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3059                 return 0;
3060         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3061
3062         spin_lock(&kvm_lock);
3063         list_for_each_entry(kvm, &vm_list, vm_list) {
3064                 kvm_for_each_vcpu(i, vcpu, kvm) {
3065                         if (vcpu->cpu != freq->cpu)
3066                                 continue;
3067                         if (!kvm_request_guest_time_update(vcpu))
3068                                 continue;
3069                         if (vcpu->cpu != smp_processor_id())
3070                                 send_ipi++;
3071                 }
3072         }
3073         spin_unlock(&kvm_lock);
3074
3075         if (freq->old < freq->new && send_ipi) {
3076                 /*
3077                  * We upscale the frequency.  Must make the guest
3078                  * doesn't see old kvmclock values while running with
3079                  * the new frequency, otherwise we risk the guest sees
3080                  * time go backwards.
3081                  *
3082                  * In case we update the frequency for another cpu
3083                  * (which might be in guest context) send an interrupt
3084                  * to kick the cpu out of guest context.  Next time
3085                  * guest context is entered kvmclock will be updated,
3086                  * so the guest will not see stale values.
3087                  */
3088                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3089         }
3090         return 0;
3091 }
3092
3093 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3094         .notifier_call  = kvmclock_cpufreq_notifier
3095 };
3096
3097 int kvm_arch_init(void *opaque)
3098 {
3099         int r, cpu;
3100         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3101
3102         if (kvm_x86_ops) {
3103                 printk(KERN_ERR "kvm: already loaded the other module\n");
3104                 r = -EEXIST;
3105                 goto out;
3106         }
3107
3108         if (!ops->cpu_has_kvm_support()) {
3109                 printk(KERN_ERR "kvm: no hardware support\n");
3110                 r = -EOPNOTSUPP;
3111                 goto out;
3112         }
3113         if (ops->disabled_by_bios()) {
3114                 printk(KERN_ERR "kvm: disabled by bios\n");
3115                 r = -EOPNOTSUPP;
3116                 goto out;
3117         }
3118
3119         r = kvm_mmu_module_init();
3120         if (r)
3121                 goto out;
3122
3123         kvm_init_msr_list();
3124
3125         kvm_x86_ops = ops;
3126         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3127         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3128         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3129                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3130
3131         for_each_possible_cpu(cpu)
3132                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3133         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3134                 tsc_khz_ref = tsc_khz;
3135                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3136                                           CPUFREQ_TRANSITION_NOTIFIER);
3137         }
3138
3139         return 0;
3140
3141 out:
3142         return r;
3143 }
3144
3145 void kvm_arch_exit(void)
3146 {
3147         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3148                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3149                                             CPUFREQ_TRANSITION_NOTIFIER);
3150         kvm_x86_ops = NULL;
3151         kvm_mmu_module_exit();
3152 }
3153
3154 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3155 {
3156         ++vcpu->stat.halt_exits;
3157         if (irqchip_in_kernel(vcpu->kvm)) {
3158                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3159                 return 1;
3160         } else {
3161                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3162                 return 0;
3163         }
3164 }
3165 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3166
3167 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3168                            unsigned long a1)
3169 {
3170         if (is_long_mode(vcpu))
3171                 return a0;
3172         else
3173                 return a0 | ((gpa_t)a1 << 32);
3174 }
3175
3176 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3177 {
3178         unsigned long nr, a0, a1, a2, a3, ret;
3179         int r = 1;
3180
3181         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3182         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3183         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3184         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3185         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3186
3187         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3188
3189         if (!is_long_mode(vcpu)) {
3190                 nr &= 0xFFFFFFFF;
3191                 a0 &= 0xFFFFFFFF;
3192                 a1 &= 0xFFFFFFFF;
3193                 a2 &= 0xFFFFFFFF;
3194                 a3 &= 0xFFFFFFFF;
3195         }
3196
3197         switch (nr) {
3198         case KVM_HC_VAPIC_POLL_IRQ:
3199                 ret = 0;
3200                 break;
3201         case KVM_HC_MMU_OP:
3202                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3203                 break;
3204         default:
3205                 ret = -KVM_ENOSYS;
3206                 break;
3207         }
3208         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3209         ++vcpu->stat.hypercalls;
3210         return r;
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3213
3214 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3215 {
3216         char instruction[3];
3217         int ret = 0;
3218         unsigned long rip = kvm_rip_read(vcpu);
3219
3220
3221         /*
3222          * Blow out the MMU to ensure that no other VCPU has an active mapping
3223          * to ensure that the updated hypercall appears atomically across all
3224          * VCPUs.
3225          */
3226         kvm_mmu_zap_all(vcpu->kvm);
3227
3228         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3229         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3230             != X86EMUL_CONTINUE)
3231                 ret = -EFAULT;
3232
3233         return ret;
3234 }
3235
3236 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3237 {
3238         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3239 }
3240
3241 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3242 {
3243         struct descriptor_table dt = { limit, base };
3244
3245         kvm_x86_ops->set_gdt(vcpu, &dt);
3246 }
3247
3248 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3249 {
3250         struct descriptor_table dt = { limit, base };
3251
3252         kvm_x86_ops->set_idt(vcpu, &dt);
3253 }
3254
3255 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3256                    unsigned long *rflags)
3257 {
3258         kvm_lmsw(vcpu, msw);
3259         *rflags = kvm_x86_ops->get_rflags(vcpu);
3260 }
3261
3262 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3263 {
3264         unsigned long value;
3265
3266         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3267         switch (cr) {
3268         case 0:
3269                 value = vcpu->arch.cr0;
3270                 break;
3271         case 2:
3272                 value = vcpu->arch.cr2;
3273                 break;
3274         case 3:
3275                 value = vcpu->arch.cr3;
3276                 break;
3277         case 4:
3278                 value = vcpu->arch.cr4;
3279                 break;
3280         case 8:
3281                 value = kvm_get_cr8(vcpu);
3282                 break;
3283         default:
3284                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3285                 return 0;
3286         }
3287
3288         return value;
3289 }
3290
3291 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3292                      unsigned long *rflags)
3293 {
3294         switch (cr) {
3295         case 0:
3296                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3297                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3298                 break;
3299         case 2:
3300                 vcpu->arch.cr2 = val;
3301                 break;
3302         case 3:
3303                 kvm_set_cr3(vcpu, val);
3304                 break;
3305         case 4:
3306                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3307                 break;
3308         case 8:
3309                 kvm_set_cr8(vcpu, val & 0xfUL);
3310                 break;
3311         default:
3312                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3313         }
3314 }
3315
3316 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3317 {
3318         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3319         int j, nent = vcpu->arch.cpuid_nent;
3320
3321         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3322         /* when no next entry is found, the current entry[i] is reselected */
3323         for (j = i + 1; ; j = (j + 1) % nent) {
3324                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3325                 if (ej->function == e->function) {
3326                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3327                         return j;
3328                 }
3329         }
3330         return 0; /* silence gcc, even though control never reaches here */
3331 }
3332
3333 /* find an entry with matching function, matching index (if needed), and that
3334  * should be read next (if it's stateful) */
3335 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3336         u32 function, u32 index)
3337 {
3338         if (e->function != function)
3339                 return 0;
3340         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3341                 return 0;
3342         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3343             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3344                 return 0;
3345         return 1;
3346 }
3347
3348 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3349                                               u32 function, u32 index)
3350 {
3351         int i;
3352         struct kvm_cpuid_entry2 *best = NULL;
3353
3354         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3355                 struct kvm_cpuid_entry2 *e;
3356
3357                 e = &vcpu->arch.cpuid_entries[i];
3358                 if (is_matching_cpuid_entry(e, function, index)) {
3359                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3360                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3361                         best = e;
3362                         break;
3363                 }
3364                 /*
3365                  * Both basic or both extended?
3366                  */
3367                 if (((e->function ^ function) & 0x80000000) == 0)
3368                         if (!best || e->function > best->function)
3369                                 best = e;
3370         }
3371         return best;
3372 }
3373
3374 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3375 {
3376         struct kvm_cpuid_entry2 *best;
3377
3378         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3379         if (best)
3380                 return best->eax & 0xff;
3381         return 36;
3382 }
3383
3384 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3385 {
3386         u32 function, index;
3387         struct kvm_cpuid_entry2 *best;
3388
3389         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3390         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3391         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3392         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3393         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3394         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3395         best = kvm_find_cpuid_entry(vcpu, function, index);
3396         if (best) {
3397                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3398                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3399                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3400                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3401         }
3402         kvm_x86_ops->skip_emulated_instruction(vcpu);
3403         trace_kvm_cpuid(function,
3404                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3405                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3406                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3407                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3410
3411 /*
3412  * Check if userspace requested an interrupt window, and that the
3413  * interrupt window is open.
3414  *
3415  * No need to exit to userspace if we already have an interrupt queued.
3416  */
3417 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3418                                           struct kvm_run *kvm_run)
3419 {
3420         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3421                 kvm_run->request_interrupt_window &&
3422                 kvm_arch_interrupt_allowed(vcpu));
3423 }
3424
3425 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3426                               struct kvm_run *kvm_run)
3427 {
3428         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3429         kvm_run->cr8 = kvm_get_cr8(vcpu);
3430         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3431         if (irqchip_in_kernel(vcpu->kvm))
3432                 kvm_run->ready_for_interrupt_injection = 1;
3433         else
3434                 kvm_run->ready_for_interrupt_injection =
3435                         kvm_arch_interrupt_allowed(vcpu) &&
3436                         !kvm_cpu_has_interrupt(vcpu) &&
3437                         !kvm_event_needs_reinjection(vcpu);
3438 }
3439
3440 static void vapic_enter(struct kvm_vcpu *vcpu)
3441 {
3442         struct kvm_lapic *apic = vcpu->arch.apic;
3443         struct page *page;
3444
3445         if (!apic || !apic->vapic_addr)
3446                 return;
3447
3448         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3449
3450         vcpu->arch.apic->vapic_page = page;
3451 }
3452
3453 static void vapic_exit(struct kvm_vcpu *vcpu)
3454 {
3455         struct kvm_lapic *apic = vcpu->arch.apic;
3456
3457         if (!apic || !apic->vapic_addr)
3458                 return;
3459
3460         down_read(&vcpu->kvm->slots_lock);
3461         kvm_release_page_dirty(apic->vapic_page);
3462         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3463         up_read(&vcpu->kvm->slots_lock);
3464 }
3465
3466 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3467 {
3468         int max_irr, tpr;
3469
3470         if (!kvm_x86_ops->update_cr8_intercept)
3471                 return;
3472
3473         if (!vcpu->arch.apic->vapic_addr)
3474                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3475         else
3476                 max_irr = -1;
3477
3478         if (max_irr != -1)
3479                 max_irr >>= 4;
3480
3481         tpr = kvm_lapic_get_cr8(vcpu);
3482
3483         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3484 }
3485
3486 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3487 {
3488         /* try to reinject previous events if any */
3489         if (vcpu->arch.exception.pending) {
3490                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3491                                           vcpu->arch.exception.has_error_code,
3492                                           vcpu->arch.exception.error_code);
3493                 return;
3494         }
3495
3496         if (vcpu->arch.nmi_injected) {
3497                 kvm_x86_ops->set_nmi(vcpu);
3498                 return;
3499         }
3500
3501         if (vcpu->arch.interrupt.pending) {
3502                 kvm_x86_ops->set_irq(vcpu);
3503                 return;
3504         }
3505
3506         /* try to inject new event if pending */
3507         if (vcpu->arch.nmi_pending) {
3508                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3509                         vcpu->arch.nmi_pending = false;
3510                         vcpu->arch.nmi_injected = true;
3511                         kvm_x86_ops->set_nmi(vcpu);
3512                 }
3513         } else if (kvm_cpu_has_interrupt(vcpu)) {
3514                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3515                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3516                                             false);
3517                         kvm_x86_ops->set_irq(vcpu);
3518                 }
3519         }
3520 }
3521
3522 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3523 {
3524         int r;
3525         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3526                 kvm_run->request_interrupt_window;
3527
3528         if (vcpu->requests)
3529                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3530                         kvm_mmu_unload(vcpu);
3531
3532         r = kvm_mmu_reload(vcpu);
3533         if (unlikely(r))
3534                 goto out;
3535
3536         if (vcpu->requests) {
3537                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3538                         __kvm_migrate_timers(vcpu);
3539                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3540                         kvm_write_guest_time(vcpu);
3541                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3542                         kvm_mmu_sync_roots(vcpu);
3543                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3544                         kvm_x86_ops->tlb_flush(vcpu);
3545                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3546                                        &vcpu->requests)) {
3547                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3548                         r = 0;
3549                         goto out;
3550                 }
3551                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3552                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3553                         r = 0;
3554                         goto out;
3555                 }
3556         }
3557
3558         preempt_disable();
3559
3560         kvm_x86_ops->prepare_guest_switch(vcpu);
3561         kvm_load_guest_fpu(vcpu);
3562
3563         local_irq_disable();
3564
3565         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3566         smp_mb__after_clear_bit();
3567
3568         if (vcpu->requests || need_resched() || signal_pending(current)) {
3569                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3570                 local_irq_enable();
3571                 preempt_enable();
3572                 r = 1;
3573                 goto out;
3574         }
3575
3576         inject_pending_event(vcpu, kvm_run);
3577
3578         /* enable NMI/IRQ window open exits if needed */
3579         if (vcpu->arch.nmi_pending)
3580                 kvm_x86_ops->enable_nmi_window(vcpu);
3581         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3582                 kvm_x86_ops->enable_irq_window(vcpu);
3583
3584         if (kvm_lapic_enabled(vcpu)) {
3585                 update_cr8_intercept(vcpu);
3586                 kvm_lapic_sync_to_vapic(vcpu);
3587         }
3588
3589         up_read(&vcpu->kvm->slots_lock);
3590
3591         kvm_guest_enter();
3592
3593         get_debugreg(vcpu->arch.host_dr6, 6);
3594         get_debugreg(vcpu->arch.host_dr7, 7);
3595         if (unlikely(vcpu->arch.switch_db_regs)) {
3596                 get_debugreg(vcpu->arch.host_db[0], 0);
3597                 get_debugreg(vcpu->arch.host_db[1], 1);
3598                 get_debugreg(vcpu->arch.host_db[2], 2);
3599                 get_debugreg(vcpu->arch.host_db[3], 3);
3600
3601                 set_debugreg(0, 7);
3602                 set_debugreg(vcpu->arch.eff_db[0], 0);
3603                 set_debugreg(vcpu->arch.eff_db[1], 1);
3604                 set_debugreg(vcpu->arch.eff_db[2], 2);
3605                 set_debugreg(vcpu->arch.eff_db[3], 3);
3606         }
3607
3608         trace_kvm_entry(vcpu->vcpu_id);
3609         kvm_x86_ops->run(vcpu, kvm_run);
3610
3611         if (unlikely(vcpu->arch.switch_db_regs)) {
3612                 set_debugreg(0, 7);
3613                 set_debugreg(vcpu->arch.host_db[0], 0);
3614                 set_debugreg(vcpu->arch.host_db[1], 1);
3615                 set_debugreg(vcpu->arch.host_db[2], 2);
3616                 set_debugreg(vcpu->arch.host_db[3], 3);
3617         }
3618         set_debugreg(vcpu->arch.host_dr6, 6);
3619         set_debugreg(vcpu->arch.host_dr7, 7);
3620
3621         set_bit(KVM_REQ_KICK, &vcpu->requests);
3622         local_irq_enable();
3623
3624         ++vcpu->stat.exits;
3625
3626         /*
3627          * We must have an instruction between local_irq_enable() and
3628          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3629          * the interrupt shadow.  The stat.exits increment will do nicely.
3630          * But we need to prevent reordering, hence this barrier():
3631          */
3632         barrier();
3633
3634         kvm_guest_exit();
3635
3636         preempt_enable();
3637
3638         down_read(&vcpu->kvm->slots_lock);
3639
3640         /*
3641          * Profile KVM exit RIPs:
3642          */
3643         if (unlikely(prof_on == KVM_PROFILING)) {
3644                 unsigned long rip = kvm_rip_read(vcpu);
3645                 profile_hit(KVM_PROFILING, (void *)rip);
3646         }
3647
3648
3649         kvm_lapic_sync_from_vapic(vcpu);
3650
3651         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3652 out:
3653         return r;
3654 }
3655
3656
3657 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3658 {
3659         int r;
3660
3661         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3662                 pr_debug("vcpu %d received sipi with vector # %x\n",
3663                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3664                 kvm_lapic_reset(vcpu);
3665                 r = kvm_arch_vcpu_reset(vcpu);
3666                 if (r)
3667                         return r;
3668                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3669         }
3670
3671         down_read(&vcpu->kvm->slots_lock);
3672         vapic_enter(vcpu);
3673
3674         r = 1;
3675         while (r > 0) {
3676                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3677                         r = vcpu_enter_guest(vcpu, kvm_run);
3678                 else {
3679                         up_read(&vcpu->kvm->slots_lock);
3680                         kvm_vcpu_block(vcpu);
3681                         down_read(&vcpu->kvm->slots_lock);
3682                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3683                         {
3684                                 switch(vcpu->arch.mp_state) {
3685                                 case KVM_MP_STATE_HALTED:
3686                                         vcpu->arch.mp_state =
3687                                                 KVM_MP_STATE_RUNNABLE;
3688                                 case KVM_MP_STATE_RUNNABLE:
3689                                         break;
3690                                 case KVM_MP_STATE_SIPI_RECEIVED:
3691                                 default:
3692                                         r = -EINTR;
3693                                         break;
3694                                 }
3695                         }
3696                 }
3697
3698                 if (r <= 0)
3699                         break;
3700
3701                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3702                 if (kvm_cpu_has_pending_timer(vcpu))
3703                         kvm_inject_pending_timer_irqs(vcpu);
3704
3705                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3706                         r = -EINTR;
3707                         kvm_run->exit_reason = KVM_EXIT_INTR;
3708                         ++vcpu->stat.request_irq_exits;
3709                 }
3710                 if (signal_pending(current)) {
3711                         r = -EINTR;
3712                         kvm_run->exit_reason = KVM_EXIT_INTR;
3713                         ++vcpu->stat.signal_exits;
3714                 }
3715                 if (need_resched()) {
3716                         up_read(&vcpu->kvm->slots_lock);
3717                         kvm_resched(vcpu);
3718                         down_read(&vcpu->kvm->slots_lock);
3719                 }
3720         }
3721
3722         up_read(&vcpu->kvm->slots_lock);
3723         post_kvm_run_save(vcpu, kvm_run);
3724
3725         vapic_exit(vcpu);
3726
3727         return r;
3728 }
3729
3730 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3731 {
3732         int r;
3733         sigset_t sigsaved;
3734
3735         vcpu_load(vcpu);
3736
3737         if (vcpu->sigset_active)
3738                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3739
3740         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3741                 kvm_vcpu_block(vcpu);
3742                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3743                 r = -EAGAIN;
3744                 goto out;
3745         }
3746
3747         /* re-sync apic's tpr */
3748         if (!irqchip_in_kernel(vcpu->kvm))
3749                 kvm_set_cr8(vcpu, kvm_run->cr8);
3750
3751         if (vcpu->arch.pio.cur_count) {
3752                 r = complete_pio(vcpu);
3753                 if (r)
3754                         goto out;
3755         }
3756 #if CONFIG_HAS_IOMEM
3757         if (vcpu->mmio_needed) {
3758                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3759                 vcpu->mmio_read_completed = 1;
3760                 vcpu->mmio_needed = 0;
3761
3762                 down_read(&vcpu->kvm->slots_lock);
3763                 r = emulate_instruction(vcpu, kvm_run,
3764                                         vcpu->arch.mmio_fault_cr2, 0,
3765                                         EMULTYPE_NO_DECODE);
3766                 up_read(&vcpu->kvm->slots_lock);
3767                 if (r == EMULATE_DO_MMIO) {
3768                         /*
3769                          * Read-modify-write.  Back to userspace.
3770                          */
3771                         r = 0;
3772                         goto out;
3773                 }
3774         }
3775 #endif
3776         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3777                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3778                                      kvm_run->hypercall.ret);
3779
3780         r = __vcpu_run(vcpu, kvm_run);
3781
3782 out:
3783         if (vcpu->sigset_active)
3784                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3785
3786         vcpu_put(vcpu);
3787         return r;
3788 }
3789
3790 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3791 {
3792         vcpu_load(vcpu);
3793
3794         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3795         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3796         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3797         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3798         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3799         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3800         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3801         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3802 #ifdef CONFIG_X86_64
3803         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3804         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3805         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3806         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3807         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3808         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3809         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3810         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3811 #endif
3812
3813         regs->rip = kvm_rip_read(vcpu);
3814         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3815
3816         /*
3817          * Don't leak debug flags in case they were set for guest debugging
3818          */
3819         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3820                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3821
3822         vcpu_put(vcpu);
3823
3824         return 0;
3825 }
3826
3827 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3828 {
3829         vcpu_load(vcpu);
3830
3831         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3832         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3833         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3834         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3835         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3836         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3837         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3838         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3839 #ifdef CONFIG_X86_64
3840         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3841         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3842         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3843         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3844         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3845         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3846         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3847         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3848
3849 #endif
3850
3851         kvm_rip_write(vcpu, regs->rip);
3852         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3853
3854
3855         vcpu->arch.exception.pending = false;
3856
3857         vcpu_put(vcpu);
3858
3859         return 0;
3860 }
3861
3862 void kvm_get_segment(struct kvm_vcpu *vcpu,
3863                      struct kvm_segment *var, int seg)
3864 {
3865         kvm_x86_ops->get_segment(vcpu, var, seg);
3866 }
3867
3868 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3869 {
3870         struct kvm_segment cs;
3871
3872         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3873         *db = cs.db;
3874         *l = cs.l;
3875 }
3876 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3877
3878 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3879                                   struct kvm_sregs *sregs)
3880 {
3881         struct descriptor_table dt;
3882
3883         vcpu_load(vcpu);
3884
3885         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3886         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3887         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3888         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3889         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3890         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3891
3892         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3893         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3894
3895         kvm_x86_ops->get_idt(vcpu, &dt);
3896         sregs->idt.limit = dt.limit;
3897         sregs->idt.base = dt.base;
3898         kvm_x86_ops->get_gdt(vcpu, &dt);
3899         sregs->gdt.limit = dt.limit;
3900         sregs->gdt.base = dt.base;
3901
3902         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3903         sregs->cr0 = vcpu->arch.cr0;
3904         sregs->cr2 = vcpu->arch.cr2;
3905         sregs->cr3 = vcpu->arch.cr3;
3906         sregs->cr4 = vcpu->arch.cr4;
3907         sregs->cr8 = kvm_get_cr8(vcpu);
3908         sregs->efer = vcpu->arch.shadow_efer;
3909         sregs->apic_base = kvm_get_apic_base(vcpu);
3910
3911         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3912
3913         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3914                 set_bit(vcpu->arch.interrupt.nr,
3915                         (unsigned long *)sregs->interrupt_bitmap);
3916
3917         vcpu_put(vcpu);
3918
3919         return 0;
3920 }
3921
3922 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3923                                     struct kvm_mp_state *mp_state)
3924 {
3925         vcpu_load(vcpu);
3926         mp_state->mp_state = vcpu->arch.mp_state;
3927         vcpu_put(vcpu);
3928         return 0;
3929 }
3930
3931 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3932                                     struct kvm_mp_state *mp_state)
3933 {
3934         vcpu_load(vcpu);
3935         vcpu->arch.mp_state = mp_state->mp_state;
3936         vcpu_put(vcpu);
3937         return 0;
3938 }
3939
3940 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3941                         struct kvm_segment *var, int seg)
3942 {
3943         kvm_x86_ops->set_segment(vcpu, var, seg);
3944 }
3945
3946 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3947                                    struct kvm_segment *kvm_desct)
3948 {
3949         kvm_desct->base = get_desc_base(seg_desc);
3950         kvm_desct->limit = get_desc_limit(seg_desc);
3951         if (seg_desc->g) {
3952                 kvm_desct->limit <<= 12;
3953                 kvm_desct->limit |= 0xfff;
3954         }
3955         kvm_desct->selector = selector;
3956         kvm_desct->type = seg_desc->type;
3957         kvm_desct->present = seg_desc->p;
3958         kvm_desct->dpl = seg_desc->dpl;
3959         kvm_desct->db = seg_desc->d;
3960         kvm_desct->s = seg_desc->s;
3961         kvm_desct->l = seg_desc->l;
3962         kvm_desct->g = seg_desc->g;
3963         kvm_desct->avl = seg_desc->avl;
3964         if (!selector)
3965                 kvm_desct->unusable = 1;
3966         else
3967                 kvm_desct->unusable = 0;
3968         kvm_desct->padding = 0;
3969 }
3970
3971 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3972                                           u16 selector,
3973                                           struct descriptor_table *dtable)
3974 {
3975         if (selector & 1 << 2) {
3976                 struct kvm_segment kvm_seg;
3977
3978                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3979
3980                 if (kvm_seg.unusable)
3981                         dtable->limit = 0;
3982                 else
3983                         dtable->limit = kvm_seg.limit;
3984                 dtable->base = kvm_seg.base;
3985         }
3986         else
3987                 kvm_x86_ops->get_gdt(vcpu, dtable);
3988 }
3989
3990 /* allowed just for 8 bytes segments */
3991 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3992                                          struct desc_struct *seg_desc)
3993 {
3994         gpa_t gpa;
3995         struct descriptor_table dtable;
3996         u16 index = selector >> 3;
3997
3998         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3999
4000         if (dtable.limit < index * 8 + 7) {
4001                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4002                 return 1;
4003         }
4004         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4005         gpa += index * 8;
4006         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
4007 }
4008
4009 /* allowed just for 8 bytes segments */
4010 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4011                                          struct desc_struct *seg_desc)
4012 {
4013         gpa_t gpa;
4014         struct descriptor_table dtable;
4015         u16 index = selector >> 3;
4016
4017         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4018
4019         if (dtable.limit < index * 8 + 7)
4020                 return 1;
4021         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4022         gpa += index * 8;
4023         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
4024 }
4025
4026 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4027                              struct desc_struct *seg_desc)
4028 {
4029         u32 base_addr = get_desc_base(seg_desc);
4030
4031         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4032 }
4033
4034 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4035 {
4036         struct kvm_segment kvm_seg;
4037
4038         kvm_get_segment(vcpu, &kvm_seg, seg);
4039         return kvm_seg.selector;
4040 }
4041
4042 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4043                                                 u16 selector,
4044                                                 struct kvm_segment *kvm_seg)
4045 {
4046         struct desc_struct seg_desc;
4047
4048         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4049                 return 1;
4050         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4051         return 0;
4052 }
4053
4054 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4055 {
4056         struct kvm_segment segvar = {
4057                 .base = selector << 4,
4058                 .limit = 0xffff,
4059                 .selector = selector,
4060                 .type = 3,
4061                 .present = 1,
4062                 .dpl = 3,
4063                 .db = 0,
4064                 .s = 1,
4065                 .l = 0,
4066                 .g = 0,
4067                 .avl = 0,
4068                 .unusable = 0,
4069         };
4070         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4071         return 0;
4072 }
4073
4074 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4075                                 int type_bits, int seg)
4076 {
4077         struct kvm_segment kvm_seg;
4078
4079         if (!(vcpu->arch.cr0 & X86_CR0_PE))
4080                 return kvm_load_realmode_segment(vcpu, selector, seg);
4081         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4082                 return 1;
4083         kvm_seg.type |= type_bits;
4084
4085         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4086             seg != VCPU_SREG_LDTR)
4087                 if (!kvm_seg.s)
4088                         kvm_seg.unusable = 1;
4089
4090         kvm_set_segment(vcpu, &kvm_seg, seg);
4091         return 0;
4092 }
4093
4094 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4095                                 struct tss_segment_32 *tss)
4096 {
4097         tss->cr3 = vcpu->arch.cr3;
4098         tss->eip = kvm_rip_read(vcpu);
4099         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4100         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4101         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4102         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4103         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4104         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4105         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4106         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4107         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4108         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4109         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4110         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4111         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4112         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4113         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4114         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4115 }
4116
4117 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4118                                   struct tss_segment_32 *tss)
4119 {
4120         kvm_set_cr3(vcpu, tss->cr3);
4121
4122         kvm_rip_write(vcpu, tss->eip);
4123         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4124
4125         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4126         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4127         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4128         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4129         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4130         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4131         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4132         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4133
4134         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4135                 return 1;
4136
4137         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4138                 return 1;
4139
4140         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4141                 return 1;
4142
4143         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4144                 return 1;
4145
4146         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4147                 return 1;
4148
4149         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4150                 return 1;
4151
4152         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4153                 return 1;
4154         return 0;
4155 }
4156
4157 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4158                                 struct tss_segment_16 *tss)
4159 {
4160         tss->ip = kvm_rip_read(vcpu);
4161         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4162         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4163         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4164         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4165         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4166         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4167         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4168         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4169         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4170
4171         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4172         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4173         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4174         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4175         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4176         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4177 }
4178
4179 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4180                                  struct tss_segment_16 *tss)
4181 {
4182         kvm_rip_write(vcpu, tss->ip);
4183         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4184         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4185         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4186         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4187         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4188         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4189         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4190         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4191         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4192
4193         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4194                 return 1;
4195
4196         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4197                 return 1;
4198
4199         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4200                 return 1;
4201
4202         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4203                 return 1;
4204
4205         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4206                 return 1;
4207         return 0;
4208 }
4209
4210 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4211                               u16 old_tss_sel, u32 old_tss_base,
4212                               struct desc_struct *nseg_desc)
4213 {
4214         struct tss_segment_16 tss_segment_16;
4215         int ret = 0;
4216
4217         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4218                            sizeof tss_segment_16))
4219                 goto out;
4220
4221         save_state_to_tss16(vcpu, &tss_segment_16);
4222
4223         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4224                             sizeof tss_segment_16))
4225                 goto out;
4226
4227         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4228                            &tss_segment_16, sizeof tss_segment_16))
4229                 goto out;
4230
4231         if (old_tss_sel != 0xffff) {
4232                 tss_segment_16.prev_task_link = old_tss_sel;
4233
4234                 if (kvm_write_guest(vcpu->kvm,
4235                                     get_tss_base_addr(vcpu, nseg_desc),
4236                                     &tss_segment_16.prev_task_link,
4237                                     sizeof tss_segment_16.prev_task_link))
4238                         goto out;
4239         }
4240
4241         if (load_state_from_tss16(vcpu, &tss_segment_16))
4242                 goto out;
4243
4244         ret = 1;
4245 out:
4246         return ret;
4247 }
4248
4249 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4250                        u16 old_tss_sel, u32 old_tss_base,
4251                        struct desc_struct *nseg_desc)
4252 {
4253         struct tss_segment_32 tss_segment_32;
4254         int ret = 0;
4255
4256         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4257                            sizeof tss_segment_32))
4258                 goto out;
4259
4260         save_state_to_tss32(vcpu, &tss_segment_32);
4261
4262         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4263                             sizeof tss_segment_32))
4264                 goto out;
4265
4266         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4267                            &tss_segment_32, sizeof tss_segment_32))
4268                 goto out;
4269
4270         if (old_tss_sel != 0xffff) {
4271                 tss_segment_32.prev_task_link = old_tss_sel;
4272
4273                 if (kvm_write_guest(vcpu->kvm,
4274                                     get_tss_base_addr(vcpu, nseg_desc),
4275                                     &tss_segment_32.prev_task_link,
4276                                     sizeof tss_segment_32.prev_task_link))
4277                         goto out;
4278         }
4279
4280         if (load_state_from_tss32(vcpu, &tss_segment_32))
4281                 goto out;
4282
4283         ret = 1;
4284 out:
4285         return ret;
4286 }
4287
4288 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4289 {
4290         struct kvm_segment tr_seg;
4291         struct desc_struct cseg_desc;
4292         struct desc_struct nseg_desc;
4293         int ret = 0;
4294         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4295         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4296
4297         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4298
4299         /* FIXME: Handle errors. Failure to read either TSS or their
4300          * descriptors should generate a pagefault.
4301          */
4302         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4303                 goto out;
4304
4305         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4306                 goto out;
4307
4308         if (reason != TASK_SWITCH_IRET) {
4309                 int cpl;
4310
4311                 cpl = kvm_x86_ops->get_cpl(vcpu);
4312                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4313                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4314                         return 1;
4315                 }
4316         }
4317
4318         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4319                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4320                 return 1;
4321         }
4322
4323         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4324                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4325                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4326         }
4327
4328         if (reason == TASK_SWITCH_IRET) {
4329                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4330                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4331         }
4332
4333         /* set back link to prev task only if NT bit is set in eflags
4334            note that old_tss_sel is not used afetr this point */
4335         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4336                 old_tss_sel = 0xffff;
4337
4338         /* set back link to prev task only if NT bit is set in eflags
4339            note that old_tss_sel is not used afetr this point */
4340         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4341                 old_tss_sel = 0xffff;
4342
4343         if (nseg_desc.type & 8)
4344                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4345                                          old_tss_base, &nseg_desc);
4346         else
4347                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4348                                          old_tss_base, &nseg_desc);
4349
4350         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4351                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4352                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4353         }
4354
4355         if (reason != TASK_SWITCH_IRET) {
4356                 nseg_desc.type |= (1 << 1);
4357                 save_guest_segment_descriptor(vcpu, tss_selector,
4358                                               &nseg_desc);
4359         }
4360
4361         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4362         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4363         tr_seg.type = 11;
4364         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4365 out:
4366         return ret;
4367 }
4368 EXPORT_SYMBOL_GPL(kvm_task_switch);
4369
4370 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4371                                   struct kvm_sregs *sregs)
4372 {
4373         int mmu_reset_needed = 0;
4374         int pending_vec, max_bits;
4375         struct descriptor_table dt;
4376
4377         vcpu_load(vcpu);
4378
4379         dt.limit = sregs->idt.limit;
4380         dt.base = sregs->idt.base;
4381         kvm_x86_ops->set_idt(vcpu, &dt);
4382         dt.limit = sregs->gdt.limit;
4383         dt.base = sregs->gdt.base;
4384         kvm_x86_ops->set_gdt(vcpu, &dt);
4385
4386         vcpu->arch.cr2 = sregs->cr2;
4387         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4388         vcpu->arch.cr3 = sregs->cr3;
4389
4390         kvm_set_cr8(vcpu, sregs->cr8);
4391
4392         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4393         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4394         kvm_set_apic_base(vcpu, sregs->apic_base);
4395
4396         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4397
4398         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4399         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4400         vcpu->arch.cr0 = sregs->cr0;
4401
4402         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4403         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4404         if (!is_long_mode(vcpu) && is_pae(vcpu))
4405                 load_pdptrs(vcpu, vcpu->arch.cr3);
4406
4407         if (mmu_reset_needed)
4408                 kvm_mmu_reset_context(vcpu);
4409
4410         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4411         pending_vec = find_first_bit(
4412                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4413         if (pending_vec < max_bits) {
4414                 kvm_queue_interrupt(vcpu, pending_vec, false);
4415                 pr_debug("Set back pending irq %d\n", pending_vec);
4416                 if (irqchip_in_kernel(vcpu->kvm))
4417                         kvm_pic_clear_isr_ack(vcpu->kvm);
4418         }
4419
4420         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4421         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4422         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4423         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4424         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4425         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4426
4427         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4428         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4429
4430         /* Older userspace won't unhalt the vcpu on reset. */
4431         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4432             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4433             !(vcpu->arch.cr0 & X86_CR0_PE))
4434                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4435
4436         vcpu_put(vcpu);
4437
4438         return 0;
4439 }
4440
4441 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4442                                         struct kvm_guest_debug *dbg)
4443 {
4444         int i, r;
4445
4446         vcpu_load(vcpu);
4447
4448         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4449             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4450                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4451                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4452                 vcpu->arch.switch_db_regs =
4453                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4454         } else {
4455                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4456                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4457                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4458         }
4459
4460         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4461
4462         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4463                 kvm_queue_exception(vcpu, DB_VECTOR);
4464         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4465                 kvm_queue_exception(vcpu, BP_VECTOR);
4466
4467         vcpu_put(vcpu);
4468
4469         return r;
4470 }
4471
4472 /*
4473  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4474  * we have asm/x86/processor.h
4475  */
4476 struct fxsave {
4477         u16     cwd;
4478         u16     swd;
4479         u16     twd;
4480         u16     fop;
4481         u64     rip;
4482         u64     rdp;
4483         u32     mxcsr;
4484         u32     mxcsr_mask;
4485         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4486 #ifdef CONFIG_X86_64
4487         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4488 #else
4489         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4490 #endif
4491 };
4492
4493 /*
4494  * Translate a guest virtual address to a guest physical address.
4495  */
4496 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4497                                     struct kvm_translation *tr)
4498 {
4499         unsigned long vaddr = tr->linear_address;
4500         gpa_t gpa;
4501
4502         vcpu_load(vcpu);
4503         down_read(&vcpu->kvm->slots_lock);
4504         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4505         up_read(&vcpu->kvm->slots_lock);
4506         tr->physical_address = gpa;
4507         tr->valid = gpa != UNMAPPED_GVA;
4508         tr->writeable = 1;
4509         tr->usermode = 0;
4510         vcpu_put(vcpu);
4511
4512         return 0;
4513 }
4514
4515 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4516 {
4517         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4518
4519         vcpu_load(vcpu);
4520
4521         memcpy(fpu->fpr, fxsave->st_space, 128);
4522         fpu->fcw = fxsave->cwd;
4523         fpu->fsw = fxsave->swd;
4524         fpu->ftwx = fxsave->twd;
4525         fpu->last_opcode = fxsave->fop;
4526         fpu->last_ip = fxsave->rip;
4527         fpu->last_dp = fxsave->rdp;
4528         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4529
4530         vcpu_put(vcpu);
4531
4532         return 0;
4533 }
4534
4535 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4536 {
4537         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4538
4539         vcpu_load(vcpu);
4540
4541         memcpy(fxsave->st_space, fpu->fpr, 128);
4542         fxsave->cwd = fpu->fcw;
4543         fxsave->swd = fpu->fsw;
4544         fxsave->twd = fpu->ftwx;
4545         fxsave->fop = fpu->last_opcode;
4546         fxsave->rip = fpu->last_ip;
4547         fxsave->rdp = fpu->last_dp;
4548         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4549
4550         vcpu_put(vcpu);
4551
4552         return 0;
4553 }
4554
4555 void fx_init(struct kvm_vcpu *vcpu)
4556 {
4557         unsigned after_mxcsr_mask;
4558
4559         /*
4560          * Touch the fpu the first time in non atomic context as if
4561          * this is the first fpu instruction the exception handler
4562          * will fire before the instruction returns and it'll have to
4563          * allocate ram with GFP_KERNEL.
4564          */
4565         if (!used_math())
4566                 kvm_fx_save(&vcpu->arch.host_fx_image);
4567
4568         /* Initialize guest FPU by resetting ours and saving into guest's */
4569         preempt_disable();
4570         kvm_fx_save(&vcpu->arch.host_fx_image);
4571         kvm_fx_finit();
4572         kvm_fx_save(&vcpu->arch.guest_fx_image);
4573         kvm_fx_restore(&vcpu->arch.host_fx_image);
4574         preempt_enable();
4575
4576         vcpu->arch.cr0 |= X86_CR0_ET;
4577         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4578         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4579         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4580                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4581 }
4582 EXPORT_SYMBOL_GPL(fx_init);
4583
4584 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4585 {
4586         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4587                 return;
4588
4589         vcpu->guest_fpu_loaded = 1;
4590         kvm_fx_save(&vcpu->arch.host_fx_image);
4591         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4592 }
4593 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4594
4595 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4596 {
4597         if (!vcpu->guest_fpu_loaded)
4598                 return;
4599
4600         vcpu->guest_fpu_loaded = 0;
4601         kvm_fx_save(&vcpu->arch.guest_fx_image);
4602         kvm_fx_restore(&vcpu->arch.host_fx_image);
4603         ++vcpu->stat.fpu_reload;
4604 }
4605 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4606
4607 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4608 {
4609         if (vcpu->arch.time_page) {
4610                 kvm_release_page_dirty(vcpu->arch.time_page);
4611                 vcpu->arch.time_page = NULL;
4612         }
4613
4614         kvm_x86_ops->vcpu_free(vcpu);
4615 }
4616
4617 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4618                                                 unsigned int id)
4619 {
4620         return kvm_x86_ops->vcpu_create(kvm, id);
4621 }
4622
4623 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4624 {
4625         int r;
4626
4627         /* We do fxsave: this must be aligned. */
4628         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4629
4630         vcpu->arch.mtrr_state.have_fixed = 1;
4631         vcpu_load(vcpu);
4632         r = kvm_arch_vcpu_reset(vcpu);
4633         if (r == 0)
4634                 r = kvm_mmu_setup(vcpu);
4635         vcpu_put(vcpu);
4636         if (r < 0)
4637                 goto free_vcpu;
4638
4639         return 0;
4640 free_vcpu:
4641         kvm_x86_ops->vcpu_free(vcpu);
4642         return r;
4643 }
4644
4645 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4646 {
4647         vcpu_load(vcpu);
4648         kvm_mmu_unload(vcpu);
4649         vcpu_put(vcpu);
4650
4651         kvm_x86_ops->vcpu_free(vcpu);
4652 }
4653
4654 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4655 {
4656         vcpu->arch.nmi_pending = false;
4657         vcpu->arch.nmi_injected = false;
4658
4659         vcpu->arch.switch_db_regs = 0;
4660         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4661         vcpu->arch.dr6 = DR6_FIXED_1;
4662         vcpu->arch.dr7 = DR7_FIXED_1;
4663
4664         return kvm_x86_ops->vcpu_reset(vcpu);
4665 }
4666
4667 void kvm_arch_hardware_enable(void *garbage)
4668 {
4669         kvm_x86_ops->hardware_enable(garbage);
4670 }
4671
4672 void kvm_arch_hardware_disable(void *garbage)
4673 {
4674         kvm_x86_ops->hardware_disable(garbage);
4675 }
4676
4677 int kvm_arch_hardware_setup(void)
4678 {
4679         return kvm_x86_ops->hardware_setup();
4680 }
4681
4682 void kvm_arch_hardware_unsetup(void)
4683 {
4684         kvm_x86_ops->hardware_unsetup();
4685 }
4686
4687 void kvm_arch_check_processor_compat(void *rtn)
4688 {
4689         kvm_x86_ops->check_processor_compatibility(rtn);
4690 }
4691
4692 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4693 {
4694         struct page *page;
4695         struct kvm *kvm;
4696         int r;
4697
4698         BUG_ON(vcpu->kvm == NULL);
4699         kvm = vcpu->kvm;
4700
4701         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4702         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4703                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704         else
4705                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4706
4707         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4708         if (!page) {
4709                 r = -ENOMEM;
4710                 goto fail;
4711         }
4712         vcpu->arch.pio_data = page_address(page);
4713
4714         r = kvm_mmu_create(vcpu);
4715         if (r < 0)
4716                 goto fail_free_pio_data;
4717
4718         if (irqchip_in_kernel(kvm)) {
4719                 r = kvm_create_lapic(vcpu);
4720                 if (r < 0)
4721                         goto fail_mmu_destroy;
4722         }
4723
4724         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4725                                        GFP_KERNEL);
4726         if (!vcpu->arch.mce_banks) {
4727                 r = -ENOMEM;
4728                 goto fail_mmu_destroy;
4729         }
4730         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4731
4732         return 0;
4733
4734 fail_mmu_destroy:
4735         kvm_mmu_destroy(vcpu);
4736 fail_free_pio_data:
4737         free_page((unsigned long)vcpu->arch.pio_data);
4738 fail:
4739         return r;
4740 }
4741
4742 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4743 {
4744         kvm_free_lapic(vcpu);
4745         down_read(&vcpu->kvm->slots_lock);
4746         kvm_mmu_destroy(vcpu);
4747         up_read(&vcpu->kvm->slots_lock);
4748         free_page((unsigned long)vcpu->arch.pio_data);
4749 }
4750
4751 struct  kvm *kvm_arch_create_vm(void)
4752 {
4753         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4754
4755         if (!kvm)
4756                 return ERR_PTR(-ENOMEM);
4757
4758         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4759         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4760
4761         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4762         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4763
4764         rdtscll(kvm->arch.vm_init_tsc);
4765
4766         return kvm;
4767 }
4768
4769 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4770 {
4771         vcpu_load(vcpu);
4772         kvm_mmu_unload(vcpu);
4773         vcpu_put(vcpu);
4774 }
4775
4776 static void kvm_free_vcpus(struct kvm *kvm)
4777 {
4778         unsigned int i;
4779         struct kvm_vcpu *vcpu;
4780
4781         /*
4782          * Unpin any mmu pages first.
4783          */
4784         kvm_for_each_vcpu(i, vcpu, kvm)
4785                 kvm_unload_vcpu_mmu(vcpu);
4786         kvm_for_each_vcpu(i, vcpu, kvm)
4787                 kvm_arch_vcpu_free(vcpu);
4788
4789         mutex_lock(&kvm->lock);
4790         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4791                 kvm->vcpus[i] = NULL;
4792
4793         atomic_set(&kvm->online_vcpus, 0);
4794         mutex_unlock(&kvm->lock);
4795 }
4796
4797 void kvm_arch_sync_events(struct kvm *kvm)
4798 {
4799         kvm_free_all_assigned_devices(kvm);
4800 }
4801
4802 void kvm_arch_destroy_vm(struct kvm *kvm)
4803 {
4804         kvm_iommu_unmap_guest(kvm);
4805         kvm_free_pit(kvm);
4806         kfree(kvm->arch.vpic);
4807         kfree(kvm->arch.vioapic);
4808         kvm_free_vcpus(kvm);
4809         kvm_free_physmem(kvm);
4810         if (kvm->arch.apic_access_page)
4811                 put_page(kvm->arch.apic_access_page);
4812         if (kvm->arch.ept_identity_pagetable)
4813                 put_page(kvm->arch.ept_identity_pagetable);
4814         kfree(kvm);
4815 }
4816
4817 int kvm_arch_set_memory_region(struct kvm *kvm,
4818                                 struct kvm_userspace_memory_region *mem,
4819                                 struct kvm_memory_slot old,
4820                                 int user_alloc)
4821 {
4822         int npages = mem->memory_size >> PAGE_SHIFT;
4823         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4824
4825         /*To keep backward compatibility with older userspace,
4826          *x86 needs to hanlde !user_alloc case.
4827          */
4828         if (!user_alloc) {
4829                 if (npages && !old.rmap) {
4830                         unsigned long userspace_addr;
4831
4832                         down_write(&current->mm->mmap_sem);
4833                         userspace_addr = do_mmap(NULL, 0,
4834                                                  npages * PAGE_SIZE,
4835                                                  PROT_READ | PROT_WRITE,
4836                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4837                                                  0);
4838                         up_write(&current->mm->mmap_sem);
4839
4840                         if (IS_ERR((void *)userspace_addr))
4841                                 return PTR_ERR((void *)userspace_addr);
4842
4843                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4844                         spin_lock(&kvm->mmu_lock);
4845                         memslot->userspace_addr = userspace_addr;
4846                         spin_unlock(&kvm->mmu_lock);
4847                 } else {
4848                         if (!old.user_alloc && old.rmap) {
4849                                 int ret;
4850
4851                                 down_write(&current->mm->mmap_sem);
4852                                 ret = do_munmap(current->mm, old.userspace_addr,
4853                                                 old.npages * PAGE_SIZE);
4854                                 up_write(&current->mm->mmap_sem);
4855                                 if (ret < 0)
4856                                         printk(KERN_WARNING
4857                                        "kvm_vm_ioctl_set_memory_region: "
4858                                        "failed to munmap memory\n");
4859                         }
4860                 }
4861         }
4862
4863         spin_lock(&kvm->mmu_lock);
4864         if (!kvm->arch.n_requested_mmu_pages) {
4865                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4866                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4867         }
4868
4869         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4870         spin_unlock(&kvm->mmu_lock);
4871         kvm_flush_remote_tlbs(kvm);
4872
4873         return 0;
4874 }
4875
4876 void kvm_arch_flush_shadow(struct kvm *kvm)
4877 {
4878         kvm_mmu_zap_all(kvm);
4879         kvm_reload_remote_mmus(kvm);
4880 }
4881
4882 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4883 {
4884         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4885                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4886                 || vcpu->arch.nmi_pending ||
4887                 (kvm_arch_interrupt_allowed(vcpu) &&
4888                  kvm_cpu_has_interrupt(vcpu));
4889 }
4890
4891 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4892 {
4893         int me;
4894         int cpu = vcpu->cpu;
4895
4896         if (waitqueue_active(&vcpu->wq)) {
4897                 wake_up_interruptible(&vcpu->wq);
4898                 ++vcpu->stat.halt_wakeup;
4899         }
4900
4901         me = get_cpu();
4902         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4903                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4904                         smp_send_reschedule(cpu);
4905         put_cpu();
4906 }
4907
4908 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4909 {
4910         return kvm_x86_ops->interrupt_allowed(vcpu);
4911 }
4912
4913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);