Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213
214         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
215                 values = &locals->values[slot];
216                 if (values->host != values->curr) {
217                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
218                         values->curr = values->host;
219                 }
220         }
221         locals->registered = false;
222         user_return_notifier_unregister(urn);
223 }
224
225 static void shared_msr_update(unsigned slot, u32 msr)
226 {
227         u64 value;
228         unsigned int cpu = smp_processor_id();
229         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230
231         /* only read, and nobody should modify it at this time,
232          * so don't need lock */
233         if (slot >= shared_msrs_global.nr) {
234                 printk(KERN_ERR "kvm: invalid MSR slot!");
235                 return;
236         }
237         rdmsrl_safe(msr, &value);
238         smsr->values[slot].host = value;
239         smsr->values[slot].curr = value;
240 }
241
242 void kvm_define_shared_msr(unsigned slot, u32 msr)
243 {
244         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
245         shared_msrs_global.msrs[slot] = msr;
246         if (slot >= shared_msrs_global.nr)
247                 shared_msrs_global.nr = slot + 1;
248 }
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
250
251 static void kvm_shared_msr_cpu_online(void)
252 {
253         unsigned i;
254
255         for (i = 0; i < shared_msrs_global.nr; ++i)
256                 shared_msr_update(i, shared_msrs_global.msrs[i]);
257 }
258
259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
260 {
261         unsigned int cpu = smp_processor_id();
262         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263         int err;
264
265         if (((value ^ smsr->values[slot].curr) & mask) == 0)
266                 return 0;
267         smsr->values[slot].curr = value;
268         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
269         if (err)
270                 return 1;
271
272         if (!smsr->registered) {
273                 smsr->urn.on_user_return = kvm_on_user_return;
274                 user_return_notifier_register(&smsr->urn);
275                 smsr->registered = true;
276         }
277         return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280
281 static void drop_user_return_notifiers(void)
282 {
283         unsigned int cpu = smp_processor_id();
284         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285
286         if (smsr->registered)
287                 kvm_on_user_return(&smsr->urn);
288 }
289
290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292         return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295
296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298         u64 old_state = vcpu->arch.apic_base &
299                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300         u64 new_state = msr_info->data &
301                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304
305         if (!msr_info->host_initiated &&
306             ((msr_info->data & reserved_bits) != 0 ||
307              new_state == X2APIC_ENABLE ||
308              (new_state == MSR_IA32_APICBASE_ENABLE &&
309               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311               old_state == 0)))
312                 return 1;
313
314         kvm_lapic_set_base(vcpu, msr_info->data);
315         return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318
319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321         /* Fault while not rebooting.  We want the trace. */
322         BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325
326 #define EXCPT_BENIGN            0
327 #define EXCPT_CONTRIBUTORY      1
328 #define EXCPT_PF                2
329
330 static int exception_class(int vector)
331 {
332         switch (vector) {
333         case PF_VECTOR:
334                 return EXCPT_PF;
335         case DE_VECTOR:
336         case TS_VECTOR:
337         case NP_VECTOR:
338         case SS_VECTOR:
339         case GP_VECTOR:
340                 return EXCPT_CONTRIBUTORY;
341         default:
342                 break;
343         }
344         return EXCPT_BENIGN;
345 }
346
347 #define EXCPT_FAULT             0
348 #define EXCPT_TRAP              1
349 #define EXCPT_ABORT             2
350 #define EXCPT_INTERRUPT         3
351
352 static int exception_type(int vector)
353 {
354         unsigned int mask;
355
356         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357                 return EXCPT_INTERRUPT;
358
359         mask = 1 << vector;
360
361         /* #DB is trap, as instruction watchpoints are handled elsewhere */
362         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363                 return EXCPT_TRAP;
364
365         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366                 return EXCPT_ABORT;
367
368         /* Reserved exceptions will result in fault */
369         return EXCPT_FAULT;
370 }
371
372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373                 unsigned nr, bool has_error, u32 error_code,
374                 bool reinject)
375 {
376         u32 prev_nr;
377         int class1, class2;
378
379         kvm_make_request(KVM_REQ_EVENT, vcpu);
380
381         if (!vcpu->arch.exception.pending) {
382         queue:
383                 if (has_error && !is_protmode(vcpu))
384                         has_error = false;
385                 vcpu->arch.exception.pending = true;
386                 vcpu->arch.exception.has_error_code = has_error;
387                 vcpu->arch.exception.nr = nr;
388                 vcpu->arch.exception.error_code = error_code;
389                 vcpu->arch.exception.reinject = reinject;
390                 return;
391         }
392
393         /* to check exception */
394         prev_nr = vcpu->arch.exception.nr;
395         if (prev_nr == DF_VECTOR) {
396                 /* triple fault -> shutdown */
397                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398                 return;
399         }
400         class1 = exception_class(prev_nr);
401         class2 = exception_class(nr);
402         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404                 /* generate double fault per SDM Table 5-5 */
405                 vcpu->arch.exception.pending = true;
406                 vcpu->arch.exception.has_error_code = true;
407                 vcpu->arch.exception.nr = DF_VECTOR;
408                 vcpu->arch.exception.error_code = 0;
409         } else
410                 /* replace previous exception with a new one in a hope
411                    that instruction re-execution will regenerate lost
412                    exception */
413                 goto queue;
414 }
415
416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418         kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421
422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424         kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427
428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430         if (err)
431                 kvm_inject_gp(vcpu, 0);
432         else
433                 kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436
437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         ++vcpu->stat.pf_guest;
440         vcpu->arch.cr2 = fault->address;
441         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444
445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449         else
450                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451
452         return fault->nested_page_fault;
453 }
454
455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457         atomic_inc(&vcpu->arch.nmi_queued);
458         kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461
462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464         kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467
468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470         kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481                 return true;
482         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483         return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486
487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490                 return true;
491
492         kvm_queue_exception(vcpu, UD_VECTOR);
493         return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503                             gfn_t ngfn, void *data, int offset, int len,
504                             u32 access)
505 {
506         struct x86_exception exception;
507         gfn_t real_gfn;
508         gpa_t ngpa;
509
510         ngpa     = gfn_to_gpa(ngfn);
511         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512         if (real_gfn == UNMAPPED_GVA)
513                 return -EFAULT;
514
515         real_gfn = gpa_to_gfn(real_gfn);
516
517         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520
521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522                                void *data, int offset, int len, u32 access)
523 {
524         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525                                        data, offset, len, access);
526 }
527
528 /*
529  * Load the pae pdptrs.  Return true is they are all valid.
530  */
531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
532 {
533         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
534         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
535         int i;
536         int ret;
537         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
538
539         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
540                                       offset * sizeof(u64), sizeof(pdpte),
541                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
542         if (ret < 0) {
543                 ret = 0;
544                 goto out;
545         }
546         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
547                 if ((pdpte[i] & PT_PRESENT_MASK) &&
548                     (pdpte[i] &
549                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
550                         ret = 0;
551                         goto out;
552                 }
553         }
554         ret = 1;
555
556         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
557         __set_bit(VCPU_EXREG_PDPTR,
558                   (unsigned long *)&vcpu->arch.regs_avail);
559         __set_bit(VCPU_EXREG_PDPTR,
560                   (unsigned long *)&vcpu->arch.regs_dirty);
561 out:
562
563         return ret;
564 }
565 EXPORT_SYMBOL_GPL(load_pdptrs);
566
567 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
568 {
569         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
570         bool changed = true;
571         int offset;
572         gfn_t gfn;
573         int r;
574
575         if (is_long_mode(vcpu) || !is_pae(vcpu))
576                 return false;
577
578         if (!test_bit(VCPU_EXREG_PDPTR,
579                       (unsigned long *)&vcpu->arch.regs_avail))
580                 return true;
581
582         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
583         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
584         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
585                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
586         if (r < 0)
587                 goto out;
588         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
589 out:
590
591         return changed;
592 }
593
594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
595 {
596         unsigned long old_cr0 = kvm_read_cr0(vcpu);
597         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
598
599         cr0 |= X86_CR0_ET;
600
601 #ifdef CONFIG_X86_64
602         if (cr0 & 0xffffffff00000000UL)
603                 return 1;
604 #endif
605
606         cr0 &= ~CR0_RESERVED_BITS;
607
608         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
609                 return 1;
610
611         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
612                 return 1;
613
614         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
615 #ifdef CONFIG_X86_64
616                 if ((vcpu->arch.efer & EFER_LME)) {
617                         int cs_db, cs_l;
618
619                         if (!is_pae(vcpu))
620                                 return 1;
621                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
622                         if (cs_l)
623                                 return 1;
624                 } else
625 #endif
626                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
627                                                  kvm_read_cr3(vcpu)))
628                         return 1;
629         }
630
631         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
632                 return 1;
633
634         kvm_x86_ops->set_cr0(vcpu, cr0);
635
636         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
637                 kvm_clear_async_pf_completion_queue(vcpu);
638                 kvm_async_pf_hash_reset(vcpu);
639         }
640
641         if ((cr0 ^ old_cr0) & update_bits)
642                 kvm_mmu_reset_context(vcpu);
643
644         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
645             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
646             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
647                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_set_cr0);
652
653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
654 {
655         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
656 }
657 EXPORT_SYMBOL_GPL(kvm_lmsw);
658
659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
660 {
661         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
662                         !vcpu->guest_xcr0_loaded) {
663                 /* kvm_set_xcr() also depends on this */
664                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
665                 vcpu->guest_xcr0_loaded = 1;
666         }
667 }
668
669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
670 {
671         if (vcpu->guest_xcr0_loaded) {
672                 if (vcpu->arch.xcr0 != host_xcr0)
673                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
674                 vcpu->guest_xcr0_loaded = 0;
675         }
676 }
677
678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
679 {
680         u64 xcr0 = xcr;
681         u64 old_xcr0 = vcpu->arch.xcr0;
682         u64 valid_bits;
683
684         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
685         if (index != XCR_XFEATURE_ENABLED_MASK)
686                 return 1;
687         if (!(xcr0 & XFEATURE_MASK_FP))
688                 return 1;
689         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
690                 return 1;
691
692         /*
693          * Do not allow the guest to set bits that we do not support
694          * saving.  However, xcr0 bit 0 is always set, even if the
695          * emulated CPU does not support XSAVE (see fx_init).
696          */
697         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
698         if (xcr0 & ~valid_bits)
699                 return 1;
700
701         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
702             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
703                 return 1;
704
705         if (xcr0 & XFEATURE_MASK_AVX512) {
706                 if (!(xcr0 & XFEATURE_MASK_YMM))
707                         return 1;
708                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
709                         return 1;
710         }
711         vcpu->arch.xcr0 = xcr0;
712
713         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
714                 kvm_update_cpuid(vcpu);
715         return 0;
716 }
717
718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
719 {
720         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
721             __kvm_set_xcr(vcpu, index, xcr)) {
722                 kvm_inject_gp(vcpu, 0);
723                 return 1;
724         }
725         return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_xcr);
728
729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
730 {
731         unsigned long old_cr4 = kvm_read_cr4(vcpu);
732         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
733                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
734
735         if (cr4 & CR4_RESERVED_BITS)
736                 return 1;
737
738         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
739                 return 1;
740
741         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
742                 return 1;
743
744         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
745                 return 1;
746
747         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
748                 return 1;
749
750         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
751                 return 1;
752
753         if (is_long_mode(vcpu)) {
754                 if (!(cr4 & X86_CR4_PAE))
755                         return 1;
756         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
757                    && ((cr4 ^ old_cr4) & pdptr_bits)
758                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
759                                    kvm_read_cr3(vcpu)))
760                 return 1;
761
762         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
763                 if (!guest_cpuid_has_pcid(vcpu))
764                         return 1;
765
766                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
768                         return 1;
769         }
770
771         if (kvm_x86_ops->set_cr4(vcpu, cr4))
772                 return 1;
773
774         if (((cr4 ^ old_cr4) & pdptr_bits) ||
775             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
776                 kvm_mmu_reset_context(vcpu);
777
778         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
779                 kvm_update_cpuid(vcpu);
780
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr4);
784
785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 #ifdef CONFIG_X86_64
788         cr3 &= ~CR3_PCID_INVD;
789 #endif
790
791         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
792                 kvm_mmu_sync_roots(vcpu);
793                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
794                 return 0;
795         }
796
797         if (is_long_mode(vcpu)) {
798                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
799                         return 1;
800         } else if (is_pae(vcpu) && is_paging(vcpu) &&
801                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
802                 return 1;
803
804         vcpu->arch.cr3 = cr3;
805         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
806         kvm_mmu_new_cr3(vcpu);
807         return 0;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cr3);
810
811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
812 {
813         if (cr8 & CR8_RESERVED_BITS)
814                 return 1;
815         if (lapic_in_kernel(vcpu))
816                 kvm_lapic_set_tpr(vcpu, cr8);
817         else
818                 vcpu->arch.cr8 = cr8;
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr8);
822
823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
824 {
825         if (lapic_in_kernel(vcpu))
826                 return kvm_lapic_get_cr8(vcpu);
827         else
828                 return vcpu->arch.cr8;
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_cr8);
831
832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
833 {
834         int i;
835
836         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
837                 for (i = 0; i < KVM_NR_DB_REGS; i++)
838                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
839                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
840         }
841 }
842
843 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
844 {
845         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
846                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
847 }
848
849 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
850 {
851         unsigned long dr7;
852
853         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
854                 dr7 = vcpu->arch.guest_debug_dr7;
855         else
856                 dr7 = vcpu->arch.dr7;
857         kvm_x86_ops->set_dr7(vcpu, dr7);
858         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
859         if (dr7 & DR7_BP_EN_MASK)
860                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
861 }
862
863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
864 {
865         u64 fixed = DR6_FIXED_1;
866
867         if (!guest_cpuid_has_rtm(vcpu))
868                 fixed |= DR6_RTM;
869         return fixed;
870 }
871
872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
873 {
874         switch (dr) {
875         case 0 ... 3:
876                 vcpu->arch.db[dr] = val;
877                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
878                         vcpu->arch.eff_db[dr] = val;
879                 break;
880         case 4:
881                 /* fall through */
882         case 6:
883                 if (val & 0xffffffff00000000ULL)
884                         return -1; /* #GP */
885                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
886                 kvm_update_dr6(vcpu);
887                 break;
888         case 5:
889                 /* fall through */
890         default: /* 7 */
891                 if (val & 0xffffffff00000000ULL)
892                         return -1; /* #GP */
893                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
894                 kvm_update_dr7(vcpu);
895                 break;
896         }
897
898         return 0;
899 }
900
901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
902 {
903         if (__kvm_set_dr(vcpu, dr, val)) {
904                 kvm_inject_gp(vcpu, 0);
905                 return 1;
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_set_dr);
910
911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
912 {
913         switch (dr) {
914         case 0 ... 3:
915                 *val = vcpu->arch.db[dr];
916                 break;
917         case 4:
918                 /* fall through */
919         case 6:
920                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921                         *val = vcpu->arch.dr6;
922                 else
923                         *val = kvm_x86_ops->get_dr6(vcpu);
924                 break;
925         case 5:
926                 /* fall through */
927         default: /* 7 */
928                 *val = vcpu->arch.dr7;
929                 break;
930         }
931         return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_get_dr);
934
935 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
936 {
937         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938         u64 data;
939         int err;
940
941         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
942         if (err)
943                 return err;
944         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
945         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
946         return err;
947 }
948 EXPORT_SYMBOL_GPL(kvm_rdpmc);
949
950 /*
951  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
953  *
954  * This list is modified at module load time to reflect the
955  * capabilities of the host cpu. This capabilities test skips MSRs that are
956  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957  * may depend on host virtualization features rather than host cpu features.
958  */
959
960 static u32 msrs_to_save[] = {
961         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
962         MSR_STAR,
963 #ifdef CONFIG_X86_64
964         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
965 #endif
966         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
967         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
968 };
969
970 static unsigned num_msrs_to_save;
971
972 static u32 emulated_msrs[] = {
973         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
974         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
975         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
976         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
977         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
978         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
979         HV_X64_MSR_RESET,
980         HV_X64_MSR_VP_INDEX,
981         HV_X64_MSR_VP_RUNTIME,
982         HV_X64_MSR_SCONTROL,
983         HV_X64_MSR_STIMER0_CONFIG,
984         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
985         MSR_KVM_PV_EOI_EN,
986
987         MSR_IA32_TSC_ADJUST,
988         MSR_IA32_TSCDEADLINE,
989         MSR_IA32_MISC_ENABLE,
990         MSR_IA32_MCG_STATUS,
991         MSR_IA32_MCG_CTL,
992         MSR_IA32_MCG_EXT_CTL,
993         MSR_IA32_SMBASE,
994 };
995
996 static unsigned num_emulated_msrs;
997
998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
999 {
1000         if (efer & efer_reserved_bits)
1001                 return false;
1002
1003         if (efer & EFER_FFXSR) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008                         return false;
1009         }
1010
1011         if (efer & EFER_SVME) {
1012                 struct kvm_cpuid_entry2 *feat;
1013
1014                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016                         return false;
1017         }
1018
1019         return true;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022
1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024 {
1025         u64 old_efer = vcpu->arch.efer;
1026
1027         if (!kvm_valid_efer(vcpu, efer))
1028                 return 1;
1029
1030         if (is_paging(vcpu)
1031             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032                 return 1;
1033
1034         efer &= ~EFER_LMA;
1035         efer |= vcpu->arch.efer & EFER_LMA;
1036
1037         kvm_x86_ops->set_efer(vcpu, efer);
1038
1039         /* Update reserved bits */
1040         if ((efer ^ old_efer) & EFER_NX)
1041                 kvm_mmu_reset_context(vcpu);
1042
1043         return 0;
1044 }
1045
1046 void kvm_enable_efer_bits(u64 mask)
1047 {
1048        efer_reserved_bits &= ~mask;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051
1052 /*
1053  * Writes msr value into into the appropriate "register".
1054  * Returns 0 on success, non-0 otherwise.
1055  * Assumes vcpu_load() was already called.
1056  */
1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058 {
1059         switch (msr->index) {
1060         case MSR_FS_BASE:
1061         case MSR_GS_BASE:
1062         case MSR_KERNEL_GS_BASE:
1063         case MSR_CSTAR:
1064         case MSR_LSTAR:
1065                 if (is_noncanonical_address(msr->data))
1066                         return 1;
1067                 break;
1068         case MSR_IA32_SYSENTER_EIP:
1069         case MSR_IA32_SYSENTER_ESP:
1070                 /*
1071                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072                  * non-canonical address is written on Intel but not on
1073                  * AMD (which ignores the top 32-bits, because it does
1074                  * not implement 64-bit SYSENTER).
1075                  *
1076                  * 64-bit code should hence be able to write a non-canonical
1077                  * value on AMD.  Making the address canonical ensures that
1078                  * vmentry does not fail on Intel after writing a non-canonical
1079                  * value, and that something deterministic happens if the guest
1080                  * invokes 64-bit SYSENTER.
1081                  */
1082                 msr->data = get_canonical(msr->data);
1083         }
1084         return kvm_x86_ops->set_msr(vcpu, msr);
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_msr);
1087
1088 /*
1089  * Adapt set_msr() to msr_io()'s calling convention
1090  */
1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093         struct msr_data msr;
1094         int r;
1095
1096         msr.index = index;
1097         msr.host_initiated = true;
1098         r = kvm_get_msr(vcpu, &msr);
1099         if (r)
1100                 return r;
1101
1102         *data = msr.data;
1103         return 0;
1104 }
1105
1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108         struct msr_data msr;
1109
1110         msr.data = *data;
1111         msr.index = index;
1112         msr.host_initiated = true;
1113         return kvm_set_msr(vcpu, &msr);
1114 }
1115
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data {
1118         seqcount_t      seq;
1119
1120         struct { /* extract of a clocksource struct */
1121                 int vclock_mode;
1122                 cycle_t cycle_last;
1123                 cycle_t mask;
1124                 u32     mult;
1125                 u32     shift;
1126         } clock;
1127
1128         u64             boot_ns;
1129         u64             nsec_base;
1130 };
1131
1132 static struct pvclock_gtod_data pvclock_gtod_data;
1133
1134 static void update_pvclock_gtod(struct timekeeper *tk)
1135 {
1136         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137         u64 boot_ns;
1138
1139         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140
1141         write_seqcount_begin(&vdata->seq);
1142
1143         /* copy pvclock gtod data */
1144         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1145         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1146         vdata->clock.mask               = tk->tkr_mono.mask;
1147         vdata->clock.mult               = tk->tkr_mono.mult;
1148         vdata->clock.shift              = tk->tkr_mono.shift;
1149
1150         vdata->boot_ns                  = boot_ns;
1151         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1152
1153         write_seqcount_end(&vdata->seq);
1154 }
1155 #endif
1156
1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159         /*
1160          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161          * vcpu_enter_guest.  This function is only called from
1162          * the physical CPU that is running vcpu.
1163          */
1164         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165 }
1166
1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168 {
1169         int version;
1170         int r;
1171         struct pvclock_wall_clock wc;
1172         struct timespec64 boot;
1173
1174         if (!wall_clock)
1175                 return;
1176
1177         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178         if (r)
1179                 return;
1180
1181         if (version & 1)
1182                 ++version;  /* first time write, random junk */
1183
1184         ++version;
1185
1186         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187                 return;
1188
1189         /*
1190          * The guest calculates current wall clock time by adding
1191          * system time (updated by kvm_guest_time_update below) to the
1192          * wall clock specified here.  guest system time equals host
1193          * system time for us, thus we must fill in host boot time here.
1194          */
1195         getboottime64(&boot);
1196
1197         if (kvm->arch.kvmclock_offset) {
1198                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199                 boot = timespec64_sub(boot, ts);
1200         }
1201         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202         wc.nsec = boot.tv_nsec;
1203         wc.version = version;
1204
1205         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206
1207         version++;
1208         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209 }
1210
1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212 {
1213         do_shl32_div32(dividend, divisor);
1214         return dividend;
1215 }
1216
1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218                                s8 *pshift, u32 *pmultiplier)
1219 {
1220         uint64_t scaled64;
1221         int32_t  shift = 0;
1222         uint64_t tps64;
1223         uint32_t tps32;
1224
1225         tps64 = base_hz;
1226         scaled64 = scaled_hz;
1227         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228                 tps64 >>= 1;
1229                 shift--;
1230         }
1231
1232         tps32 = (uint32_t)tps64;
1233         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235                         scaled64 >>= 1;
1236                 else
1237                         tps32 <<= 1;
1238                 shift++;
1239         }
1240
1241         *pshift = shift;
1242         *pmultiplier = div_frac(scaled64, tps32);
1243
1244         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246 }
1247
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250 #endif
1251
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253 static unsigned long max_tsc_khz;
1254
1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256 {
1257         u64 v = (u64)khz * (1000000 + ppm);
1258         do_div(v, 1000000);
1259         return v;
1260 }
1261
1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263 {
1264         u64 ratio;
1265
1266         /* Guest TSC same frequency as host TSC? */
1267         if (!scale) {
1268                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269                 return 0;
1270         }
1271
1272         /* TSC scaling supported? */
1273         if (!kvm_has_tsc_control) {
1274                 if (user_tsc_khz > tsc_khz) {
1275                         vcpu->arch.tsc_catchup = 1;
1276                         vcpu->arch.tsc_always_catchup = 1;
1277                         return 0;
1278                 } else {
1279                         WARN(1, "user requested TSC rate below hardware speed\n");
1280                         return -1;
1281                 }
1282         }
1283
1284         /* TSC scaling required  - calculate ratio */
1285         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286                                 user_tsc_khz, tsc_khz);
1287
1288         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290                           user_tsc_khz);
1291                 return -1;
1292         }
1293
1294         vcpu->arch.tsc_scaling_ratio = ratio;
1295         return 0;
1296 }
1297
1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299 {
1300         u32 thresh_lo, thresh_hi;
1301         int use_scaling = 0;
1302
1303         /* tsc_khz can be zero if TSC calibration fails */
1304         if (user_tsc_khz == 0) {
1305                 /* set tsc_scaling_ratio to a safe value */
1306                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307                 return -1;
1308         }
1309
1310         /* Compute a scale to convert nanoseconds in TSC cycles */
1311         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312                            &vcpu->arch.virtual_tsc_shift,
1313                            &vcpu->arch.virtual_tsc_mult);
1314         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315
1316         /*
1317          * Compute the variation in TSC rate which is acceptable
1318          * within the range of tolerance and decide if the
1319          * rate being applied is within that bounds of the hardware
1320          * rate.  If so, no scaling or compensation need be done.
1321          */
1322         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326                 use_scaling = 1;
1327         }
1328         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329 }
1330
1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332 {
1333         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334                                       vcpu->arch.virtual_tsc_mult,
1335                                       vcpu->arch.virtual_tsc_shift);
1336         tsc += vcpu->arch.this_tsc_write;
1337         return tsc;
1338 }
1339
1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343         bool vcpus_matched;
1344         struct kvm_arch *ka = &vcpu->kvm->arch;
1345         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348                          atomic_read(&vcpu->kvm->online_vcpus));
1349
1350         /*
1351          * Once the masterclock is enabled, always perform request in
1352          * order to update it.
1353          *
1354          * In order to enable masterclock, the host clocksource must be TSC
1355          * and the vcpus need to have matched TSCs.  When that happens,
1356          * perform request to enable masterclock.
1357          */
1358         if (ka->use_master_clock ||
1359             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361
1362         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363                             atomic_read(&vcpu->kvm->online_vcpus),
1364                             ka->use_master_clock, gtod->clock.vclock_mode);
1365 #endif
1366 }
1367
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369 {
1370         u64 curr_offset = vcpu->arch.tsc_offset;
1371         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372 }
1373
1374 /*
1375  * Multiply tsc by a fixed point number represented by ratio.
1376  *
1377  * The most significant 64-N bits (mult) of ratio represent the
1378  * integral part of the fixed point number; the remaining N bits
1379  * (frac) represent the fractional part, ie. ratio represents a fixed
1380  * point number (mult + frac * 2^(-N)).
1381  *
1382  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383  */
1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385 {
1386         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387 }
1388
1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390 {
1391         u64 _tsc = tsc;
1392         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393
1394         if (ratio != kvm_default_tsc_scaling_ratio)
1395                 _tsc = __scale_tsc(ratio, tsc);
1396
1397         return _tsc;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400
1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402 {
1403         u64 tsc;
1404
1405         tsc = kvm_scale_tsc(vcpu, rdtsc());
1406
1407         return target_tsc - tsc;
1408 }
1409
1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411 {
1412         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415
1416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1417 {
1418         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1419         vcpu->arch.tsc_offset = offset;
1420 }
1421
1422 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1423 {
1424         struct kvm *kvm = vcpu->kvm;
1425         u64 offset, ns, elapsed;
1426         unsigned long flags;
1427         s64 usdiff;
1428         bool matched;
1429         bool already_matched;
1430         u64 data = msr->data;
1431
1432         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1433         offset = kvm_compute_tsc_offset(vcpu, data);
1434         ns = ktime_get_boot_ns();
1435         elapsed = ns - kvm->arch.last_tsc_nsec;
1436
1437         if (vcpu->arch.virtual_tsc_khz) {
1438                 int faulted = 0;
1439
1440                 /* n.b - signed multiplication and division required */
1441                 usdiff = data - kvm->arch.last_tsc_write;
1442 #ifdef CONFIG_X86_64
1443                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1444 #else
1445                 /* do_div() only does unsigned */
1446                 asm("1: idivl %[divisor]\n"
1447                     "2: xor %%edx, %%edx\n"
1448                     "   movl $0, %[faulted]\n"
1449                     "3:\n"
1450                     ".section .fixup,\"ax\"\n"
1451                     "4: movl $1, %[faulted]\n"
1452                     "   jmp  3b\n"
1453                     ".previous\n"
1454
1455                 _ASM_EXTABLE(1b, 4b)
1456
1457                 : "=A"(usdiff), [faulted] "=r" (faulted)
1458                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1459
1460 #endif
1461                 do_div(elapsed, 1000);
1462                 usdiff -= elapsed;
1463                 if (usdiff < 0)
1464                         usdiff = -usdiff;
1465
1466                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1467                 if (faulted)
1468                         usdiff = USEC_PER_SEC;
1469         } else
1470                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1471
1472         /*
1473          * Special case: TSC write with a small delta (1 second) of virtual
1474          * cycle time against real time is interpreted as an attempt to
1475          * synchronize the CPU.
1476          *
1477          * For a reliable TSC, we can match TSC offsets, and for an unstable
1478          * TSC, we add elapsed time in this computation.  We could let the
1479          * compensation code attempt to catch up if we fall behind, but
1480          * it's better to try to match offsets from the beginning.
1481          */
1482         if (usdiff < USEC_PER_SEC &&
1483             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1484                 if (!check_tsc_unstable()) {
1485                         offset = kvm->arch.cur_tsc_offset;
1486                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1487                 } else {
1488                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1489                         data += delta;
1490                         offset = kvm_compute_tsc_offset(vcpu, data);
1491                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1492                 }
1493                 matched = true;
1494                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1495         } else {
1496                 /*
1497                  * We split periods of matched TSC writes into generations.
1498                  * For each generation, we track the original measured
1499                  * nanosecond time, offset, and write, so if TSCs are in
1500                  * sync, we can match exact offset, and if not, we can match
1501                  * exact software computation in compute_guest_tsc()
1502                  *
1503                  * These values are tracked in kvm->arch.cur_xxx variables.
1504                  */
1505                 kvm->arch.cur_tsc_generation++;
1506                 kvm->arch.cur_tsc_nsec = ns;
1507                 kvm->arch.cur_tsc_write = data;
1508                 kvm->arch.cur_tsc_offset = offset;
1509                 matched = false;
1510                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1511                          kvm->arch.cur_tsc_generation, data);
1512         }
1513
1514         /*
1515          * We also track th most recent recorded KHZ, write and time to
1516          * allow the matching interval to be extended at each write.
1517          */
1518         kvm->arch.last_tsc_nsec = ns;
1519         kvm->arch.last_tsc_write = data;
1520         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1521
1522         vcpu->arch.last_guest_tsc = data;
1523
1524         /* Keep track of which generation this VCPU has synchronized to */
1525         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1526         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1527         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1528
1529         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1530                 update_ia32_tsc_adjust_msr(vcpu, offset);
1531         kvm_vcpu_write_tsc_offset(vcpu, offset);
1532         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1533
1534         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1535         if (!matched) {
1536                 kvm->arch.nr_vcpus_matched_tsc = 0;
1537         } else if (!already_matched) {
1538                 kvm->arch.nr_vcpus_matched_tsc++;
1539         }
1540
1541         kvm_track_tsc_matching(vcpu);
1542         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1543 }
1544
1545 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1546
1547 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1548                                            s64 adjustment)
1549 {
1550         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552
1553 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1554 {
1555         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1556                 WARN_ON(adjustment < 0);
1557         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1558         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1559 }
1560
1561 #ifdef CONFIG_X86_64
1562
1563 static cycle_t read_tsc(void)
1564 {
1565         cycle_t ret = (cycle_t)rdtsc_ordered();
1566         u64 last = pvclock_gtod_data.clock.cycle_last;
1567
1568         if (likely(ret >= last))
1569                 return ret;
1570
1571         /*
1572          * GCC likes to generate cmov here, but this branch is extremely
1573          * predictable (it's just a function of time and the likely is
1574          * very likely) and there's a data dependence, so force GCC
1575          * to generate a branch instead.  I don't barrier() because
1576          * we don't actually need a barrier, and if this function
1577          * ever gets inlined it will generate worse code.
1578          */
1579         asm volatile ("");
1580         return last;
1581 }
1582
1583 static inline u64 vgettsc(cycle_t *cycle_now)
1584 {
1585         long v;
1586         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1587
1588         *cycle_now = read_tsc();
1589
1590         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1591         return v * gtod->clock.mult;
1592 }
1593
1594 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1595 {
1596         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1597         unsigned long seq;
1598         int mode;
1599         u64 ns;
1600
1601         do {
1602                 seq = read_seqcount_begin(&gtod->seq);
1603                 mode = gtod->clock.vclock_mode;
1604                 ns = gtod->nsec_base;
1605                 ns += vgettsc(cycle_now);
1606                 ns >>= gtod->clock.shift;
1607                 ns += gtod->boot_ns;
1608         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1609         *t = ns;
1610
1611         return mode;
1612 }
1613
1614 /* returns true if host is using tsc clocksource */
1615 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1616 {
1617         /* checked again under seqlock below */
1618         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1619                 return false;
1620
1621         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1622 }
1623 #endif
1624
1625 /*
1626  *
1627  * Assuming a stable TSC across physical CPUS, and a stable TSC
1628  * across virtual CPUs, the following condition is possible.
1629  * Each numbered line represents an event visible to both
1630  * CPUs at the next numbered event.
1631  *
1632  * "timespecX" represents host monotonic time. "tscX" represents
1633  * RDTSC value.
1634  *
1635  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1636  *
1637  * 1.  read timespec0,tsc0
1638  * 2.                                   | timespec1 = timespec0 + N
1639  *                                      | tsc1 = tsc0 + M
1640  * 3. transition to guest               | transition to guest
1641  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1642  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1643  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1644  *
1645  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1646  *
1647  *      - ret0 < ret1
1648  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1649  *              ...
1650  *      - 0 < N - M => M < N
1651  *
1652  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1653  * always the case (the difference between two distinct xtime instances
1654  * might be smaller then the difference between corresponding TSC reads,
1655  * when updating guest vcpus pvclock areas).
1656  *
1657  * To avoid that problem, do not allow visibility of distinct
1658  * system_timestamp/tsc_timestamp values simultaneously: use a master
1659  * copy of host monotonic time values. Update that master copy
1660  * in lockstep.
1661  *
1662  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1663  *
1664  */
1665
1666 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1667 {
1668 #ifdef CONFIG_X86_64
1669         struct kvm_arch *ka = &kvm->arch;
1670         int vclock_mode;
1671         bool host_tsc_clocksource, vcpus_matched;
1672
1673         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1674                         atomic_read(&kvm->online_vcpus));
1675
1676         /*
1677          * If the host uses TSC clock, then passthrough TSC as stable
1678          * to the guest.
1679          */
1680         host_tsc_clocksource = kvm_get_time_and_clockread(
1681                                         &ka->master_kernel_ns,
1682                                         &ka->master_cycle_now);
1683
1684         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1685                                 && !backwards_tsc_observed
1686                                 && !ka->boot_vcpu_runs_old_kvmclock;
1687
1688         if (ka->use_master_clock)
1689                 atomic_set(&kvm_guest_has_master_clock, 1);
1690
1691         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1692         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1693                                         vcpus_matched);
1694 #endif
1695 }
1696
1697 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1698 {
1699         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1700 }
1701
1702 static void kvm_gen_update_masterclock(struct kvm *kvm)
1703 {
1704 #ifdef CONFIG_X86_64
1705         int i;
1706         struct kvm_vcpu *vcpu;
1707         struct kvm_arch *ka = &kvm->arch;
1708
1709         spin_lock(&ka->pvclock_gtod_sync_lock);
1710         kvm_make_mclock_inprogress_request(kvm);
1711         /* no guest entries from this point */
1712         pvclock_update_vm_gtod_copy(kvm);
1713
1714         kvm_for_each_vcpu(i, vcpu, kvm)
1715                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1716
1717         /* guest entries allowed */
1718         kvm_for_each_vcpu(i, vcpu, kvm)
1719                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1720
1721         spin_unlock(&ka->pvclock_gtod_sync_lock);
1722 #endif
1723 }
1724
1725 static u64 __get_kvmclock_ns(struct kvm *kvm)
1726 {
1727         struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, 0);
1728         struct kvm_arch *ka = &kvm->arch;
1729         s64 ns;
1730
1731         if (vcpu->arch.hv_clock.flags & PVCLOCK_TSC_STABLE_BIT) {
1732                 u64 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1733                 ns = __pvclock_read_cycles(&vcpu->arch.hv_clock, tsc);
1734         } else {
1735                 ns = ktime_get_boot_ns() + ka->kvmclock_offset;
1736         }
1737
1738         return ns;
1739 }
1740
1741 u64 get_kvmclock_ns(struct kvm *kvm)
1742 {
1743         unsigned long flags;
1744         s64 ns;
1745
1746         local_irq_save(flags);
1747         ns = __get_kvmclock_ns(kvm);
1748         local_irq_restore(flags);
1749
1750         return ns;
1751 }
1752
1753 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1754 {
1755         struct kvm_vcpu_arch *vcpu = &v->arch;
1756         struct pvclock_vcpu_time_info guest_hv_clock;
1757
1758         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1759                 &guest_hv_clock, sizeof(guest_hv_clock))))
1760                 return;
1761
1762         /* This VCPU is paused, but it's legal for a guest to read another
1763          * VCPU's kvmclock, so we really have to follow the specification where
1764          * it says that version is odd if data is being modified, and even after
1765          * it is consistent.
1766          *
1767          * Version field updates must be kept separate.  This is because
1768          * kvm_write_guest_cached might use a "rep movs" instruction, and
1769          * writes within a string instruction are weakly ordered.  So there
1770          * are three writes overall.
1771          *
1772          * As a small optimization, only write the version field in the first
1773          * and third write.  The vcpu->pv_time cache is still valid, because the
1774          * version field is the first in the struct.
1775          */
1776         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1777
1778         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1779         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1780                                 &vcpu->hv_clock,
1781                                 sizeof(vcpu->hv_clock.version));
1782
1783         smp_wmb();
1784
1785         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1786         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1787
1788         if (vcpu->pvclock_set_guest_stopped_request) {
1789                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1790                 vcpu->pvclock_set_guest_stopped_request = false;
1791         }
1792
1793         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1794
1795         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1796                                 &vcpu->hv_clock,
1797                                 sizeof(vcpu->hv_clock));
1798
1799         smp_wmb();
1800
1801         vcpu->hv_clock.version++;
1802         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1803                                 &vcpu->hv_clock,
1804                                 sizeof(vcpu->hv_clock.version));
1805 }
1806
1807 static int kvm_guest_time_update(struct kvm_vcpu *v)
1808 {
1809         unsigned long flags, tgt_tsc_khz;
1810         struct kvm_vcpu_arch *vcpu = &v->arch;
1811         struct kvm_arch *ka = &v->kvm->arch;
1812         s64 kernel_ns;
1813         u64 tsc_timestamp, host_tsc;
1814         u8 pvclock_flags;
1815         bool use_master_clock;
1816
1817         kernel_ns = 0;
1818         host_tsc = 0;
1819
1820         /*
1821          * If the host uses TSC clock, then passthrough TSC as stable
1822          * to the guest.
1823          */
1824         spin_lock(&ka->pvclock_gtod_sync_lock);
1825         use_master_clock = ka->use_master_clock;
1826         if (use_master_clock) {
1827                 host_tsc = ka->master_cycle_now;
1828                 kernel_ns = ka->master_kernel_ns;
1829         }
1830         spin_unlock(&ka->pvclock_gtod_sync_lock);
1831
1832         /* Keep irq disabled to prevent changes to the clock */
1833         local_irq_save(flags);
1834         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1835         if (unlikely(tgt_tsc_khz == 0)) {
1836                 local_irq_restore(flags);
1837                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1838                 return 1;
1839         }
1840         if (!use_master_clock) {
1841                 host_tsc = rdtsc();
1842                 kernel_ns = ktime_get_boot_ns();
1843         }
1844
1845         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1846
1847         /*
1848          * We may have to catch up the TSC to match elapsed wall clock
1849          * time for two reasons, even if kvmclock is used.
1850          *   1) CPU could have been running below the maximum TSC rate
1851          *   2) Broken TSC compensation resets the base at each VCPU
1852          *      entry to avoid unknown leaps of TSC even when running
1853          *      again on the same CPU.  This may cause apparent elapsed
1854          *      time to disappear, and the guest to stand still or run
1855          *      very slowly.
1856          */
1857         if (vcpu->tsc_catchup) {
1858                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1859                 if (tsc > tsc_timestamp) {
1860                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1861                         tsc_timestamp = tsc;
1862                 }
1863         }
1864
1865         local_irq_restore(flags);
1866
1867         /* With all the info we got, fill in the values */
1868
1869         if (kvm_has_tsc_control)
1870                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1871
1872         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1873                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1874                                    &vcpu->hv_clock.tsc_shift,
1875                                    &vcpu->hv_clock.tsc_to_system_mul);
1876                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1877         }
1878
1879         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1880         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1881         vcpu->last_guest_tsc = tsc_timestamp;
1882
1883         /* If the host uses TSC clocksource, then it is stable */
1884         pvclock_flags = 0;
1885         if (use_master_clock)
1886                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1887
1888         vcpu->hv_clock.flags = pvclock_flags;
1889
1890         if (vcpu->pv_time_enabled)
1891                 kvm_setup_pvclock_page(v);
1892         if (v == kvm_get_vcpu(v->kvm, 0))
1893                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1894         return 0;
1895 }
1896
1897 /*
1898  * kvmclock updates which are isolated to a given vcpu, such as
1899  * vcpu->cpu migration, should not allow system_timestamp from
1900  * the rest of the vcpus to remain static. Otherwise ntp frequency
1901  * correction applies to one vcpu's system_timestamp but not
1902  * the others.
1903  *
1904  * So in those cases, request a kvmclock update for all vcpus.
1905  * We need to rate-limit these requests though, as they can
1906  * considerably slow guests that have a large number of vcpus.
1907  * The time for a remote vcpu to update its kvmclock is bound
1908  * by the delay we use to rate-limit the updates.
1909  */
1910
1911 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1912
1913 static void kvmclock_update_fn(struct work_struct *work)
1914 {
1915         int i;
1916         struct delayed_work *dwork = to_delayed_work(work);
1917         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1918                                            kvmclock_update_work);
1919         struct kvm *kvm = container_of(ka, struct kvm, arch);
1920         struct kvm_vcpu *vcpu;
1921
1922         kvm_for_each_vcpu(i, vcpu, kvm) {
1923                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1924                 kvm_vcpu_kick(vcpu);
1925         }
1926 }
1927
1928 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1929 {
1930         struct kvm *kvm = v->kvm;
1931
1932         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1933         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1934                                         KVMCLOCK_UPDATE_DELAY);
1935 }
1936
1937 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1938
1939 static void kvmclock_sync_fn(struct work_struct *work)
1940 {
1941         struct delayed_work *dwork = to_delayed_work(work);
1942         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1943                                            kvmclock_sync_work);
1944         struct kvm *kvm = container_of(ka, struct kvm, arch);
1945
1946         if (!kvmclock_periodic_sync)
1947                 return;
1948
1949         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1950         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1951                                         KVMCLOCK_SYNC_PERIOD);
1952 }
1953
1954 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1955 {
1956         u64 mcg_cap = vcpu->arch.mcg_cap;
1957         unsigned bank_num = mcg_cap & 0xff;
1958
1959         switch (msr) {
1960         case MSR_IA32_MCG_STATUS:
1961                 vcpu->arch.mcg_status = data;
1962                 break;
1963         case MSR_IA32_MCG_CTL:
1964                 if (!(mcg_cap & MCG_CTL_P))
1965                         return 1;
1966                 if (data != 0 && data != ~(u64)0)
1967                         return -1;
1968                 vcpu->arch.mcg_ctl = data;
1969                 break;
1970         default:
1971                 if (msr >= MSR_IA32_MC0_CTL &&
1972                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1973                         u32 offset = msr - MSR_IA32_MC0_CTL;
1974                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1975                          * some Linux kernels though clear bit 10 in bank 4 to
1976                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1977                          * this to avoid an uncatched #GP in the guest
1978                          */
1979                         if ((offset & 0x3) == 0 &&
1980                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1981                                 return -1;
1982                         vcpu->arch.mce_banks[offset] = data;
1983                         break;
1984                 }
1985                 return 1;
1986         }
1987         return 0;
1988 }
1989
1990 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1991 {
1992         struct kvm *kvm = vcpu->kvm;
1993         int lm = is_long_mode(vcpu);
1994         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1995                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1996         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1997                 : kvm->arch.xen_hvm_config.blob_size_32;
1998         u32 page_num = data & ~PAGE_MASK;
1999         u64 page_addr = data & PAGE_MASK;
2000         u8 *page;
2001         int r;
2002
2003         r = -E2BIG;
2004         if (page_num >= blob_size)
2005                 goto out;
2006         r = -ENOMEM;
2007         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2008         if (IS_ERR(page)) {
2009                 r = PTR_ERR(page);
2010                 goto out;
2011         }
2012         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2013                 goto out_free;
2014         r = 0;
2015 out_free:
2016         kfree(page);
2017 out:
2018         return r;
2019 }
2020
2021 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2022 {
2023         gpa_t gpa = data & ~0x3f;
2024
2025         /* Bits 2:5 are reserved, Should be zero */
2026         if (data & 0x3c)
2027                 return 1;
2028
2029         vcpu->arch.apf.msr_val = data;
2030
2031         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2032                 kvm_clear_async_pf_completion_queue(vcpu);
2033                 kvm_async_pf_hash_reset(vcpu);
2034                 return 0;
2035         }
2036
2037         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2038                                         sizeof(u32)))
2039                 return 1;
2040
2041         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2042         kvm_async_pf_wakeup_all(vcpu);
2043         return 0;
2044 }
2045
2046 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2047 {
2048         vcpu->arch.pv_time_enabled = false;
2049 }
2050
2051 static void record_steal_time(struct kvm_vcpu *vcpu)
2052 {
2053         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2054                 return;
2055
2056         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2057                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2058                 return;
2059
2060         if (vcpu->arch.st.steal.version & 1)
2061                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2062
2063         vcpu->arch.st.steal.version += 1;
2064
2065         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2066                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2067
2068         smp_wmb();
2069
2070         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2071                 vcpu->arch.st.last_steal;
2072         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2073
2074         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2075                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2076
2077         smp_wmb();
2078
2079         vcpu->arch.st.steal.version += 1;
2080
2081         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2082                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2083 }
2084
2085 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2086 {
2087         bool pr = false;
2088         u32 msr = msr_info->index;
2089         u64 data = msr_info->data;
2090
2091         switch (msr) {
2092         case MSR_AMD64_NB_CFG:
2093         case MSR_IA32_UCODE_REV:
2094         case MSR_IA32_UCODE_WRITE:
2095         case MSR_VM_HSAVE_PA:
2096         case MSR_AMD64_PATCH_LOADER:
2097         case MSR_AMD64_BU_CFG2:
2098                 break;
2099
2100         case MSR_EFER:
2101                 return set_efer(vcpu, data);
2102         case MSR_K7_HWCR:
2103                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2104                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2105                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2106                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2107                 if (data != 0) {
2108                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2109                                     data);
2110                         return 1;
2111                 }
2112                 break;
2113         case MSR_FAM10H_MMIO_CONF_BASE:
2114                 if (data != 0) {
2115                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2116                                     "0x%llx\n", data);
2117                         return 1;
2118                 }
2119                 break;
2120         case MSR_IA32_DEBUGCTLMSR:
2121                 if (!data) {
2122                         /* We support the non-activated case already */
2123                         break;
2124                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2125                         /* Values other than LBR and BTF are vendor-specific,
2126                            thus reserved and should throw a #GP */
2127                         return 1;
2128                 }
2129                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2130                             __func__, data);
2131                 break;
2132         case 0x200 ... 0x2ff:
2133                 return kvm_mtrr_set_msr(vcpu, msr, data);
2134         case MSR_IA32_APICBASE:
2135                 return kvm_set_apic_base(vcpu, msr_info);
2136         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2137                 return kvm_x2apic_msr_write(vcpu, msr, data);
2138         case MSR_IA32_TSCDEADLINE:
2139                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2140                 break;
2141         case MSR_IA32_TSC_ADJUST:
2142                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2143                         if (!msr_info->host_initiated) {
2144                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2145                                 adjust_tsc_offset_guest(vcpu, adj);
2146                         }
2147                         vcpu->arch.ia32_tsc_adjust_msr = data;
2148                 }
2149                 break;
2150         case MSR_IA32_MISC_ENABLE:
2151                 vcpu->arch.ia32_misc_enable_msr = data;
2152                 break;
2153         case MSR_IA32_SMBASE:
2154                 if (!msr_info->host_initiated)
2155                         return 1;
2156                 vcpu->arch.smbase = data;
2157                 break;
2158         case MSR_KVM_WALL_CLOCK_NEW:
2159         case MSR_KVM_WALL_CLOCK:
2160                 vcpu->kvm->arch.wall_clock = data;
2161                 kvm_write_wall_clock(vcpu->kvm, data);
2162                 break;
2163         case MSR_KVM_SYSTEM_TIME_NEW:
2164         case MSR_KVM_SYSTEM_TIME: {
2165                 u64 gpa_offset;
2166                 struct kvm_arch *ka = &vcpu->kvm->arch;
2167
2168                 kvmclock_reset(vcpu);
2169
2170                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2171                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2172
2173                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2174                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2175                                         &vcpu->requests);
2176
2177                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2178                 }
2179
2180                 vcpu->arch.time = data;
2181                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2182
2183                 /* we verify if the enable bit is set... */
2184                 if (!(data & 1))
2185                         break;
2186
2187                 gpa_offset = data & ~(PAGE_MASK | 1);
2188
2189                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2190                      &vcpu->arch.pv_time, data & ~1ULL,
2191                      sizeof(struct pvclock_vcpu_time_info)))
2192                         vcpu->arch.pv_time_enabled = false;
2193                 else
2194                         vcpu->arch.pv_time_enabled = true;
2195
2196                 break;
2197         }
2198         case MSR_KVM_ASYNC_PF_EN:
2199                 if (kvm_pv_enable_async_pf(vcpu, data))
2200                         return 1;
2201                 break;
2202         case MSR_KVM_STEAL_TIME:
2203
2204                 if (unlikely(!sched_info_on()))
2205                         return 1;
2206
2207                 if (data & KVM_STEAL_RESERVED_MASK)
2208                         return 1;
2209
2210                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2211                                                 data & KVM_STEAL_VALID_BITS,
2212                                                 sizeof(struct kvm_steal_time)))
2213                         return 1;
2214
2215                 vcpu->arch.st.msr_val = data;
2216
2217                 if (!(data & KVM_MSR_ENABLED))
2218                         break;
2219
2220                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2221
2222                 break;
2223         case MSR_KVM_PV_EOI_EN:
2224                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2225                         return 1;
2226                 break;
2227
2228         case MSR_IA32_MCG_CTL:
2229         case MSR_IA32_MCG_STATUS:
2230         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2231                 return set_msr_mce(vcpu, msr, data);
2232
2233         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2234         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2235                 pr = true; /* fall through */
2236         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2237         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2238                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2239                         return kvm_pmu_set_msr(vcpu, msr_info);
2240
2241                 if (pr || data != 0)
2242                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2243                                     "0x%x data 0x%llx\n", msr, data);
2244                 break;
2245         case MSR_K7_CLK_CTL:
2246                 /*
2247                  * Ignore all writes to this no longer documented MSR.
2248                  * Writes are only relevant for old K7 processors,
2249                  * all pre-dating SVM, but a recommended workaround from
2250                  * AMD for these chips. It is possible to specify the
2251                  * affected processor models on the command line, hence
2252                  * the need to ignore the workaround.
2253                  */
2254                 break;
2255         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2256         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2257         case HV_X64_MSR_CRASH_CTL:
2258         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2259                 return kvm_hv_set_msr_common(vcpu, msr, data,
2260                                              msr_info->host_initiated);
2261         case MSR_IA32_BBL_CR_CTL3:
2262                 /* Drop writes to this legacy MSR -- see rdmsr
2263                  * counterpart for further detail.
2264                  */
2265                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2266                 break;
2267         case MSR_AMD64_OSVW_ID_LENGTH:
2268                 if (!guest_cpuid_has_osvw(vcpu))
2269                         return 1;
2270                 vcpu->arch.osvw.length = data;
2271                 break;
2272         case MSR_AMD64_OSVW_STATUS:
2273                 if (!guest_cpuid_has_osvw(vcpu))
2274                         return 1;
2275                 vcpu->arch.osvw.status = data;
2276                 break;
2277         default:
2278                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2279                         return xen_hvm_config(vcpu, data);
2280                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2281                         return kvm_pmu_set_msr(vcpu, msr_info);
2282                 if (!ignore_msrs) {
2283                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2284                                     msr, data);
2285                         return 1;
2286                 } else {
2287                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2288                                     msr, data);
2289                         break;
2290                 }
2291         }
2292         return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2295
2296
2297 /*
2298  * Reads an msr value (of 'msr_index') into 'pdata'.
2299  * Returns 0 on success, non-0 otherwise.
2300  * Assumes vcpu_load() was already called.
2301  */
2302 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2303 {
2304         return kvm_x86_ops->get_msr(vcpu, msr);
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_get_msr);
2307
2308 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2309 {
2310         u64 data;
2311         u64 mcg_cap = vcpu->arch.mcg_cap;
2312         unsigned bank_num = mcg_cap & 0xff;
2313
2314         switch (msr) {
2315         case MSR_IA32_P5_MC_ADDR:
2316         case MSR_IA32_P5_MC_TYPE:
2317                 data = 0;
2318                 break;
2319         case MSR_IA32_MCG_CAP:
2320                 data = vcpu->arch.mcg_cap;
2321                 break;
2322         case MSR_IA32_MCG_CTL:
2323                 if (!(mcg_cap & MCG_CTL_P))
2324                         return 1;
2325                 data = vcpu->arch.mcg_ctl;
2326                 break;
2327         case MSR_IA32_MCG_STATUS:
2328                 data = vcpu->arch.mcg_status;
2329                 break;
2330         default:
2331                 if (msr >= MSR_IA32_MC0_CTL &&
2332                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2333                         u32 offset = msr - MSR_IA32_MC0_CTL;
2334                         data = vcpu->arch.mce_banks[offset];
2335                         break;
2336                 }
2337                 return 1;
2338         }
2339         *pdata = data;
2340         return 0;
2341 }
2342
2343 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2344 {
2345         switch (msr_info->index) {
2346         case MSR_IA32_PLATFORM_ID:
2347         case MSR_IA32_EBL_CR_POWERON:
2348         case MSR_IA32_DEBUGCTLMSR:
2349         case MSR_IA32_LASTBRANCHFROMIP:
2350         case MSR_IA32_LASTBRANCHTOIP:
2351         case MSR_IA32_LASTINTFROMIP:
2352         case MSR_IA32_LASTINTTOIP:
2353         case MSR_K8_SYSCFG:
2354         case MSR_K8_TSEG_ADDR:
2355         case MSR_K8_TSEG_MASK:
2356         case MSR_K7_HWCR:
2357         case MSR_VM_HSAVE_PA:
2358         case MSR_K8_INT_PENDING_MSG:
2359         case MSR_AMD64_NB_CFG:
2360         case MSR_FAM10H_MMIO_CONF_BASE:
2361         case MSR_AMD64_BU_CFG2:
2362         case MSR_IA32_PERF_CTL:
2363                 msr_info->data = 0;
2364                 break;
2365         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2366         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2367         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2368         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2369                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2370                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2371                 msr_info->data = 0;
2372                 break;
2373         case MSR_IA32_UCODE_REV:
2374                 msr_info->data = 0x100000000ULL;
2375                 break;
2376         case MSR_MTRRcap:
2377         case 0x200 ... 0x2ff:
2378                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2379         case 0xcd: /* fsb frequency */
2380                 msr_info->data = 3;
2381                 break;
2382                 /*
2383                  * MSR_EBC_FREQUENCY_ID
2384                  * Conservative value valid for even the basic CPU models.
2385                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2386                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2387                  * and 266MHz for model 3, or 4. Set Core Clock
2388                  * Frequency to System Bus Frequency Ratio to 1 (bits
2389                  * 31:24) even though these are only valid for CPU
2390                  * models > 2, however guests may end up dividing or
2391                  * multiplying by zero otherwise.
2392                  */
2393         case MSR_EBC_FREQUENCY_ID:
2394                 msr_info->data = 1 << 24;
2395                 break;
2396         case MSR_IA32_APICBASE:
2397                 msr_info->data = kvm_get_apic_base(vcpu);
2398                 break;
2399         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2400                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2401                 break;
2402         case MSR_IA32_TSCDEADLINE:
2403                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2404                 break;
2405         case MSR_IA32_TSC_ADJUST:
2406                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2407                 break;
2408         case MSR_IA32_MISC_ENABLE:
2409                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2410                 break;
2411         case MSR_IA32_SMBASE:
2412                 if (!msr_info->host_initiated)
2413                         return 1;
2414                 msr_info->data = vcpu->arch.smbase;
2415                 break;
2416         case MSR_IA32_PERF_STATUS:
2417                 /* TSC increment by tick */
2418                 msr_info->data = 1000ULL;
2419                 /* CPU multiplier */
2420                 msr_info->data |= (((uint64_t)4ULL) << 40);
2421                 break;
2422         case MSR_EFER:
2423                 msr_info->data = vcpu->arch.efer;
2424                 break;
2425         case MSR_KVM_WALL_CLOCK:
2426         case MSR_KVM_WALL_CLOCK_NEW:
2427                 msr_info->data = vcpu->kvm->arch.wall_clock;
2428                 break;
2429         case MSR_KVM_SYSTEM_TIME:
2430         case MSR_KVM_SYSTEM_TIME_NEW:
2431                 msr_info->data = vcpu->arch.time;
2432                 break;
2433         case MSR_KVM_ASYNC_PF_EN:
2434                 msr_info->data = vcpu->arch.apf.msr_val;
2435                 break;
2436         case MSR_KVM_STEAL_TIME:
2437                 msr_info->data = vcpu->arch.st.msr_val;
2438                 break;
2439         case MSR_KVM_PV_EOI_EN:
2440                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2441                 break;
2442         case MSR_IA32_P5_MC_ADDR:
2443         case MSR_IA32_P5_MC_TYPE:
2444         case MSR_IA32_MCG_CAP:
2445         case MSR_IA32_MCG_CTL:
2446         case MSR_IA32_MCG_STATUS:
2447         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2448                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2449         case MSR_K7_CLK_CTL:
2450                 /*
2451                  * Provide expected ramp-up count for K7. All other
2452                  * are set to zero, indicating minimum divisors for
2453                  * every field.
2454                  *
2455                  * This prevents guest kernels on AMD host with CPU
2456                  * type 6, model 8 and higher from exploding due to
2457                  * the rdmsr failing.
2458                  */
2459                 msr_info->data = 0x20000000;
2460                 break;
2461         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2462         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2463         case HV_X64_MSR_CRASH_CTL:
2464         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2465                 return kvm_hv_get_msr_common(vcpu,
2466                                              msr_info->index, &msr_info->data);
2467                 break;
2468         case MSR_IA32_BBL_CR_CTL3:
2469                 /* This legacy MSR exists but isn't fully documented in current
2470                  * silicon.  It is however accessed by winxp in very narrow
2471                  * scenarios where it sets bit #19, itself documented as
2472                  * a "reserved" bit.  Best effort attempt to source coherent
2473                  * read data here should the balance of the register be
2474                  * interpreted by the guest:
2475                  *
2476                  * L2 cache control register 3: 64GB range, 256KB size,
2477                  * enabled, latency 0x1, configured
2478                  */
2479                 msr_info->data = 0xbe702111;
2480                 break;
2481         case MSR_AMD64_OSVW_ID_LENGTH:
2482                 if (!guest_cpuid_has_osvw(vcpu))
2483                         return 1;
2484                 msr_info->data = vcpu->arch.osvw.length;
2485                 break;
2486         case MSR_AMD64_OSVW_STATUS:
2487                 if (!guest_cpuid_has_osvw(vcpu))
2488                         return 1;
2489                 msr_info->data = vcpu->arch.osvw.status;
2490                 break;
2491         default:
2492                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2493                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2494                 if (!ignore_msrs) {
2495                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2496                         return 1;
2497                 } else {
2498                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2499                         msr_info->data = 0;
2500                 }
2501                 break;
2502         }
2503         return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2506
2507 /*
2508  * Read or write a bunch of msrs. All parameters are kernel addresses.
2509  *
2510  * @return number of msrs set successfully.
2511  */
2512 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2513                     struct kvm_msr_entry *entries,
2514                     int (*do_msr)(struct kvm_vcpu *vcpu,
2515                                   unsigned index, u64 *data))
2516 {
2517         int i, idx;
2518
2519         idx = srcu_read_lock(&vcpu->kvm->srcu);
2520         for (i = 0; i < msrs->nmsrs; ++i)
2521                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2522                         break;
2523         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2524
2525         return i;
2526 }
2527
2528 /*
2529  * Read or write a bunch of msrs. Parameters are user addresses.
2530  *
2531  * @return number of msrs set successfully.
2532  */
2533 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2534                   int (*do_msr)(struct kvm_vcpu *vcpu,
2535                                 unsigned index, u64 *data),
2536                   int writeback)
2537 {
2538         struct kvm_msrs msrs;
2539         struct kvm_msr_entry *entries;
2540         int r, n;
2541         unsigned size;
2542
2543         r = -EFAULT;
2544         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2545                 goto out;
2546
2547         r = -E2BIG;
2548         if (msrs.nmsrs >= MAX_IO_MSRS)
2549                 goto out;
2550
2551         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2552         entries = memdup_user(user_msrs->entries, size);
2553         if (IS_ERR(entries)) {
2554                 r = PTR_ERR(entries);
2555                 goto out;
2556         }
2557
2558         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2559         if (r < 0)
2560                 goto out_free;
2561
2562         r = -EFAULT;
2563         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2564                 goto out_free;
2565
2566         r = n;
2567
2568 out_free:
2569         kfree(entries);
2570 out:
2571         return r;
2572 }
2573
2574 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2575 {
2576         int r;
2577
2578         switch (ext) {
2579         case KVM_CAP_IRQCHIP:
2580         case KVM_CAP_HLT:
2581         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2582         case KVM_CAP_SET_TSS_ADDR:
2583         case KVM_CAP_EXT_CPUID:
2584         case KVM_CAP_EXT_EMUL_CPUID:
2585         case KVM_CAP_CLOCKSOURCE:
2586         case KVM_CAP_PIT:
2587         case KVM_CAP_NOP_IO_DELAY:
2588         case KVM_CAP_MP_STATE:
2589         case KVM_CAP_SYNC_MMU:
2590         case KVM_CAP_USER_NMI:
2591         case KVM_CAP_REINJECT_CONTROL:
2592         case KVM_CAP_IRQ_INJECT_STATUS:
2593         case KVM_CAP_IOEVENTFD:
2594         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2595         case KVM_CAP_PIT2:
2596         case KVM_CAP_PIT_STATE2:
2597         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2598         case KVM_CAP_XEN_HVM:
2599         case KVM_CAP_ADJUST_CLOCK:
2600         case KVM_CAP_VCPU_EVENTS:
2601         case KVM_CAP_HYPERV:
2602         case KVM_CAP_HYPERV_VAPIC:
2603         case KVM_CAP_HYPERV_SPIN:
2604         case KVM_CAP_HYPERV_SYNIC:
2605         case KVM_CAP_PCI_SEGMENT:
2606         case KVM_CAP_DEBUGREGS:
2607         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2608         case KVM_CAP_XSAVE:
2609         case KVM_CAP_ASYNC_PF:
2610         case KVM_CAP_GET_TSC_KHZ:
2611         case KVM_CAP_KVMCLOCK_CTRL:
2612         case KVM_CAP_READONLY_MEM:
2613         case KVM_CAP_HYPERV_TIME:
2614         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2615         case KVM_CAP_TSC_DEADLINE_TIMER:
2616         case KVM_CAP_ENABLE_CAP_VM:
2617         case KVM_CAP_DISABLE_QUIRKS:
2618         case KVM_CAP_SET_BOOT_CPU_ID:
2619         case KVM_CAP_SPLIT_IRQCHIP:
2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2621         case KVM_CAP_ASSIGN_DEV_IRQ:
2622         case KVM_CAP_PCI_2_3:
2623 #endif
2624                 r = 1;
2625                 break;
2626         case KVM_CAP_X86_SMM:
2627                 /* SMBASE is usually relocated above 1M on modern chipsets,
2628                  * and SMM handlers might indeed rely on 4G segment limits,
2629                  * so do not report SMM to be available if real mode is
2630                  * emulated via vm86 mode.  Still, do not go to great lengths
2631                  * to avoid userspace's usage of the feature, because it is a
2632                  * fringe case that is not enabled except via specific settings
2633                  * of the module parameters.
2634                  */
2635                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2636                 break;
2637         case KVM_CAP_COALESCED_MMIO:
2638                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2639                 break;
2640         case KVM_CAP_VAPIC:
2641                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2642                 break;
2643         case KVM_CAP_NR_VCPUS:
2644                 r = KVM_SOFT_MAX_VCPUS;
2645                 break;
2646         case KVM_CAP_MAX_VCPUS:
2647                 r = KVM_MAX_VCPUS;
2648                 break;
2649         case KVM_CAP_NR_MEMSLOTS:
2650                 r = KVM_USER_MEM_SLOTS;
2651                 break;
2652         case KVM_CAP_PV_MMU:    /* obsolete */
2653                 r = 0;
2654                 break;
2655 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2656         case KVM_CAP_IOMMU:
2657                 r = iommu_present(&pci_bus_type);
2658                 break;
2659 #endif
2660         case KVM_CAP_MCE:
2661                 r = KVM_MAX_MCE_BANKS;
2662                 break;
2663         case KVM_CAP_XCRS:
2664                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2665                 break;
2666         case KVM_CAP_TSC_CONTROL:
2667                 r = kvm_has_tsc_control;
2668                 break;
2669         case KVM_CAP_X2APIC_API:
2670                 r = KVM_X2APIC_API_VALID_FLAGS;
2671                 break;
2672         default:
2673                 r = 0;
2674                 break;
2675         }
2676         return r;
2677
2678 }
2679
2680 long kvm_arch_dev_ioctl(struct file *filp,
2681                         unsigned int ioctl, unsigned long arg)
2682 {
2683         void __user *argp = (void __user *)arg;
2684         long r;
2685
2686         switch (ioctl) {
2687         case KVM_GET_MSR_INDEX_LIST: {
2688                 struct kvm_msr_list __user *user_msr_list = argp;
2689                 struct kvm_msr_list msr_list;
2690                 unsigned n;
2691
2692                 r = -EFAULT;
2693                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2694                         goto out;
2695                 n = msr_list.nmsrs;
2696                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2697                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2698                         goto out;
2699                 r = -E2BIG;
2700                 if (n < msr_list.nmsrs)
2701                         goto out;
2702                 r = -EFAULT;
2703                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2704                                  num_msrs_to_save * sizeof(u32)))
2705                         goto out;
2706                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2707                                  &emulated_msrs,
2708                                  num_emulated_msrs * sizeof(u32)))
2709                         goto out;
2710                 r = 0;
2711                 break;
2712         }
2713         case KVM_GET_SUPPORTED_CPUID:
2714         case KVM_GET_EMULATED_CPUID: {
2715                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2716                 struct kvm_cpuid2 cpuid;
2717
2718                 r = -EFAULT;
2719                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2720                         goto out;
2721
2722                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2723                                             ioctl);
2724                 if (r)
2725                         goto out;
2726
2727                 r = -EFAULT;
2728                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2729                         goto out;
2730                 r = 0;
2731                 break;
2732         }
2733         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2734                 r = -EFAULT;
2735                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2736                                  sizeof(kvm_mce_cap_supported)))
2737                         goto out;
2738                 r = 0;
2739                 break;
2740         }
2741         default:
2742                 r = -EINVAL;
2743         }
2744 out:
2745         return r;
2746 }
2747
2748 static void wbinvd_ipi(void *garbage)
2749 {
2750         wbinvd();
2751 }
2752
2753 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2754 {
2755         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2756 }
2757
2758 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2759 {
2760         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2761 }
2762
2763 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2764 {
2765         /* Address WBINVD may be executed by guest */
2766         if (need_emulate_wbinvd(vcpu)) {
2767                 if (kvm_x86_ops->has_wbinvd_exit())
2768                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2769                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2770                         smp_call_function_single(vcpu->cpu,
2771                                         wbinvd_ipi, NULL, 1);
2772         }
2773
2774         kvm_x86_ops->vcpu_load(vcpu, cpu);
2775
2776         /* Apply any externally detected TSC adjustments (due to suspend) */
2777         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2778                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2779                 vcpu->arch.tsc_offset_adjustment = 0;
2780                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2781         }
2782
2783         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2784                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2785                                 rdtsc() - vcpu->arch.last_host_tsc;
2786                 if (tsc_delta < 0)
2787                         mark_tsc_unstable("KVM discovered backwards TSC");
2788
2789                 if (check_tsc_unstable()) {
2790                         u64 offset = kvm_compute_tsc_offset(vcpu,
2791                                                 vcpu->arch.last_guest_tsc);
2792                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2793                         vcpu->arch.tsc_catchup = 1;
2794                 }
2795                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2796                                 kvm_x86_ops->set_hv_timer(vcpu,
2797                                         kvm_get_lapic_tscdeadline_msr(vcpu)))
2798                         kvm_lapic_switch_to_sw_timer(vcpu);
2799                 /*
2800                  * On a host with synchronized TSC, there is no need to update
2801                  * kvmclock on vcpu->cpu migration
2802                  */
2803                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2804                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2805                 if (vcpu->cpu != cpu)
2806                         kvm_migrate_timers(vcpu);
2807                 vcpu->cpu = cpu;
2808         }
2809
2810         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2811 }
2812
2813 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2814 {
2815         kvm_x86_ops->vcpu_put(vcpu);
2816         kvm_put_guest_fpu(vcpu);
2817         vcpu->arch.last_host_tsc = rdtsc();
2818 }
2819
2820 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2821                                     struct kvm_lapic_state *s)
2822 {
2823         if (vcpu->arch.apicv_active)
2824                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2825
2826         return kvm_apic_get_state(vcpu, s);
2827 }
2828
2829 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2830                                     struct kvm_lapic_state *s)
2831 {
2832         int r;
2833
2834         r = kvm_apic_set_state(vcpu, s);
2835         if (r)
2836                 return r;
2837         update_cr8_intercept(vcpu);
2838
2839         return 0;
2840 }
2841
2842 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2843 {
2844         return (!lapic_in_kernel(vcpu) ||
2845                 kvm_apic_accept_pic_intr(vcpu));
2846 }
2847
2848 /*
2849  * if userspace requested an interrupt window, check that the
2850  * interrupt window is open.
2851  *
2852  * No need to exit to userspace if we already have an interrupt queued.
2853  */
2854 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2855 {
2856         return kvm_arch_interrupt_allowed(vcpu) &&
2857                 !kvm_cpu_has_interrupt(vcpu) &&
2858                 !kvm_event_needs_reinjection(vcpu) &&
2859                 kvm_cpu_accept_dm_intr(vcpu);
2860 }
2861
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2863                                     struct kvm_interrupt *irq)
2864 {
2865         if (irq->irq >= KVM_NR_INTERRUPTS)
2866                 return -EINVAL;
2867
2868         if (!irqchip_in_kernel(vcpu->kvm)) {
2869                 kvm_queue_interrupt(vcpu, irq->irq, false);
2870                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2871                 return 0;
2872         }
2873
2874         /*
2875          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2876          * fail for in-kernel 8259.
2877          */
2878         if (pic_in_kernel(vcpu->kvm))
2879                 return -ENXIO;
2880
2881         if (vcpu->arch.pending_external_vector != -1)
2882                 return -EEXIST;
2883
2884         vcpu->arch.pending_external_vector = irq->irq;
2885         kvm_make_request(KVM_REQ_EVENT, vcpu);
2886         return 0;
2887 }
2888
2889 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2890 {
2891         kvm_inject_nmi(vcpu);
2892
2893         return 0;
2894 }
2895
2896 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2897 {
2898         kvm_make_request(KVM_REQ_SMI, vcpu);
2899
2900         return 0;
2901 }
2902
2903 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2904                                            struct kvm_tpr_access_ctl *tac)
2905 {
2906         if (tac->flags)
2907                 return -EINVAL;
2908         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2909         return 0;
2910 }
2911
2912 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2913                                         u64 mcg_cap)
2914 {
2915         int r;
2916         unsigned bank_num = mcg_cap & 0xff, bank;
2917
2918         r = -EINVAL;
2919         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2920                 goto out;
2921         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2922                 goto out;
2923         r = 0;
2924         vcpu->arch.mcg_cap = mcg_cap;
2925         /* Init IA32_MCG_CTL to all 1s */
2926         if (mcg_cap & MCG_CTL_P)
2927                 vcpu->arch.mcg_ctl = ~(u64)0;
2928         /* Init IA32_MCi_CTL to all 1s */
2929         for (bank = 0; bank < bank_num; bank++)
2930                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2931
2932         if (kvm_x86_ops->setup_mce)
2933                 kvm_x86_ops->setup_mce(vcpu);
2934 out:
2935         return r;
2936 }
2937
2938 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2939                                       struct kvm_x86_mce *mce)
2940 {
2941         u64 mcg_cap = vcpu->arch.mcg_cap;
2942         unsigned bank_num = mcg_cap & 0xff;
2943         u64 *banks = vcpu->arch.mce_banks;
2944
2945         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2946                 return -EINVAL;
2947         /*
2948          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2949          * reporting is disabled
2950          */
2951         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2952             vcpu->arch.mcg_ctl != ~(u64)0)
2953                 return 0;
2954         banks += 4 * mce->bank;
2955         /*
2956          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2957          * reporting is disabled for the bank
2958          */
2959         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2960                 return 0;
2961         if (mce->status & MCI_STATUS_UC) {
2962                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2963                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2964                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2965                         return 0;
2966                 }
2967                 if (banks[1] & MCI_STATUS_VAL)
2968                         mce->status |= MCI_STATUS_OVER;
2969                 banks[2] = mce->addr;
2970                 banks[3] = mce->misc;
2971                 vcpu->arch.mcg_status = mce->mcg_status;
2972                 banks[1] = mce->status;
2973                 kvm_queue_exception(vcpu, MC_VECTOR);
2974         } else if (!(banks[1] & MCI_STATUS_VAL)
2975                    || !(banks[1] & MCI_STATUS_UC)) {
2976                 if (banks[1] & MCI_STATUS_VAL)
2977                         mce->status |= MCI_STATUS_OVER;
2978                 banks[2] = mce->addr;
2979                 banks[3] = mce->misc;
2980                 banks[1] = mce->status;
2981         } else
2982                 banks[1] |= MCI_STATUS_OVER;
2983         return 0;
2984 }
2985
2986 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2987                                                struct kvm_vcpu_events *events)
2988 {
2989         process_nmi(vcpu);
2990         events->exception.injected =
2991                 vcpu->arch.exception.pending &&
2992                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2993         events->exception.nr = vcpu->arch.exception.nr;
2994         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2995         events->exception.pad = 0;
2996         events->exception.error_code = vcpu->arch.exception.error_code;
2997
2998         events->interrupt.injected =
2999                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3000         events->interrupt.nr = vcpu->arch.interrupt.nr;
3001         events->interrupt.soft = 0;
3002         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3003
3004         events->nmi.injected = vcpu->arch.nmi_injected;
3005         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3006         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3007         events->nmi.pad = 0;
3008
3009         events->sipi_vector = 0; /* never valid when reporting to user space */
3010
3011         events->smi.smm = is_smm(vcpu);
3012         events->smi.pending = vcpu->arch.smi_pending;
3013         events->smi.smm_inside_nmi =
3014                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3015         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3016
3017         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3018                          | KVM_VCPUEVENT_VALID_SHADOW
3019                          | KVM_VCPUEVENT_VALID_SMM);
3020         memset(&events->reserved, 0, sizeof(events->reserved));
3021 }
3022
3023 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3024                                               struct kvm_vcpu_events *events)
3025 {
3026         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3027                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3028                               | KVM_VCPUEVENT_VALID_SHADOW
3029                               | KVM_VCPUEVENT_VALID_SMM))
3030                 return -EINVAL;
3031
3032         if (events->exception.injected &&
3033             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3034                 return -EINVAL;
3035
3036         process_nmi(vcpu);
3037         vcpu->arch.exception.pending = events->exception.injected;
3038         vcpu->arch.exception.nr = events->exception.nr;
3039         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3040         vcpu->arch.exception.error_code = events->exception.error_code;
3041
3042         vcpu->arch.interrupt.pending = events->interrupt.injected;
3043         vcpu->arch.interrupt.nr = events->interrupt.nr;
3044         vcpu->arch.interrupt.soft = events->interrupt.soft;
3045         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3046                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3047                                                   events->interrupt.shadow);
3048
3049         vcpu->arch.nmi_injected = events->nmi.injected;
3050         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3051                 vcpu->arch.nmi_pending = events->nmi.pending;
3052         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3053
3054         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3055             lapic_in_kernel(vcpu))
3056                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3057
3058         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3059                 if (events->smi.smm)
3060                         vcpu->arch.hflags |= HF_SMM_MASK;
3061                 else
3062                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3063                 vcpu->arch.smi_pending = events->smi.pending;
3064                 if (events->smi.smm_inside_nmi)
3065                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3066                 else
3067                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3068                 if (lapic_in_kernel(vcpu)) {
3069                         if (events->smi.latched_init)
3070                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3071                         else
3072                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3073                 }
3074         }
3075
3076         kvm_make_request(KVM_REQ_EVENT, vcpu);
3077
3078         return 0;
3079 }
3080
3081 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3082                                              struct kvm_debugregs *dbgregs)
3083 {
3084         unsigned long val;
3085
3086         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3087         kvm_get_dr(vcpu, 6, &val);
3088         dbgregs->dr6 = val;
3089         dbgregs->dr7 = vcpu->arch.dr7;
3090         dbgregs->flags = 0;
3091         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3092 }
3093
3094 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3095                                             struct kvm_debugregs *dbgregs)
3096 {
3097         if (dbgregs->flags)
3098                 return -EINVAL;
3099
3100         if (dbgregs->dr6 & ~0xffffffffull)
3101                 return -EINVAL;
3102         if (dbgregs->dr7 & ~0xffffffffull)
3103                 return -EINVAL;
3104
3105         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3106         kvm_update_dr0123(vcpu);
3107         vcpu->arch.dr6 = dbgregs->dr6;
3108         kvm_update_dr6(vcpu);
3109         vcpu->arch.dr7 = dbgregs->dr7;
3110         kvm_update_dr7(vcpu);
3111
3112         return 0;
3113 }
3114
3115 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3116
3117 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3118 {
3119         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3120         u64 xstate_bv = xsave->header.xfeatures;
3121         u64 valid;
3122
3123         /*
3124          * Copy legacy XSAVE area, to avoid complications with CPUID
3125          * leaves 0 and 1 in the loop below.
3126          */
3127         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3128
3129         /* Set XSTATE_BV */
3130         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3131
3132         /*
3133          * Copy each region from the possibly compacted offset to the
3134          * non-compacted offset.
3135          */
3136         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3137         while (valid) {
3138                 u64 feature = valid & -valid;
3139                 int index = fls64(feature) - 1;
3140                 void *src = get_xsave_addr(xsave, feature);
3141
3142                 if (src) {
3143                         u32 size, offset, ecx, edx;
3144                         cpuid_count(XSTATE_CPUID, index,
3145                                     &size, &offset, &ecx, &edx);
3146                         memcpy(dest + offset, src, size);
3147                 }
3148
3149                 valid -= feature;
3150         }
3151 }
3152
3153 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3154 {
3155         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3156         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3157         u64 valid;
3158
3159         /*
3160          * Copy legacy XSAVE area, to avoid complications with CPUID
3161          * leaves 0 and 1 in the loop below.
3162          */
3163         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3164
3165         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3166         xsave->header.xfeatures = xstate_bv;
3167         if (boot_cpu_has(X86_FEATURE_XSAVES))
3168                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3169
3170         /*
3171          * Copy each region from the non-compacted offset to the
3172          * possibly compacted offset.
3173          */
3174         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3175         while (valid) {
3176                 u64 feature = valid & -valid;
3177                 int index = fls64(feature) - 1;
3178                 void *dest = get_xsave_addr(xsave, feature);
3179
3180                 if (dest) {
3181                         u32 size, offset, ecx, edx;
3182                         cpuid_count(XSTATE_CPUID, index,
3183                                     &size, &offset, &ecx, &edx);
3184                         memcpy(dest, src + offset, size);
3185                 }
3186
3187                 valid -= feature;
3188         }
3189 }
3190
3191 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3192                                          struct kvm_xsave *guest_xsave)
3193 {
3194         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3195                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3196                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3197         } else {
3198                 memcpy(guest_xsave->region,
3199                         &vcpu->arch.guest_fpu.state.fxsave,
3200                         sizeof(struct fxregs_state));
3201                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3202                         XFEATURE_MASK_FPSSE;
3203         }
3204 }
3205
3206 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3207                                         struct kvm_xsave *guest_xsave)
3208 {
3209         u64 xstate_bv =
3210                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3211
3212         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3213                 /*
3214                  * Here we allow setting states that are not present in
3215                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3216                  * with old userspace.
3217                  */
3218                 if (xstate_bv & ~kvm_supported_xcr0())
3219                         return -EINVAL;
3220                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3221         } else {
3222                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3223                         return -EINVAL;
3224                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3225                         guest_xsave->region, sizeof(struct fxregs_state));
3226         }
3227         return 0;
3228 }
3229
3230 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3231                                         struct kvm_xcrs *guest_xcrs)
3232 {
3233         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3234                 guest_xcrs->nr_xcrs = 0;
3235                 return;
3236         }
3237
3238         guest_xcrs->nr_xcrs = 1;
3239         guest_xcrs->flags = 0;
3240         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3241         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3242 }
3243
3244 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3245                                        struct kvm_xcrs *guest_xcrs)
3246 {
3247         int i, r = 0;
3248
3249         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3250                 return -EINVAL;
3251
3252         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3253                 return -EINVAL;
3254
3255         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3256                 /* Only support XCR0 currently */
3257                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3258                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3259                                 guest_xcrs->xcrs[i].value);
3260                         break;
3261                 }
3262         if (r)
3263                 r = -EINVAL;
3264         return r;
3265 }
3266
3267 /*
3268  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3269  * stopped by the hypervisor.  This function will be called from the host only.
3270  * EINVAL is returned when the host attempts to set the flag for a guest that
3271  * does not support pv clocks.
3272  */
3273 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3274 {
3275         if (!vcpu->arch.pv_time_enabled)
3276                 return -EINVAL;
3277         vcpu->arch.pvclock_set_guest_stopped_request = true;
3278         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3279         return 0;
3280 }
3281
3282 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3283                                      struct kvm_enable_cap *cap)
3284 {
3285         if (cap->flags)
3286                 return -EINVAL;
3287
3288         switch (cap->cap) {
3289         case KVM_CAP_HYPERV_SYNIC:
3290                 return kvm_hv_activate_synic(vcpu);
3291         default:
3292                 return -EINVAL;
3293         }
3294 }
3295
3296 long kvm_arch_vcpu_ioctl(struct file *filp,
3297                          unsigned int ioctl, unsigned long arg)
3298 {
3299         struct kvm_vcpu *vcpu = filp->private_data;
3300         void __user *argp = (void __user *)arg;
3301         int r;
3302         union {
3303                 struct kvm_lapic_state *lapic;
3304                 struct kvm_xsave *xsave;
3305                 struct kvm_xcrs *xcrs;
3306                 void *buffer;
3307         } u;
3308
3309         u.buffer = NULL;
3310         switch (ioctl) {
3311         case KVM_GET_LAPIC: {
3312                 r = -EINVAL;
3313                 if (!lapic_in_kernel(vcpu))
3314                         goto out;
3315                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3316
3317                 r = -ENOMEM;
3318                 if (!u.lapic)
3319                         goto out;
3320                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3321                 if (r)
3322                         goto out;
3323                 r = -EFAULT;
3324                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3325                         goto out;
3326                 r = 0;
3327                 break;
3328         }
3329         case KVM_SET_LAPIC: {
3330                 r = -EINVAL;
3331                 if (!lapic_in_kernel(vcpu))
3332                         goto out;
3333                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3334                 if (IS_ERR(u.lapic))
3335                         return PTR_ERR(u.lapic);
3336
3337                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3338                 break;
3339         }
3340         case KVM_INTERRUPT: {
3341                 struct kvm_interrupt irq;
3342
3343                 r = -EFAULT;
3344                 if (copy_from_user(&irq, argp, sizeof irq))
3345                         goto out;
3346                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3347                 break;
3348         }
3349         case KVM_NMI: {
3350                 r = kvm_vcpu_ioctl_nmi(vcpu);
3351                 break;
3352         }
3353         case KVM_SMI: {
3354                 r = kvm_vcpu_ioctl_smi(vcpu);
3355                 break;
3356         }
3357         case KVM_SET_CPUID: {
3358                 struct kvm_cpuid __user *cpuid_arg = argp;
3359                 struct kvm_cpuid cpuid;
3360
3361                 r = -EFAULT;
3362                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3363                         goto out;
3364                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3365                 break;
3366         }
3367         case KVM_SET_CPUID2: {
3368                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3369                 struct kvm_cpuid2 cpuid;
3370
3371                 r = -EFAULT;
3372                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3373                         goto out;
3374                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3375                                               cpuid_arg->entries);
3376                 break;
3377         }
3378         case KVM_GET_CPUID2: {
3379                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3380                 struct kvm_cpuid2 cpuid;
3381
3382                 r = -EFAULT;
3383                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3384                         goto out;
3385                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3386                                               cpuid_arg->entries);
3387                 if (r)
3388                         goto out;
3389                 r = -EFAULT;
3390                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3391                         goto out;
3392                 r = 0;
3393                 break;
3394         }
3395         case KVM_GET_MSRS:
3396                 r = msr_io(vcpu, argp, do_get_msr, 1);
3397                 break;
3398         case KVM_SET_MSRS:
3399                 r = msr_io(vcpu, argp, do_set_msr, 0);
3400                 break;
3401         case KVM_TPR_ACCESS_REPORTING: {
3402                 struct kvm_tpr_access_ctl tac;
3403
3404                 r = -EFAULT;
3405                 if (copy_from_user(&tac, argp, sizeof tac))
3406                         goto out;
3407                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3408                 if (r)
3409                         goto out;
3410                 r = -EFAULT;
3411                 if (copy_to_user(argp, &tac, sizeof tac))
3412                         goto out;
3413                 r = 0;
3414                 break;
3415         };
3416         case KVM_SET_VAPIC_ADDR: {
3417                 struct kvm_vapic_addr va;
3418
3419                 r = -EINVAL;
3420                 if (!lapic_in_kernel(vcpu))
3421                         goto out;
3422                 r = -EFAULT;
3423                 if (copy_from_user(&va, argp, sizeof va))
3424                         goto out;
3425                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3426                 break;
3427         }
3428         case KVM_X86_SETUP_MCE: {
3429                 u64 mcg_cap;
3430
3431                 r = -EFAULT;
3432                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3433                         goto out;
3434                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3435                 break;
3436         }
3437         case KVM_X86_SET_MCE: {
3438                 struct kvm_x86_mce mce;
3439
3440                 r = -EFAULT;
3441                 if (copy_from_user(&mce, argp, sizeof mce))
3442                         goto out;
3443                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3444                 break;
3445         }
3446         case KVM_GET_VCPU_EVENTS: {
3447                 struct kvm_vcpu_events events;
3448
3449                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3450
3451                 r = -EFAULT;
3452                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3453                         break;
3454                 r = 0;
3455                 break;
3456         }
3457         case KVM_SET_VCPU_EVENTS: {
3458                 struct kvm_vcpu_events events;
3459
3460                 r = -EFAULT;
3461                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3462                         break;
3463
3464                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3465                 break;
3466         }
3467         case KVM_GET_DEBUGREGS: {
3468                 struct kvm_debugregs dbgregs;
3469
3470                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3471
3472                 r = -EFAULT;
3473                 if (copy_to_user(argp, &dbgregs,
3474                                  sizeof(struct kvm_debugregs)))
3475                         break;
3476                 r = 0;
3477                 break;
3478         }
3479         case KVM_SET_DEBUGREGS: {
3480                 struct kvm_debugregs dbgregs;
3481
3482                 r = -EFAULT;
3483                 if (copy_from_user(&dbgregs, argp,
3484                                    sizeof(struct kvm_debugregs)))
3485                         break;
3486
3487                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3488                 break;
3489         }
3490         case KVM_GET_XSAVE: {
3491                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3492                 r = -ENOMEM;
3493                 if (!u.xsave)
3494                         break;
3495
3496                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3497
3498                 r = -EFAULT;
3499                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3500                         break;
3501                 r = 0;
3502                 break;
3503         }
3504         case KVM_SET_XSAVE: {
3505                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3506                 if (IS_ERR(u.xsave))
3507                         return PTR_ERR(u.xsave);
3508
3509                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3510                 break;
3511         }
3512         case KVM_GET_XCRS: {
3513                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3514                 r = -ENOMEM;
3515                 if (!u.xcrs)
3516                         break;
3517
3518                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3519
3520                 r = -EFAULT;
3521                 if (copy_to_user(argp, u.xcrs,
3522                                  sizeof(struct kvm_xcrs)))
3523                         break;
3524                 r = 0;
3525                 break;
3526         }
3527         case KVM_SET_XCRS: {
3528                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3529                 if (IS_ERR(u.xcrs))
3530                         return PTR_ERR(u.xcrs);
3531
3532                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3533                 break;
3534         }
3535         case KVM_SET_TSC_KHZ: {
3536                 u32 user_tsc_khz;
3537
3538                 r = -EINVAL;
3539                 user_tsc_khz = (u32)arg;
3540
3541                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3542                         goto out;
3543
3544                 if (user_tsc_khz == 0)
3545                         user_tsc_khz = tsc_khz;
3546
3547                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3548                         r = 0;
3549
3550                 goto out;
3551         }
3552         case KVM_GET_TSC_KHZ: {
3553                 r = vcpu->arch.virtual_tsc_khz;
3554                 goto out;
3555         }
3556         case KVM_KVMCLOCK_CTRL: {
3557                 r = kvm_set_guest_paused(vcpu);
3558                 goto out;
3559         }
3560         case KVM_ENABLE_CAP: {
3561                 struct kvm_enable_cap cap;
3562
3563                 r = -EFAULT;
3564                 if (copy_from_user(&cap, argp, sizeof(cap)))
3565                         goto out;
3566                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3567                 break;
3568         }
3569         default:
3570                 r = -EINVAL;
3571         }
3572 out:
3573         kfree(u.buffer);
3574         return r;
3575 }
3576
3577 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3578 {
3579         return VM_FAULT_SIGBUS;
3580 }
3581
3582 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3583 {
3584         int ret;
3585
3586         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3587                 return -EINVAL;
3588         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3589         return ret;
3590 }
3591
3592 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3593                                               u64 ident_addr)
3594 {
3595         kvm->arch.ept_identity_map_addr = ident_addr;
3596         return 0;
3597 }
3598
3599 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3600                                           u32 kvm_nr_mmu_pages)
3601 {
3602         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3603                 return -EINVAL;
3604
3605         mutex_lock(&kvm->slots_lock);
3606
3607         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3608         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3609
3610         mutex_unlock(&kvm->slots_lock);
3611         return 0;
3612 }
3613
3614 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3615 {
3616         return kvm->arch.n_max_mmu_pages;
3617 }
3618
3619 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3620 {
3621         int r;
3622
3623         r = 0;
3624         switch (chip->chip_id) {
3625         case KVM_IRQCHIP_PIC_MASTER:
3626                 memcpy(&chip->chip.pic,
3627                         &pic_irqchip(kvm)->pics[0],
3628                         sizeof(struct kvm_pic_state));
3629                 break;
3630         case KVM_IRQCHIP_PIC_SLAVE:
3631                 memcpy(&chip->chip.pic,
3632                         &pic_irqchip(kvm)->pics[1],
3633                         sizeof(struct kvm_pic_state));
3634                 break;
3635         case KVM_IRQCHIP_IOAPIC:
3636                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3637                 break;
3638         default:
3639                 r = -EINVAL;
3640                 break;
3641         }
3642         return r;
3643 }
3644
3645 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3646 {
3647         int r;
3648
3649         r = 0;
3650         switch (chip->chip_id) {
3651         case KVM_IRQCHIP_PIC_MASTER:
3652                 spin_lock(&pic_irqchip(kvm)->lock);
3653                 memcpy(&pic_irqchip(kvm)->pics[0],
3654                         &chip->chip.pic,
3655                         sizeof(struct kvm_pic_state));
3656                 spin_unlock(&pic_irqchip(kvm)->lock);
3657                 break;
3658         case KVM_IRQCHIP_PIC_SLAVE:
3659                 spin_lock(&pic_irqchip(kvm)->lock);
3660                 memcpy(&pic_irqchip(kvm)->pics[1],
3661                         &chip->chip.pic,
3662                         sizeof(struct kvm_pic_state));
3663                 spin_unlock(&pic_irqchip(kvm)->lock);
3664                 break;
3665         case KVM_IRQCHIP_IOAPIC:
3666                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3667                 break;
3668         default:
3669                 r = -EINVAL;
3670                 break;
3671         }
3672         kvm_pic_update_irq(pic_irqchip(kvm));
3673         return r;
3674 }
3675
3676 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3677 {
3678         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3679
3680         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3681
3682         mutex_lock(&kps->lock);
3683         memcpy(ps, &kps->channels, sizeof(*ps));
3684         mutex_unlock(&kps->lock);
3685         return 0;
3686 }
3687
3688 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3689 {
3690         int i;
3691         struct kvm_pit *pit = kvm->arch.vpit;
3692
3693         mutex_lock(&pit->pit_state.lock);
3694         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3695         for (i = 0; i < 3; i++)
3696                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3697         mutex_unlock(&pit->pit_state.lock);
3698         return 0;
3699 }
3700
3701 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3702 {
3703         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3704         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3705                 sizeof(ps->channels));
3706         ps->flags = kvm->arch.vpit->pit_state.flags;
3707         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3708         memset(&ps->reserved, 0, sizeof(ps->reserved));
3709         return 0;
3710 }
3711
3712 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3713 {
3714         int start = 0;
3715         int i;
3716         u32 prev_legacy, cur_legacy;
3717         struct kvm_pit *pit = kvm->arch.vpit;
3718
3719         mutex_lock(&pit->pit_state.lock);
3720         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3721         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3722         if (!prev_legacy && cur_legacy)
3723                 start = 1;
3724         memcpy(&pit->pit_state.channels, &ps->channels,
3725                sizeof(pit->pit_state.channels));
3726         pit->pit_state.flags = ps->flags;
3727         for (i = 0; i < 3; i++)
3728                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3729                                    start && i == 0);
3730         mutex_unlock(&pit->pit_state.lock);
3731         return 0;
3732 }
3733
3734 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3735                                  struct kvm_reinject_control *control)
3736 {
3737         struct kvm_pit *pit = kvm->arch.vpit;
3738
3739         if (!pit)
3740                 return -ENXIO;
3741
3742         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3743          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3744          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3745          */
3746         mutex_lock(&pit->pit_state.lock);
3747         kvm_pit_set_reinject(pit, control->pit_reinject);
3748         mutex_unlock(&pit->pit_state.lock);
3749
3750         return 0;
3751 }
3752
3753 /**
3754  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3755  * @kvm: kvm instance
3756  * @log: slot id and address to which we copy the log
3757  *
3758  * Steps 1-4 below provide general overview of dirty page logging. See
3759  * kvm_get_dirty_log_protect() function description for additional details.
3760  *
3761  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3762  * always flush the TLB (step 4) even if previous step failed  and the dirty
3763  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3764  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3765  * writes will be marked dirty for next log read.
3766  *
3767  *   1. Take a snapshot of the bit and clear it if needed.
3768  *   2. Write protect the corresponding page.
3769  *   3. Copy the snapshot to the userspace.
3770  *   4. Flush TLB's if needed.
3771  */
3772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3773 {
3774         bool is_dirty = false;
3775         int r;
3776
3777         mutex_lock(&kvm->slots_lock);
3778
3779         /*
3780          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3781          */
3782         if (kvm_x86_ops->flush_log_dirty)
3783                 kvm_x86_ops->flush_log_dirty(kvm);
3784
3785         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3786
3787         /*
3788          * All the TLBs can be flushed out of mmu lock, see the comments in
3789          * kvm_mmu_slot_remove_write_access().
3790          */
3791         lockdep_assert_held(&kvm->slots_lock);
3792         if (is_dirty)
3793                 kvm_flush_remote_tlbs(kvm);
3794
3795         mutex_unlock(&kvm->slots_lock);
3796         return r;
3797 }
3798
3799 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3800                         bool line_status)
3801 {
3802         if (!irqchip_in_kernel(kvm))
3803                 return -ENXIO;
3804
3805         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3806                                         irq_event->irq, irq_event->level,
3807                                         line_status);
3808         return 0;
3809 }
3810
3811 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3812                                    struct kvm_enable_cap *cap)
3813 {
3814         int r;
3815
3816         if (cap->flags)
3817                 return -EINVAL;
3818
3819         switch (cap->cap) {
3820         case KVM_CAP_DISABLE_QUIRKS:
3821                 kvm->arch.disabled_quirks = cap->args[0];
3822                 r = 0;
3823                 break;
3824         case KVM_CAP_SPLIT_IRQCHIP: {
3825                 mutex_lock(&kvm->lock);
3826                 r = -EINVAL;
3827                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3828                         goto split_irqchip_unlock;
3829                 r = -EEXIST;
3830                 if (irqchip_in_kernel(kvm))
3831                         goto split_irqchip_unlock;
3832                 if (kvm->created_vcpus)
3833                         goto split_irqchip_unlock;
3834                 r = kvm_setup_empty_irq_routing(kvm);
3835                 if (r)
3836                         goto split_irqchip_unlock;
3837                 /* Pairs with irqchip_in_kernel. */
3838                 smp_wmb();
3839                 kvm->arch.irqchip_split = true;
3840                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3841                 r = 0;
3842 split_irqchip_unlock:
3843                 mutex_unlock(&kvm->lock);
3844                 break;
3845         }
3846         case KVM_CAP_X2APIC_API:
3847                 r = -EINVAL;
3848                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3849                         break;
3850
3851                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3852                         kvm->arch.x2apic_format = true;
3853                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3854                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3855
3856                 r = 0;
3857                 break;
3858         default:
3859                 r = -EINVAL;
3860                 break;
3861         }
3862         return r;
3863 }
3864
3865 long kvm_arch_vm_ioctl(struct file *filp,
3866                        unsigned int ioctl, unsigned long arg)
3867 {
3868         struct kvm *kvm = filp->private_data;
3869         void __user *argp = (void __user *)arg;
3870         int r = -ENOTTY;
3871         /*
3872          * This union makes it completely explicit to gcc-3.x
3873          * that these two variables' stack usage should be
3874          * combined, not added together.
3875          */
3876         union {
3877                 struct kvm_pit_state ps;
3878                 struct kvm_pit_state2 ps2;
3879                 struct kvm_pit_config pit_config;
3880         } u;
3881
3882         switch (ioctl) {
3883         case KVM_SET_TSS_ADDR:
3884                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3885                 break;
3886         case KVM_SET_IDENTITY_MAP_ADDR: {
3887                 u64 ident_addr;
3888
3889                 r = -EFAULT;
3890                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3891                         goto out;
3892                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3893                 break;
3894         }
3895         case KVM_SET_NR_MMU_PAGES:
3896                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3897                 break;
3898         case KVM_GET_NR_MMU_PAGES:
3899                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3900                 break;
3901         case KVM_CREATE_IRQCHIP: {
3902                 struct kvm_pic *vpic;
3903
3904                 mutex_lock(&kvm->lock);
3905                 r = -EEXIST;
3906                 if (kvm->arch.vpic)
3907                         goto create_irqchip_unlock;
3908                 r = -EINVAL;
3909                 if (kvm->created_vcpus)
3910                         goto create_irqchip_unlock;
3911                 r = -ENOMEM;
3912                 vpic = kvm_create_pic(kvm);
3913                 if (vpic) {
3914                         r = kvm_ioapic_init(kvm);
3915                         if (r) {
3916                                 mutex_lock(&kvm->slots_lock);
3917                                 kvm_destroy_pic(vpic);
3918                                 mutex_unlock(&kvm->slots_lock);
3919                                 goto create_irqchip_unlock;
3920                         }
3921                 } else
3922                         goto create_irqchip_unlock;
3923                 r = kvm_setup_default_irq_routing(kvm);
3924                 if (r) {
3925                         mutex_lock(&kvm->slots_lock);
3926                         mutex_lock(&kvm->irq_lock);
3927                         kvm_ioapic_destroy(kvm);
3928                         kvm_destroy_pic(vpic);
3929                         mutex_unlock(&kvm->irq_lock);
3930                         mutex_unlock(&kvm->slots_lock);
3931                         goto create_irqchip_unlock;
3932                 }
3933                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3934                 smp_wmb();
3935                 kvm->arch.vpic = vpic;
3936         create_irqchip_unlock:
3937                 mutex_unlock(&kvm->lock);
3938                 break;
3939         }
3940         case KVM_CREATE_PIT:
3941                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3942                 goto create_pit;
3943         case KVM_CREATE_PIT2:
3944                 r = -EFAULT;
3945                 if (copy_from_user(&u.pit_config, argp,
3946                                    sizeof(struct kvm_pit_config)))
3947                         goto out;
3948         create_pit:
3949                 mutex_lock(&kvm->lock);
3950                 r = -EEXIST;
3951                 if (kvm->arch.vpit)
3952                         goto create_pit_unlock;
3953                 r = -ENOMEM;
3954                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3955                 if (kvm->arch.vpit)
3956                         r = 0;
3957         create_pit_unlock:
3958                 mutex_unlock(&kvm->lock);
3959                 break;
3960         case KVM_GET_IRQCHIP: {
3961                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3962                 struct kvm_irqchip *chip;
3963
3964                 chip = memdup_user(argp, sizeof(*chip));
3965                 if (IS_ERR(chip)) {
3966                         r = PTR_ERR(chip);
3967                         goto out;
3968                 }
3969
3970                 r = -ENXIO;
3971                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3972                         goto get_irqchip_out;
3973                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3974                 if (r)
3975                         goto get_irqchip_out;
3976                 r = -EFAULT;
3977                 if (copy_to_user(argp, chip, sizeof *chip))
3978                         goto get_irqchip_out;
3979                 r = 0;
3980         get_irqchip_out:
3981                 kfree(chip);
3982                 break;
3983         }
3984         case KVM_SET_IRQCHIP: {
3985                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3986                 struct kvm_irqchip *chip;
3987
3988                 chip = memdup_user(argp, sizeof(*chip));
3989                 if (IS_ERR(chip)) {
3990                         r = PTR_ERR(chip);
3991                         goto out;
3992                 }
3993
3994                 r = -ENXIO;
3995                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3996                         goto set_irqchip_out;
3997                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3998                 if (r)
3999                         goto set_irqchip_out;
4000                 r = 0;
4001         set_irqchip_out:
4002                 kfree(chip);
4003                 break;
4004         }
4005         case KVM_GET_PIT: {
4006                 r = -EFAULT;
4007                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4008                         goto out;
4009                 r = -ENXIO;
4010                 if (!kvm->arch.vpit)
4011                         goto out;
4012                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4013                 if (r)
4014                         goto out;
4015                 r = -EFAULT;
4016                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4017                         goto out;
4018                 r = 0;
4019                 break;
4020         }
4021         case KVM_SET_PIT: {
4022                 r = -EFAULT;
4023                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4024                         goto out;
4025                 r = -ENXIO;
4026                 if (!kvm->arch.vpit)
4027                         goto out;
4028                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4029                 break;
4030         }
4031         case KVM_GET_PIT2: {
4032                 r = -ENXIO;
4033                 if (!kvm->arch.vpit)
4034                         goto out;
4035                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4036                 if (r)
4037                         goto out;
4038                 r = -EFAULT;
4039                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4040                         goto out;
4041                 r = 0;
4042                 break;
4043         }
4044         case KVM_SET_PIT2: {
4045                 r = -EFAULT;
4046                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4047                         goto out;
4048                 r = -ENXIO;
4049                 if (!kvm->arch.vpit)
4050                         goto out;
4051                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4052                 break;
4053         }
4054         case KVM_REINJECT_CONTROL: {
4055                 struct kvm_reinject_control control;
4056                 r =  -EFAULT;
4057                 if (copy_from_user(&control, argp, sizeof(control)))
4058                         goto out;
4059                 r = kvm_vm_ioctl_reinject(kvm, &control);
4060                 break;
4061         }
4062         case KVM_SET_BOOT_CPU_ID:
4063                 r = 0;
4064                 mutex_lock(&kvm->lock);
4065                 if (kvm->created_vcpus)
4066                         r = -EBUSY;
4067                 else
4068                         kvm->arch.bsp_vcpu_id = arg;
4069                 mutex_unlock(&kvm->lock);
4070                 break;
4071         case KVM_XEN_HVM_CONFIG: {
4072                 r = -EFAULT;
4073                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4074                                    sizeof(struct kvm_xen_hvm_config)))
4075                         goto out;
4076                 r = -EINVAL;
4077                 if (kvm->arch.xen_hvm_config.flags)
4078                         goto out;
4079                 r = 0;
4080                 break;
4081         }
4082         case KVM_SET_CLOCK: {
4083                 struct kvm_clock_data user_ns;
4084                 u64 now_ns;
4085
4086                 r = -EFAULT;
4087                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4088                         goto out;
4089
4090                 r = -EINVAL;
4091                 if (user_ns.flags)
4092                         goto out;
4093
4094                 r = 0;
4095                 local_irq_disable();
4096                 now_ns = __get_kvmclock_ns(kvm);
4097                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4098                 local_irq_enable();
4099                 kvm_gen_update_masterclock(kvm);
4100                 break;
4101         }
4102         case KVM_GET_CLOCK: {
4103                 struct kvm_clock_data user_ns;
4104                 u64 now_ns;
4105
4106                 now_ns = get_kvmclock_ns(kvm);
4107                 user_ns.clock = now_ns;
4108                 user_ns.flags = 0;
4109                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4110
4111                 r = -EFAULT;
4112                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4113                         goto out;
4114                 r = 0;
4115                 break;
4116         }
4117         case KVM_ENABLE_CAP: {
4118                 struct kvm_enable_cap cap;
4119
4120                 r = -EFAULT;
4121                 if (copy_from_user(&cap, argp, sizeof(cap)))
4122                         goto out;
4123                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4124                 break;
4125         }
4126         default:
4127                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4128         }
4129 out:
4130         return r;
4131 }
4132
4133 static void kvm_init_msr_list(void)
4134 {
4135         u32 dummy[2];
4136         unsigned i, j;
4137
4138         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4139                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4140                         continue;
4141
4142                 /*
4143                  * Even MSRs that are valid in the host may not be exposed
4144                  * to the guests in some cases.
4145                  */
4146                 switch (msrs_to_save[i]) {
4147                 case MSR_IA32_BNDCFGS:
4148                         if (!kvm_x86_ops->mpx_supported())
4149                                 continue;
4150                         break;
4151                 case MSR_TSC_AUX:
4152                         if (!kvm_x86_ops->rdtscp_supported())
4153                                 continue;
4154                         break;
4155                 default:
4156                         break;
4157                 }
4158
4159                 if (j < i)
4160                         msrs_to_save[j] = msrs_to_save[i];
4161                 j++;
4162         }
4163         num_msrs_to_save = j;
4164
4165         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4166                 switch (emulated_msrs[i]) {
4167                 case MSR_IA32_SMBASE:
4168                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4169                                 continue;
4170                         break;
4171                 default:
4172                         break;
4173                 }
4174
4175                 if (j < i)
4176                         emulated_msrs[j] = emulated_msrs[i];
4177                 j++;
4178         }
4179         num_emulated_msrs = j;
4180 }
4181
4182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4183                            const void *v)
4184 {
4185         int handled = 0;
4186         int n;
4187
4188         do {
4189                 n = min(len, 8);
4190                 if (!(lapic_in_kernel(vcpu) &&
4191                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4192                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4193                         break;
4194                 handled += n;
4195                 addr += n;
4196                 len -= n;
4197                 v += n;
4198         } while (len);
4199
4200         return handled;
4201 }
4202
4203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4204 {
4205         int handled = 0;
4206         int n;
4207
4208         do {
4209                 n = min(len, 8);
4210                 if (!(lapic_in_kernel(vcpu) &&
4211                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4212                                          addr, n, v))
4213                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4214                         break;
4215                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4216                 handled += n;
4217                 addr += n;
4218                 len -= n;
4219                 v += n;
4220         } while (len);
4221
4222         return handled;
4223 }
4224
4225 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4226                         struct kvm_segment *var, int seg)
4227 {
4228         kvm_x86_ops->set_segment(vcpu, var, seg);
4229 }
4230
4231 void kvm_get_segment(struct kvm_vcpu *vcpu,
4232                      struct kvm_segment *var, int seg)
4233 {
4234         kvm_x86_ops->get_segment(vcpu, var, seg);
4235 }
4236
4237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4238                            struct x86_exception *exception)
4239 {
4240         gpa_t t_gpa;
4241
4242         BUG_ON(!mmu_is_nested(vcpu));
4243
4244         /* NPT walks are always user-walks */
4245         access |= PFERR_USER_MASK;
4246         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4247
4248         return t_gpa;
4249 }
4250
4251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4252                               struct x86_exception *exception)
4253 {
4254         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4255         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4256 }
4257
4258  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4259                                 struct x86_exception *exception)
4260 {
4261         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4262         access |= PFERR_FETCH_MASK;
4263         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4264 }
4265
4266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4267                                struct x86_exception *exception)
4268 {
4269         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270         access |= PFERR_WRITE_MASK;
4271         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4272 }
4273
4274 /* uses this to access any guest's mapped memory without checking CPL */
4275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4276                                 struct x86_exception *exception)
4277 {
4278         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4279 }
4280
4281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4282                                       struct kvm_vcpu *vcpu, u32 access,
4283                                       struct x86_exception *exception)
4284 {
4285         void *data = val;
4286         int r = X86EMUL_CONTINUE;
4287
4288         while (bytes) {
4289                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4290                                                             exception);
4291                 unsigned offset = addr & (PAGE_SIZE-1);
4292                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4293                 int ret;
4294
4295                 if (gpa == UNMAPPED_GVA)
4296                         return X86EMUL_PROPAGATE_FAULT;
4297                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4298                                                offset, toread);
4299                 if (ret < 0) {
4300                         r = X86EMUL_IO_NEEDED;
4301                         goto out;
4302                 }
4303
4304                 bytes -= toread;
4305                 data += toread;
4306                 addr += toread;
4307         }
4308 out:
4309         return r;
4310 }
4311
4312 /* used for instruction fetching */
4313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4314                                 gva_t addr, void *val, unsigned int bytes,
4315                                 struct x86_exception *exception)
4316 {
4317         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4318         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4319         unsigned offset;
4320         int ret;
4321
4322         /* Inline kvm_read_guest_virt_helper for speed.  */
4323         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4324                                                     exception);
4325         if (unlikely(gpa == UNMAPPED_GVA))
4326                 return X86EMUL_PROPAGATE_FAULT;
4327
4328         offset = addr & (PAGE_SIZE-1);
4329         if (WARN_ON(offset + bytes > PAGE_SIZE))
4330                 bytes = (unsigned)PAGE_SIZE - offset;
4331         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4332                                        offset, bytes);
4333         if (unlikely(ret < 0))
4334                 return X86EMUL_IO_NEEDED;
4335
4336         return X86EMUL_CONTINUE;
4337 }
4338
4339 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4340                                gva_t addr, void *val, unsigned int bytes,
4341                                struct x86_exception *exception)
4342 {
4343         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4344         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4345
4346         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4347                                           exception);
4348 }
4349 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4350
4351 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4352                                       gva_t addr, void *val, unsigned int bytes,
4353                                       struct x86_exception *exception)
4354 {
4355         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4357 }
4358
4359 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4360                 unsigned long addr, void *val, unsigned int bytes)
4361 {
4362         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4363         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4364
4365         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4366 }
4367
4368 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4369                                        gva_t addr, void *val,
4370                                        unsigned int bytes,
4371                                        struct x86_exception *exception)
4372 {
4373         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4374         void *data = val;
4375         int r = X86EMUL_CONTINUE;
4376
4377         while (bytes) {
4378                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4379                                                              PFERR_WRITE_MASK,
4380                                                              exception);
4381                 unsigned offset = addr & (PAGE_SIZE-1);
4382                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4383                 int ret;
4384
4385                 if (gpa == UNMAPPED_GVA)
4386                         return X86EMUL_PROPAGATE_FAULT;
4387                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4388                 if (ret < 0) {
4389                         r = X86EMUL_IO_NEEDED;
4390                         goto out;
4391                 }
4392
4393                 bytes -= towrite;
4394                 data += towrite;
4395                 addr += towrite;
4396         }
4397 out:
4398         return r;
4399 }
4400 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4401
4402 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4403                                 gpa_t *gpa, struct x86_exception *exception,
4404                                 bool write)
4405 {
4406         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4407                 | (write ? PFERR_WRITE_MASK : 0);
4408
4409         /*
4410          * currently PKRU is only applied to ept enabled guest so
4411          * there is no pkey in EPT page table for L1 guest or EPT
4412          * shadow page table for L2 guest.
4413          */
4414         if (vcpu_match_mmio_gva(vcpu, gva)
4415             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4416                                  vcpu->arch.access, 0, access)) {
4417                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4418                                         (gva & (PAGE_SIZE - 1));
4419                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4420                 return 1;
4421         }
4422
4423         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4424
4425         if (*gpa == UNMAPPED_GVA)
4426                 return -1;
4427
4428         /* For APIC access vmexit */
4429         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4430                 return 1;
4431
4432         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4433                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4434                 return 1;
4435         }
4436
4437         return 0;
4438 }
4439
4440 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4441                         const void *val, int bytes)
4442 {
4443         int ret;
4444
4445         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4446         if (ret < 0)
4447                 return 0;
4448         kvm_page_track_write(vcpu, gpa, val, bytes);
4449         return 1;
4450 }
4451
4452 struct read_write_emulator_ops {
4453         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4454                                   int bytes);
4455         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4456                                   void *val, int bytes);
4457         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4458                                int bytes, void *val);
4459         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4460                                     void *val, int bytes);
4461         bool write;
4462 };
4463
4464 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4465 {
4466         if (vcpu->mmio_read_completed) {
4467                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4468                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4469                 vcpu->mmio_read_completed = 0;
4470                 return 1;
4471         }
4472
4473         return 0;
4474 }
4475
4476 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4477                         void *val, int bytes)
4478 {
4479         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4480 }
4481
4482 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4483                          void *val, int bytes)
4484 {
4485         return emulator_write_phys(vcpu, gpa, val, bytes);
4486 }
4487
4488 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4489 {
4490         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4491         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4492 }
4493
4494 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4495                           void *val, int bytes)
4496 {
4497         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4498         return X86EMUL_IO_NEEDED;
4499 }
4500
4501 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4502                            void *val, int bytes)
4503 {
4504         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4505
4506         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4507         return X86EMUL_CONTINUE;
4508 }
4509
4510 static const struct read_write_emulator_ops read_emultor = {
4511         .read_write_prepare = read_prepare,
4512         .read_write_emulate = read_emulate,
4513         .read_write_mmio = vcpu_mmio_read,
4514         .read_write_exit_mmio = read_exit_mmio,
4515 };
4516
4517 static const struct read_write_emulator_ops write_emultor = {
4518         .read_write_emulate = write_emulate,
4519         .read_write_mmio = write_mmio,
4520         .read_write_exit_mmio = write_exit_mmio,
4521         .write = true,
4522 };
4523
4524 static int emulator_read_write_onepage(unsigned long addr, void *val,
4525                                        unsigned int bytes,
4526                                        struct x86_exception *exception,
4527                                        struct kvm_vcpu *vcpu,
4528                                        const struct read_write_emulator_ops *ops)
4529 {
4530         gpa_t gpa;
4531         int handled, ret;
4532         bool write = ops->write;
4533         struct kvm_mmio_fragment *frag;
4534
4535         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4536
4537         if (ret < 0)
4538                 return X86EMUL_PROPAGATE_FAULT;
4539
4540         /* For APIC access vmexit */
4541         if (ret)
4542                 goto mmio;
4543
4544         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4545                 return X86EMUL_CONTINUE;
4546
4547 mmio:
4548         /*
4549          * Is this MMIO handled locally?
4550          */
4551         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4552         if (handled == bytes)
4553                 return X86EMUL_CONTINUE;
4554
4555         gpa += handled;
4556         bytes -= handled;
4557         val += handled;
4558
4559         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4560         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4561         frag->gpa = gpa;
4562         frag->data = val;
4563         frag->len = bytes;
4564         return X86EMUL_CONTINUE;
4565 }
4566
4567 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4568                         unsigned long addr,
4569                         void *val, unsigned int bytes,
4570                         struct x86_exception *exception,
4571                         const struct read_write_emulator_ops *ops)
4572 {
4573         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4574         gpa_t gpa;
4575         int rc;
4576
4577         if (ops->read_write_prepare &&
4578                   ops->read_write_prepare(vcpu, val, bytes))
4579                 return X86EMUL_CONTINUE;
4580
4581         vcpu->mmio_nr_fragments = 0;
4582
4583         /* Crossing a page boundary? */
4584         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4585                 int now;
4586
4587                 now = -addr & ~PAGE_MASK;
4588                 rc = emulator_read_write_onepage(addr, val, now, exception,
4589                                                  vcpu, ops);
4590
4591                 if (rc != X86EMUL_CONTINUE)
4592                         return rc;
4593                 addr += now;
4594                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4595                         addr = (u32)addr;
4596                 val += now;
4597                 bytes -= now;
4598         }
4599
4600         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4601                                          vcpu, ops);
4602         if (rc != X86EMUL_CONTINUE)
4603                 return rc;
4604
4605         if (!vcpu->mmio_nr_fragments)
4606                 return rc;
4607
4608         gpa = vcpu->mmio_fragments[0].gpa;
4609
4610         vcpu->mmio_needed = 1;
4611         vcpu->mmio_cur_fragment = 0;
4612
4613         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4614         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4615         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4616         vcpu->run->mmio.phys_addr = gpa;
4617
4618         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4619 }
4620
4621 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4622                                   unsigned long addr,
4623                                   void *val,
4624                                   unsigned int bytes,
4625                                   struct x86_exception *exception)
4626 {
4627         return emulator_read_write(ctxt, addr, val, bytes,
4628                                    exception, &read_emultor);
4629 }
4630
4631 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4632                             unsigned long addr,
4633                             const void *val,
4634                             unsigned int bytes,
4635                             struct x86_exception *exception)
4636 {
4637         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4638                                    exception, &write_emultor);
4639 }
4640
4641 #define CMPXCHG_TYPE(t, ptr, old, new) \
4642         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4643
4644 #ifdef CONFIG_X86_64
4645 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4646 #else
4647 #  define CMPXCHG64(ptr, old, new) \
4648         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4649 #endif
4650
4651 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4652                                      unsigned long addr,
4653                                      const void *old,
4654                                      const void *new,
4655                                      unsigned int bytes,
4656                                      struct x86_exception *exception)
4657 {
4658         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4659         gpa_t gpa;
4660         struct page *page;
4661         char *kaddr;
4662         bool exchanged;
4663
4664         /* guests cmpxchg8b have to be emulated atomically */
4665         if (bytes > 8 || (bytes & (bytes - 1)))
4666                 goto emul_write;
4667
4668         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4669
4670         if (gpa == UNMAPPED_GVA ||
4671             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4672                 goto emul_write;
4673
4674         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4675                 goto emul_write;
4676
4677         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4678         if (is_error_page(page))
4679                 goto emul_write;
4680
4681         kaddr = kmap_atomic(page);
4682         kaddr += offset_in_page(gpa);
4683         switch (bytes) {
4684         case 1:
4685                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4686                 break;
4687         case 2:
4688                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4689                 break;
4690         case 4:
4691                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4692                 break;
4693         case 8:
4694                 exchanged = CMPXCHG64(kaddr, old, new);
4695                 break;
4696         default:
4697                 BUG();
4698         }
4699         kunmap_atomic(kaddr);
4700         kvm_release_page_dirty(page);
4701
4702         if (!exchanged)
4703                 return X86EMUL_CMPXCHG_FAILED;
4704
4705         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4706         kvm_page_track_write(vcpu, gpa, new, bytes);
4707
4708         return X86EMUL_CONTINUE;
4709
4710 emul_write:
4711         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4712
4713         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4714 }
4715
4716 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4717 {
4718         /* TODO: String I/O for in kernel device */
4719         int r;
4720
4721         if (vcpu->arch.pio.in)
4722                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4723                                     vcpu->arch.pio.size, pd);
4724         else
4725                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4726                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4727                                      pd);
4728         return r;
4729 }
4730
4731 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4732                                unsigned short port, void *val,
4733                                unsigned int count, bool in)
4734 {
4735         vcpu->arch.pio.port = port;
4736         vcpu->arch.pio.in = in;
4737         vcpu->arch.pio.count  = count;
4738         vcpu->arch.pio.size = size;
4739
4740         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4741                 vcpu->arch.pio.count = 0;
4742                 return 1;
4743         }
4744
4745         vcpu->run->exit_reason = KVM_EXIT_IO;
4746         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4747         vcpu->run->io.size = size;
4748         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4749         vcpu->run->io.count = count;
4750         vcpu->run->io.port = port;
4751
4752         return 0;
4753 }
4754
4755 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4756                                     int size, unsigned short port, void *val,
4757                                     unsigned int count)
4758 {
4759         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4760         int ret;
4761
4762         if (vcpu->arch.pio.count)
4763                 goto data_avail;
4764
4765         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4766         if (ret) {
4767 data_avail:
4768                 memcpy(val, vcpu->arch.pio_data, size * count);
4769                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4770                 vcpu->arch.pio.count = 0;
4771                 return 1;
4772         }
4773
4774         return 0;
4775 }
4776
4777 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4778                                      int size, unsigned short port,
4779                                      const void *val, unsigned int count)
4780 {
4781         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4782
4783         memcpy(vcpu->arch.pio_data, val, size * count);
4784         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4785         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4786 }
4787
4788 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4789 {
4790         return kvm_x86_ops->get_segment_base(vcpu, seg);
4791 }
4792
4793 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4794 {
4795         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4796 }
4797
4798 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4799 {
4800         if (!need_emulate_wbinvd(vcpu))
4801                 return X86EMUL_CONTINUE;
4802
4803         if (kvm_x86_ops->has_wbinvd_exit()) {
4804                 int cpu = get_cpu();
4805
4806                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4807                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4808                                 wbinvd_ipi, NULL, 1);
4809                 put_cpu();
4810                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4811         } else
4812                 wbinvd();
4813         return X86EMUL_CONTINUE;
4814 }
4815
4816 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4817 {
4818         kvm_x86_ops->skip_emulated_instruction(vcpu);
4819         return kvm_emulate_wbinvd_noskip(vcpu);
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4822
4823
4824
4825 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4826 {
4827         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4828 }
4829
4830 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4831                            unsigned long *dest)
4832 {
4833         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4834 }
4835
4836 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4837                            unsigned long value)
4838 {
4839
4840         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4841 }
4842
4843 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4844 {
4845         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4846 }
4847
4848 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4849 {
4850         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4851         unsigned long value;
4852
4853         switch (cr) {
4854         case 0:
4855                 value = kvm_read_cr0(vcpu);
4856                 break;
4857         case 2:
4858                 value = vcpu->arch.cr2;
4859                 break;
4860         case 3:
4861                 value = kvm_read_cr3(vcpu);
4862                 break;
4863         case 4:
4864                 value = kvm_read_cr4(vcpu);
4865                 break;
4866         case 8:
4867                 value = kvm_get_cr8(vcpu);
4868                 break;
4869         default:
4870                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4871                 return 0;
4872         }
4873
4874         return value;
4875 }
4876
4877 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4878 {
4879         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4880         int res = 0;
4881
4882         switch (cr) {
4883         case 0:
4884                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4885                 break;
4886         case 2:
4887                 vcpu->arch.cr2 = val;
4888                 break;
4889         case 3:
4890                 res = kvm_set_cr3(vcpu, val);
4891                 break;
4892         case 4:
4893                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4894                 break;
4895         case 8:
4896                 res = kvm_set_cr8(vcpu, val);
4897                 break;
4898         default:
4899                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4900                 res = -1;
4901         }
4902
4903         return res;
4904 }
4905
4906 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4907 {
4908         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4909 }
4910
4911 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4912 {
4913         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4914 }
4915
4916 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4917 {
4918         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4919 }
4920
4921 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4922 {
4923         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4924 }
4925
4926 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4927 {
4928         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4929 }
4930
4931 static unsigned long emulator_get_cached_segment_base(
4932         struct x86_emulate_ctxt *ctxt, int seg)
4933 {
4934         return get_segment_base(emul_to_vcpu(ctxt), seg);
4935 }
4936
4937 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4938                                  struct desc_struct *desc, u32 *base3,
4939                                  int seg)
4940 {
4941         struct kvm_segment var;
4942
4943         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4944         *selector = var.selector;
4945
4946         if (var.unusable) {
4947                 memset(desc, 0, sizeof(*desc));
4948                 return false;
4949         }
4950
4951         if (var.g)
4952                 var.limit >>= 12;
4953         set_desc_limit(desc, var.limit);
4954         set_desc_base(desc, (unsigned long)var.base);
4955 #ifdef CONFIG_X86_64
4956         if (base3)
4957                 *base3 = var.base >> 32;
4958 #endif
4959         desc->type = var.type;
4960         desc->s = var.s;
4961         desc->dpl = var.dpl;
4962         desc->p = var.present;
4963         desc->avl = var.avl;
4964         desc->l = var.l;
4965         desc->d = var.db;
4966         desc->g = var.g;
4967
4968         return true;
4969 }
4970
4971 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4972                                  struct desc_struct *desc, u32 base3,
4973                                  int seg)
4974 {
4975         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4976         struct kvm_segment var;
4977
4978         var.selector = selector;
4979         var.base = get_desc_base(desc);
4980 #ifdef CONFIG_X86_64
4981         var.base |= ((u64)base3) << 32;
4982 #endif
4983         var.limit = get_desc_limit(desc);
4984         if (desc->g)
4985                 var.limit = (var.limit << 12) | 0xfff;
4986         var.type = desc->type;
4987         var.dpl = desc->dpl;
4988         var.db = desc->d;
4989         var.s = desc->s;
4990         var.l = desc->l;
4991         var.g = desc->g;
4992         var.avl = desc->avl;
4993         var.present = desc->p;
4994         var.unusable = !var.present;
4995         var.padding = 0;
4996
4997         kvm_set_segment(vcpu, &var, seg);
4998         return;
4999 }
5000
5001 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5002                             u32 msr_index, u64 *pdata)
5003 {
5004         struct msr_data msr;
5005         int r;
5006
5007         msr.index = msr_index;
5008         msr.host_initiated = false;
5009         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5010         if (r)
5011                 return r;
5012
5013         *pdata = msr.data;
5014         return 0;
5015 }
5016
5017 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5018                             u32 msr_index, u64 data)
5019 {
5020         struct msr_data msr;
5021
5022         msr.data = data;
5023         msr.index = msr_index;
5024         msr.host_initiated = false;
5025         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5026 }
5027
5028 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5029 {
5030         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5031
5032         return vcpu->arch.smbase;
5033 }
5034
5035 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5036 {
5037         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5038
5039         vcpu->arch.smbase = smbase;
5040 }
5041
5042 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5043                               u32 pmc)
5044 {
5045         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5046 }
5047
5048 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5049                              u32 pmc, u64 *pdata)
5050 {
5051         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5052 }
5053
5054 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5055 {
5056         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5057 }
5058
5059 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5060 {
5061         preempt_disable();
5062         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5063         /*
5064          * CR0.TS may reference the host fpu state, not the guest fpu state,
5065          * so it may be clear at this point.
5066          */
5067         clts();
5068 }
5069
5070 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5071 {
5072         preempt_enable();
5073 }
5074
5075 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5076                               struct x86_instruction_info *info,
5077                               enum x86_intercept_stage stage)
5078 {
5079         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5080 }
5081
5082 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5083                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5084 {
5085         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5086 }
5087
5088 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5089 {
5090         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5091 }
5092
5093 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5094 {
5095         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5096 }
5097
5098 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5099 {
5100         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5101 }
5102
5103 static const struct x86_emulate_ops emulate_ops = {
5104         .read_gpr            = emulator_read_gpr,
5105         .write_gpr           = emulator_write_gpr,
5106         .read_std            = kvm_read_guest_virt_system,
5107         .write_std           = kvm_write_guest_virt_system,
5108         .read_phys           = kvm_read_guest_phys_system,
5109         .fetch               = kvm_fetch_guest_virt,
5110         .read_emulated       = emulator_read_emulated,
5111         .write_emulated      = emulator_write_emulated,
5112         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5113         .invlpg              = emulator_invlpg,
5114         .pio_in_emulated     = emulator_pio_in_emulated,
5115         .pio_out_emulated    = emulator_pio_out_emulated,
5116         .get_segment         = emulator_get_segment,
5117         .set_segment         = emulator_set_segment,
5118         .get_cached_segment_base = emulator_get_cached_segment_base,
5119         .get_gdt             = emulator_get_gdt,
5120         .get_idt             = emulator_get_idt,
5121         .set_gdt             = emulator_set_gdt,
5122         .set_idt             = emulator_set_idt,
5123         .get_cr              = emulator_get_cr,
5124         .set_cr              = emulator_set_cr,
5125         .cpl                 = emulator_get_cpl,
5126         .get_dr              = emulator_get_dr,
5127         .set_dr              = emulator_set_dr,
5128         .get_smbase          = emulator_get_smbase,
5129         .set_smbase          = emulator_set_smbase,
5130         .set_msr             = emulator_set_msr,
5131         .get_msr             = emulator_get_msr,
5132         .check_pmc           = emulator_check_pmc,
5133         .read_pmc            = emulator_read_pmc,
5134         .halt                = emulator_halt,
5135         .wbinvd              = emulator_wbinvd,
5136         .fix_hypercall       = emulator_fix_hypercall,
5137         .get_fpu             = emulator_get_fpu,
5138         .put_fpu             = emulator_put_fpu,
5139         .intercept           = emulator_intercept,
5140         .get_cpuid           = emulator_get_cpuid,
5141         .set_nmi_mask        = emulator_set_nmi_mask,
5142 };
5143
5144 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5145 {
5146         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5147         /*
5148          * an sti; sti; sequence only disable interrupts for the first
5149          * instruction. So, if the last instruction, be it emulated or
5150          * not, left the system with the INT_STI flag enabled, it
5151          * means that the last instruction is an sti. We should not
5152          * leave the flag on in this case. The same goes for mov ss
5153          */
5154         if (int_shadow & mask)
5155                 mask = 0;
5156         if (unlikely(int_shadow || mask)) {
5157                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5158                 if (!mask)
5159                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5160         }
5161 }
5162
5163 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5164 {
5165         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5166         if (ctxt->exception.vector == PF_VECTOR)
5167                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5168
5169         if (ctxt->exception.error_code_valid)
5170                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5171                                       ctxt->exception.error_code);
5172         else
5173                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5174         return false;
5175 }
5176
5177 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5178 {
5179         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5180         int cs_db, cs_l;
5181
5182         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5183
5184         ctxt->eflags = kvm_get_rflags(vcpu);
5185         ctxt->eip = kvm_rip_read(vcpu);
5186         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5187                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5188                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5189                      cs_db                              ? X86EMUL_MODE_PROT32 :
5190                                                           X86EMUL_MODE_PROT16;
5191         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5192         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5193         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5194         ctxt->emul_flags = vcpu->arch.hflags;
5195
5196         init_decode_cache(ctxt);
5197         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5198 }
5199
5200 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5201 {
5202         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5203         int ret;
5204
5205         init_emulate_ctxt(vcpu);
5206
5207         ctxt->op_bytes = 2;
5208         ctxt->ad_bytes = 2;
5209         ctxt->_eip = ctxt->eip + inc_eip;
5210         ret = emulate_int_real(ctxt, irq);
5211
5212         if (ret != X86EMUL_CONTINUE)
5213                 return EMULATE_FAIL;
5214
5215         ctxt->eip = ctxt->_eip;
5216         kvm_rip_write(vcpu, ctxt->eip);
5217         kvm_set_rflags(vcpu, ctxt->eflags);
5218
5219         if (irq == NMI_VECTOR)
5220                 vcpu->arch.nmi_pending = 0;
5221         else
5222                 vcpu->arch.interrupt.pending = false;
5223
5224         return EMULATE_DONE;
5225 }
5226 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5227
5228 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5229 {
5230         int r = EMULATE_DONE;
5231
5232         ++vcpu->stat.insn_emulation_fail;
5233         trace_kvm_emulate_insn_failed(vcpu);
5234         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5235                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5236                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5237                 vcpu->run->internal.ndata = 0;
5238                 r = EMULATE_FAIL;
5239         }
5240         kvm_queue_exception(vcpu, UD_VECTOR);
5241
5242         return r;
5243 }
5244
5245 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5246                                   bool write_fault_to_shadow_pgtable,
5247                                   int emulation_type)
5248 {
5249         gpa_t gpa = cr2;
5250         kvm_pfn_t pfn;
5251
5252         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5253                 return false;
5254
5255         if (!vcpu->arch.mmu.direct_map) {
5256                 /*
5257                  * Write permission should be allowed since only
5258                  * write access need to be emulated.
5259                  */
5260                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5261
5262                 /*
5263                  * If the mapping is invalid in guest, let cpu retry
5264                  * it to generate fault.
5265                  */
5266                 if (gpa == UNMAPPED_GVA)
5267                         return true;
5268         }
5269
5270         /*
5271          * Do not retry the unhandleable instruction if it faults on the
5272          * readonly host memory, otherwise it will goto a infinite loop:
5273          * retry instruction -> write #PF -> emulation fail -> retry
5274          * instruction -> ...
5275          */
5276         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5277
5278         /*
5279          * If the instruction failed on the error pfn, it can not be fixed,
5280          * report the error to userspace.
5281          */
5282         if (is_error_noslot_pfn(pfn))
5283                 return false;
5284
5285         kvm_release_pfn_clean(pfn);
5286
5287         /* The instructions are well-emulated on direct mmu. */
5288         if (vcpu->arch.mmu.direct_map) {
5289                 unsigned int indirect_shadow_pages;
5290
5291                 spin_lock(&vcpu->kvm->mmu_lock);
5292                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5293                 spin_unlock(&vcpu->kvm->mmu_lock);
5294
5295                 if (indirect_shadow_pages)
5296                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5297
5298                 return true;
5299         }
5300
5301         /*
5302          * if emulation was due to access to shadowed page table
5303          * and it failed try to unshadow page and re-enter the
5304          * guest to let CPU execute the instruction.
5305          */
5306         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5307
5308         /*
5309          * If the access faults on its page table, it can not
5310          * be fixed by unprotecting shadow page and it should
5311          * be reported to userspace.
5312          */
5313         return !write_fault_to_shadow_pgtable;
5314 }
5315
5316 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5317                               unsigned long cr2,  int emulation_type)
5318 {
5319         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5320         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5321
5322         last_retry_eip = vcpu->arch.last_retry_eip;
5323         last_retry_addr = vcpu->arch.last_retry_addr;
5324
5325         /*
5326          * If the emulation is caused by #PF and it is non-page_table
5327          * writing instruction, it means the VM-EXIT is caused by shadow
5328          * page protected, we can zap the shadow page and retry this
5329          * instruction directly.
5330          *
5331          * Note: if the guest uses a non-page-table modifying instruction
5332          * on the PDE that points to the instruction, then we will unmap
5333          * the instruction and go to an infinite loop. So, we cache the
5334          * last retried eip and the last fault address, if we meet the eip
5335          * and the address again, we can break out of the potential infinite
5336          * loop.
5337          */
5338         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5339
5340         if (!(emulation_type & EMULTYPE_RETRY))
5341                 return false;
5342
5343         if (x86_page_table_writing_insn(ctxt))
5344                 return false;
5345
5346         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5347                 return false;
5348
5349         vcpu->arch.last_retry_eip = ctxt->eip;
5350         vcpu->arch.last_retry_addr = cr2;
5351
5352         if (!vcpu->arch.mmu.direct_map)
5353                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5354
5355         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5356
5357         return true;
5358 }
5359
5360 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5361 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5362
5363 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5364 {
5365         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5366                 /* This is a good place to trace that we are exiting SMM.  */
5367                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5368
5369                 /* Process a latched INIT or SMI, if any.  */
5370                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5371         }
5372
5373         kvm_mmu_reset_context(vcpu);
5374 }
5375
5376 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5377 {
5378         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5379
5380         vcpu->arch.hflags = emul_flags;
5381
5382         if (changed & HF_SMM_MASK)
5383                 kvm_smm_changed(vcpu);
5384 }
5385
5386 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5387                                 unsigned long *db)
5388 {
5389         u32 dr6 = 0;
5390         int i;
5391         u32 enable, rwlen;
5392
5393         enable = dr7;
5394         rwlen = dr7 >> 16;
5395         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5396                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5397                         dr6 |= (1 << i);
5398         return dr6;
5399 }
5400
5401 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5402 {
5403         struct kvm_run *kvm_run = vcpu->run;
5404
5405         /*
5406          * rflags is the old, "raw" value of the flags.  The new value has
5407          * not been saved yet.
5408          *
5409          * This is correct even for TF set by the guest, because "the
5410          * processor will not generate this exception after the instruction
5411          * that sets the TF flag".
5412          */
5413         if (unlikely(rflags & X86_EFLAGS_TF)) {
5414                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5415                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5416                                                   DR6_RTM;
5417                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5418                         kvm_run->debug.arch.exception = DB_VECTOR;
5419                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5420                         *r = EMULATE_USER_EXIT;
5421                 } else {
5422                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5423                         /*
5424                          * "Certain debug exceptions may clear bit 0-3.  The
5425                          * remaining contents of the DR6 register are never
5426                          * cleared by the processor".
5427                          */
5428                         vcpu->arch.dr6 &= ~15;
5429                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5430                         kvm_queue_exception(vcpu, DB_VECTOR);
5431                 }
5432         }
5433 }
5434
5435 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5436 {
5437         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5438             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5439                 struct kvm_run *kvm_run = vcpu->run;
5440                 unsigned long eip = kvm_get_linear_rip(vcpu);
5441                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5442                                            vcpu->arch.guest_debug_dr7,
5443                                            vcpu->arch.eff_db);
5444
5445                 if (dr6 != 0) {
5446                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5447                         kvm_run->debug.arch.pc = eip;
5448                         kvm_run->debug.arch.exception = DB_VECTOR;
5449                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5450                         *r = EMULATE_USER_EXIT;
5451                         return true;
5452                 }
5453         }
5454
5455         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5456             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5457                 unsigned long eip = kvm_get_linear_rip(vcpu);
5458                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5459                                            vcpu->arch.dr7,
5460                                            vcpu->arch.db);
5461
5462                 if (dr6 != 0) {
5463                         vcpu->arch.dr6 &= ~15;
5464                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5465                         kvm_queue_exception(vcpu, DB_VECTOR);
5466                         *r = EMULATE_DONE;
5467                         return true;
5468                 }
5469         }
5470
5471         return false;
5472 }
5473
5474 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5475                             unsigned long cr2,
5476                             int emulation_type,
5477                             void *insn,
5478                             int insn_len)
5479 {
5480         int r;
5481         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5482         bool writeback = true;
5483         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5484
5485         /*
5486          * Clear write_fault_to_shadow_pgtable here to ensure it is
5487          * never reused.
5488          */
5489         vcpu->arch.write_fault_to_shadow_pgtable = false;
5490         kvm_clear_exception_queue(vcpu);
5491
5492         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5493                 init_emulate_ctxt(vcpu);
5494
5495                 /*
5496                  * We will reenter on the same instruction since
5497                  * we do not set complete_userspace_io.  This does not
5498                  * handle watchpoints yet, those would be handled in
5499                  * the emulate_ops.
5500                  */
5501                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5502                         return r;
5503
5504                 ctxt->interruptibility = 0;
5505                 ctxt->have_exception = false;
5506                 ctxt->exception.vector = -1;
5507                 ctxt->perm_ok = false;
5508
5509                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5510
5511                 r = x86_decode_insn(ctxt, insn, insn_len);
5512
5513                 trace_kvm_emulate_insn_start(vcpu);
5514                 ++vcpu->stat.insn_emulation;
5515                 if (r != EMULATION_OK)  {
5516                         if (emulation_type & EMULTYPE_TRAP_UD)
5517                                 return EMULATE_FAIL;
5518                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5519                                                 emulation_type))
5520                                 return EMULATE_DONE;
5521                         if (emulation_type & EMULTYPE_SKIP)
5522                                 return EMULATE_FAIL;
5523                         return handle_emulation_failure(vcpu);
5524                 }
5525         }
5526
5527         if (emulation_type & EMULTYPE_SKIP) {
5528                 kvm_rip_write(vcpu, ctxt->_eip);
5529                 if (ctxt->eflags & X86_EFLAGS_RF)
5530                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5531                 return EMULATE_DONE;
5532         }
5533
5534         if (retry_instruction(ctxt, cr2, emulation_type))
5535                 return EMULATE_DONE;
5536
5537         /* this is needed for vmware backdoor interface to work since it
5538            changes registers values  during IO operation */
5539         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5540                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5541                 emulator_invalidate_register_cache(ctxt);
5542         }
5543
5544 restart:
5545         r = x86_emulate_insn(ctxt);
5546
5547         if (r == EMULATION_INTERCEPTED)
5548                 return EMULATE_DONE;
5549
5550         if (r == EMULATION_FAILED) {
5551                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5552                                         emulation_type))
5553                         return EMULATE_DONE;
5554
5555                 return handle_emulation_failure(vcpu);
5556         }
5557
5558         if (ctxt->have_exception) {
5559                 r = EMULATE_DONE;
5560                 if (inject_emulated_exception(vcpu))
5561                         return r;
5562         } else if (vcpu->arch.pio.count) {
5563                 if (!vcpu->arch.pio.in) {
5564                         /* FIXME: return into emulator if single-stepping.  */
5565                         vcpu->arch.pio.count = 0;
5566                 } else {
5567                         writeback = false;
5568                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5569                 }
5570                 r = EMULATE_USER_EXIT;
5571         } else if (vcpu->mmio_needed) {
5572                 if (!vcpu->mmio_is_write)
5573                         writeback = false;
5574                 r = EMULATE_USER_EXIT;
5575                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5576         } else if (r == EMULATION_RESTART)
5577                 goto restart;
5578         else
5579                 r = EMULATE_DONE;
5580
5581         if (writeback) {
5582                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5583                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5584                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5585                 if (vcpu->arch.hflags != ctxt->emul_flags)
5586                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5587                 kvm_rip_write(vcpu, ctxt->eip);
5588                 if (r == EMULATE_DONE)
5589                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5590                 if (!ctxt->have_exception ||
5591                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5592                         __kvm_set_rflags(vcpu, ctxt->eflags);
5593
5594                 /*
5595                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5596                  * do nothing, and it will be requested again as soon as
5597                  * the shadow expires.  But we still need to check here,
5598                  * because POPF has no interrupt shadow.
5599                  */
5600                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5601                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5602         } else
5603                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5604
5605         return r;
5606 }
5607 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5608
5609 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5610 {
5611         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5612         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5613                                             size, port, &val, 1);
5614         /* do not return to emulator after return from userspace */
5615         vcpu->arch.pio.count = 0;
5616         return ret;
5617 }
5618 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5619
5620 static int kvmclock_cpu_down_prep(unsigned int cpu)
5621 {
5622         __this_cpu_write(cpu_tsc_khz, 0);
5623         return 0;
5624 }
5625
5626 static void tsc_khz_changed(void *data)
5627 {
5628         struct cpufreq_freqs *freq = data;
5629         unsigned long khz = 0;
5630
5631         if (data)
5632                 khz = freq->new;
5633         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5634                 khz = cpufreq_quick_get(raw_smp_processor_id());
5635         if (!khz)
5636                 khz = tsc_khz;
5637         __this_cpu_write(cpu_tsc_khz, khz);
5638 }
5639
5640 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5641                                      void *data)
5642 {
5643         struct cpufreq_freqs *freq = data;
5644         struct kvm *kvm;
5645         struct kvm_vcpu *vcpu;
5646         int i, send_ipi = 0;
5647
5648         /*
5649          * We allow guests to temporarily run on slowing clocks,
5650          * provided we notify them after, or to run on accelerating
5651          * clocks, provided we notify them before.  Thus time never
5652          * goes backwards.
5653          *
5654          * However, we have a problem.  We can't atomically update
5655          * the frequency of a given CPU from this function; it is
5656          * merely a notifier, which can be called from any CPU.
5657          * Changing the TSC frequency at arbitrary points in time
5658          * requires a recomputation of local variables related to
5659          * the TSC for each VCPU.  We must flag these local variables
5660          * to be updated and be sure the update takes place with the
5661          * new frequency before any guests proceed.
5662          *
5663          * Unfortunately, the combination of hotplug CPU and frequency
5664          * change creates an intractable locking scenario; the order
5665          * of when these callouts happen is undefined with respect to
5666          * CPU hotplug, and they can race with each other.  As such,
5667          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5668          * undefined; you can actually have a CPU frequency change take
5669          * place in between the computation of X and the setting of the
5670          * variable.  To protect against this problem, all updates of
5671          * the per_cpu tsc_khz variable are done in an interrupt
5672          * protected IPI, and all callers wishing to update the value
5673          * must wait for a synchronous IPI to complete (which is trivial
5674          * if the caller is on the CPU already).  This establishes the
5675          * necessary total order on variable updates.
5676          *
5677          * Note that because a guest time update may take place
5678          * anytime after the setting of the VCPU's request bit, the
5679          * correct TSC value must be set before the request.  However,
5680          * to ensure the update actually makes it to any guest which
5681          * starts running in hardware virtualization between the set
5682          * and the acquisition of the spinlock, we must also ping the
5683          * CPU after setting the request bit.
5684          *
5685          */
5686
5687         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5688                 return 0;
5689         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5690                 return 0;
5691
5692         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5693
5694         spin_lock(&kvm_lock);
5695         list_for_each_entry(kvm, &vm_list, vm_list) {
5696                 kvm_for_each_vcpu(i, vcpu, kvm) {
5697                         if (vcpu->cpu != freq->cpu)
5698                                 continue;
5699                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5700                         if (vcpu->cpu != smp_processor_id())
5701                                 send_ipi = 1;
5702                 }
5703         }
5704         spin_unlock(&kvm_lock);
5705
5706         if (freq->old < freq->new && send_ipi) {
5707                 /*
5708                  * We upscale the frequency.  Must make the guest
5709                  * doesn't see old kvmclock values while running with
5710                  * the new frequency, otherwise we risk the guest sees
5711                  * time go backwards.
5712                  *
5713                  * In case we update the frequency for another cpu
5714                  * (which might be in guest context) send an interrupt
5715                  * to kick the cpu out of guest context.  Next time
5716                  * guest context is entered kvmclock will be updated,
5717                  * so the guest will not see stale values.
5718                  */
5719                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5720         }
5721         return 0;
5722 }
5723
5724 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5725         .notifier_call  = kvmclock_cpufreq_notifier
5726 };
5727
5728 static int kvmclock_cpu_online(unsigned int cpu)
5729 {
5730         tsc_khz_changed(NULL);
5731         return 0;
5732 }
5733
5734 static void kvm_timer_init(void)
5735 {
5736         max_tsc_khz = tsc_khz;
5737
5738         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5739 #ifdef CONFIG_CPU_FREQ
5740                 struct cpufreq_policy policy;
5741                 int cpu;
5742
5743                 memset(&policy, 0, sizeof(policy));
5744                 cpu = get_cpu();
5745                 cpufreq_get_policy(&policy, cpu);
5746                 if (policy.cpuinfo.max_freq)
5747                         max_tsc_khz = policy.cpuinfo.max_freq;
5748                 put_cpu();
5749 #endif
5750                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5751                                           CPUFREQ_TRANSITION_NOTIFIER);
5752         }
5753         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5754
5755         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5756                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5757 }
5758
5759 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5760
5761 int kvm_is_in_guest(void)
5762 {
5763         return __this_cpu_read(current_vcpu) != NULL;
5764 }
5765
5766 static int kvm_is_user_mode(void)
5767 {
5768         int user_mode = 3;
5769
5770         if (__this_cpu_read(current_vcpu))
5771                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5772
5773         return user_mode != 0;
5774 }
5775
5776 static unsigned long kvm_get_guest_ip(void)
5777 {
5778         unsigned long ip = 0;
5779
5780         if (__this_cpu_read(current_vcpu))
5781                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5782
5783         return ip;
5784 }
5785
5786 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5787         .is_in_guest            = kvm_is_in_guest,
5788         .is_user_mode           = kvm_is_user_mode,
5789         .get_guest_ip           = kvm_get_guest_ip,
5790 };
5791
5792 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5793 {
5794         __this_cpu_write(current_vcpu, vcpu);
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5797
5798 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5799 {
5800         __this_cpu_write(current_vcpu, NULL);
5801 }
5802 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5803
5804 static void kvm_set_mmio_spte_mask(void)
5805 {
5806         u64 mask;
5807         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5808
5809         /*
5810          * Set the reserved bits and the present bit of an paging-structure
5811          * entry to generate page fault with PFER.RSV = 1.
5812          */
5813          /* Mask the reserved physical address bits. */
5814         mask = rsvd_bits(maxphyaddr, 51);
5815
5816         /* Bit 62 is always reserved for 32bit host. */
5817         mask |= 0x3ull << 62;
5818
5819         /* Set the present bit. */
5820         mask |= 1ull;
5821
5822 #ifdef CONFIG_X86_64
5823         /*
5824          * If reserved bit is not supported, clear the present bit to disable
5825          * mmio page fault.
5826          */
5827         if (maxphyaddr == 52)
5828                 mask &= ~1ull;
5829 #endif
5830
5831         kvm_mmu_set_mmio_spte_mask(mask);
5832 }
5833
5834 #ifdef CONFIG_X86_64
5835 static void pvclock_gtod_update_fn(struct work_struct *work)
5836 {
5837         struct kvm *kvm;
5838
5839         struct kvm_vcpu *vcpu;
5840         int i;
5841
5842         spin_lock(&kvm_lock);
5843         list_for_each_entry(kvm, &vm_list, vm_list)
5844                 kvm_for_each_vcpu(i, vcpu, kvm)
5845                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5846         atomic_set(&kvm_guest_has_master_clock, 0);
5847         spin_unlock(&kvm_lock);
5848 }
5849
5850 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5851
5852 /*
5853  * Notification about pvclock gtod data update.
5854  */
5855 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5856                                void *priv)
5857 {
5858         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5859         struct timekeeper *tk = priv;
5860
5861         update_pvclock_gtod(tk);
5862
5863         /* disable master clock if host does not trust, or does not
5864          * use, TSC clocksource
5865          */
5866         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5867             atomic_read(&kvm_guest_has_master_clock) != 0)
5868                 queue_work(system_long_wq, &pvclock_gtod_work);
5869
5870         return 0;
5871 }
5872
5873 static struct notifier_block pvclock_gtod_notifier = {
5874         .notifier_call = pvclock_gtod_notify,
5875 };
5876 #endif
5877
5878 int kvm_arch_init(void *opaque)
5879 {
5880         int r;
5881         struct kvm_x86_ops *ops = opaque;
5882
5883         if (kvm_x86_ops) {
5884                 printk(KERN_ERR "kvm: already loaded the other module\n");
5885                 r = -EEXIST;
5886                 goto out;
5887         }
5888
5889         if (!ops->cpu_has_kvm_support()) {
5890                 printk(KERN_ERR "kvm: no hardware support\n");
5891                 r = -EOPNOTSUPP;
5892                 goto out;
5893         }
5894         if (ops->disabled_by_bios()) {
5895                 printk(KERN_ERR "kvm: disabled by bios\n");
5896                 r = -EOPNOTSUPP;
5897                 goto out;
5898         }
5899
5900         r = -ENOMEM;
5901         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5902         if (!shared_msrs) {
5903                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5904                 goto out;
5905         }
5906
5907         r = kvm_mmu_module_init();
5908         if (r)
5909                 goto out_free_percpu;
5910
5911         kvm_set_mmio_spte_mask();
5912
5913         kvm_x86_ops = ops;
5914
5915         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5916                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
5917                         PT_PRESENT_MASK);
5918         kvm_timer_init();
5919
5920         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5921
5922         if (boot_cpu_has(X86_FEATURE_XSAVE))
5923                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5924
5925         kvm_lapic_init();
5926 #ifdef CONFIG_X86_64
5927         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5928 #endif
5929
5930         return 0;
5931
5932 out_free_percpu:
5933         free_percpu(shared_msrs);
5934 out:
5935         return r;
5936 }
5937
5938 void kvm_arch_exit(void)
5939 {
5940         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5941
5942         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5943                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5944                                             CPUFREQ_TRANSITION_NOTIFIER);
5945         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5946 #ifdef CONFIG_X86_64
5947         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5948 #endif
5949         kvm_x86_ops = NULL;
5950         kvm_mmu_module_exit();
5951         free_percpu(shared_msrs);
5952 }
5953
5954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5955 {
5956         ++vcpu->stat.halt_exits;
5957         if (lapic_in_kernel(vcpu)) {
5958                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5959                 return 1;
5960         } else {
5961                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5962                 return 0;
5963         }
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5966
5967 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5968 {
5969         kvm_x86_ops->skip_emulated_instruction(vcpu);
5970         return kvm_vcpu_halt(vcpu);
5971 }
5972 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5973
5974 /*
5975  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5976  *
5977  * @apicid - apicid of vcpu to be kicked.
5978  */
5979 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5980 {
5981         struct kvm_lapic_irq lapic_irq;
5982
5983         lapic_irq.shorthand = 0;
5984         lapic_irq.dest_mode = 0;
5985         lapic_irq.dest_id = apicid;
5986         lapic_irq.msi_redir_hint = false;
5987
5988         lapic_irq.delivery_mode = APIC_DM_REMRD;
5989         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5990 }
5991
5992 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5993 {
5994         vcpu->arch.apicv_active = false;
5995         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5996 }
5997
5998 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5999 {
6000         unsigned long nr, a0, a1, a2, a3, ret;
6001         int op_64_bit, r = 1;
6002
6003         kvm_x86_ops->skip_emulated_instruction(vcpu);
6004
6005         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6006                 return kvm_hv_hypercall(vcpu);
6007
6008         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013
6014         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6015
6016         op_64_bit = is_64_bit_mode(vcpu);
6017         if (!op_64_bit) {
6018                 nr &= 0xFFFFFFFF;
6019                 a0 &= 0xFFFFFFFF;
6020                 a1 &= 0xFFFFFFFF;
6021                 a2 &= 0xFFFFFFFF;
6022                 a3 &= 0xFFFFFFFF;
6023         }
6024
6025         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6026                 ret = -KVM_EPERM;
6027                 goto out;
6028         }
6029
6030         switch (nr) {
6031         case KVM_HC_VAPIC_POLL_IRQ:
6032                 ret = 0;
6033                 break;
6034         case KVM_HC_KICK_CPU:
6035                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6036                 ret = 0;
6037                 break;
6038         default:
6039                 ret = -KVM_ENOSYS;
6040                 break;
6041         }
6042 out:
6043         if (!op_64_bit)
6044                 ret = (u32)ret;
6045         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6046         ++vcpu->stat.hypercalls;
6047         return r;
6048 }
6049 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6050
6051 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6052 {
6053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6054         char instruction[3];
6055         unsigned long rip = kvm_rip_read(vcpu);
6056
6057         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6058
6059         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6060 }
6061
6062 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6063 {
6064         return vcpu->run->request_interrupt_window &&
6065                 likely(!pic_in_kernel(vcpu->kvm));
6066 }
6067
6068 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6069 {
6070         struct kvm_run *kvm_run = vcpu->run;
6071
6072         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6073         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6074         kvm_run->cr8 = kvm_get_cr8(vcpu);
6075         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6076         kvm_run->ready_for_interrupt_injection =
6077                 pic_in_kernel(vcpu->kvm) ||
6078                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6079 }
6080
6081 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6082 {
6083         int max_irr, tpr;
6084
6085         if (!kvm_x86_ops->update_cr8_intercept)
6086                 return;
6087
6088         if (!lapic_in_kernel(vcpu))
6089                 return;
6090
6091         if (vcpu->arch.apicv_active)
6092                 return;
6093
6094         if (!vcpu->arch.apic->vapic_addr)
6095                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6096         else
6097                 max_irr = -1;
6098
6099         if (max_irr != -1)
6100                 max_irr >>= 4;
6101
6102         tpr = kvm_lapic_get_cr8(vcpu);
6103
6104         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6105 }
6106
6107 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6108 {
6109         int r;
6110
6111         /* try to reinject previous events if any */
6112         if (vcpu->arch.exception.pending) {
6113                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6114                                         vcpu->arch.exception.has_error_code,
6115                                         vcpu->arch.exception.error_code);
6116
6117                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6118                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6119                                              X86_EFLAGS_RF);
6120
6121                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6122                     (vcpu->arch.dr7 & DR7_GD)) {
6123                         vcpu->arch.dr7 &= ~DR7_GD;
6124                         kvm_update_dr7(vcpu);
6125                 }
6126
6127                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6128                                           vcpu->arch.exception.has_error_code,
6129                                           vcpu->arch.exception.error_code,
6130                                           vcpu->arch.exception.reinject);
6131                 return 0;
6132         }
6133
6134         if (vcpu->arch.nmi_injected) {
6135                 kvm_x86_ops->set_nmi(vcpu);
6136                 return 0;
6137         }
6138
6139         if (vcpu->arch.interrupt.pending) {
6140                 kvm_x86_ops->set_irq(vcpu);
6141                 return 0;
6142         }
6143
6144         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6145                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6146                 if (r != 0)
6147                         return r;
6148         }
6149
6150         /* try to inject new event if pending */
6151         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6152                 vcpu->arch.smi_pending = false;
6153                 enter_smm(vcpu);
6154         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6155                 --vcpu->arch.nmi_pending;
6156                 vcpu->arch.nmi_injected = true;
6157                 kvm_x86_ops->set_nmi(vcpu);
6158         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6159                 /*
6160                  * Because interrupts can be injected asynchronously, we are
6161                  * calling check_nested_events again here to avoid a race condition.
6162                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6163                  * proposal and current concerns.  Perhaps we should be setting
6164                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6165                  */
6166                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6167                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6168                         if (r != 0)
6169                                 return r;
6170                 }
6171                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6172                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6173                                             false);
6174                         kvm_x86_ops->set_irq(vcpu);
6175                 }
6176         }
6177
6178         return 0;
6179 }
6180
6181 static void process_nmi(struct kvm_vcpu *vcpu)
6182 {
6183         unsigned limit = 2;
6184
6185         /*
6186          * x86 is limited to one NMI running, and one NMI pending after it.
6187          * If an NMI is already in progress, limit further NMIs to just one.
6188          * Otherwise, allow two (and we'll inject the first one immediately).
6189          */
6190         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6191                 limit = 1;
6192
6193         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6194         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6195         kvm_make_request(KVM_REQ_EVENT, vcpu);
6196 }
6197
6198 #define put_smstate(type, buf, offset, val)                       \
6199         *(type *)((buf) + (offset) - 0x7e00) = val
6200
6201 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6202 {
6203         u32 flags = 0;
6204         flags |= seg->g       << 23;
6205         flags |= seg->db      << 22;
6206         flags |= seg->l       << 21;
6207         flags |= seg->avl     << 20;
6208         flags |= seg->present << 15;
6209         flags |= seg->dpl     << 13;
6210         flags |= seg->s       << 12;
6211         flags |= seg->type    << 8;
6212         return flags;
6213 }
6214
6215 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6216 {
6217         struct kvm_segment seg;
6218         int offset;
6219
6220         kvm_get_segment(vcpu, &seg, n);
6221         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6222
6223         if (n < 3)
6224                 offset = 0x7f84 + n * 12;
6225         else
6226                 offset = 0x7f2c + (n - 3) * 12;
6227
6228         put_smstate(u32, buf, offset + 8, seg.base);
6229         put_smstate(u32, buf, offset + 4, seg.limit);
6230         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6231 }
6232
6233 #ifdef CONFIG_X86_64
6234 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6235 {
6236         struct kvm_segment seg;
6237         int offset;
6238         u16 flags;
6239
6240         kvm_get_segment(vcpu, &seg, n);
6241         offset = 0x7e00 + n * 16;
6242
6243         flags = enter_smm_get_segment_flags(&seg) >> 8;
6244         put_smstate(u16, buf, offset, seg.selector);
6245         put_smstate(u16, buf, offset + 2, flags);
6246         put_smstate(u32, buf, offset + 4, seg.limit);
6247         put_smstate(u64, buf, offset + 8, seg.base);
6248 }
6249 #endif
6250
6251 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6252 {
6253         struct desc_ptr dt;
6254         struct kvm_segment seg;
6255         unsigned long val;
6256         int i;
6257
6258         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6259         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6260         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6261         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6262
6263         for (i = 0; i < 8; i++)
6264                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6265
6266         kvm_get_dr(vcpu, 6, &val);
6267         put_smstate(u32, buf, 0x7fcc, (u32)val);
6268         kvm_get_dr(vcpu, 7, &val);
6269         put_smstate(u32, buf, 0x7fc8, (u32)val);
6270
6271         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6272         put_smstate(u32, buf, 0x7fc4, seg.selector);
6273         put_smstate(u32, buf, 0x7f64, seg.base);
6274         put_smstate(u32, buf, 0x7f60, seg.limit);
6275         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6276
6277         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6278         put_smstate(u32, buf, 0x7fc0, seg.selector);
6279         put_smstate(u32, buf, 0x7f80, seg.base);
6280         put_smstate(u32, buf, 0x7f7c, seg.limit);
6281         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6282
6283         kvm_x86_ops->get_gdt(vcpu, &dt);
6284         put_smstate(u32, buf, 0x7f74, dt.address);
6285         put_smstate(u32, buf, 0x7f70, dt.size);
6286
6287         kvm_x86_ops->get_idt(vcpu, &dt);
6288         put_smstate(u32, buf, 0x7f58, dt.address);
6289         put_smstate(u32, buf, 0x7f54, dt.size);
6290
6291         for (i = 0; i < 6; i++)
6292                 enter_smm_save_seg_32(vcpu, buf, i);
6293
6294         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6295
6296         /* revision id */
6297         put_smstate(u32, buf, 0x7efc, 0x00020000);
6298         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6299 }
6300
6301 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6302 {
6303 #ifdef CONFIG_X86_64
6304         struct desc_ptr dt;
6305         struct kvm_segment seg;
6306         unsigned long val;
6307         int i;
6308
6309         for (i = 0; i < 16; i++)
6310                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6311
6312         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6313         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6314
6315         kvm_get_dr(vcpu, 6, &val);
6316         put_smstate(u64, buf, 0x7f68, val);
6317         kvm_get_dr(vcpu, 7, &val);
6318         put_smstate(u64, buf, 0x7f60, val);
6319
6320         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6321         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6322         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6323
6324         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6325
6326         /* revision id */
6327         put_smstate(u32, buf, 0x7efc, 0x00020064);
6328
6329         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6330
6331         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6332         put_smstate(u16, buf, 0x7e90, seg.selector);
6333         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6334         put_smstate(u32, buf, 0x7e94, seg.limit);
6335         put_smstate(u64, buf, 0x7e98, seg.base);
6336
6337         kvm_x86_ops->get_idt(vcpu, &dt);
6338         put_smstate(u32, buf, 0x7e84, dt.size);
6339         put_smstate(u64, buf, 0x7e88, dt.address);
6340
6341         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6342         put_smstate(u16, buf, 0x7e70, seg.selector);
6343         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6344         put_smstate(u32, buf, 0x7e74, seg.limit);
6345         put_smstate(u64, buf, 0x7e78, seg.base);
6346
6347         kvm_x86_ops->get_gdt(vcpu, &dt);
6348         put_smstate(u32, buf, 0x7e64, dt.size);
6349         put_smstate(u64, buf, 0x7e68, dt.address);
6350
6351         for (i = 0; i < 6; i++)
6352                 enter_smm_save_seg_64(vcpu, buf, i);
6353 #else
6354         WARN_ON_ONCE(1);
6355 #endif
6356 }
6357
6358 static void enter_smm(struct kvm_vcpu *vcpu)
6359 {
6360         struct kvm_segment cs, ds;
6361         struct desc_ptr dt;
6362         char buf[512];
6363         u32 cr0;
6364
6365         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6366         vcpu->arch.hflags |= HF_SMM_MASK;
6367         memset(buf, 0, 512);
6368         if (guest_cpuid_has_longmode(vcpu))
6369                 enter_smm_save_state_64(vcpu, buf);
6370         else
6371                 enter_smm_save_state_32(vcpu, buf);
6372
6373         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6374
6375         if (kvm_x86_ops->get_nmi_mask(vcpu))
6376                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6377         else
6378                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6379
6380         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6381         kvm_rip_write(vcpu, 0x8000);
6382
6383         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6384         kvm_x86_ops->set_cr0(vcpu, cr0);
6385         vcpu->arch.cr0 = cr0;
6386
6387         kvm_x86_ops->set_cr4(vcpu, 0);
6388
6389         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6390         dt.address = dt.size = 0;
6391         kvm_x86_ops->set_idt(vcpu, &dt);
6392
6393         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6394
6395         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6396         cs.base = vcpu->arch.smbase;
6397
6398         ds.selector = 0;
6399         ds.base = 0;
6400
6401         cs.limit    = ds.limit = 0xffffffff;
6402         cs.type     = ds.type = 0x3;
6403         cs.dpl      = ds.dpl = 0;
6404         cs.db       = ds.db = 0;
6405         cs.s        = ds.s = 1;
6406         cs.l        = ds.l = 0;
6407         cs.g        = ds.g = 1;
6408         cs.avl      = ds.avl = 0;
6409         cs.present  = ds.present = 1;
6410         cs.unusable = ds.unusable = 0;
6411         cs.padding  = ds.padding = 0;
6412
6413         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6414         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6415         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6416         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6417         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6418         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6419
6420         if (guest_cpuid_has_longmode(vcpu))
6421                 kvm_x86_ops->set_efer(vcpu, 0);
6422
6423         kvm_update_cpuid(vcpu);
6424         kvm_mmu_reset_context(vcpu);
6425 }
6426
6427 static void process_smi(struct kvm_vcpu *vcpu)
6428 {
6429         vcpu->arch.smi_pending = true;
6430         kvm_make_request(KVM_REQ_EVENT, vcpu);
6431 }
6432
6433 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6434 {
6435         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6436 }
6437
6438 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6439 {
6440         u64 eoi_exit_bitmap[4];
6441
6442         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6443                 return;
6444
6445         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6446
6447         if (irqchip_split(vcpu->kvm))
6448                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6449         else {
6450                 if (vcpu->arch.apicv_active)
6451                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6452                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6453         }
6454         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6455                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6456         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6457 }
6458
6459 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6460 {
6461         ++vcpu->stat.tlb_flush;
6462         kvm_x86_ops->tlb_flush(vcpu);
6463 }
6464
6465 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6466 {
6467         struct page *page = NULL;
6468
6469         if (!lapic_in_kernel(vcpu))
6470                 return;
6471
6472         if (!kvm_x86_ops->set_apic_access_page_addr)
6473                 return;
6474
6475         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6476         if (is_error_page(page))
6477                 return;
6478         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6479
6480         /*
6481          * Do not pin apic access page in memory, the MMU notifier
6482          * will call us again if it is migrated or swapped out.
6483          */
6484         put_page(page);
6485 }
6486 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6487
6488 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6489                                            unsigned long address)
6490 {
6491         /*
6492          * The physical address of apic access page is stored in the VMCS.
6493          * Update it when it becomes invalid.
6494          */
6495         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6496                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6497 }
6498
6499 /*
6500  * Returns 1 to let vcpu_run() continue the guest execution loop without
6501  * exiting to the userspace.  Otherwise, the value will be returned to the
6502  * userspace.
6503  */
6504 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6505 {
6506         int r;
6507         bool req_int_win =
6508                 dm_request_for_irq_injection(vcpu) &&
6509                 kvm_cpu_accept_dm_intr(vcpu);
6510
6511         bool req_immediate_exit = false;
6512
6513         if (vcpu->requests) {
6514                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6515                         kvm_mmu_unload(vcpu);
6516                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6517                         __kvm_migrate_timers(vcpu);
6518                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6519                         kvm_gen_update_masterclock(vcpu->kvm);
6520                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6521                         kvm_gen_kvmclock_update(vcpu);
6522                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6523                         r = kvm_guest_time_update(vcpu);
6524                         if (unlikely(r))
6525                                 goto out;
6526                 }
6527                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6528                         kvm_mmu_sync_roots(vcpu);
6529                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6530                         kvm_vcpu_flush_tlb(vcpu);
6531                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6532                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6533                         r = 0;
6534                         goto out;
6535                 }
6536                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6537                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6538                         r = 0;
6539                         goto out;
6540                 }
6541                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6542                         vcpu->fpu_active = 0;
6543                         kvm_x86_ops->fpu_deactivate(vcpu);
6544                 }
6545                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6546                         /* Page is swapped out. Do synthetic halt */
6547                         vcpu->arch.apf.halted = true;
6548                         r = 1;
6549                         goto out;
6550                 }
6551                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6552                         record_steal_time(vcpu);
6553                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6554                         process_smi(vcpu);
6555                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6556                         process_nmi(vcpu);
6557                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6558                         kvm_pmu_handle_event(vcpu);
6559                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6560                         kvm_pmu_deliver_pmi(vcpu);
6561                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6562                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6563                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6564                                      vcpu->arch.ioapic_handled_vectors)) {
6565                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6566                                 vcpu->run->eoi.vector =
6567                                                 vcpu->arch.pending_ioapic_eoi;
6568                                 r = 0;
6569                                 goto out;
6570                         }
6571                 }
6572                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6573                         vcpu_scan_ioapic(vcpu);
6574                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6575                         kvm_vcpu_reload_apic_access_page(vcpu);
6576                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6577                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6578                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6579                         r = 0;
6580                         goto out;
6581                 }
6582                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6583                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6584                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6585                         r = 0;
6586                         goto out;
6587                 }
6588                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6589                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6590                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6591                         r = 0;
6592                         goto out;
6593                 }
6594
6595                 /*
6596                  * KVM_REQ_HV_STIMER has to be processed after
6597                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6598                  * depend on the guest clock being up-to-date
6599                  */
6600                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6601                         kvm_hv_process_stimers(vcpu);
6602         }
6603
6604         /*
6605          * KVM_REQ_EVENT is not set when posted interrupts are set by
6606          * VT-d hardware, so we have to update RVI unconditionally.
6607          */
6608         if (kvm_lapic_enabled(vcpu)) {
6609                 /*
6610                  * Update architecture specific hints for APIC
6611                  * virtual interrupt delivery.
6612                  */
6613                 if (vcpu->arch.apicv_active)
6614                         kvm_x86_ops->hwapic_irr_update(vcpu,
6615                                 kvm_lapic_find_highest_irr(vcpu));
6616         }
6617
6618         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6619                 kvm_apic_accept_events(vcpu);
6620                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6621                         r = 1;
6622                         goto out;
6623                 }
6624
6625                 if (inject_pending_event(vcpu, req_int_win) != 0)
6626                         req_immediate_exit = true;
6627                 else {
6628                         /* Enable NMI/IRQ window open exits if needed.
6629                          *
6630                          * SMIs have two cases: 1) they can be nested, and
6631                          * then there is nothing to do here because RSM will
6632                          * cause a vmexit anyway; 2) or the SMI can be pending
6633                          * because inject_pending_event has completed the
6634                          * injection of an IRQ or NMI from the previous vmexit,
6635                          * and then we request an immediate exit to inject the SMI.
6636                          */
6637                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6638                                 req_immediate_exit = true;
6639                         if (vcpu->arch.nmi_pending)
6640                                 kvm_x86_ops->enable_nmi_window(vcpu);
6641                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6642                                 kvm_x86_ops->enable_irq_window(vcpu);
6643                 }
6644
6645                 if (kvm_lapic_enabled(vcpu)) {
6646                         update_cr8_intercept(vcpu);
6647                         kvm_lapic_sync_to_vapic(vcpu);
6648                 }
6649         }
6650
6651         r = kvm_mmu_reload(vcpu);
6652         if (unlikely(r)) {
6653                 goto cancel_injection;
6654         }
6655
6656         preempt_disable();
6657
6658         kvm_x86_ops->prepare_guest_switch(vcpu);
6659         if (vcpu->fpu_active)
6660                 kvm_load_guest_fpu(vcpu);
6661         vcpu->mode = IN_GUEST_MODE;
6662
6663         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6664
6665         /*
6666          * We should set ->mode before check ->requests,
6667          * Please see the comment in kvm_make_all_cpus_request.
6668          * This also orders the write to mode from any reads
6669          * to the page tables done while the VCPU is running.
6670          * Please see the comment in kvm_flush_remote_tlbs.
6671          */
6672         smp_mb__after_srcu_read_unlock();
6673
6674         local_irq_disable();
6675
6676         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6677             || need_resched() || signal_pending(current)) {
6678                 vcpu->mode = OUTSIDE_GUEST_MODE;
6679                 smp_wmb();
6680                 local_irq_enable();
6681                 preempt_enable();
6682                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6683                 r = 1;
6684                 goto cancel_injection;
6685         }
6686
6687         kvm_load_guest_xcr0(vcpu);
6688
6689         if (req_immediate_exit) {
6690                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6691                 smp_send_reschedule(vcpu->cpu);
6692         }
6693
6694         trace_kvm_entry(vcpu->vcpu_id);
6695         wait_lapic_expire(vcpu);
6696         guest_enter_irqoff();
6697
6698         if (unlikely(vcpu->arch.switch_db_regs)) {
6699                 set_debugreg(0, 7);
6700                 set_debugreg(vcpu->arch.eff_db[0], 0);
6701                 set_debugreg(vcpu->arch.eff_db[1], 1);
6702                 set_debugreg(vcpu->arch.eff_db[2], 2);
6703                 set_debugreg(vcpu->arch.eff_db[3], 3);
6704                 set_debugreg(vcpu->arch.dr6, 6);
6705                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6706         }
6707
6708         kvm_x86_ops->run(vcpu);
6709
6710         /*
6711          * Do this here before restoring debug registers on the host.  And
6712          * since we do this before handling the vmexit, a DR access vmexit
6713          * can (a) read the correct value of the debug registers, (b) set
6714          * KVM_DEBUGREG_WONT_EXIT again.
6715          */
6716         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6717                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6718                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6719                 kvm_update_dr0123(vcpu);
6720                 kvm_update_dr6(vcpu);
6721                 kvm_update_dr7(vcpu);
6722                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6723         }
6724
6725         /*
6726          * If the guest has used debug registers, at least dr7
6727          * will be disabled while returning to the host.
6728          * If we don't have active breakpoints in the host, we don't
6729          * care about the messed up debug address registers. But if
6730          * we have some of them active, restore the old state.
6731          */
6732         if (hw_breakpoint_active())
6733                 hw_breakpoint_restore();
6734
6735         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6736
6737         vcpu->mode = OUTSIDE_GUEST_MODE;
6738         smp_wmb();
6739
6740         kvm_put_guest_xcr0(vcpu);
6741
6742         kvm_x86_ops->handle_external_intr(vcpu);
6743
6744         ++vcpu->stat.exits;
6745
6746         guest_exit_irqoff();
6747
6748         local_irq_enable();
6749         preempt_enable();
6750
6751         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6752
6753         /*
6754          * Profile KVM exit RIPs:
6755          */
6756         if (unlikely(prof_on == KVM_PROFILING)) {
6757                 unsigned long rip = kvm_rip_read(vcpu);
6758                 profile_hit(KVM_PROFILING, (void *)rip);
6759         }
6760
6761         if (unlikely(vcpu->arch.tsc_always_catchup))
6762                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6763
6764         if (vcpu->arch.apic_attention)
6765                 kvm_lapic_sync_from_vapic(vcpu);
6766
6767         r = kvm_x86_ops->handle_exit(vcpu);
6768         return r;
6769
6770 cancel_injection:
6771         kvm_x86_ops->cancel_injection(vcpu);
6772         if (unlikely(vcpu->arch.apic_attention))
6773                 kvm_lapic_sync_from_vapic(vcpu);
6774 out:
6775         return r;
6776 }
6777
6778 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6779 {
6780         if (!kvm_arch_vcpu_runnable(vcpu) &&
6781             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6782                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6783                 kvm_vcpu_block(vcpu);
6784                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6785
6786                 if (kvm_x86_ops->post_block)
6787                         kvm_x86_ops->post_block(vcpu);
6788
6789                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6790                         return 1;
6791         }
6792
6793         kvm_apic_accept_events(vcpu);
6794         switch(vcpu->arch.mp_state) {
6795         case KVM_MP_STATE_HALTED:
6796                 vcpu->arch.pv.pv_unhalted = false;
6797                 vcpu->arch.mp_state =
6798                         KVM_MP_STATE_RUNNABLE;
6799         case KVM_MP_STATE_RUNNABLE:
6800                 vcpu->arch.apf.halted = false;
6801                 break;
6802         case KVM_MP_STATE_INIT_RECEIVED:
6803                 break;
6804         default:
6805                 return -EINTR;
6806                 break;
6807         }
6808         return 1;
6809 }
6810
6811 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6812 {
6813         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6814                 !vcpu->arch.apf.halted);
6815 }
6816
6817 static int vcpu_run(struct kvm_vcpu *vcpu)
6818 {
6819         int r;
6820         struct kvm *kvm = vcpu->kvm;
6821
6822         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6823
6824         for (;;) {
6825                 if (kvm_vcpu_running(vcpu)) {
6826                         r = vcpu_enter_guest(vcpu);
6827                 } else {
6828                         r = vcpu_block(kvm, vcpu);
6829                 }
6830
6831                 if (r <= 0)
6832                         break;
6833
6834                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6835                 if (kvm_cpu_has_pending_timer(vcpu))
6836                         kvm_inject_pending_timer_irqs(vcpu);
6837
6838                 if (dm_request_for_irq_injection(vcpu) &&
6839                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6840                         r = 0;
6841                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6842                         ++vcpu->stat.request_irq_exits;
6843                         break;
6844                 }
6845
6846                 kvm_check_async_pf_completion(vcpu);
6847
6848                 if (signal_pending(current)) {
6849                         r = -EINTR;
6850                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6851                         ++vcpu->stat.signal_exits;
6852                         break;
6853                 }
6854                 if (need_resched()) {
6855                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6856                         cond_resched();
6857                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6858                 }
6859         }
6860
6861         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6862
6863         return r;
6864 }
6865
6866 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6867 {
6868         int r;
6869         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6870         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6871         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6872         if (r != EMULATE_DONE)
6873                 return 0;
6874         return 1;
6875 }
6876
6877 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6878 {
6879         BUG_ON(!vcpu->arch.pio.count);
6880
6881         return complete_emulated_io(vcpu);
6882 }
6883
6884 /*
6885  * Implements the following, as a state machine:
6886  *
6887  * read:
6888  *   for each fragment
6889  *     for each mmio piece in the fragment
6890  *       write gpa, len
6891  *       exit
6892  *       copy data
6893  *   execute insn
6894  *
6895  * write:
6896  *   for each fragment
6897  *     for each mmio piece in the fragment
6898  *       write gpa, len
6899  *       copy data
6900  *       exit
6901  */
6902 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6903 {
6904         struct kvm_run *run = vcpu->run;
6905         struct kvm_mmio_fragment *frag;
6906         unsigned len;
6907
6908         BUG_ON(!vcpu->mmio_needed);
6909
6910         /* Complete previous fragment */
6911         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6912         len = min(8u, frag->len);
6913         if (!vcpu->mmio_is_write)
6914                 memcpy(frag->data, run->mmio.data, len);
6915
6916         if (frag->len <= 8) {
6917                 /* Switch to the next fragment. */
6918                 frag++;
6919                 vcpu->mmio_cur_fragment++;
6920         } else {
6921                 /* Go forward to the next mmio piece. */
6922                 frag->data += len;
6923                 frag->gpa += len;
6924                 frag->len -= len;
6925         }
6926
6927         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6928                 vcpu->mmio_needed = 0;
6929
6930                 /* FIXME: return into emulator if single-stepping.  */
6931                 if (vcpu->mmio_is_write)
6932                         return 1;
6933                 vcpu->mmio_read_completed = 1;
6934                 return complete_emulated_io(vcpu);
6935         }
6936
6937         run->exit_reason = KVM_EXIT_MMIO;
6938         run->mmio.phys_addr = frag->gpa;
6939         if (vcpu->mmio_is_write)
6940                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6941         run->mmio.len = min(8u, frag->len);
6942         run->mmio.is_write = vcpu->mmio_is_write;
6943         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6944         return 0;
6945 }
6946
6947
6948 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6949 {
6950         struct fpu *fpu = &current->thread.fpu;
6951         int r;
6952         sigset_t sigsaved;
6953
6954         fpu__activate_curr(fpu);
6955
6956         if (vcpu->sigset_active)
6957                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6958
6959         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6960                 kvm_vcpu_block(vcpu);
6961                 kvm_apic_accept_events(vcpu);
6962                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6963                 r = -EAGAIN;
6964                 goto out;
6965         }
6966
6967         /* re-sync apic's tpr */
6968         if (!lapic_in_kernel(vcpu)) {
6969                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6970                         r = -EINVAL;
6971                         goto out;
6972                 }
6973         }
6974
6975         if (unlikely(vcpu->arch.complete_userspace_io)) {
6976                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6977                 vcpu->arch.complete_userspace_io = NULL;
6978                 r = cui(vcpu);
6979                 if (r <= 0)
6980                         goto out;
6981         } else
6982                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6983
6984         r = vcpu_run(vcpu);
6985
6986 out:
6987         post_kvm_run_save(vcpu);
6988         if (vcpu->sigset_active)
6989                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6990
6991         return r;
6992 }
6993
6994 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6995 {
6996         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6997                 /*
6998                  * We are here if userspace calls get_regs() in the middle of
6999                  * instruction emulation. Registers state needs to be copied
7000                  * back from emulation context to vcpu. Userspace shouldn't do
7001                  * that usually, but some bad designed PV devices (vmware
7002                  * backdoor interface) need this to work
7003                  */
7004                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7005                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7006         }
7007         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7008         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7009         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7010         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7011         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7012         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7013         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7014         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7015 #ifdef CONFIG_X86_64
7016         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7017         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7018         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7019         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7020         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7021         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7022         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7023         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7024 #endif
7025
7026         regs->rip = kvm_rip_read(vcpu);
7027         regs->rflags = kvm_get_rflags(vcpu);
7028
7029         return 0;
7030 }
7031
7032 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7033 {
7034         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7035         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7036
7037         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7038         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7039         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7040         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7041         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7042         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7043         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7044         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7045 #ifdef CONFIG_X86_64
7046         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7047         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7048         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7049         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7050         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7051         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7052         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7053         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7054 #endif
7055
7056         kvm_rip_write(vcpu, regs->rip);
7057         kvm_set_rflags(vcpu, regs->rflags);
7058
7059         vcpu->arch.exception.pending = false;
7060
7061         kvm_make_request(KVM_REQ_EVENT, vcpu);
7062
7063         return 0;
7064 }
7065
7066 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7067 {
7068         struct kvm_segment cs;
7069
7070         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7071         *db = cs.db;
7072         *l = cs.l;
7073 }
7074 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7075
7076 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7077                                   struct kvm_sregs *sregs)
7078 {
7079         struct desc_ptr dt;
7080
7081         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7082         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7083         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7084         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7085         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7086         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7087
7088         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7089         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7090
7091         kvm_x86_ops->get_idt(vcpu, &dt);
7092         sregs->idt.limit = dt.size;
7093         sregs->idt.base = dt.address;
7094         kvm_x86_ops->get_gdt(vcpu, &dt);
7095         sregs->gdt.limit = dt.size;
7096         sregs->gdt.base = dt.address;
7097
7098         sregs->cr0 = kvm_read_cr0(vcpu);
7099         sregs->cr2 = vcpu->arch.cr2;
7100         sregs->cr3 = kvm_read_cr3(vcpu);
7101         sregs->cr4 = kvm_read_cr4(vcpu);
7102         sregs->cr8 = kvm_get_cr8(vcpu);
7103         sregs->efer = vcpu->arch.efer;
7104         sregs->apic_base = kvm_get_apic_base(vcpu);
7105
7106         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7107
7108         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7109                 set_bit(vcpu->arch.interrupt.nr,
7110                         (unsigned long *)sregs->interrupt_bitmap);
7111
7112         return 0;
7113 }
7114
7115 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7116                                     struct kvm_mp_state *mp_state)
7117 {
7118         kvm_apic_accept_events(vcpu);
7119         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7120                                         vcpu->arch.pv.pv_unhalted)
7121                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7122         else
7123                 mp_state->mp_state = vcpu->arch.mp_state;
7124
7125         return 0;
7126 }
7127
7128 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7129                                     struct kvm_mp_state *mp_state)
7130 {
7131         if (!lapic_in_kernel(vcpu) &&
7132             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7133                 return -EINVAL;
7134
7135         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7136                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7137                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7138         } else
7139                 vcpu->arch.mp_state = mp_state->mp_state;
7140         kvm_make_request(KVM_REQ_EVENT, vcpu);
7141         return 0;
7142 }
7143
7144 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7145                     int reason, bool has_error_code, u32 error_code)
7146 {
7147         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7148         int ret;
7149
7150         init_emulate_ctxt(vcpu);
7151
7152         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7153                                    has_error_code, error_code);
7154
7155         if (ret)
7156                 return EMULATE_FAIL;
7157
7158         kvm_rip_write(vcpu, ctxt->eip);
7159         kvm_set_rflags(vcpu, ctxt->eflags);
7160         kvm_make_request(KVM_REQ_EVENT, vcpu);
7161         return EMULATE_DONE;
7162 }
7163 EXPORT_SYMBOL_GPL(kvm_task_switch);
7164
7165 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7166                                   struct kvm_sregs *sregs)
7167 {
7168         struct msr_data apic_base_msr;
7169         int mmu_reset_needed = 0;
7170         int pending_vec, max_bits, idx;
7171         struct desc_ptr dt;
7172
7173         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7174                 return -EINVAL;
7175
7176         dt.size = sregs->idt.limit;
7177         dt.address = sregs->idt.base;
7178         kvm_x86_ops->set_idt(vcpu, &dt);
7179         dt.size = sregs->gdt.limit;
7180         dt.address = sregs->gdt.base;
7181         kvm_x86_ops->set_gdt(vcpu, &dt);
7182
7183         vcpu->arch.cr2 = sregs->cr2;
7184         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7185         vcpu->arch.cr3 = sregs->cr3;
7186         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7187
7188         kvm_set_cr8(vcpu, sregs->cr8);
7189
7190         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7191         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7192         apic_base_msr.data = sregs->apic_base;
7193         apic_base_msr.host_initiated = true;
7194         kvm_set_apic_base(vcpu, &apic_base_msr);
7195
7196         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7197         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7198         vcpu->arch.cr0 = sregs->cr0;
7199
7200         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7201         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7202         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7203                 kvm_update_cpuid(vcpu);
7204
7205         idx = srcu_read_lock(&vcpu->kvm->srcu);
7206         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7207                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7208                 mmu_reset_needed = 1;
7209         }
7210         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7211
7212         if (mmu_reset_needed)
7213                 kvm_mmu_reset_context(vcpu);
7214
7215         max_bits = KVM_NR_INTERRUPTS;
7216         pending_vec = find_first_bit(
7217                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7218         if (pending_vec < max_bits) {
7219                 kvm_queue_interrupt(vcpu, pending_vec, false);
7220                 pr_debug("Set back pending irq %d\n", pending_vec);
7221         }
7222
7223         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7224         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7225         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7226         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7227         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7228         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7229
7230         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7231         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7232
7233         update_cr8_intercept(vcpu);
7234
7235         /* Older userspace won't unhalt the vcpu on reset. */
7236         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7237             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7238             !is_protmode(vcpu))
7239                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7240
7241         kvm_make_request(KVM_REQ_EVENT, vcpu);
7242
7243         return 0;
7244 }
7245
7246 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7247                                         struct kvm_guest_debug *dbg)
7248 {
7249         unsigned long rflags;
7250         int i, r;
7251
7252         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7253                 r = -EBUSY;
7254                 if (vcpu->arch.exception.pending)
7255                         goto out;
7256                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7257                         kvm_queue_exception(vcpu, DB_VECTOR);
7258                 else
7259                         kvm_queue_exception(vcpu, BP_VECTOR);
7260         }
7261
7262         /*
7263          * Read rflags as long as potentially injected trace flags are still
7264          * filtered out.
7265          */
7266         rflags = kvm_get_rflags(vcpu);
7267
7268         vcpu->guest_debug = dbg->control;
7269         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7270                 vcpu->guest_debug = 0;
7271
7272         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7273                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7274                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7275                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7276         } else {
7277                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7278                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7279         }
7280         kvm_update_dr7(vcpu);
7281
7282         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7283                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7284                         get_segment_base(vcpu, VCPU_SREG_CS);
7285
7286         /*
7287          * Trigger an rflags update that will inject or remove the trace
7288          * flags.
7289          */
7290         kvm_set_rflags(vcpu, rflags);
7291
7292         kvm_x86_ops->update_bp_intercept(vcpu);
7293
7294         r = 0;
7295
7296 out:
7297
7298         return r;
7299 }
7300
7301 /*
7302  * Translate a guest virtual address to a guest physical address.
7303  */
7304 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7305                                     struct kvm_translation *tr)
7306 {
7307         unsigned long vaddr = tr->linear_address;
7308         gpa_t gpa;
7309         int idx;
7310
7311         idx = srcu_read_lock(&vcpu->kvm->srcu);
7312         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7313         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7314         tr->physical_address = gpa;
7315         tr->valid = gpa != UNMAPPED_GVA;
7316         tr->writeable = 1;
7317         tr->usermode = 0;
7318
7319         return 0;
7320 }
7321
7322 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7323 {
7324         struct fxregs_state *fxsave =
7325                         &vcpu->arch.guest_fpu.state.fxsave;
7326
7327         memcpy(fpu->fpr, fxsave->st_space, 128);
7328         fpu->fcw = fxsave->cwd;
7329         fpu->fsw = fxsave->swd;
7330         fpu->ftwx = fxsave->twd;
7331         fpu->last_opcode = fxsave->fop;
7332         fpu->last_ip = fxsave->rip;
7333         fpu->last_dp = fxsave->rdp;
7334         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7335
7336         return 0;
7337 }
7338
7339 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7340 {
7341         struct fxregs_state *fxsave =
7342                         &vcpu->arch.guest_fpu.state.fxsave;
7343
7344         memcpy(fxsave->st_space, fpu->fpr, 128);
7345         fxsave->cwd = fpu->fcw;
7346         fxsave->swd = fpu->fsw;
7347         fxsave->twd = fpu->ftwx;
7348         fxsave->fop = fpu->last_opcode;
7349         fxsave->rip = fpu->last_ip;
7350         fxsave->rdp = fpu->last_dp;
7351         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7352
7353         return 0;
7354 }
7355
7356 static void fx_init(struct kvm_vcpu *vcpu)
7357 {
7358         fpstate_init(&vcpu->arch.guest_fpu.state);
7359         if (boot_cpu_has(X86_FEATURE_XSAVES))
7360                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7361                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7362
7363         /*
7364          * Ensure guest xcr0 is valid for loading
7365          */
7366         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7367
7368         vcpu->arch.cr0 |= X86_CR0_ET;
7369 }
7370
7371 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7372 {
7373         if (vcpu->guest_fpu_loaded)
7374                 return;
7375
7376         /*
7377          * Restore all possible states in the guest,
7378          * and assume host would use all available bits.
7379          * Guest xcr0 would be loaded later.
7380          */
7381         vcpu->guest_fpu_loaded = 1;
7382         __kernel_fpu_begin();
7383         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7384         trace_kvm_fpu(1);
7385 }
7386
7387 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7388 {
7389         if (!vcpu->guest_fpu_loaded) {
7390                 vcpu->fpu_counter = 0;
7391                 return;
7392         }
7393
7394         vcpu->guest_fpu_loaded = 0;
7395         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7396         __kernel_fpu_end();
7397         ++vcpu->stat.fpu_reload;
7398         /*
7399          * If using eager FPU mode, or if the guest is a frequent user
7400          * of the FPU, just leave the FPU active for next time.
7401          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7402          * the FPU in bursts will revert to loading it on demand.
7403          */
7404         if (!use_eager_fpu()) {
7405                 if (++vcpu->fpu_counter < 5)
7406                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7407         }
7408         trace_kvm_fpu(0);
7409 }
7410
7411 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7412 {
7413         kvmclock_reset(vcpu);
7414
7415         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7416         kvm_x86_ops->vcpu_free(vcpu);
7417 }
7418
7419 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7420                                                 unsigned int id)
7421 {
7422         struct kvm_vcpu *vcpu;
7423
7424         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7425                 printk_once(KERN_WARNING
7426                 "kvm: SMP vm created on host with unstable TSC; "
7427                 "guest TSC will not be reliable\n");
7428
7429         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7430
7431         return vcpu;
7432 }
7433
7434 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7435 {
7436         int r;
7437
7438         kvm_vcpu_mtrr_init(vcpu);
7439         r = vcpu_load(vcpu);
7440         if (r)
7441                 return r;
7442         kvm_vcpu_reset(vcpu, false);
7443         kvm_mmu_setup(vcpu);
7444         vcpu_put(vcpu);
7445         return r;
7446 }
7447
7448 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7449 {
7450         struct msr_data msr;
7451         struct kvm *kvm = vcpu->kvm;
7452
7453         if (vcpu_load(vcpu))
7454                 return;
7455         msr.data = 0x0;
7456         msr.index = MSR_IA32_TSC;
7457         msr.host_initiated = true;
7458         kvm_write_tsc(vcpu, &msr);
7459         vcpu_put(vcpu);
7460
7461         if (!kvmclock_periodic_sync)
7462                 return;
7463
7464         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7465                                         KVMCLOCK_SYNC_PERIOD);
7466 }
7467
7468 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7469 {
7470         int r;
7471         vcpu->arch.apf.msr_val = 0;
7472
7473         r = vcpu_load(vcpu);
7474         BUG_ON(r);
7475         kvm_mmu_unload(vcpu);
7476         vcpu_put(vcpu);
7477
7478         kvm_x86_ops->vcpu_free(vcpu);
7479 }
7480
7481 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7482 {
7483         vcpu->arch.hflags = 0;
7484
7485         vcpu->arch.smi_pending = 0;
7486         atomic_set(&vcpu->arch.nmi_queued, 0);
7487         vcpu->arch.nmi_pending = 0;
7488         vcpu->arch.nmi_injected = false;
7489         kvm_clear_interrupt_queue(vcpu);
7490         kvm_clear_exception_queue(vcpu);
7491
7492         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7493         kvm_update_dr0123(vcpu);
7494         vcpu->arch.dr6 = DR6_INIT;
7495         kvm_update_dr6(vcpu);
7496         vcpu->arch.dr7 = DR7_FIXED_1;
7497         kvm_update_dr7(vcpu);
7498
7499         vcpu->arch.cr2 = 0;
7500
7501         kvm_make_request(KVM_REQ_EVENT, vcpu);
7502         vcpu->arch.apf.msr_val = 0;
7503         vcpu->arch.st.msr_val = 0;
7504
7505         kvmclock_reset(vcpu);
7506
7507         kvm_clear_async_pf_completion_queue(vcpu);
7508         kvm_async_pf_hash_reset(vcpu);
7509         vcpu->arch.apf.halted = false;
7510
7511         if (!init_event) {
7512                 kvm_pmu_reset(vcpu);
7513                 vcpu->arch.smbase = 0x30000;
7514         }
7515
7516         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7517         vcpu->arch.regs_avail = ~0;
7518         vcpu->arch.regs_dirty = ~0;
7519
7520         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7521 }
7522
7523 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7524 {
7525         struct kvm_segment cs;
7526
7527         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7528         cs.selector = vector << 8;
7529         cs.base = vector << 12;
7530         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7531         kvm_rip_write(vcpu, 0);
7532 }
7533
7534 int kvm_arch_hardware_enable(void)
7535 {
7536         struct kvm *kvm;
7537         struct kvm_vcpu *vcpu;
7538         int i;
7539         int ret;
7540         u64 local_tsc;
7541         u64 max_tsc = 0;
7542         bool stable, backwards_tsc = false;
7543
7544         kvm_shared_msr_cpu_online();
7545         ret = kvm_x86_ops->hardware_enable();
7546         if (ret != 0)
7547                 return ret;
7548
7549         local_tsc = rdtsc();
7550         stable = !check_tsc_unstable();
7551         list_for_each_entry(kvm, &vm_list, vm_list) {
7552                 kvm_for_each_vcpu(i, vcpu, kvm) {
7553                         if (!stable && vcpu->cpu == smp_processor_id())
7554                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7555                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7556                                 backwards_tsc = true;
7557                                 if (vcpu->arch.last_host_tsc > max_tsc)
7558                                         max_tsc = vcpu->arch.last_host_tsc;
7559                         }
7560                 }
7561         }
7562
7563         /*
7564          * Sometimes, even reliable TSCs go backwards.  This happens on
7565          * platforms that reset TSC during suspend or hibernate actions, but
7566          * maintain synchronization.  We must compensate.  Fortunately, we can
7567          * detect that condition here, which happens early in CPU bringup,
7568          * before any KVM threads can be running.  Unfortunately, we can't
7569          * bring the TSCs fully up to date with real time, as we aren't yet far
7570          * enough into CPU bringup that we know how much real time has actually
7571          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7572          * variables that haven't been updated yet.
7573          *
7574          * So we simply find the maximum observed TSC above, then record the
7575          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7576          * the adjustment will be applied.  Note that we accumulate
7577          * adjustments, in case multiple suspend cycles happen before some VCPU
7578          * gets a chance to run again.  In the event that no KVM threads get a
7579          * chance to run, we will miss the entire elapsed period, as we'll have
7580          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7581          * loose cycle time.  This isn't too big a deal, since the loss will be
7582          * uniform across all VCPUs (not to mention the scenario is extremely
7583          * unlikely). It is possible that a second hibernate recovery happens
7584          * much faster than a first, causing the observed TSC here to be
7585          * smaller; this would require additional padding adjustment, which is
7586          * why we set last_host_tsc to the local tsc observed here.
7587          *
7588          * N.B. - this code below runs only on platforms with reliable TSC,
7589          * as that is the only way backwards_tsc is set above.  Also note
7590          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7591          * have the same delta_cyc adjustment applied if backwards_tsc
7592          * is detected.  Note further, this adjustment is only done once,
7593          * as we reset last_host_tsc on all VCPUs to stop this from being
7594          * called multiple times (one for each physical CPU bringup).
7595          *
7596          * Platforms with unreliable TSCs don't have to deal with this, they
7597          * will be compensated by the logic in vcpu_load, which sets the TSC to
7598          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7599          * guarantee that they stay in perfect synchronization.
7600          */
7601         if (backwards_tsc) {
7602                 u64 delta_cyc = max_tsc - local_tsc;
7603                 backwards_tsc_observed = true;
7604                 list_for_each_entry(kvm, &vm_list, vm_list) {
7605                         kvm_for_each_vcpu(i, vcpu, kvm) {
7606                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7607                                 vcpu->arch.last_host_tsc = local_tsc;
7608                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7609                         }
7610
7611                         /*
7612                          * We have to disable TSC offset matching.. if you were
7613                          * booting a VM while issuing an S4 host suspend....
7614                          * you may have some problem.  Solving this issue is
7615                          * left as an exercise to the reader.
7616                          */
7617                         kvm->arch.last_tsc_nsec = 0;
7618                         kvm->arch.last_tsc_write = 0;
7619                 }
7620
7621         }
7622         return 0;
7623 }
7624
7625 void kvm_arch_hardware_disable(void)
7626 {
7627         kvm_x86_ops->hardware_disable();
7628         drop_user_return_notifiers();
7629 }
7630
7631 int kvm_arch_hardware_setup(void)
7632 {
7633         int r;
7634
7635         r = kvm_x86_ops->hardware_setup();
7636         if (r != 0)
7637                 return r;
7638
7639         if (kvm_has_tsc_control) {
7640                 /*
7641                  * Make sure the user can only configure tsc_khz values that
7642                  * fit into a signed integer.
7643                  * A min value is not calculated needed because it will always
7644                  * be 1 on all machines.
7645                  */
7646                 u64 max = min(0x7fffffffULL,
7647                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7648                 kvm_max_guest_tsc_khz = max;
7649
7650                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7651         }
7652
7653         kvm_init_msr_list();
7654         return 0;
7655 }
7656
7657 void kvm_arch_hardware_unsetup(void)
7658 {
7659         kvm_x86_ops->hardware_unsetup();
7660 }
7661
7662 void kvm_arch_check_processor_compat(void *rtn)
7663 {
7664         kvm_x86_ops->check_processor_compatibility(rtn);
7665 }
7666
7667 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7668 {
7669         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7670 }
7671 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7672
7673 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7674 {
7675         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7676 }
7677
7678 struct static_key kvm_no_apic_vcpu __read_mostly;
7679 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7680
7681 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7682 {
7683         struct page *page;
7684         struct kvm *kvm;
7685         int r;
7686
7687         BUG_ON(vcpu->kvm == NULL);
7688         kvm = vcpu->kvm;
7689
7690         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7691         vcpu->arch.pv.pv_unhalted = false;
7692         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7693         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7694                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7695         else
7696                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7697
7698         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7699         if (!page) {
7700                 r = -ENOMEM;
7701                 goto fail;
7702         }
7703         vcpu->arch.pio_data = page_address(page);
7704
7705         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7706
7707         r = kvm_mmu_create(vcpu);
7708         if (r < 0)
7709                 goto fail_free_pio_data;
7710
7711         if (irqchip_in_kernel(kvm)) {
7712                 r = kvm_create_lapic(vcpu);
7713                 if (r < 0)
7714                         goto fail_mmu_destroy;
7715         } else
7716                 static_key_slow_inc(&kvm_no_apic_vcpu);
7717
7718         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7719                                        GFP_KERNEL);
7720         if (!vcpu->arch.mce_banks) {
7721                 r = -ENOMEM;
7722                 goto fail_free_lapic;
7723         }
7724         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7725
7726         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7727                 r = -ENOMEM;
7728                 goto fail_free_mce_banks;
7729         }
7730
7731         fx_init(vcpu);
7732
7733         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7734         vcpu->arch.pv_time_enabled = false;
7735
7736         vcpu->arch.guest_supported_xcr0 = 0;
7737         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7738
7739         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7740
7741         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7742
7743         kvm_async_pf_hash_reset(vcpu);
7744         kvm_pmu_init(vcpu);
7745
7746         vcpu->arch.pending_external_vector = -1;
7747
7748         kvm_hv_vcpu_init(vcpu);
7749
7750         return 0;
7751
7752 fail_free_mce_banks:
7753         kfree(vcpu->arch.mce_banks);
7754 fail_free_lapic:
7755         kvm_free_lapic(vcpu);
7756 fail_mmu_destroy:
7757         kvm_mmu_destroy(vcpu);
7758 fail_free_pio_data:
7759         free_page((unsigned long)vcpu->arch.pio_data);
7760 fail:
7761         return r;
7762 }
7763
7764 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7765 {
7766         int idx;
7767
7768         kvm_hv_vcpu_uninit(vcpu);
7769         kvm_pmu_destroy(vcpu);
7770         kfree(vcpu->arch.mce_banks);
7771         kvm_free_lapic(vcpu);
7772         idx = srcu_read_lock(&vcpu->kvm->srcu);
7773         kvm_mmu_destroy(vcpu);
7774         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7775         free_page((unsigned long)vcpu->arch.pio_data);
7776         if (!lapic_in_kernel(vcpu))
7777                 static_key_slow_dec(&kvm_no_apic_vcpu);
7778 }
7779
7780 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7781 {
7782         kvm_x86_ops->sched_in(vcpu, cpu);
7783 }
7784
7785 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7786 {
7787         if (type)
7788                 return -EINVAL;
7789
7790         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7791         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7792         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7793         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7794         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7795
7796         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7797         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7798         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7799         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7800                 &kvm->arch.irq_sources_bitmap);
7801
7802         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7803         mutex_init(&kvm->arch.apic_map_lock);
7804         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7805
7806         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7807         pvclock_update_vm_gtod_copy(kvm);
7808
7809         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7810         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7811
7812         kvm_page_track_init(kvm);
7813         kvm_mmu_init_vm(kvm);
7814
7815         if (kvm_x86_ops->vm_init)
7816                 return kvm_x86_ops->vm_init(kvm);
7817
7818         return 0;
7819 }
7820
7821 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7822 {
7823         int r;
7824         r = vcpu_load(vcpu);
7825         BUG_ON(r);
7826         kvm_mmu_unload(vcpu);
7827         vcpu_put(vcpu);
7828 }
7829
7830 static void kvm_free_vcpus(struct kvm *kvm)
7831 {
7832         unsigned int i;
7833         struct kvm_vcpu *vcpu;
7834
7835         /*
7836          * Unpin any mmu pages first.
7837          */
7838         kvm_for_each_vcpu(i, vcpu, kvm) {
7839                 kvm_clear_async_pf_completion_queue(vcpu);
7840                 kvm_unload_vcpu_mmu(vcpu);
7841         }
7842         kvm_for_each_vcpu(i, vcpu, kvm)
7843                 kvm_arch_vcpu_free(vcpu);
7844
7845         mutex_lock(&kvm->lock);
7846         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7847                 kvm->vcpus[i] = NULL;
7848
7849         atomic_set(&kvm->online_vcpus, 0);
7850         mutex_unlock(&kvm->lock);
7851 }
7852
7853 void kvm_arch_sync_events(struct kvm *kvm)
7854 {
7855         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7856         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7857         kvm_free_all_assigned_devices(kvm);
7858         kvm_free_pit(kvm);
7859 }
7860
7861 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7862 {
7863         int i, r;
7864         unsigned long hva;
7865         struct kvm_memslots *slots = kvm_memslots(kvm);
7866         struct kvm_memory_slot *slot, old;
7867
7868         /* Called with kvm->slots_lock held.  */
7869         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7870                 return -EINVAL;
7871
7872         slot = id_to_memslot(slots, id);
7873         if (size) {
7874                 if (slot->npages)
7875                         return -EEXIST;
7876
7877                 /*
7878                  * MAP_SHARED to prevent internal slot pages from being moved
7879                  * by fork()/COW.
7880                  */
7881                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7882                               MAP_SHARED | MAP_ANONYMOUS, 0);
7883                 if (IS_ERR((void *)hva))
7884                         return PTR_ERR((void *)hva);
7885         } else {
7886                 if (!slot->npages)
7887                         return 0;
7888
7889                 hva = 0;
7890         }
7891
7892         old = *slot;
7893         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7894                 struct kvm_userspace_memory_region m;
7895
7896                 m.slot = id | (i << 16);
7897                 m.flags = 0;
7898                 m.guest_phys_addr = gpa;
7899                 m.userspace_addr = hva;
7900                 m.memory_size = size;
7901                 r = __kvm_set_memory_region(kvm, &m);
7902                 if (r < 0)
7903                         return r;
7904         }
7905
7906         if (!size) {
7907                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7908                 WARN_ON(r < 0);
7909         }
7910
7911         return 0;
7912 }
7913 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7914
7915 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7916 {
7917         int r;
7918
7919         mutex_lock(&kvm->slots_lock);
7920         r = __x86_set_memory_region(kvm, id, gpa, size);
7921         mutex_unlock(&kvm->slots_lock);
7922
7923         return r;
7924 }
7925 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7926
7927 void kvm_arch_destroy_vm(struct kvm *kvm)
7928 {
7929         if (current->mm == kvm->mm) {
7930                 /*
7931                  * Free memory regions allocated on behalf of userspace,
7932                  * unless the the memory map has changed due to process exit
7933                  * or fd copying.
7934                  */
7935                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7936                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7937                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7938         }
7939         if (kvm_x86_ops->vm_destroy)
7940                 kvm_x86_ops->vm_destroy(kvm);
7941         kvm_iommu_unmap_guest(kvm);
7942         kfree(kvm->arch.vpic);
7943         kfree(kvm->arch.vioapic);
7944         kvm_free_vcpus(kvm);
7945         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7946         kvm_mmu_uninit_vm(kvm);
7947 }
7948
7949 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7950                            struct kvm_memory_slot *dont)
7951 {
7952         int i;
7953
7954         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7955                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7956                         kvfree(free->arch.rmap[i]);
7957                         free->arch.rmap[i] = NULL;
7958                 }
7959                 if (i == 0)
7960                         continue;
7961
7962                 if (!dont || free->arch.lpage_info[i - 1] !=
7963                              dont->arch.lpage_info[i - 1]) {
7964                         kvfree(free->arch.lpage_info[i - 1]);
7965                         free->arch.lpage_info[i - 1] = NULL;
7966                 }
7967         }
7968
7969         kvm_page_track_free_memslot(free, dont);
7970 }
7971
7972 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7973                             unsigned long npages)
7974 {
7975         int i;
7976
7977         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7978                 struct kvm_lpage_info *linfo;
7979                 unsigned long ugfn;
7980                 int lpages;
7981                 int level = i + 1;
7982
7983                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7984                                       slot->base_gfn, level) + 1;
7985
7986                 slot->arch.rmap[i] =
7987                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7988                 if (!slot->arch.rmap[i])
7989                         goto out_free;
7990                 if (i == 0)
7991                         continue;
7992
7993                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7994                 if (!linfo)
7995                         goto out_free;
7996
7997                 slot->arch.lpage_info[i - 1] = linfo;
7998
7999                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8000                         linfo[0].disallow_lpage = 1;
8001                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8002                         linfo[lpages - 1].disallow_lpage = 1;
8003                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8004                 /*
8005                  * If the gfn and userspace address are not aligned wrt each
8006                  * other, or if explicitly asked to, disable large page
8007                  * support for this slot
8008                  */
8009                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8010                     !kvm_largepages_enabled()) {
8011                         unsigned long j;
8012
8013                         for (j = 0; j < lpages; ++j)
8014                                 linfo[j].disallow_lpage = 1;
8015                 }
8016         }
8017
8018         if (kvm_page_track_create_memslot(slot, npages))
8019                 goto out_free;
8020
8021         return 0;
8022
8023 out_free:
8024         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8025                 kvfree(slot->arch.rmap[i]);
8026                 slot->arch.rmap[i] = NULL;
8027                 if (i == 0)
8028                         continue;
8029
8030                 kvfree(slot->arch.lpage_info[i - 1]);
8031                 slot->arch.lpage_info[i - 1] = NULL;
8032         }
8033         return -ENOMEM;
8034 }
8035
8036 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8037 {
8038         /*
8039          * memslots->generation has been incremented.
8040          * mmio generation may have reached its maximum value.
8041          */
8042         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8043 }
8044
8045 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8046                                 struct kvm_memory_slot *memslot,
8047                                 const struct kvm_userspace_memory_region *mem,
8048                                 enum kvm_mr_change change)
8049 {
8050         return 0;
8051 }
8052
8053 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8054                                      struct kvm_memory_slot *new)
8055 {
8056         /* Still write protect RO slot */
8057         if (new->flags & KVM_MEM_READONLY) {
8058                 kvm_mmu_slot_remove_write_access(kvm, new);
8059                 return;
8060         }
8061
8062         /*
8063          * Call kvm_x86_ops dirty logging hooks when they are valid.
8064          *
8065          * kvm_x86_ops->slot_disable_log_dirty is called when:
8066          *
8067          *  - KVM_MR_CREATE with dirty logging is disabled
8068          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8069          *
8070          * The reason is, in case of PML, we need to set D-bit for any slots
8071          * with dirty logging disabled in order to eliminate unnecessary GPA
8072          * logging in PML buffer (and potential PML buffer full VMEXT). This
8073          * guarantees leaving PML enabled during guest's lifetime won't have
8074          * any additonal overhead from PML when guest is running with dirty
8075          * logging disabled for memory slots.
8076          *
8077          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8078          * to dirty logging mode.
8079          *
8080          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8081          *
8082          * In case of write protect:
8083          *
8084          * Write protect all pages for dirty logging.
8085          *
8086          * All the sptes including the large sptes which point to this
8087          * slot are set to readonly. We can not create any new large
8088          * spte on this slot until the end of the logging.
8089          *
8090          * See the comments in fast_page_fault().
8091          */
8092         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8093                 if (kvm_x86_ops->slot_enable_log_dirty)
8094                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8095                 else
8096                         kvm_mmu_slot_remove_write_access(kvm, new);
8097         } else {
8098                 if (kvm_x86_ops->slot_disable_log_dirty)
8099                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8100         }
8101 }
8102
8103 void kvm_arch_commit_memory_region(struct kvm *kvm,
8104                                 const struct kvm_userspace_memory_region *mem,
8105                                 const struct kvm_memory_slot *old,
8106                                 const struct kvm_memory_slot *new,
8107                                 enum kvm_mr_change change)
8108 {
8109         int nr_mmu_pages = 0;
8110
8111         if (!kvm->arch.n_requested_mmu_pages)
8112                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8113
8114         if (nr_mmu_pages)
8115                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8116
8117         /*
8118          * Dirty logging tracks sptes in 4k granularity, meaning that large
8119          * sptes have to be split.  If live migration is successful, the guest
8120          * in the source machine will be destroyed and large sptes will be
8121          * created in the destination. However, if the guest continues to run
8122          * in the source machine (for example if live migration fails), small
8123          * sptes will remain around and cause bad performance.
8124          *
8125          * Scan sptes if dirty logging has been stopped, dropping those
8126          * which can be collapsed into a single large-page spte.  Later
8127          * page faults will create the large-page sptes.
8128          */
8129         if ((change != KVM_MR_DELETE) &&
8130                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8131                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8132                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8133
8134         /*
8135          * Set up write protection and/or dirty logging for the new slot.
8136          *
8137          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8138          * been zapped so no dirty logging staff is needed for old slot. For
8139          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8140          * new and it's also covered when dealing with the new slot.
8141          *
8142          * FIXME: const-ify all uses of struct kvm_memory_slot.
8143          */
8144         if (change != KVM_MR_DELETE)
8145                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8146 }
8147
8148 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8149 {
8150         kvm_mmu_invalidate_zap_all_pages(kvm);
8151 }
8152
8153 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8154                                    struct kvm_memory_slot *slot)
8155 {
8156         kvm_mmu_invalidate_zap_all_pages(kvm);
8157 }
8158
8159 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8160 {
8161         if (!list_empty_careful(&vcpu->async_pf.done))
8162                 return true;
8163
8164         if (kvm_apic_has_events(vcpu))
8165                 return true;
8166
8167         if (vcpu->arch.pv.pv_unhalted)
8168                 return true;
8169
8170         if (atomic_read(&vcpu->arch.nmi_queued))
8171                 return true;
8172
8173         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8174                 return true;
8175
8176         if (kvm_arch_interrupt_allowed(vcpu) &&
8177             kvm_cpu_has_interrupt(vcpu))
8178                 return true;
8179
8180         if (kvm_hv_has_stimer_pending(vcpu))
8181                 return true;
8182
8183         return false;
8184 }
8185
8186 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8187 {
8188         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8189                 kvm_x86_ops->check_nested_events(vcpu, false);
8190
8191         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8192 }
8193
8194 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8195 {
8196         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8197 }
8198
8199 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8200 {
8201         return kvm_x86_ops->interrupt_allowed(vcpu);
8202 }
8203
8204 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8205 {
8206         if (is_64_bit_mode(vcpu))
8207                 return kvm_rip_read(vcpu);
8208         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8209                      kvm_rip_read(vcpu));
8210 }
8211 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8212
8213 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8214 {
8215         return kvm_get_linear_rip(vcpu) == linear_rip;
8216 }
8217 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8218
8219 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8220 {
8221         unsigned long rflags;
8222
8223         rflags = kvm_x86_ops->get_rflags(vcpu);
8224         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8225                 rflags &= ~X86_EFLAGS_TF;
8226         return rflags;
8227 }
8228 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8229
8230 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8231 {
8232         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8233             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8234                 rflags |= X86_EFLAGS_TF;
8235         kvm_x86_ops->set_rflags(vcpu, rflags);
8236 }
8237
8238 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8239 {
8240         __kvm_set_rflags(vcpu, rflags);
8241         kvm_make_request(KVM_REQ_EVENT, vcpu);
8242 }
8243 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8244
8245 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8246 {
8247         int r;
8248
8249         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8250               work->wakeup_all)
8251                 return;
8252
8253         r = kvm_mmu_reload(vcpu);
8254         if (unlikely(r))
8255                 return;
8256
8257         if (!vcpu->arch.mmu.direct_map &&
8258               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8259                 return;
8260
8261         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8262 }
8263
8264 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8265 {
8266         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8267 }
8268
8269 static inline u32 kvm_async_pf_next_probe(u32 key)
8270 {
8271         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8272 }
8273
8274 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8275 {
8276         u32 key = kvm_async_pf_hash_fn(gfn);
8277
8278         while (vcpu->arch.apf.gfns[key] != ~0)
8279                 key = kvm_async_pf_next_probe(key);
8280
8281         vcpu->arch.apf.gfns[key] = gfn;
8282 }
8283
8284 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8285 {
8286         int i;
8287         u32 key = kvm_async_pf_hash_fn(gfn);
8288
8289         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8290                      (vcpu->arch.apf.gfns[key] != gfn &&
8291                       vcpu->arch.apf.gfns[key] != ~0); i++)
8292                 key = kvm_async_pf_next_probe(key);
8293
8294         return key;
8295 }
8296
8297 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8298 {
8299         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8300 }
8301
8302 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8303 {
8304         u32 i, j, k;
8305
8306         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8307         while (true) {
8308                 vcpu->arch.apf.gfns[i] = ~0;
8309                 do {
8310                         j = kvm_async_pf_next_probe(j);
8311                         if (vcpu->arch.apf.gfns[j] == ~0)
8312                                 return;
8313                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8314                         /*
8315                          * k lies cyclically in ]i,j]
8316                          * |    i.k.j |
8317                          * |....j i.k.| or  |.k..j i...|
8318                          */
8319                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8320                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8321                 i = j;
8322         }
8323 }
8324
8325 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8326 {
8327
8328         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8329                                       sizeof(val));
8330 }
8331
8332 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8333                                      struct kvm_async_pf *work)
8334 {
8335         struct x86_exception fault;
8336
8337         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8338         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8339
8340         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8341             (vcpu->arch.apf.send_user_only &&
8342              kvm_x86_ops->get_cpl(vcpu) == 0))
8343                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8344         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8345                 fault.vector = PF_VECTOR;
8346                 fault.error_code_valid = true;
8347                 fault.error_code = 0;
8348                 fault.nested_page_fault = false;
8349                 fault.address = work->arch.token;
8350                 kvm_inject_page_fault(vcpu, &fault);
8351         }
8352 }
8353
8354 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8355                                  struct kvm_async_pf *work)
8356 {
8357         struct x86_exception fault;
8358
8359         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8360         if (work->wakeup_all)
8361                 work->arch.token = ~0; /* broadcast wakeup */
8362         else
8363                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8364
8365         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8366             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8367                 fault.vector = PF_VECTOR;
8368                 fault.error_code_valid = true;
8369                 fault.error_code = 0;
8370                 fault.nested_page_fault = false;
8371                 fault.address = work->arch.token;
8372                 kvm_inject_page_fault(vcpu, &fault);
8373         }
8374         vcpu->arch.apf.halted = false;
8375         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8376 }
8377
8378 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8379 {
8380         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8381                 return true;
8382         else
8383                 return !kvm_event_needs_reinjection(vcpu) &&
8384                         kvm_x86_ops->interrupt_allowed(vcpu);
8385 }
8386
8387 void kvm_arch_start_assignment(struct kvm *kvm)
8388 {
8389         atomic_inc(&kvm->arch.assigned_device_count);
8390 }
8391 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8392
8393 void kvm_arch_end_assignment(struct kvm *kvm)
8394 {
8395         atomic_dec(&kvm->arch.assigned_device_count);
8396 }
8397 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8398
8399 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8400 {
8401         return atomic_read(&kvm->arch.assigned_device_count);
8402 }
8403 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8404
8405 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8406 {
8407         atomic_inc(&kvm->arch.noncoherent_dma_count);
8408 }
8409 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8410
8411 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8412 {
8413         atomic_dec(&kvm->arch.noncoherent_dma_count);
8414 }
8415 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8416
8417 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8418 {
8419         return atomic_read(&kvm->arch.noncoherent_dma_count);
8420 }
8421 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8422
8423 bool kvm_arch_has_irq_bypass(void)
8424 {
8425         return kvm_x86_ops->update_pi_irte != NULL;
8426 }
8427
8428 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8429                                       struct irq_bypass_producer *prod)
8430 {
8431         struct kvm_kernel_irqfd *irqfd =
8432                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8433
8434         irqfd->producer = prod;
8435
8436         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8437                                            prod->irq, irqfd->gsi, 1);
8438 }
8439
8440 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8441                                       struct irq_bypass_producer *prod)
8442 {
8443         int ret;
8444         struct kvm_kernel_irqfd *irqfd =
8445                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8446
8447         WARN_ON(irqfd->producer != prod);
8448         irqfd->producer = NULL;
8449
8450         /*
8451          * When producer of consumer is unregistered, we change back to
8452          * remapped mode, so we can re-use the current implementation
8453          * when the irq is masked/disabled or the consumer side (KVM
8454          * int this case doesn't want to receive the interrupts.
8455         */
8456         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8457         if (ret)
8458                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8459                        " fails: %d\n", irqfd->consumer.token, ret);
8460 }
8461
8462 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8463                                    uint32_t guest_irq, bool set)
8464 {
8465         if (!kvm_x86_ops->update_pi_irte)
8466                 return -EINVAL;
8467
8468         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8469 }
8470
8471 bool kvm_vector_hashing_enabled(void)
8472 {
8473         return vector_hashing;
8474 }
8475 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8476
8477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);