KVM: remove in_range from io devices
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 #include <asm/uaccess.h>
44 #include <asm/msr.h>
45 #include <asm/desc.h>
46 #include <asm/mtrr.h>
47 #include <asm/mce.h>
48
49 #define MAX_IO_MSRS 256
50 #define CR0_RESERVED_BITS                                               \
51         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
52                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
53                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
54 #define CR4_RESERVED_BITS                                               \
55         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
56                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
57                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
58                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
59
60 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
61
62 #define KVM_MAX_MCE_BANKS 32
63 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
64
65 /* EFER defaults:
66  * - enable syscall per default because its emulated by KVM
67  * - enable LME and LMA per default on 64 bit KVM
68  */
69 #ifdef CONFIG_X86_64
70 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
71 #else
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
73 #endif
74
75 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
76 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
77
78 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
79                                     struct kvm_cpuid_entry2 __user *entries);
80 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
81                                               u32 function, u32 index);
82
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
85
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
88
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90         { "pf_fixed", VCPU_STAT(pf_fixed) },
91         { "pf_guest", VCPU_STAT(pf_guest) },
92         { "tlb_flush", VCPU_STAT(tlb_flush) },
93         { "invlpg", VCPU_STAT(invlpg) },
94         { "exits", VCPU_STAT(exits) },
95         { "io_exits", VCPU_STAT(io_exits) },
96         { "mmio_exits", VCPU_STAT(mmio_exits) },
97         { "signal_exits", VCPU_STAT(signal_exits) },
98         { "irq_window", VCPU_STAT(irq_window_exits) },
99         { "nmi_window", VCPU_STAT(nmi_window_exits) },
100         { "halt_exits", VCPU_STAT(halt_exits) },
101         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102         { "hypercalls", VCPU_STAT(hypercalls) },
103         { "request_irq", VCPU_STAT(request_irq_exits) },
104         { "irq_exits", VCPU_STAT(irq_exits) },
105         { "host_state_reload", VCPU_STAT(host_state_reload) },
106         { "efer_reload", VCPU_STAT(efer_reload) },
107         { "fpu_reload", VCPU_STAT(fpu_reload) },
108         { "insn_emulation", VCPU_STAT(insn_emulation) },
109         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110         { "irq_injections", VCPU_STAT(irq_injections) },
111         { "nmi_injections", VCPU_STAT(nmi_injections) },
112         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116         { "mmu_flooded", VM_STAT(mmu_flooded) },
117         { "mmu_recycled", VM_STAT(mmu_recycled) },
118         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119         { "mmu_unsync", VM_STAT(mmu_unsync) },
120         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121         { "largepages", VM_STAT(lpages) },
122         { NULL }
123 };
124
125 unsigned long segment_base(u16 selector)
126 {
127         struct descriptor_table gdt;
128         struct desc_struct *d;
129         unsigned long table_base;
130         unsigned long v;
131
132         if (selector == 0)
133                 return 0;
134
135         asm("sgdt %0" : "=m"(gdt));
136         table_base = gdt.base;
137
138         if (selector & 4) {           /* from ldt */
139                 u16 ldt_selector;
140
141                 asm("sldt %0" : "=g"(ldt_selector));
142                 table_base = segment_base(ldt_selector);
143         }
144         d = (struct desc_struct *)(table_base + (selector & ~7));
145         v = d->base0 | ((unsigned long)d->base1 << 16) |
146                 ((unsigned long)d->base2 << 24);
147 #ifdef CONFIG_X86_64
148         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
149                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
150 #endif
151         return v;
152 }
153 EXPORT_SYMBOL_GPL(segment_base);
154
155 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
156 {
157         if (irqchip_in_kernel(vcpu->kvm))
158                 return vcpu->arch.apic_base;
159         else
160                 return vcpu->arch.apic_base;
161 }
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
163
164 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
165 {
166         /* TODO: reserve bits check */
167         if (irqchip_in_kernel(vcpu->kvm))
168                 kvm_lapic_set_base(vcpu, data);
169         else
170                 vcpu->arch.apic_base = data;
171 }
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
173
174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
175 {
176         WARN_ON(vcpu->arch.exception.pending);
177         vcpu->arch.exception.pending = true;
178         vcpu->arch.exception.has_error_code = false;
179         vcpu->arch.exception.nr = nr;
180 }
181 EXPORT_SYMBOL_GPL(kvm_queue_exception);
182
183 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
184                            u32 error_code)
185 {
186         ++vcpu->stat.pf_guest;
187
188         if (vcpu->arch.exception.pending) {
189                 switch(vcpu->arch.exception.nr) {
190                 case DF_VECTOR:
191                         /* triple fault -> shutdown */
192                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193                         return;
194                 case PF_VECTOR:
195                         vcpu->arch.exception.nr = DF_VECTOR;
196                         vcpu->arch.exception.error_code = 0;
197                         return;
198                 default:
199                         /* replace previous exception with a new one in a hope
200                            that instruction re-execution will regenerate lost
201                            exception */
202                         vcpu->arch.exception.pending = false;
203                         break;
204                 }
205         }
206         vcpu->arch.cr2 = addr;
207         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
208 }
209
210 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
211 {
212         vcpu->arch.nmi_pending = 1;
213 }
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
215
216 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
217 {
218         WARN_ON(vcpu->arch.exception.pending);
219         vcpu->arch.exception.pending = true;
220         vcpu->arch.exception.has_error_code = true;
221         vcpu->arch.exception.nr = nr;
222         vcpu->arch.exception.error_code = error_code;
223 }
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
225
226 static void __queue_exception(struct kvm_vcpu *vcpu)
227 {
228         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
229                                      vcpu->arch.exception.has_error_code,
230                                      vcpu->arch.exception.error_code);
231 }
232
233 /*
234  * Load the pae pdptrs.  Return true is they are all valid.
235  */
236 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
237 {
238         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
239         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
240         int i;
241         int ret;
242         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
243
244         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
245                                   offset * sizeof(u64), sizeof(pdpte));
246         if (ret < 0) {
247                 ret = 0;
248                 goto out;
249         }
250         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
251                 if (is_present_gpte(pdpte[i]) &&
252                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
253                         ret = 0;
254                         goto out;
255                 }
256         }
257         ret = 1;
258
259         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
260         __set_bit(VCPU_EXREG_PDPTR,
261                   (unsigned long *)&vcpu->arch.regs_avail);
262         __set_bit(VCPU_EXREG_PDPTR,
263                   (unsigned long *)&vcpu->arch.regs_dirty);
264 out:
265
266         return ret;
267 }
268 EXPORT_SYMBOL_GPL(load_pdptrs);
269
270 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
271 {
272         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
273         bool changed = true;
274         int r;
275
276         if (is_long_mode(vcpu) || !is_pae(vcpu))
277                 return false;
278
279         if (!test_bit(VCPU_EXREG_PDPTR,
280                       (unsigned long *)&vcpu->arch.regs_avail))
281                 return true;
282
283         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
284         if (r < 0)
285                 goto out;
286         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
287 out:
288
289         return changed;
290 }
291
292 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
293 {
294         if (cr0 & CR0_RESERVED_BITS) {
295                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
296                        cr0, vcpu->arch.cr0);
297                 kvm_inject_gp(vcpu, 0);
298                 return;
299         }
300
301         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
302                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
303                 kvm_inject_gp(vcpu, 0);
304                 return;
305         }
306
307         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
308                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
309                        "and a clear PE flag\n");
310                 kvm_inject_gp(vcpu, 0);
311                 return;
312         }
313
314         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
315 #ifdef CONFIG_X86_64
316                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
317                         int cs_db, cs_l;
318
319                         if (!is_pae(vcpu)) {
320                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
321                                        "in long mode while PAE is disabled\n");
322                                 kvm_inject_gp(vcpu, 0);
323                                 return;
324                         }
325                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
326                         if (cs_l) {
327                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
328                                        "in long mode while CS.L == 1\n");
329                                 kvm_inject_gp(vcpu, 0);
330                                 return;
331
332                         }
333                 } else
334 #endif
335                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
337                                "reserved bits\n");
338                         kvm_inject_gp(vcpu, 0);
339                         return;
340                 }
341
342         }
343
344         kvm_x86_ops->set_cr0(vcpu, cr0);
345         vcpu->arch.cr0 = cr0;
346
347         kvm_mmu_reset_context(vcpu);
348         return;
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr0);
351
352 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
353 {
354         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
355 }
356 EXPORT_SYMBOL_GPL(kvm_lmsw);
357
358 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
359 {
360         unsigned long old_cr4 = vcpu->arch.cr4;
361         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
362
363         if (cr4 & CR4_RESERVED_BITS) {
364                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
365                 kvm_inject_gp(vcpu, 0);
366                 return;
367         }
368
369         if (is_long_mode(vcpu)) {
370                 if (!(cr4 & X86_CR4_PAE)) {
371                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
372                                "in long mode\n");
373                         kvm_inject_gp(vcpu, 0);
374                         return;
375                 }
376         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
377                    && ((cr4 ^ old_cr4) & pdptr_bits)
378                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
379                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
380                 kvm_inject_gp(vcpu, 0);
381                 return;
382         }
383
384         if (cr4 & X86_CR4_VMXE) {
385                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
386                 kvm_inject_gp(vcpu, 0);
387                 return;
388         }
389         kvm_x86_ops->set_cr4(vcpu, cr4);
390         vcpu->arch.cr4 = cr4;
391         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
392         kvm_mmu_reset_context(vcpu);
393 }
394 EXPORT_SYMBOL_GPL(kvm_set_cr4);
395
396 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
397 {
398         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
399                 kvm_mmu_sync_roots(vcpu);
400                 kvm_mmu_flush_tlb(vcpu);
401                 return;
402         }
403
404         if (is_long_mode(vcpu)) {
405                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
406                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
407                         kvm_inject_gp(vcpu, 0);
408                         return;
409                 }
410         } else {
411                 if (is_pae(vcpu)) {
412                         if (cr3 & CR3_PAE_RESERVED_BITS) {
413                                 printk(KERN_DEBUG
414                                        "set_cr3: #GP, reserved bits\n");
415                                 kvm_inject_gp(vcpu, 0);
416                                 return;
417                         }
418                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
419                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
420                                        "reserved bits\n");
421                                 kvm_inject_gp(vcpu, 0);
422                                 return;
423                         }
424                 }
425                 /*
426                  * We don't check reserved bits in nonpae mode, because
427                  * this isn't enforced, and VMware depends on this.
428                  */
429         }
430
431         /*
432          * Does the new cr3 value map to physical memory? (Note, we
433          * catch an invalid cr3 even in real-mode, because it would
434          * cause trouble later on when we turn on paging anyway.)
435          *
436          * A real CPU would silently accept an invalid cr3 and would
437          * attempt to use it - with largely undefined (and often hard
438          * to debug) behavior on the guest side.
439          */
440         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
441                 kvm_inject_gp(vcpu, 0);
442         else {
443                 vcpu->arch.cr3 = cr3;
444                 vcpu->arch.mmu.new_cr3(vcpu);
445         }
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_cr3);
448
449 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
450 {
451         if (cr8 & CR8_RESERVED_BITS) {
452                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
453                 kvm_inject_gp(vcpu, 0);
454                 return;
455         }
456         if (irqchip_in_kernel(vcpu->kvm))
457                 kvm_lapic_set_tpr(vcpu, cr8);
458         else
459                 vcpu->arch.cr8 = cr8;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_cr8);
462
463 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
464 {
465         if (irqchip_in_kernel(vcpu->kvm))
466                 return kvm_lapic_get_cr8(vcpu);
467         else
468                 return vcpu->arch.cr8;
469 }
470 EXPORT_SYMBOL_GPL(kvm_get_cr8);
471
472 static inline u32 bit(int bitno)
473 {
474         return 1 << (bitno & 31);
475 }
476
477 /*
478  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
479  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
480  *
481  * This list is modified at module load time to reflect the
482  * capabilities of the host cpu.
483  */
484 static u32 msrs_to_save[] = {
485         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
486         MSR_K6_STAR,
487 #ifdef CONFIG_X86_64
488         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
489 #endif
490         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
491         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
492 };
493
494 static unsigned num_msrs_to_save;
495
496 static u32 emulated_msrs[] = {
497         MSR_IA32_MISC_ENABLE,
498 };
499
500 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
501 {
502         if (efer & efer_reserved_bits) {
503                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
504                        efer);
505                 kvm_inject_gp(vcpu, 0);
506                 return;
507         }
508
509         if (is_paging(vcpu)
510             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
511                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
512                 kvm_inject_gp(vcpu, 0);
513                 return;
514         }
515
516         if (efer & EFER_FFXSR) {
517                 struct kvm_cpuid_entry2 *feat;
518
519                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
520                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
521                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
522                         kvm_inject_gp(vcpu, 0);
523                         return;
524                 }
525         }
526
527         if (efer & EFER_SVME) {
528                 struct kvm_cpuid_entry2 *feat;
529
530                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
531                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
532                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
533                         kvm_inject_gp(vcpu, 0);
534                         return;
535                 }
536         }
537
538         kvm_x86_ops->set_efer(vcpu, efer);
539
540         efer &= ~EFER_LMA;
541         efer |= vcpu->arch.shadow_efer & EFER_LMA;
542
543         vcpu->arch.shadow_efer = efer;
544
545         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
546         kvm_mmu_reset_context(vcpu);
547 }
548
549 void kvm_enable_efer_bits(u64 mask)
550 {
551        efer_reserved_bits &= ~mask;
552 }
553 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
554
555
556 /*
557  * Writes msr value into into the appropriate "register".
558  * Returns 0 on success, non-0 otherwise.
559  * Assumes vcpu_load() was already called.
560  */
561 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
562 {
563         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
564 }
565
566 /*
567  * Adapt set_msr() to msr_io()'s calling convention
568  */
569 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
570 {
571         return kvm_set_msr(vcpu, index, *data);
572 }
573
574 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
575 {
576         static int version;
577         struct pvclock_wall_clock wc;
578         struct timespec now, sys, boot;
579
580         if (!wall_clock)
581                 return;
582
583         version++;
584
585         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
586
587         /*
588          * The guest calculates current wall clock time by adding
589          * system time (updated by kvm_write_guest_time below) to the
590          * wall clock specified here.  guest system time equals host
591          * system time for us, thus we must fill in host boot time here.
592          */
593         now = current_kernel_time();
594         ktime_get_ts(&sys);
595         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
596
597         wc.sec = boot.tv_sec;
598         wc.nsec = boot.tv_nsec;
599         wc.version = version;
600
601         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
602
603         version++;
604         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
605 }
606
607 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
608 {
609         uint32_t quotient, remainder;
610
611         /* Don't try to replace with do_div(), this one calculates
612          * "(dividend << 32) / divisor" */
613         __asm__ ( "divl %4"
614                   : "=a" (quotient), "=d" (remainder)
615                   : "0" (0), "1" (dividend), "r" (divisor) );
616         return quotient;
617 }
618
619 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
620 {
621         uint64_t nsecs = 1000000000LL;
622         int32_t  shift = 0;
623         uint64_t tps64;
624         uint32_t tps32;
625
626         tps64 = tsc_khz * 1000LL;
627         while (tps64 > nsecs*2) {
628                 tps64 >>= 1;
629                 shift--;
630         }
631
632         tps32 = (uint32_t)tps64;
633         while (tps32 <= (uint32_t)nsecs) {
634                 tps32 <<= 1;
635                 shift++;
636         }
637
638         hv_clock->tsc_shift = shift;
639         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
640
641         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
642                  __func__, tsc_khz, hv_clock->tsc_shift,
643                  hv_clock->tsc_to_system_mul);
644 }
645
646 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
647
648 static void kvm_write_guest_time(struct kvm_vcpu *v)
649 {
650         struct timespec ts;
651         unsigned long flags;
652         struct kvm_vcpu_arch *vcpu = &v->arch;
653         void *shared_kaddr;
654         unsigned long this_tsc_khz;
655
656         if ((!vcpu->time_page))
657                 return;
658
659         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
660         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
661                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
662                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
663         }
664         put_cpu_var(cpu_tsc_khz);
665
666         /* Keep irq disabled to prevent changes to the clock */
667         local_irq_save(flags);
668         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
669         ktime_get_ts(&ts);
670         local_irq_restore(flags);
671
672         /* With all the info we got, fill in the values */
673
674         vcpu->hv_clock.system_time = ts.tv_nsec +
675                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
676         /*
677          * The interface expects us to write an even number signaling that the
678          * update is finished. Since the guest won't see the intermediate
679          * state, we just increase by 2 at the end.
680          */
681         vcpu->hv_clock.version += 2;
682
683         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
684
685         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
686                sizeof(vcpu->hv_clock));
687
688         kunmap_atomic(shared_kaddr, KM_USER0);
689
690         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
691 }
692
693 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
694 {
695         struct kvm_vcpu_arch *vcpu = &v->arch;
696
697         if (!vcpu->time_page)
698                 return 0;
699         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
700         return 1;
701 }
702
703 static bool msr_mtrr_valid(unsigned msr)
704 {
705         switch (msr) {
706         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
707         case MSR_MTRRfix64K_00000:
708         case MSR_MTRRfix16K_80000:
709         case MSR_MTRRfix16K_A0000:
710         case MSR_MTRRfix4K_C0000:
711         case MSR_MTRRfix4K_C8000:
712         case MSR_MTRRfix4K_D0000:
713         case MSR_MTRRfix4K_D8000:
714         case MSR_MTRRfix4K_E0000:
715         case MSR_MTRRfix4K_E8000:
716         case MSR_MTRRfix4K_F0000:
717         case MSR_MTRRfix4K_F8000:
718         case MSR_MTRRdefType:
719         case MSR_IA32_CR_PAT:
720                 return true;
721         case 0x2f8:
722                 return true;
723         }
724         return false;
725 }
726
727 static bool valid_pat_type(unsigned t)
728 {
729         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
730 }
731
732 static bool valid_mtrr_type(unsigned t)
733 {
734         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
735 }
736
737 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
738 {
739         int i;
740
741         if (!msr_mtrr_valid(msr))
742                 return false;
743
744         if (msr == MSR_IA32_CR_PAT) {
745                 for (i = 0; i < 8; i++)
746                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
747                                 return false;
748                 return true;
749         } else if (msr == MSR_MTRRdefType) {
750                 if (data & ~0xcff)
751                         return false;
752                 return valid_mtrr_type(data & 0xff);
753         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
754                 for (i = 0; i < 8 ; i++)
755                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
756                                 return false;
757                 return true;
758         }
759
760         /* variable MTRRs */
761         return valid_mtrr_type(data & 0xff);
762 }
763
764 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
765 {
766         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
767
768         if (!mtrr_valid(vcpu, msr, data))
769                 return 1;
770
771         if (msr == MSR_MTRRdefType) {
772                 vcpu->arch.mtrr_state.def_type = data;
773                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
774         } else if (msr == MSR_MTRRfix64K_00000)
775                 p[0] = data;
776         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
777                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
778         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
779                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
780         else if (msr == MSR_IA32_CR_PAT)
781                 vcpu->arch.pat = data;
782         else {  /* Variable MTRRs */
783                 int idx, is_mtrr_mask;
784                 u64 *pt;
785
786                 idx = (msr - 0x200) / 2;
787                 is_mtrr_mask = msr - 0x200 - 2 * idx;
788                 if (!is_mtrr_mask)
789                         pt =
790                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
791                 else
792                         pt =
793                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
794                 *pt = data;
795         }
796
797         kvm_mmu_reset_context(vcpu);
798         return 0;
799 }
800
801 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
802 {
803         u64 mcg_cap = vcpu->arch.mcg_cap;
804         unsigned bank_num = mcg_cap & 0xff;
805
806         switch (msr) {
807         case MSR_IA32_MCG_STATUS:
808                 vcpu->arch.mcg_status = data;
809                 break;
810         case MSR_IA32_MCG_CTL:
811                 if (!(mcg_cap & MCG_CTL_P))
812                         return 1;
813                 if (data != 0 && data != ~(u64)0)
814                         return -1;
815                 vcpu->arch.mcg_ctl = data;
816                 break;
817         default:
818                 if (msr >= MSR_IA32_MC0_CTL &&
819                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
820                         u32 offset = msr - MSR_IA32_MC0_CTL;
821                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
822                         if ((offset & 0x3) == 0 &&
823                             data != 0 && data != ~(u64)0)
824                                 return -1;
825                         vcpu->arch.mce_banks[offset] = data;
826                         break;
827                 }
828                 return 1;
829         }
830         return 0;
831 }
832
833 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
834 {
835         switch (msr) {
836         case MSR_EFER:
837                 set_efer(vcpu, data);
838                 break;
839         case MSR_K7_HWCR:
840                 data &= ~(u64)0x40;     /* ignore flush filter disable */
841                 if (data != 0) {
842                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
843                                 data);
844                         return 1;
845                 }
846                 break;
847         case MSR_IA32_DEBUGCTLMSR:
848                 if (!data) {
849                         /* We support the non-activated case already */
850                         break;
851                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
852                         /* Values other than LBR and BTF are vendor-specific,
853                            thus reserved and should throw a #GP */
854                         return 1;
855                 }
856                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
857                         __func__, data);
858                 break;
859         case MSR_IA32_UCODE_REV:
860         case MSR_IA32_UCODE_WRITE:
861         case MSR_VM_HSAVE_PA:
862                 break;
863         case 0x200 ... 0x2ff:
864                 return set_msr_mtrr(vcpu, msr, data);
865         case MSR_IA32_APICBASE:
866                 kvm_set_apic_base(vcpu, data);
867                 break;
868         case MSR_IA32_MISC_ENABLE:
869                 vcpu->arch.ia32_misc_enable_msr = data;
870                 break;
871         case MSR_KVM_WALL_CLOCK:
872                 vcpu->kvm->arch.wall_clock = data;
873                 kvm_write_wall_clock(vcpu->kvm, data);
874                 break;
875         case MSR_KVM_SYSTEM_TIME: {
876                 if (vcpu->arch.time_page) {
877                         kvm_release_page_dirty(vcpu->arch.time_page);
878                         vcpu->arch.time_page = NULL;
879                 }
880
881                 vcpu->arch.time = data;
882
883                 /* we verify if the enable bit is set... */
884                 if (!(data & 1))
885                         break;
886
887                 /* ...but clean it before doing the actual write */
888                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
889
890                 vcpu->arch.time_page =
891                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
892
893                 if (is_error_page(vcpu->arch.time_page)) {
894                         kvm_release_page_clean(vcpu->arch.time_page);
895                         vcpu->arch.time_page = NULL;
896                 }
897
898                 kvm_request_guest_time_update(vcpu);
899                 break;
900         }
901         case MSR_IA32_MCG_CTL:
902         case MSR_IA32_MCG_STATUS:
903         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
904                 return set_msr_mce(vcpu, msr, data);
905
906         /* Performance counters are not protected by a CPUID bit,
907          * so we should check all of them in the generic path for the sake of
908          * cross vendor migration.
909          * Writing a zero into the event select MSRs disables them,
910          * which we perfectly emulate ;-). Any other value should be at least
911          * reported, some guests depend on them.
912          */
913         case MSR_P6_EVNTSEL0:
914         case MSR_P6_EVNTSEL1:
915         case MSR_K7_EVNTSEL0:
916         case MSR_K7_EVNTSEL1:
917         case MSR_K7_EVNTSEL2:
918         case MSR_K7_EVNTSEL3:
919                 if (data != 0)
920                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
921                                 "0x%x data 0x%llx\n", msr, data);
922                 break;
923         /* at least RHEL 4 unconditionally writes to the perfctr registers,
924          * so we ignore writes to make it happy.
925          */
926         case MSR_P6_PERFCTR0:
927         case MSR_P6_PERFCTR1:
928         case MSR_K7_PERFCTR0:
929         case MSR_K7_PERFCTR1:
930         case MSR_K7_PERFCTR2:
931         case MSR_K7_PERFCTR3:
932                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
933                         "0x%x data 0x%llx\n", msr, data);
934                 break;
935         default:
936                 if (!ignore_msrs) {
937                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
938                                 msr, data);
939                         return 1;
940                 } else {
941                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
942                                 msr, data);
943                         break;
944                 }
945         }
946         return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
949
950
951 /*
952  * Reads an msr value (of 'msr_index') into 'pdata'.
953  * Returns 0 on success, non-0 otherwise.
954  * Assumes vcpu_load() was already called.
955  */
956 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
957 {
958         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
959 }
960
961 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
962 {
963         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
964
965         if (!msr_mtrr_valid(msr))
966                 return 1;
967
968         if (msr == MSR_MTRRdefType)
969                 *pdata = vcpu->arch.mtrr_state.def_type +
970                          (vcpu->arch.mtrr_state.enabled << 10);
971         else if (msr == MSR_MTRRfix64K_00000)
972                 *pdata = p[0];
973         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
974                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
975         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
976                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
977         else if (msr == MSR_IA32_CR_PAT)
978                 *pdata = vcpu->arch.pat;
979         else {  /* Variable MTRRs */
980                 int idx, is_mtrr_mask;
981                 u64 *pt;
982
983                 idx = (msr - 0x200) / 2;
984                 is_mtrr_mask = msr - 0x200 - 2 * idx;
985                 if (!is_mtrr_mask)
986                         pt =
987                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
988                 else
989                         pt =
990                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
991                 *pdata = *pt;
992         }
993
994         return 0;
995 }
996
997 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
998 {
999         u64 data;
1000         u64 mcg_cap = vcpu->arch.mcg_cap;
1001         unsigned bank_num = mcg_cap & 0xff;
1002
1003         switch (msr) {
1004         case MSR_IA32_P5_MC_ADDR:
1005         case MSR_IA32_P5_MC_TYPE:
1006                 data = 0;
1007                 break;
1008         case MSR_IA32_MCG_CAP:
1009                 data = vcpu->arch.mcg_cap;
1010                 break;
1011         case MSR_IA32_MCG_CTL:
1012                 if (!(mcg_cap & MCG_CTL_P))
1013                         return 1;
1014                 data = vcpu->arch.mcg_ctl;
1015                 break;
1016         case MSR_IA32_MCG_STATUS:
1017                 data = vcpu->arch.mcg_status;
1018                 break;
1019         default:
1020                 if (msr >= MSR_IA32_MC0_CTL &&
1021                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1022                         u32 offset = msr - MSR_IA32_MC0_CTL;
1023                         data = vcpu->arch.mce_banks[offset];
1024                         break;
1025                 }
1026                 return 1;
1027         }
1028         *pdata = data;
1029         return 0;
1030 }
1031
1032 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1033 {
1034         u64 data;
1035
1036         switch (msr) {
1037         case MSR_IA32_PLATFORM_ID:
1038         case MSR_IA32_UCODE_REV:
1039         case MSR_IA32_EBL_CR_POWERON:
1040         case MSR_IA32_DEBUGCTLMSR:
1041         case MSR_IA32_LASTBRANCHFROMIP:
1042         case MSR_IA32_LASTBRANCHTOIP:
1043         case MSR_IA32_LASTINTFROMIP:
1044         case MSR_IA32_LASTINTTOIP:
1045         case MSR_K8_SYSCFG:
1046         case MSR_K7_HWCR:
1047         case MSR_VM_HSAVE_PA:
1048         case MSR_P6_EVNTSEL0:
1049         case MSR_P6_EVNTSEL1:
1050         case MSR_K7_EVNTSEL0:
1051         case MSR_K8_INT_PENDING_MSG:
1052                 data = 0;
1053                 break;
1054         case MSR_MTRRcap:
1055                 data = 0x500 | KVM_NR_VAR_MTRR;
1056                 break;
1057         case 0x200 ... 0x2ff:
1058                 return get_msr_mtrr(vcpu, msr, pdata);
1059         case 0xcd: /* fsb frequency */
1060                 data = 3;
1061                 break;
1062         case MSR_IA32_APICBASE:
1063                 data = kvm_get_apic_base(vcpu);
1064                 break;
1065         case MSR_IA32_MISC_ENABLE:
1066                 data = vcpu->arch.ia32_misc_enable_msr;
1067                 break;
1068         case MSR_IA32_PERF_STATUS:
1069                 /* TSC increment by tick */
1070                 data = 1000ULL;
1071                 /* CPU multiplier */
1072                 data |= (((uint64_t)4ULL) << 40);
1073                 break;
1074         case MSR_EFER:
1075                 data = vcpu->arch.shadow_efer;
1076                 break;
1077         case MSR_KVM_WALL_CLOCK:
1078                 data = vcpu->kvm->arch.wall_clock;
1079                 break;
1080         case MSR_KVM_SYSTEM_TIME:
1081                 data = vcpu->arch.time;
1082                 break;
1083         case MSR_IA32_P5_MC_ADDR:
1084         case MSR_IA32_P5_MC_TYPE:
1085         case MSR_IA32_MCG_CAP:
1086         case MSR_IA32_MCG_CTL:
1087         case MSR_IA32_MCG_STATUS:
1088         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1089                 return get_msr_mce(vcpu, msr, pdata);
1090         default:
1091                 if (!ignore_msrs) {
1092                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1093                         return 1;
1094                 } else {
1095                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1096                         data = 0;
1097                 }
1098                 break;
1099         }
1100         *pdata = data;
1101         return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1104
1105 /*
1106  * Read or write a bunch of msrs. All parameters are kernel addresses.
1107  *
1108  * @return number of msrs set successfully.
1109  */
1110 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1111                     struct kvm_msr_entry *entries,
1112                     int (*do_msr)(struct kvm_vcpu *vcpu,
1113                                   unsigned index, u64 *data))
1114 {
1115         int i;
1116
1117         vcpu_load(vcpu);
1118
1119         down_read(&vcpu->kvm->slots_lock);
1120         for (i = 0; i < msrs->nmsrs; ++i)
1121                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1122                         break;
1123         up_read(&vcpu->kvm->slots_lock);
1124
1125         vcpu_put(vcpu);
1126
1127         return i;
1128 }
1129
1130 /*
1131  * Read or write a bunch of msrs. Parameters are user addresses.
1132  *
1133  * @return number of msrs set successfully.
1134  */
1135 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1136                   int (*do_msr)(struct kvm_vcpu *vcpu,
1137                                 unsigned index, u64 *data),
1138                   int writeback)
1139 {
1140         struct kvm_msrs msrs;
1141         struct kvm_msr_entry *entries;
1142         int r, n;
1143         unsigned size;
1144
1145         r = -EFAULT;
1146         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1147                 goto out;
1148
1149         r = -E2BIG;
1150         if (msrs.nmsrs >= MAX_IO_MSRS)
1151                 goto out;
1152
1153         r = -ENOMEM;
1154         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1155         entries = vmalloc(size);
1156         if (!entries)
1157                 goto out;
1158
1159         r = -EFAULT;
1160         if (copy_from_user(entries, user_msrs->entries, size))
1161                 goto out_free;
1162
1163         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1164         if (r < 0)
1165                 goto out_free;
1166
1167         r = -EFAULT;
1168         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1169                 goto out_free;
1170
1171         r = n;
1172
1173 out_free:
1174         vfree(entries);
1175 out:
1176         return r;
1177 }
1178
1179 int kvm_dev_ioctl_check_extension(long ext)
1180 {
1181         int r;
1182
1183         switch (ext) {
1184         case KVM_CAP_IRQCHIP:
1185         case KVM_CAP_HLT:
1186         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1187         case KVM_CAP_SET_TSS_ADDR:
1188         case KVM_CAP_EXT_CPUID:
1189         case KVM_CAP_CLOCKSOURCE:
1190         case KVM_CAP_PIT:
1191         case KVM_CAP_NOP_IO_DELAY:
1192         case KVM_CAP_MP_STATE:
1193         case KVM_CAP_SYNC_MMU:
1194         case KVM_CAP_REINJECT_CONTROL:
1195         case KVM_CAP_IRQ_INJECT_STATUS:
1196         case KVM_CAP_ASSIGN_DEV_IRQ:
1197         case KVM_CAP_IRQFD:
1198         case KVM_CAP_PIT2:
1199                 r = 1;
1200                 break;
1201         case KVM_CAP_COALESCED_MMIO:
1202                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1203                 break;
1204         case KVM_CAP_VAPIC:
1205                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1206                 break;
1207         case KVM_CAP_NR_VCPUS:
1208                 r = KVM_MAX_VCPUS;
1209                 break;
1210         case KVM_CAP_NR_MEMSLOTS:
1211                 r = KVM_MEMORY_SLOTS;
1212                 break;
1213         case KVM_CAP_PV_MMU:
1214                 r = !tdp_enabled;
1215                 break;
1216         case KVM_CAP_IOMMU:
1217                 r = iommu_found();
1218                 break;
1219         case KVM_CAP_MCE:
1220                 r = KVM_MAX_MCE_BANKS;
1221                 break;
1222         default:
1223                 r = 0;
1224                 break;
1225         }
1226         return r;
1227
1228 }
1229
1230 long kvm_arch_dev_ioctl(struct file *filp,
1231                         unsigned int ioctl, unsigned long arg)
1232 {
1233         void __user *argp = (void __user *)arg;
1234         long r;
1235
1236         switch (ioctl) {
1237         case KVM_GET_MSR_INDEX_LIST: {
1238                 struct kvm_msr_list __user *user_msr_list = argp;
1239                 struct kvm_msr_list msr_list;
1240                 unsigned n;
1241
1242                 r = -EFAULT;
1243                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1244                         goto out;
1245                 n = msr_list.nmsrs;
1246                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1247                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1248                         goto out;
1249                 r = -E2BIG;
1250                 if (n < msr_list.nmsrs)
1251                         goto out;
1252                 r = -EFAULT;
1253                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1254                                  num_msrs_to_save * sizeof(u32)))
1255                         goto out;
1256                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1257                                  &emulated_msrs,
1258                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1259                         goto out;
1260                 r = 0;
1261                 break;
1262         }
1263         case KVM_GET_SUPPORTED_CPUID: {
1264                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1265                 struct kvm_cpuid2 cpuid;
1266
1267                 r = -EFAULT;
1268                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1269                         goto out;
1270                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1271                                                       cpuid_arg->entries);
1272                 if (r)
1273                         goto out;
1274
1275                 r = -EFAULT;
1276                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1277                         goto out;
1278                 r = 0;
1279                 break;
1280         }
1281         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1282                 u64 mce_cap;
1283
1284                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1285                 r = -EFAULT;
1286                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1287                         goto out;
1288                 r = 0;
1289                 break;
1290         }
1291         default:
1292                 r = -EINVAL;
1293         }
1294 out:
1295         return r;
1296 }
1297
1298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1299 {
1300         kvm_x86_ops->vcpu_load(vcpu, cpu);
1301         kvm_request_guest_time_update(vcpu);
1302 }
1303
1304 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1305 {
1306         kvm_x86_ops->vcpu_put(vcpu);
1307         kvm_put_guest_fpu(vcpu);
1308 }
1309
1310 static int is_efer_nx(void)
1311 {
1312         unsigned long long efer = 0;
1313
1314         rdmsrl_safe(MSR_EFER, &efer);
1315         return efer & EFER_NX;
1316 }
1317
1318 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1319 {
1320         int i;
1321         struct kvm_cpuid_entry2 *e, *entry;
1322
1323         entry = NULL;
1324         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1325                 e = &vcpu->arch.cpuid_entries[i];
1326                 if (e->function == 0x80000001) {
1327                         entry = e;
1328                         break;
1329                 }
1330         }
1331         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1332                 entry->edx &= ~(1 << 20);
1333                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1334         }
1335 }
1336
1337 /* when an old userspace process fills a new kernel module */
1338 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1339                                     struct kvm_cpuid *cpuid,
1340                                     struct kvm_cpuid_entry __user *entries)
1341 {
1342         int r, i;
1343         struct kvm_cpuid_entry *cpuid_entries;
1344
1345         r = -E2BIG;
1346         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1347                 goto out;
1348         r = -ENOMEM;
1349         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1350         if (!cpuid_entries)
1351                 goto out;
1352         r = -EFAULT;
1353         if (copy_from_user(cpuid_entries, entries,
1354                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1355                 goto out_free;
1356         for (i = 0; i < cpuid->nent; i++) {
1357                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1358                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1359                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1360                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1361                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1362                 vcpu->arch.cpuid_entries[i].index = 0;
1363                 vcpu->arch.cpuid_entries[i].flags = 0;
1364                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1365                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1366                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1367         }
1368         vcpu->arch.cpuid_nent = cpuid->nent;
1369         cpuid_fix_nx_cap(vcpu);
1370         r = 0;
1371
1372 out_free:
1373         vfree(cpuid_entries);
1374 out:
1375         return r;
1376 }
1377
1378 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1379                                      struct kvm_cpuid2 *cpuid,
1380                                      struct kvm_cpuid_entry2 __user *entries)
1381 {
1382         int r;
1383
1384         r = -E2BIG;
1385         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1386                 goto out;
1387         r = -EFAULT;
1388         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1389                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1390                 goto out;
1391         vcpu->arch.cpuid_nent = cpuid->nent;
1392         return 0;
1393
1394 out:
1395         return r;
1396 }
1397
1398 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1399                                      struct kvm_cpuid2 *cpuid,
1400                                      struct kvm_cpuid_entry2 __user *entries)
1401 {
1402         int r;
1403
1404         r = -E2BIG;
1405         if (cpuid->nent < vcpu->arch.cpuid_nent)
1406                 goto out;
1407         r = -EFAULT;
1408         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1409                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1410                 goto out;
1411         return 0;
1412
1413 out:
1414         cpuid->nent = vcpu->arch.cpuid_nent;
1415         return r;
1416 }
1417
1418 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1419                            u32 index)
1420 {
1421         entry->function = function;
1422         entry->index = index;
1423         cpuid_count(entry->function, entry->index,
1424                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1425         entry->flags = 0;
1426 }
1427
1428 #define F(x) bit(X86_FEATURE_##x)
1429
1430 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1431                          u32 index, int *nent, int maxnent)
1432 {
1433         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1434 #ifdef CONFIG_X86_64
1435         unsigned f_lm = F(LM);
1436 #else
1437         unsigned f_lm = 0;
1438 #endif
1439
1440         /* cpuid 1.edx */
1441         const u32 kvm_supported_word0_x86_features =
1442                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1443                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1444                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1445                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1446                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1447                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1448                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1449                 0 /* HTT, TM, Reserved, PBE */;
1450         /* cpuid 0x80000001.edx */
1451         const u32 kvm_supported_word1_x86_features =
1452                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1453                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1454                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1455                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1456                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1457                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1458                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1459                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1460         /* cpuid 1.ecx */
1461         const u32 kvm_supported_word4_x86_features =
1462                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1463                 0 /* DS-CPL, VMX, SMX, EST */ |
1464                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1465                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1466                 0 /* Reserved, DCA */ | F(XMM4_1) |
1467                 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1468                 0 /* Reserved, XSAVE, OSXSAVE */;
1469         /* cpuid 0x80000001.ecx */
1470         const u32 kvm_supported_word6_x86_features =
1471                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1472                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1473                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1474                 0 /* SKINIT */ | 0 /* WDT */;
1475
1476         /* all calls to cpuid_count() should be made on the same cpu */
1477         get_cpu();
1478         do_cpuid_1_ent(entry, function, index);
1479         ++*nent;
1480
1481         switch (function) {
1482         case 0:
1483                 entry->eax = min(entry->eax, (u32)0xb);
1484                 break;
1485         case 1:
1486                 entry->edx &= kvm_supported_word0_x86_features;
1487                 entry->ecx &= kvm_supported_word4_x86_features;
1488                 break;
1489         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1490          * may return different values. This forces us to get_cpu() before
1491          * issuing the first command, and also to emulate this annoying behavior
1492          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1493         case 2: {
1494                 int t, times = entry->eax & 0xff;
1495
1496                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1497                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1498                 for (t = 1; t < times && *nent < maxnent; ++t) {
1499                         do_cpuid_1_ent(&entry[t], function, 0);
1500                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1501                         ++*nent;
1502                 }
1503                 break;
1504         }
1505         /* function 4 and 0xb have additional index. */
1506         case 4: {
1507                 int i, cache_type;
1508
1509                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1510                 /* read more entries until cache_type is zero */
1511                 for (i = 1; *nent < maxnent; ++i) {
1512                         cache_type = entry[i - 1].eax & 0x1f;
1513                         if (!cache_type)
1514                                 break;
1515                         do_cpuid_1_ent(&entry[i], function, i);
1516                         entry[i].flags |=
1517                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1518                         ++*nent;
1519                 }
1520                 break;
1521         }
1522         case 0xb: {
1523                 int i, level_type;
1524
1525                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1526                 /* read more entries until level_type is zero */
1527                 for (i = 1; *nent < maxnent; ++i) {
1528                         level_type = entry[i - 1].ecx & 0xff00;
1529                         if (!level_type)
1530                                 break;
1531                         do_cpuid_1_ent(&entry[i], function, i);
1532                         entry[i].flags |=
1533                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1534                         ++*nent;
1535                 }
1536                 break;
1537         }
1538         case 0x80000000:
1539                 entry->eax = min(entry->eax, 0x8000001a);
1540                 break;
1541         case 0x80000001:
1542                 entry->edx &= kvm_supported_word1_x86_features;
1543                 entry->ecx &= kvm_supported_word6_x86_features;
1544                 break;
1545         }
1546         put_cpu();
1547 }
1548
1549 #undef F
1550
1551 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1552                                      struct kvm_cpuid_entry2 __user *entries)
1553 {
1554         struct kvm_cpuid_entry2 *cpuid_entries;
1555         int limit, nent = 0, r = -E2BIG;
1556         u32 func;
1557
1558         if (cpuid->nent < 1)
1559                 goto out;
1560         r = -ENOMEM;
1561         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1562         if (!cpuid_entries)
1563                 goto out;
1564
1565         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1566         limit = cpuid_entries[0].eax;
1567         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1568                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1569                              &nent, cpuid->nent);
1570         r = -E2BIG;
1571         if (nent >= cpuid->nent)
1572                 goto out_free;
1573
1574         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1575         limit = cpuid_entries[nent - 1].eax;
1576         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1577                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1578                              &nent, cpuid->nent);
1579         r = -E2BIG;
1580         if (nent >= cpuid->nent)
1581                 goto out_free;
1582
1583         r = -EFAULT;
1584         if (copy_to_user(entries, cpuid_entries,
1585                          nent * sizeof(struct kvm_cpuid_entry2)))
1586                 goto out_free;
1587         cpuid->nent = nent;
1588         r = 0;
1589
1590 out_free:
1591         vfree(cpuid_entries);
1592 out:
1593         return r;
1594 }
1595
1596 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1597                                     struct kvm_lapic_state *s)
1598 {
1599         vcpu_load(vcpu);
1600         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1601         vcpu_put(vcpu);
1602
1603         return 0;
1604 }
1605
1606 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1607                                     struct kvm_lapic_state *s)
1608 {
1609         vcpu_load(vcpu);
1610         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1611         kvm_apic_post_state_restore(vcpu);
1612         vcpu_put(vcpu);
1613
1614         return 0;
1615 }
1616
1617 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1618                                     struct kvm_interrupt *irq)
1619 {
1620         if (irq->irq < 0 || irq->irq >= 256)
1621                 return -EINVAL;
1622         if (irqchip_in_kernel(vcpu->kvm))
1623                 return -ENXIO;
1624         vcpu_load(vcpu);
1625
1626         kvm_queue_interrupt(vcpu, irq->irq, false);
1627
1628         vcpu_put(vcpu);
1629
1630         return 0;
1631 }
1632
1633 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1634 {
1635         vcpu_load(vcpu);
1636         kvm_inject_nmi(vcpu);
1637         vcpu_put(vcpu);
1638
1639         return 0;
1640 }
1641
1642 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1643                                            struct kvm_tpr_access_ctl *tac)
1644 {
1645         if (tac->flags)
1646                 return -EINVAL;
1647         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1648         return 0;
1649 }
1650
1651 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1652                                         u64 mcg_cap)
1653 {
1654         int r;
1655         unsigned bank_num = mcg_cap & 0xff, bank;
1656
1657         r = -EINVAL;
1658         if (!bank_num)
1659                 goto out;
1660         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1661                 goto out;
1662         r = 0;
1663         vcpu->arch.mcg_cap = mcg_cap;
1664         /* Init IA32_MCG_CTL to all 1s */
1665         if (mcg_cap & MCG_CTL_P)
1666                 vcpu->arch.mcg_ctl = ~(u64)0;
1667         /* Init IA32_MCi_CTL to all 1s */
1668         for (bank = 0; bank < bank_num; bank++)
1669                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1670 out:
1671         return r;
1672 }
1673
1674 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1675                                       struct kvm_x86_mce *mce)
1676 {
1677         u64 mcg_cap = vcpu->arch.mcg_cap;
1678         unsigned bank_num = mcg_cap & 0xff;
1679         u64 *banks = vcpu->arch.mce_banks;
1680
1681         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1682                 return -EINVAL;
1683         /*
1684          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1685          * reporting is disabled
1686          */
1687         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1688             vcpu->arch.mcg_ctl != ~(u64)0)
1689                 return 0;
1690         banks += 4 * mce->bank;
1691         /*
1692          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1693          * reporting is disabled for the bank
1694          */
1695         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1696                 return 0;
1697         if (mce->status & MCI_STATUS_UC) {
1698                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1699                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1700                         printk(KERN_DEBUG "kvm: set_mce: "
1701                                "injects mce exception while "
1702                                "previous one is in progress!\n");
1703                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1704                         return 0;
1705                 }
1706                 if (banks[1] & MCI_STATUS_VAL)
1707                         mce->status |= MCI_STATUS_OVER;
1708                 banks[2] = mce->addr;
1709                 banks[3] = mce->misc;
1710                 vcpu->arch.mcg_status = mce->mcg_status;
1711                 banks[1] = mce->status;
1712                 kvm_queue_exception(vcpu, MC_VECTOR);
1713         } else if (!(banks[1] & MCI_STATUS_VAL)
1714                    || !(banks[1] & MCI_STATUS_UC)) {
1715                 if (banks[1] & MCI_STATUS_VAL)
1716                         mce->status |= MCI_STATUS_OVER;
1717                 banks[2] = mce->addr;
1718                 banks[3] = mce->misc;
1719                 banks[1] = mce->status;
1720         } else
1721                 banks[1] |= MCI_STATUS_OVER;
1722         return 0;
1723 }
1724
1725 long kvm_arch_vcpu_ioctl(struct file *filp,
1726                          unsigned int ioctl, unsigned long arg)
1727 {
1728         struct kvm_vcpu *vcpu = filp->private_data;
1729         void __user *argp = (void __user *)arg;
1730         int r;
1731         struct kvm_lapic_state *lapic = NULL;
1732
1733         switch (ioctl) {
1734         case KVM_GET_LAPIC: {
1735                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1736
1737                 r = -ENOMEM;
1738                 if (!lapic)
1739                         goto out;
1740                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1741                 if (r)
1742                         goto out;
1743                 r = -EFAULT;
1744                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1745                         goto out;
1746                 r = 0;
1747                 break;
1748         }
1749         case KVM_SET_LAPIC: {
1750                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1751                 r = -ENOMEM;
1752                 if (!lapic)
1753                         goto out;
1754                 r = -EFAULT;
1755                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1756                         goto out;
1757                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1758                 if (r)
1759                         goto out;
1760                 r = 0;
1761                 break;
1762         }
1763         case KVM_INTERRUPT: {
1764                 struct kvm_interrupt irq;
1765
1766                 r = -EFAULT;
1767                 if (copy_from_user(&irq, argp, sizeof irq))
1768                         goto out;
1769                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1770                 if (r)
1771                         goto out;
1772                 r = 0;
1773                 break;
1774         }
1775         case KVM_NMI: {
1776                 r = kvm_vcpu_ioctl_nmi(vcpu);
1777                 if (r)
1778                         goto out;
1779                 r = 0;
1780                 break;
1781         }
1782         case KVM_SET_CPUID: {
1783                 struct kvm_cpuid __user *cpuid_arg = argp;
1784                 struct kvm_cpuid cpuid;
1785
1786                 r = -EFAULT;
1787                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1788                         goto out;
1789                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1790                 if (r)
1791                         goto out;
1792                 break;
1793         }
1794         case KVM_SET_CPUID2: {
1795                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1796                 struct kvm_cpuid2 cpuid;
1797
1798                 r = -EFAULT;
1799                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1800                         goto out;
1801                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1802                                               cpuid_arg->entries);
1803                 if (r)
1804                         goto out;
1805                 break;
1806         }
1807         case KVM_GET_CPUID2: {
1808                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1809                 struct kvm_cpuid2 cpuid;
1810
1811                 r = -EFAULT;
1812                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1813                         goto out;
1814                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1815                                               cpuid_arg->entries);
1816                 if (r)
1817                         goto out;
1818                 r = -EFAULT;
1819                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1820                         goto out;
1821                 r = 0;
1822                 break;
1823         }
1824         case KVM_GET_MSRS:
1825                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1826                 break;
1827         case KVM_SET_MSRS:
1828                 r = msr_io(vcpu, argp, do_set_msr, 0);
1829                 break;
1830         case KVM_TPR_ACCESS_REPORTING: {
1831                 struct kvm_tpr_access_ctl tac;
1832
1833                 r = -EFAULT;
1834                 if (copy_from_user(&tac, argp, sizeof tac))
1835                         goto out;
1836                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1837                 if (r)
1838                         goto out;
1839                 r = -EFAULT;
1840                 if (copy_to_user(argp, &tac, sizeof tac))
1841                         goto out;
1842                 r = 0;
1843                 break;
1844         };
1845         case KVM_SET_VAPIC_ADDR: {
1846                 struct kvm_vapic_addr va;
1847
1848                 r = -EINVAL;
1849                 if (!irqchip_in_kernel(vcpu->kvm))
1850                         goto out;
1851                 r = -EFAULT;
1852                 if (copy_from_user(&va, argp, sizeof va))
1853                         goto out;
1854                 r = 0;
1855                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1856                 break;
1857         }
1858         case KVM_X86_SETUP_MCE: {
1859                 u64 mcg_cap;
1860
1861                 r = -EFAULT;
1862                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1863                         goto out;
1864                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1865                 break;
1866         }
1867         case KVM_X86_SET_MCE: {
1868                 struct kvm_x86_mce mce;
1869
1870                 r = -EFAULT;
1871                 if (copy_from_user(&mce, argp, sizeof mce))
1872                         goto out;
1873                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1874                 break;
1875         }
1876         default:
1877                 r = -EINVAL;
1878         }
1879 out:
1880         kfree(lapic);
1881         return r;
1882 }
1883
1884 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1885 {
1886         int ret;
1887
1888         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1889                 return -1;
1890         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1891         return ret;
1892 }
1893
1894 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1895                                           u32 kvm_nr_mmu_pages)
1896 {
1897         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1898                 return -EINVAL;
1899
1900         down_write(&kvm->slots_lock);
1901         spin_lock(&kvm->mmu_lock);
1902
1903         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1904         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1905
1906         spin_unlock(&kvm->mmu_lock);
1907         up_write(&kvm->slots_lock);
1908         return 0;
1909 }
1910
1911 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1912 {
1913         return kvm->arch.n_alloc_mmu_pages;
1914 }
1915
1916 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1917 {
1918         int i;
1919         struct kvm_mem_alias *alias;
1920
1921         for (i = 0; i < kvm->arch.naliases; ++i) {
1922                 alias = &kvm->arch.aliases[i];
1923                 if (gfn >= alias->base_gfn
1924                     && gfn < alias->base_gfn + alias->npages)
1925                         return alias->target_gfn + gfn - alias->base_gfn;
1926         }
1927         return gfn;
1928 }
1929
1930 /*
1931  * Set a new alias region.  Aliases map a portion of physical memory into
1932  * another portion.  This is useful for memory windows, for example the PC
1933  * VGA region.
1934  */
1935 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1936                                          struct kvm_memory_alias *alias)
1937 {
1938         int r, n;
1939         struct kvm_mem_alias *p;
1940
1941         r = -EINVAL;
1942         /* General sanity checks */
1943         if (alias->memory_size & (PAGE_SIZE - 1))
1944                 goto out;
1945         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1946                 goto out;
1947         if (alias->slot >= KVM_ALIAS_SLOTS)
1948                 goto out;
1949         if (alias->guest_phys_addr + alias->memory_size
1950             < alias->guest_phys_addr)
1951                 goto out;
1952         if (alias->target_phys_addr + alias->memory_size
1953             < alias->target_phys_addr)
1954                 goto out;
1955
1956         down_write(&kvm->slots_lock);
1957         spin_lock(&kvm->mmu_lock);
1958
1959         p = &kvm->arch.aliases[alias->slot];
1960         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1961         p->npages = alias->memory_size >> PAGE_SHIFT;
1962         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1963
1964         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1965                 if (kvm->arch.aliases[n - 1].npages)
1966                         break;
1967         kvm->arch.naliases = n;
1968
1969         spin_unlock(&kvm->mmu_lock);
1970         kvm_mmu_zap_all(kvm);
1971
1972         up_write(&kvm->slots_lock);
1973
1974         return 0;
1975
1976 out:
1977         return r;
1978 }
1979
1980 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1981 {
1982         int r;
1983
1984         r = 0;
1985         switch (chip->chip_id) {
1986         case KVM_IRQCHIP_PIC_MASTER:
1987                 memcpy(&chip->chip.pic,
1988                         &pic_irqchip(kvm)->pics[0],
1989                         sizeof(struct kvm_pic_state));
1990                 break;
1991         case KVM_IRQCHIP_PIC_SLAVE:
1992                 memcpy(&chip->chip.pic,
1993                         &pic_irqchip(kvm)->pics[1],
1994                         sizeof(struct kvm_pic_state));
1995                 break;
1996         case KVM_IRQCHIP_IOAPIC:
1997                 memcpy(&chip->chip.ioapic,
1998                         ioapic_irqchip(kvm),
1999                         sizeof(struct kvm_ioapic_state));
2000                 break;
2001         default:
2002                 r = -EINVAL;
2003                 break;
2004         }
2005         return r;
2006 }
2007
2008 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2009 {
2010         int r;
2011
2012         r = 0;
2013         switch (chip->chip_id) {
2014         case KVM_IRQCHIP_PIC_MASTER:
2015                 spin_lock(&pic_irqchip(kvm)->lock);
2016                 memcpy(&pic_irqchip(kvm)->pics[0],
2017                         &chip->chip.pic,
2018                         sizeof(struct kvm_pic_state));
2019                 spin_unlock(&pic_irqchip(kvm)->lock);
2020                 break;
2021         case KVM_IRQCHIP_PIC_SLAVE:
2022                 spin_lock(&pic_irqchip(kvm)->lock);
2023                 memcpy(&pic_irqchip(kvm)->pics[1],
2024                         &chip->chip.pic,
2025                         sizeof(struct kvm_pic_state));
2026                 spin_unlock(&pic_irqchip(kvm)->lock);
2027                 break;
2028         case KVM_IRQCHIP_IOAPIC:
2029                 mutex_lock(&kvm->irq_lock);
2030                 memcpy(ioapic_irqchip(kvm),
2031                         &chip->chip.ioapic,
2032                         sizeof(struct kvm_ioapic_state));
2033                 mutex_unlock(&kvm->irq_lock);
2034                 break;
2035         default:
2036                 r = -EINVAL;
2037                 break;
2038         }
2039         kvm_pic_update_irq(pic_irqchip(kvm));
2040         return r;
2041 }
2042
2043 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2044 {
2045         int r = 0;
2046
2047         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2048         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2049         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2050         return r;
2051 }
2052
2053 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2054 {
2055         int r = 0;
2056
2057         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2058         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2059         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
2060         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2061         return r;
2062 }
2063
2064 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2065                                  struct kvm_reinject_control *control)
2066 {
2067         if (!kvm->arch.vpit)
2068                 return -ENXIO;
2069         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2070         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2071         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2072         return 0;
2073 }
2074
2075 /*
2076  * Get (and clear) the dirty memory log for a memory slot.
2077  */
2078 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2079                                       struct kvm_dirty_log *log)
2080 {
2081         int r;
2082         int n;
2083         struct kvm_memory_slot *memslot;
2084         int is_dirty = 0;
2085
2086         down_write(&kvm->slots_lock);
2087
2088         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2089         if (r)
2090                 goto out;
2091
2092         /* If nothing is dirty, don't bother messing with page tables. */
2093         if (is_dirty) {
2094                 spin_lock(&kvm->mmu_lock);
2095                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2096                 spin_unlock(&kvm->mmu_lock);
2097                 kvm_flush_remote_tlbs(kvm);
2098                 memslot = &kvm->memslots[log->slot];
2099                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2100                 memset(memslot->dirty_bitmap, 0, n);
2101         }
2102         r = 0;
2103 out:
2104         up_write(&kvm->slots_lock);
2105         return r;
2106 }
2107
2108 long kvm_arch_vm_ioctl(struct file *filp,
2109                        unsigned int ioctl, unsigned long arg)
2110 {
2111         struct kvm *kvm = filp->private_data;
2112         void __user *argp = (void __user *)arg;
2113         int r = -EINVAL;
2114         /*
2115          * This union makes it completely explicit to gcc-3.x
2116          * that these two variables' stack usage should be
2117          * combined, not added together.
2118          */
2119         union {
2120                 struct kvm_pit_state ps;
2121                 struct kvm_memory_alias alias;
2122                 struct kvm_pit_config pit_config;
2123         } u;
2124
2125         switch (ioctl) {
2126         case KVM_SET_TSS_ADDR:
2127                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2128                 if (r < 0)
2129                         goto out;
2130                 break;
2131         case KVM_SET_MEMORY_REGION: {
2132                 struct kvm_memory_region kvm_mem;
2133                 struct kvm_userspace_memory_region kvm_userspace_mem;
2134
2135                 r = -EFAULT;
2136                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2137                         goto out;
2138                 kvm_userspace_mem.slot = kvm_mem.slot;
2139                 kvm_userspace_mem.flags = kvm_mem.flags;
2140                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2141                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2142                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2143                 if (r)
2144                         goto out;
2145                 break;
2146         }
2147         case KVM_SET_NR_MMU_PAGES:
2148                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2149                 if (r)
2150                         goto out;
2151                 break;
2152         case KVM_GET_NR_MMU_PAGES:
2153                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2154                 break;
2155         case KVM_SET_MEMORY_ALIAS:
2156                 r = -EFAULT;
2157                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2158                         goto out;
2159                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2160                 if (r)
2161                         goto out;
2162                 break;
2163         case KVM_CREATE_IRQCHIP:
2164                 r = -ENOMEM;
2165                 kvm->arch.vpic = kvm_create_pic(kvm);
2166                 if (kvm->arch.vpic) {
2167                         r = kvm_ioapic_init(kvm);
2168                         if (r) {
2169                                 kfree(kvm->arch.vpic);
2170                                 kvm->arch.vpic = NULL;
2171                                 goto out;
2172                         }
2173                 } else
2174                         goto out;
2175                 r = kvm_setup_default_irq_routing(kvm);
2176                 if (r) {
2177                         kfree(kvm->arch.vpic);
2178                         kfree(kvm->arch.vioapic);
2179                         goto out;
2180                 }
2181                 break;
2182         case KVM_CREATE_PIT:
2183                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2184                 goto create_pit;
2185         case KVM_CREATE_PIT2:
2186                 r = -EFAULT;
2187                 if (copy_from_user(&u.pit_config, argp,
2188                                    sizeof(struct kvm_pit_config)))
2189                         goto out;
2190         create_pit:
2191                 down_write(&kvm->slots_lock);
2192                 r = -EEXIST;
2193                 if (kvm->arch.vpit)
2194                         goto create_pit_unlock;
2195                 r = -ENOMEM;
2196                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2197                 if (kvm->arch.vpit)
2198                         r = 0;
2199         create_pit_unlock:
2200                 up_write(&kvm->slots_lock);
2201                 break;
2202         case KVM_IRQ_LINE_STATUS:
2203         case KVM_IRQ_LINE: {
2204                 struct kvm_irq_level irq_event;
2205
2206                 r = -EFAULT;
2207                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2208                         goto out;
2209                 if (irqchip_in_kernel(kvm)) {
2210                         __s32 status;
2211                         mutex_lock(&kvm->irq_lock);
2212                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2213                                         irq_event.irq, irq_event.level);
2214                         mutex_unlock(&kvm->irq_lock);
2215                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2216                                 irq_event.status = status;
2217                                 if (copy_to_user(argp, &irq_event,
2218                                                         sizeof irq_event))
2219                                         goto out;
2220                         }
2221                         r = 0;
2222                 }
2223                 break;
2224         }
2225         case KVM_GET_IRQCHIP: {
2226                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2227                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2228
2229                 r = -ENOMEM;
2230                 if (!chip)
2231                         goto out;
2232                 r = -EFAULT;
2233                 if (copy_from_user(chip, argp, sizeof *chip))
2234                         goto get_irqchip_out;
2235                 r = -ENXIO;
2236                 if (!irqchip_in_kernel(kvm))
2237                         goto get_irqchip_out;
2238                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2239                 if (r)
2240                         goto get_irqchip_out;
2241                 r = -EFAULT;
2242                 if (copy_to_user(argp, chip, sizeof *chip))
2243                         goto get_irqchip_out;
2244                 r = 0;
2245         get_irqchip_out:
2246                 kfree(chip);
2247                 if (r)
2248                         goto out;
2249                 break;
2250         }
2251         case KVM_SET_IRQCHIP: {
2252                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2253                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2254
2255                 r = -ENOMEM;
2256                 if (!chip)
2257                         goto out;
2258                 r = -EFAULT;
2259                 if (copy_from_user(chip, argp, sizeof *chip))
2260                         goto set_irqchip_out;
2261                 r = -ENXIO;
2262                 if (!irqchip_in_kernel(kvm))
2263                         goto set_irqchip_out;
2264                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2265                 if (r)
2266                         goto set_irqchip_out;
2267                 r = 0;
2268         set_irqchip_out:
2269                 kfree(chip);
2270                 if (r)
2271                         goto out;
2272                 break;
2273         }
2274         case KVM_GET_PIT: {
2275                 r = -EFAULT;
2276                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2277                         goto out;
2278                 r = -ENXIO;
2279                 if (!kvm->arch.vpit)
2280                         goto out;
2281                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2282                 if (r)
2283                         goto out;
2284                 r = -EFAULT;
2285                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2286                         goto out;
2287                 r = 0;
2288                 break;
2289         }
2290         case KVM_SET_PIT: {
2291                 r = -EFAULT;
2292                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2293                         goto out;
2294                 r = -ENXIO;
2295                 if (!kvm->arch.vpit)
2296                         goto out;
2297                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2298                 if (r)
2299                         goto out;
2300                 r = 0;
2301                 break;
2302         }
2303         case KVM_REINJECT_CONTROL: {
2304                 struct kvm_reinject_control control;
2305                 r =  -EFAULT;
2306                 if (copy_from_user(&control, argp, sizeof(control)))
2307                         goto out;
2308                 r = kvm_vm_ioctl_reinject(kvm, &control);
2309                 if (r)
2310                         goto out;
2311                 r = 0;
2312                 break;
2313         }
2314         default:
2315                 ;
2316         }
2317 out:
2318         return r;
2319 }
2320
2321 static void kvm_init_msr_list(void)
2322 {
2323         u32 dummy[2];
2324         unsigned i, j;
2325
2326         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2327                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2328                         continue;
2329                 if (j < i)
2330                         msrs_to_save[j] = msrs_to_save[i];
2331                 j++;
2332         }
2333         num_msrs_to_save = j;
2334 }
2335
2336 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2337                            const void *v)
2338 {
2339         if (vcpu->arch.apic &&
2340             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2341                 return 0;
2342
2343         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2344 }
2345
2346 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2347 {
2348         if (vcpu->arch.apic &&
2349             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2350                 return 0;
2351
2352         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2353 }
2354
2355 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2356                                struct kvm_vcpu *vcpu)
2357 {
2358         void *data = val;
2359         int r = X86EMUL_CONTINUE;
2360
2361         while (bytes) {
2362                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2363                 unsigned offset = addr & (PAGE_SIZE-1);
2364                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2365                 int ret;
2366
2367                 if (gpa == UNMAPPED_GVA) {
2368                         r = X86EMUL_PROPAGATE_FAULT;
2369                         goto out;
2370                 }
2371                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2372                 if (ret < 0) {
2373                         r = X86EMUL_UNHANDLEABLE;
2374                         goto out;
2375                 }
2376
2377                 bytes -= toread;
2378                 data += toread;
2379                 addr += toread;
2380         }
2381 out:
2382         return r;
2383 }
2384
2385 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2386                                 struct kvm_vcpu *vcpu)
2387 {
2388         void *data = val;
2389         int r = X86EMUL_CONTINUE;
2390
2391         while (bytes) {
2392                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2393                 unsigned offset = addr & (PAGE_SIZE-1);
2394                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2395                 int ret;
2396
2397                 if (gpa == UNMAPPED_GVA) {
2398                         r = X86EMUL_PROPAGATE_FAULT;
2399                         goto out;
2400                 }
2401                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2402                 if (ret < 0) {
2403                         r = X86EMUL_UNHANDLEABLE;
2404                         goto out;
2405                 }
2406
2407                 bytes -= towrite;
2408                 data += towrite;
2409                 addr += towrite;
2410         }
2411 out:
2412         return r;
2413 }
2414
2415
2416 static int emulator_read_emulated(unsigned long addr,
2417                                   void *val,
2418                                   unsigned int bytes,
2419                                   struct kvm_vcpu *vcpu)
2420 {
2421         gpa_t                 gpa;
2422
2423         if (vcpu->mmio_read_completed) {
2424                 memcpy(val, vcpu->mmio_data, bytes);
2425                 vcpu->mmio_read_completed = 0;
2426                 return X86EMUL_CONTINUE;
2427         }
2428
2429         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2430
2431         /* For APIC access vmexit */
2432         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2433                 goto mmio;
2434
2435         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2436                                 == X86EMUL_CONTINUE)
2437                 return X86EMUL_CONTINUE;
2438         if (gpa == UNMAPPED_GVA)
2439                 return X86EMUL_PROPAGATE_FAULT;
2440
2441 mmio:
2442         /*
2443          * Is this MMIO handled locally?
2444          */
2445         if (!vcpu_mmio_read(vcpu, gpa, bytes, val))
2446                 return X86EMUL_CONTINUE;
2447
2448         vcpu->mmio_needed = 1;
2449         vcpu->mmio_phys_addr = gpa;
2450         vcpu->mmio_size = bytes;
2451         vcpu->mmio_is_write = 0;
2452
2453         return X86EMUL_UNHANDLEABLE;
2454 }
2455
2456 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2457                           const void *val, int bytes)
2458 {
2459         int ret;
2460
2461         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2462         if (ret < 0)
2463                 return 0;
2464         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2465         return 1;
2466 }
2467
2468 static int emulator_write_emulated_onepage(unsigned long addr,
2469                                            const void *val,
2470                                            unsigned int bytes,
2471                                            struct kvm_vcpu *vcpu)
2472 {
2473         gpa_t                 gpa;
2474
2475         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2476
2477         if (gpa == UNMAPPED_GVA) {
2478                 kvm_inject_page_fault(vcpu, addr, 2);
2479                 return X86EMUL_PROPAGATE_FAULT;
2480         }
2481
2482         /* For APIC access vmexit */
2483         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2484                 goto mmio;
2485
2486         if (emulator_write_phys(vcpu, gpa, val, bytes))
2487                 return X86EMUL_CONTINUE;
2488
2489 mmio:
2490         /*
2491          * Is this MMIO handled locally?
2492          */
2493         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2494                 return X86EMUL_CONTINUE;
2495
2496         vcpu->mmio_needed = 1;
2497         vcpu->mmio_phys_addr = gpa;
2498         vcpu->mmio_size = bytes;
2499         vcpu->mmio_is_write = 1;
2500         memcpy(vcpu->mmio_data, val, bytes);
2501
2502         return X86EMUL_CONTINUE;
2503 }
2504
2505 int emulator_write_emulated(unsigned long addr,
2506                                    const void *val,
2507                                    unsigned int bytes,
2508                                    struct kvm_vcpu *vcpu)
2509 {
2510         /* Crossing a page boundary? */
2511         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2512                 int rc, now;
2513
2514                 now = -addr & ~PAGE_MASK;
2515                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2516                 if (rc != X86EMUL_CONTINUE)
2517                         return rc;
2518                 addr += now;
2519                 val += now;
2520                 bytes -= now;
2521         }
2522         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2523 }
2524 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2525
2526 static int emulator_cmpxchg_emulated(unsigned long addr,
2527                                      const void *old,
2528                                      const void *new,
2529                                      unsigned int bytes,
2530                                      struct kvm_vcpu *vcpu)
2531 {
2532         static int reported;
2533
2534         if (!reported) {
2535                 reported = 1;
2536                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2537         }
2538 #ifndef CONFIG_X86_64
2539         /* guests cmpxchg8b have to be emulated atomically */
2540         if (bytes == 8) {
2541                 gpa_t gpa;
2542                 struct page *page;
2543                 char *kaddr;
2544                 u64 val;
2545
2546                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2547
2548                 if (gpa == UNMAPPED_GVA ||
2549                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2550                         goto emul_write;
2551
2552                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2553                         goto emul_write;
2554
2555                 val = *(u64 *)new;
2556
2557                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2558
2559                 kaddr = kmap_atomic(page, KM_USER0);
2560                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2561                 kunmap_atomic(kaddr, KM_USER0);
2562                 kvm_release_page_dirty(page);
2563         }
2564 emul_write:
2565 #endif
2566
2567         return emulator_write_emulated(addr, new, bytes, vcpu);
2568 }
2569
2570 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2571 {
2572         return kvm_x86_ops->get_segment_base(vcpu, seg);
2573 }
2574
2575 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2576 {
2577         kvm_mmu_invlpg(vcpu, address);
2578         return X86EMUL_CONTINUE;
2579 }
2580
2581 int emulate_clts(struct kvm_vcpu *vcpu)
2582 {
2583         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2584         return X86EMUL_CONTINUE;
2585 }
2586
2587 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2588 {
2589         struct kvm_vcpu *vcpu = ctxt->vcpu;
2590
2591         switch (dr) {
2592         case 0 ... 3:
2593                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2594                 return X86EMUL_CONTINUE;
2595         default:
2596                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2597                 return X86EMUL_UNHANDLEABLE;
2598         }
2599 }
2600
2601 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2602 {
2603         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2604         int exception;
2605
2606         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2607         if (exception) {
2608                 /* FIXME: better handling */
2609                 return X86EMUL_UNHANDLEABLE;
2610         }
2611         return X86EMUL_CONTINUE;
2612 }
2613
2614 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2615 {
2616         u8 opcodes[4];
2617         unsigned long rip = kvm_rip_read(vcpu);
2618         unsigned long rip_linear;
2619
2620         if (!printk_ratelimit())
2621                 return;
2622
2623         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2624
2625         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2626
2627         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2628                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2631
2632 static struct x86_emulate_ops emulate_ops = {
2633         .read_std            = kvm_read_guest_virt,
2634         .read_emulated       = emulator_read_emulated,
2635         .write_emulated      = emulator_write_emulated,
2636         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2637 };
2638
2639 static void cache_all_regs(struct kvm_vcpu *vcpu)
2640 {
2641         kvm_register_read(vcpu, VCPU_REGS_RAX);
2642         kvm_register_read(vcpu, VCPU_REGS_RSP);
2643         kvm_register_read(vcpu, VCPU_REGS_RIP);
2644         vcpu->arch.regs_dirty = ~0;
2645 }
2646
2647 int emulate_instruction(struct kvm_vcpu *vcpu,
2648                         struct kvm_run *run,
2649                         unsigned long cr2,
2650                         u16 error_code,
2651                         int emulation_type)
2652 {
2653         int r, shadow_mask;
2654         struct decode_cache *c;
2655
2656         kvm_clear_exception_queue(vcpu);
2657         vcpu->arch.mmio_fault_cr2 = cr2;
2658         /*
2659          * TODO: fix x86_emulate.c to use guest_read/write_register
2660          * instead of direct ->regs accesses, can save hundred cycles
2661          * on Intel for instructions that don't read/change RSP, for
2662          * for example.
2663          */
2664         cache_all_regs(vcpu);
2665
2666         vcpu->mmio_is_write = 0;
2667         vcpu->arch.pio.string = 0;
2668
2669         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2670                 int cs_db, cs_l;
2671                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2672
2673                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2674                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2675                 vcpu->arch.emulate_ctxt.mode =
2676                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2677                         ? X86EMUL_MODE_REAL : cs_l
2678                         ? X86EMUL_MODE_PROT64 : cs_db
2679                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2680
2681                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2682
2683                 /* Only allow emulation of specific instructions on #UD
2684                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2685                 c = &vcpu->arch.emulate_ctxt.decode;
2686                 if (emulation_type & EMULTYPE_TRAP_UD) {
2687                         if (!c->twobyte)
2688                                 return EMULATE_FAIL;
2689                         switch (c->b) {
2690                         case 0x01: /* VMMCALL */
2691                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2692                                         return EMULATE_FAIL;
2693                                 break;
2694                         case 0x34: /* sysenter */
2695                         case 0x35: /* sysexit */
2696                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2697                                         return EMULATE_FAIL;
2698                                 break;
2699                         case 0x05: /* syscall */
2700                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2701                                         return EMULATE_FAIL;
2702                                 break;
2703                         default:
2704                                 return EMULATE_FAIL;
2705                         }
2706
2707                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2708                                 return EMULATE_FAIL;
2709                 }
2710
2711                 ++vcpu->stat.insn_emulation;
2712                 if (r)  {
2713                         ++vcpu->stat.insn_emulation_fail;
2714                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2715                                 return EMULATE_DONE;
2716                         return EMULATE_FAIL;
2717                 }
2718         }
2719
2720         if (emulation_type & EMULTYPE_SKIP) {
2721                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2722                 return EMULATE_DONE;
2723         }
2724
2725         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2726         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2727
2728         if (r == 0)
2729                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2730
2731         if (vcpu->arch.pio.string)
2732                 return EMULATE_DO_MMIO;
2733
2734         if ((r || vcpu->mmio_is_write) && run) {
2735                 run->exit_reason = KVM_EXIT_MMIO;
2736                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2737                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2738                 run->mmio.len = vcpu->mmio_size;
2739                 run->mmio.is_write = vcpu->mmio_is_write;
2740         }
2741
2742         if (r) {
2743                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2744                         return EMULATE_DONE;
2745                 if (!vcpu->mmio_needed) {
2746                         kvm_report_emulation_failure(vcpu, "mmio");
2747                         return EMULATE_FAIL;
2748                 }
2749                 return EMULATE_DO_MMIO;
2750         }
2751
2752         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2753
2754         if (vcpu->mmio_is_write) {
2755                 vcpu->mmio_needed = 0;
2756                 return EMULATE_DO_MMIO;
2757         }
2758
2759         return EMULATE_DONE;
2760 }
2761 EXPORT_SYMBOL_GPL(emulate_instruction);
2762
2763 static int pio_copy_data(struct kvm_vcpu *vcpu)
2764 {
2765         void *p = vcpu->arch.pio_data;
2766         gva_t q = vcpu->arch.pio.guest_gva;
2767         unsigned bytes;
2768         int ret;
2769
2770         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2771         if (vcpu->arch.pio.in)
2772                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2773         else
2774                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2775         return ret;
2776 }
2777
2778 int complete_pio(struct kvm_vcpu *vcpu)
2779 {
2780         struct kvm_pio_request *io = &vcpu->arch.pio;
2781         long delta;
2782         int r;
2783         unsigned long val;
2784
2785         if (!io->string) {
2786                 if (io->in) {
2787                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2788                         memcpy(&val, vcpu->arch.pio_data, io->size);
2789                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2790                 }
2791         } else {
2792                 if (io->in) {
2793                         r = pio_copy_data(vcpu);
2794                         if (r)
2795                                 return r;
2796                 }
2797
2798                 delta = 1;
2799                 if (io->rep) {
2800                         delta *= io->cur_count;
2801                         /*
2802                          * The size of the register should really depend on
2803                          * current address size.
2804                          */
2805                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2806                         val -= delta;
2807                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2808                 }
2809                 if (io->down)
2810                         delta = -delta;
2811                 delta *= io->size;
2812                 if (io->in) {
2813                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2814                         val += delta;
2815                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2816                 } else {
2817                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2818                         val += delta;
2819                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2820                 }
2821         }
2822
2823         io->count -= io->cur_count;
2824         io->cur_count = 0;
2825
2826         return 0;
2827 }
2828
2829 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2830 {
2831         /* TODO: String I/O for in kernel device */
2832         int r;
2833
2834         if (vcpu->arch.pio.in)
2835                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2836                                     vcpu->arch.pio.size, pd);
2837         else
2838                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2839                                      vcpu->arch.pio.size, pd);
2840         return r;
2841 }
2842
2843 static int pio_string_write(struct kvm_vcpu *vcpu)
2844 {
2845         struct kvm_pio_request *io = &vcpu->arch.pio;
2846         void *pd = vcpu->arch.pio_data;
2847         int i, r = 0;
2848
2849         for (i = 0; i < io->cur_count; i++) {
2850                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2851                                      io->port, io->size, pd)) {
2852                         r = -EOPNOTSUPP;
2853                         break;
2854                 }
2855                 pd += io->size;
2856         }
2857         return r;
2858 }
2859
2860 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2861                   int size, unsigned port)
2862 {
2863         unsigned long val;
2864
2865         vcpu->run->exit_reason = KVM_EXIT_IO;
2866         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2867         vcpu->run->io.size = vcpu->arch.pio.size = size;
2868         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2869         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2870         vcpu->run->io.port = vcpu->arch.pio.port = port;
2871         vcpu->arch.pio.in = in;
2872         vcpu->arch.pio.string = 0;
2873         vcpu->arch.pio.down = 0;
2874         vcpu->arch.pio.rep = 0;
2875
2876         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2877                       size, 1);
2878
2879         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2880         memcpy(vcpu->arch.pio_data, &val, 4);
2881
2882         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2883                 complete_pio(vcpu);
2884                 return 1;
2885         }
2886         return 0;
2887 }
2888 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2889
2890 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2891                   int size, unsigned long count, int down,
2892                   gva_t address, int rep, unsigned port)
2893 {
2894         unsigned now, in_page;
2895         int ret = 0;
2896
2897         vcpu->run->exit_reason = KVM_EXIT_IO;
2898         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2899         vcpu->run->io.size = vcpu->arch.pio.size = size;
2900         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2901         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2902         vcpu->run->io.port = vcpu->arch.pio.port = port;
2903         vcpu->arch.pio.in = in;
2904         vcpu->arch.pio.string = 1;
2905         vcpu->arch.pio.down = down;
2906         vcpu->arch.pio.rep = rep;
2907
2908         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2909                       size, count);
2910
2911         if (!count) {
2912                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2913                 return 1;
2914         }
2915
2916         if (!down)
2917                 in_page = PAGE_SIZE - offset_in_page(address);
2918         else
2919                 in_page = offset_in_page(address) + size;
2920         now = min(count, (unsigned long)in_page / size);
2921         if (!now)
2922                 now = 1;
2923         if (down) {
2924                 /*
2925                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2926                  */
2927                 pr_unimpl(vcpu, "guest string pio down\n");
2928                 kvm_inject_gp(vcpu, 0);
2929                 return 1;
2930         }
2931         vcpu->run->io.count = now;
2932         vcpu->arch.pio.cur_count = now;
2933
2934         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2935                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2936
2937         vcpu->arch.pio.guest_gva = address;
2938
2939         if (!vcpu->arch.pio.in) {
2940                 /* string PIO write */
2941                 ret = pio_copy_data(vcpu);
2942                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2943                         kvm_inject_gp(vcpu, 0);
2944                         return 1;
2945                 }
2946                 if (ret == 0 && !pio_string_write(vcpu)) {
2947                         complete_pio(vcpu);
2948                         if (vcpu->arch.pio.count == 0)
2949                                 ret = 1;
2950                 }
2951         }
2952         /* no string PIO read support yet */
2953
2954         return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2957
2958 static void bounce_off(void *info)
2959 {
2960         /* nothing */
2961 }
2962
2963 static unsigned int  ref_freq;
2964 static unsigned long tsc_khz_ref;
2965
2966 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2967                                      void *data)
2968 {
2969         struct cpufreq_freqs *freq = data;
2970         struct kvm *kvm;
2971         struct kvm_vcpu *vcpu;
2972         int i, send_ipi = 0;
2973
2974         if (!ref_freq)
2975                 ref_freq = freq->old;
2976
2977         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2978                 return 0;
2979         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2980                 return 0;
2981         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2982
2983         spin_lock(&kvm_lock);
2984         list_for_each_entry(kvm, &vm_list, vm_list) {
2985                 kvm_for_each_vcpu(i, vcpu, kvm) {
2986                         if (vcpu->cpu != freq->cpu)
2987                                 continue;
2988                         if (!kvm_request_guest_time_update(vcpu))
2989                                 continue;
2990                         if (vcpu->cpu != smp_processor_id())
2991                                 send_ipi++;
2992                 }
2993         }
2994         spin_unlock(&kvm_lock);
2995
2996         if (freq->old < freq->new && send_ipi) {
2997                 /*
2998                  * We upscale the frequency.  Must make the guest
2999                  * doesn't see old kvmclock values while running with
3000                  * the new frequency, otherwise we risk the guest sees
3001                  * time go backwards.
3002                  *
3003                  * In case we update the frequency for another cpu
3004                  * (which might be in guest context) send an interrupt
3005                  * to kick the cpu out of guest context.  Next time
3006                  * guest context is entered kvmclock will be updated,
3007                  * so the guest will not see stale values.
3008                  */
3009                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3010         }
3011         return 0;
3012 }
3013
3014 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3015         .notifier_call  = kvmclock_cpufreq_notifier
3016 };
3017
3018 int kvm_arch_init(void *opaque)
3019 {
3020         int r, cpu;
3021         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3022
3023         if (kvm_x86_ops) {
3024                 printk(KERN_ERR "kvm: already loaded the other module\n");
3025                 r = -EEXIST;
3026                 goto out;
3027         }
3028
3029         if (!ops->cpu_has_kvm_support()) {
3030                 printk(KERN_ERR "kvm: no hardware support\n");
3031                 r = -EOPNOTSUPP;
3032                 goto out;
3033         }
3034         if (ops->disabled_by_bios()) {
3035                 printk(KERN_ERR "kvm: disabled by bios\n");
3036                 r = -EOPNOTSUPP;
3037                 goto out;
3038         }
3039
3040         r = kvm_mmu_module_init();
3041         if (r)
3042                 goto out;
3043
3044         kvm_init_msr_list();
3045
3046         kvm_x86_ops = ops;
3047         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3048         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3049         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3050                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3051
3052         for_each_possible_cpu(cpu)
3053                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3054         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3055                 tsc_khz_ref = tsc_khz;
3056                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3057                                           CPUFREQ_TRANSITION_NOTIFIER);
3058         }
3059
3060         return 0;
3061
3062 out:
3063         return r;
3064 }
3065
3066 void kvm_arch_exit(void)
3067 {
3068         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3069                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3070                                             CPUFREQ_TRANSITION_NOTIFIER);
3071         kvm_x86_ops = NULL;
3072         kvm_mmu_module_exit();
3073 }
3074
3075 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3076 {
3077         ++vcpu->stat.halt_exits;
3078         if (irqchip_in_kernel(vcpu->kvm)) {
3079                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3080                 return 1;
3081         } else {
3082                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3083                 return 0;
3084         }
3085 }
3086 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3087
3088 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3089                            unsigned long a1)
3090 {
3091         if (is_long_mode(vcpu))
3092                 return a0;
3093         else
3094                 return a0 | ((gpa_t)a1 << 32);
3095 }
3096
3097 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3098 {
3099         unsigned long nr, a0, a1, a2, a3, ret;
3100         int r = 1;
3101
3102         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3103         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3104         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3105         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3106         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3107
3108         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3109
3110         if (!is_long_mode(vcpu)) {
3111                 nr &= 0xFFFFFFFF;
3112                 a0 &= 0xFFFFFFFF;
3113                 a1 &= 0xFFFFFFFF;
3114                 a2 &= 0xFFFFFFFF;
3115                 a3 &= 0xFFFFFFFF;
3116         }
3117
3118         switch (nr) {
3119         case KVM_HC_VAPIC_POLL_IRQ:
3120                 ret = 0;
3121                 break;
3122         case KVM_HC_MMU_OP:
3123                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3124                 break;
3125         default:
3126                 ret = -KVM_ENOSYS;
3127                 break;
3128         }
3129         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3130         ++vcpu->stat.hypercalls;
3131         return r;
3132 }
3133 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3134
3135 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3136 {
3137         char instruction[3];
3138         int ret = 0;
3139         unsigned long rip = kvm_rip_read(vcpu);
3140
3141
3142         /*
3143          * Blow out the MMU to ensure that no other VCPU has an active mapping
3144          * to ensure that the updated hypercall appears atomically across all
3145          * VCPUs.
3146          */
3147         kvm_mmu_zap_all(vcpu->kvm);
3148
3149         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3150         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3151             != X86EMUL_CONTINUE)
3152                 ret = -EFAULT;
3153
3154         return ret;
3155 }
3156
3157 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3158 {
3159         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3160 }
3161
3162 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3163 {
3164         struct descriptor_table dt = { limit, base };
3165
3166         kvm_x86_ops->set_gdt(vcpu, &dt);
3167 }
3168
3169 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3170 {
3171         struct descriptor_table dt = { limit, base };
3172
3173         kvm_x86_ops->set_idt(vcpu, &dt);
3174 }
3175
3176 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3177                    unsigned long *rflags)
3178 {
3179         kvm_lmsw(vcpu, msw);
3180         *rflags = kvm_x86_ops->get_rflags(vcpu);
3181 }
3182
3183 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3184 {
3185         unsigned long value;
3186
3187         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3188         switch (cr) {
3189         case 0:
3190                 value = vcpu->arch.cr0;
3191                 break;
3192         case 2:
3193                 value = vcpu->arch.cr2;
3194                 break;
3195         case 3:
3196                 value = vcpu->arch.cr3;
3197                 break;
3198         case 4:
3199                 value = vcpu->arch.cr4;
3200                 break;
3201         case 8:
3202                 value = kvm_get_cr8(vcpu);
3203                 break;
3204         default:
3205                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3206                 return 0;
3207         }
3208
3209         return value;
3210 }
3211
3212 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3213                      unsigned long *rflags)
3214 {
3215         switch (cr) {
3216         case 0:
3217                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3218                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3219                 break;
3220         case 2:
3221                 vcpu->arch.cr2 = val;
3222                 break;
3223         case 3:
3224                 kvm_set_cr3(vcpu, val);
3225                 break;
3226         case 4:
3227                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3228                 break;
3229         case 8:
3230                 kvm_set_cr8(vcpu, val & 0xfUL);
3231                 break;
3232         default:
3233                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3234         }
3235 }
3236
3237 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3238 {
3239         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3240         int j, nent = vcpu->arch.cpuid_nent;
3241
3242         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3243         /* when no next entry is found, the current entry[i] is reselected */
3244         for (j = i + 1; ; j = (j + 1) % nent) {
3245                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3246                 if (ej->function == e->function) {
3247                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3248                         return j;
3249                 }
3250         }
3251         return 0; /* silence gcc, even though control never reaches here */
3252 }
3253
3254 /* find an entry with matching function, matching index (if needed), and that
3255  * should be read next (if it's stateful) */
3256 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3257         u32 function, u32 index)
3258 {
3259         if (e->function != function)
3260                 return 0;
3261         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3262                 return 0;
3263         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3264             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3265                 return 0;
3266         return 1;
3267 }
3268
3269 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3270                                               u32 function, u32 index)
3271 {
3272         int i;
3273         struct kvm_cpuid_entry2 *best = NULL;
3274
3275         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3276                 struct kvm_cpuid_entry2 *e;
3277
3278                 e = &vcpu->arch.cpuid_entries[i];
3279                 if (is_matching_cpuid_entry(e, function, index)) {
3280                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3281                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3282                         best = e;
3283                         break;
3284                 }
3285                 /*
3286                  * Both basic or both extended?
3287                  */
3288                 if (((e->function ^ function) & 0x80000000) == 0)
3289                         if (!best || e->function > best->function)
3290                                 best = e;
3291         }
3292         return best;
3293 }
3294
3295 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3296 {
3297         struct kvm_cpuid_entry2 *best;
3298
3299         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3300         if (best)
3301                 return best->eax & 0xff;
3302         return 36;
3303 }
3304
3305 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3306 {
3307         u32 function, index;
3308         struct kvm_cpuid_entry2 *best;
3309
3310         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3311         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3312         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3313         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3314         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3315         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3316         best = kvm_find_cpuid_entry(vcpu, function, index);
3317         if (best) {
3318                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3319                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3320                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3321                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3322         }
3323         kvm_x86_ops->skip_emulated_instruction(vcpu);
3324         trace_kvm_cpuid(function,
3325                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3326                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3327                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3328                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3329 }
3330 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3331
3332 /*
3333  * Check if userspace requested an interrupt window, and that the
3334  * interrupt window is open.
3335  *
3336  * No need to exit to userspace if we already have an interrupt queued.
3337  */
3338 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3339                                           struct kvm_run *kvm_run)
3340 {
3341         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3342                 kvm_run->request_interrupt_window &&
3343                 kvm_arch_interrupt_allowed(vcpu));
3344 }
3345
3346 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3347                               struct kvm_run *kvm_run)
3348 {
3349         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3350         kvm_run->cr8 = kvm_get_cr8(vcpu);
3351         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3352         if (irqchip_in_kernel(vcpu->kvm))
3353                 kvm_run->ready_for_interrupt_injection = 1;
3354         else
3355                 kvm_run->ready_for_interrupt_injection =
3356                         kvm_arch_interrupt_allowed(vcpu) &&
3357                         !kvm_cpu_has_interrupt(vcpu) &&
3358                         !kvm_event_needs_reinjection(vcpu);
3359 }
3360
3361 static void vapic_enter(struct kvm_vcpu *vcpu)
3362 {
3363         struct kvm_lapic *apic = vcpu->arch.apic;
3364         struct page *page;
3365
3366         if (!apic || !apic->vapic_addr)
3367                 return;
3368
3369         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3370
3371         vcpu->arch.apic->vapic_page = page;
3372 }
3373
3374 static void vapic_exit(struct kvm_vcpu *vcpu)
3375 {
3376         struct kvm_lapic *apic = vcpu->arch.apic;
3377
3378         if (!apic || !apic->vapic_addr)
3379                 return;
3380
3381         down_read(&vcpu->kvm->slots_lock);
3382         kvm_release_page_dirty(apic->vapic_page);
3383         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3384         up_read(&vcpu->kvm->slots_lock);
3385 }
3386
3387 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3388 {
3389         int max_irr, tpr;
3390
3391         if (!kvm_x86_ops->update_cr8_intercept)
3392                 return;
3393
3394         if (!vcpu->arch.apic->vapic_addr)
3395                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3396         else
3397                 max_irr = -1;
3398
3399         if (max_irr != -1)
3400                 max_irr >>= 4;
3401
3402         tpr = kvm_lapic_get_cr8(vcpu);
3403
3404         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3405 }
3406
3407 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3408 {
3409         /* try to reinject previous events if any */
3410         if (vcpu->arch.nmi_injected) {
3411                 kvm_x86_ops->set_nmi(vcpu);
3412                 return;
3413         }
3414
3415         if (vcpu->arch.interrupt.pending) {
3416                 kvm_x86_ops->set_irq(vcpu);
3417                 return;
3418         }
3419
3420         /* try to inject new event if pending */
3421         if (vcpu->arch.nmi_pending) {
3422                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3423                         vcpu->arch.nmi_pending = false;
3424                         vcpu->arch.nmi_injected = true;
3425                         kvm_x86_ops->set_nmi(vcpu);
3426                 }
3427         } else if (kvm_cpu_has_interrupt(vcpu)) {
3428                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3429                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3430                                             false);
3431                         kvm_x86_ops->set_irq(vcpu);
3432                 }
3433         }
3434 }
3435
3436 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3437 {
3438         int r;
3439         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3440                 kvm_run->request_interrupt_window;
3441
3442         if (vcpu->requests)
3443                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3444                         kvm_mmu_unload(vcpu);
3445
3446         r = kvm_mmu_reload(vcpu);
3447         if (unlikely(r))
3448                 goto out;
3449
3450         if (vcpu->requests) {
3451                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3452                         __kvm_migrate_timers(vcpu);
3453                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3454                         kvm_write_guest_time(vcpu);
3455                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3456                         kvm_mmu_sync_roots(vcpu);
3457                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3458                         kvm_x86_ops->tlb_flush(vcpu);
3459                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3460                                        &vcpu->requests)) {
3461                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3462                         r = 0;
3463                         goto out;
3464                 }
3465                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3466                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3467                         r = 0;
3468                         goto out;
3469                 }
3470         }
3471
3472         preempt_disable();
3473
3474         kvm_x86_ops->prepare_guest_switch(vcpu);
3475         kvm_load_guest_fpu(vcpu);
3476
3477         local_irq_disable();
3478
3479         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3480         smp_mb__after_clear_bit();
3481
3482         if (vcpu->requests || need_resched() || signal_pending(current)) {
3483                 local_irq_enable();
3484                 preempt_enable();
3485                 r = 1;
3486                 goto out;
3487         }
3488
3489         if (vcpu->arch.exception.pending)
3490                 __queue_exception(vcpu);
3491         else
3492                 inject_pending_irq(vcpu, kvm_run);
3493
3494         /* enable NMI/IRQ window open exits if needed */
3495         if (vcpu->arch.nmi_pending)
3496                 kvm_x86_ops->enable_nmi_window(vcpu);
3497         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3498                 kvm_x86_ops->enable_irq_window(vcpu);
3499
3500         if (kvm_lapic_enabled(vcpu)) {
3501                 update_cr8_intercept(vcpu);
3502                 kvm_lapic_sync_to_vapic(vcpu);
3503         }
3504
3505         up_read(&vcpu->kvm->slots_lock);
3506
3507         kvm_guest_enter();
3508
3509         get_debugreg(vcpu->arch.host_dr6, 6);
3510         get_debugreg(vcpu->arch.host_dr7, 7);
3511         if (unlikely(vcpu->arch.switch_db_regs)) {
3512                 get_debugreg(vcpu->arch.host_db[0], 0);
3513                 get_debugreg(vcpu->arch.host_db[1], 1);
3514                 get_debugreg(vcpu->arch.host_db[2], 2);
3515                 get_debugreg(vcpu->arch.host_db[3], 3);
3516
3517                 set_debugreg(0, 7);
3518                 set_debugreg(vcpu->arch.eff_db[0], 0);
3519                 set_debugreg(vcpu->arch.eff_db[1], 1);
3520                 set_debugreg(vcpu->arch.eff_db[2], 2);
3521                 set_debugreg(vcpu->arch.eff_db[3], 3);
3522         }
3523
3524         trace_kvm_entry(vcpu->vcpu_id);
3525         kvm_x86_ops->run(vcpu, kvm_run);
3526
3527         if (unlikely(vcpu->arch.switch_db_regs)) {
3528                 set_debugreg(0, 7);
3529                 set_debugreg(vcpu->arch.host_db[0], 0);
3530                 set_debugreg(vcpu->arch.host_db[1], 1);
3531                 set_debugreg(vcpu->arch.host_db[2], 2);
3532                 set_debugreg(vcpu->arch.host_db[3], 3);
3533         }
3534         set_debugreg(vcpu->arch.host_dr6, 6);
3535         set_debugreg(vcpu->arch.host_dr7, 7);
3536
3537         set_bit(KVM_REQ_KICK, &vcpu->requests);
3538         local_irq_enable();
3539
3540         ++vcpu->stat.exits;
3541
3542         /*
3543          * We must have an instruction between local_irq_enable() and
3544          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3545          * the interrupt shadow.  The stat.exits increment will do nicely.
3546          * But we need to prevent reordering, hence this barrier():
3547          */
3548         barrier();
3549
3550         kvm_guest_exit();
3551
3552         preempt_enable();
3553
3554         down_read(&vcpu->kvm->slots_lock);
3555
3556         /*
3557          * Profile KVM exit RIPs:
3558          */
3559         if (unlikely(prof_on == KVM_PROFILING)) {
3560                 unsigned long rip = kvm_rip_read(vcpu);
3561                 profile_hit(KVM_PROFILING, (void *)rip);
3562         }
3563
3564
3565         kvm_lapic_sync_from_vapic(vcpu);
3566
3567         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3568 out:
3569         return r;
3570 }
3571
3572
3573 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3574 {
3575         int r;
3576
3577         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3578                 pr_debug("vcpu %d received sipi with vector # %x\n",
3579                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3580                 kvm_lapic_reset(vcpu);
3581                 r = kvm_arch_vcpu_reset(vcpu);
3582                 if (r)
3583                         return r;
3584                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3585         }
3586
3587         down_read(&vcpu->kvm->slots_lock);
3588         vapic_enter(vcpu);
3589
3590         r = 1;
3591         while (r > 0) {
3592                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3593                         r = vcpu_enter_guest(vcpu, kvm_run);
3594                 else {
3595                         up_read(&vcpu->kvm->slots_lock);
3596                         kvm_vcpu_block(vcpu);
3597                         down_read(&vcpu->kvm->slots_lock);
3598                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3599                         {
3600                                 switch(vcpu->arch.mp_state) {
3601                                 case KVM_MP_STATE_HALTED:
3602                                         vcpu->arch.mp_state =
3603                                                 KVM_MP_STATE_RUNNABLE;
3604                                 case KVM_MP_STATE_RUNNABLE:
3605                                         break;
3606                                 case KVM_MP_STATE_SIPI_RECEIVED:
3607                                 default:
3608                                         r = -EINTR;
3609                                         break;
3610                                 }
3611                         }
3612                 }
3613
3614                 if (r <= 0)
3615                         break;
3616
3617                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3618                 if (kvm_cpu_has_pending_timer(vcpu))
3619                         kvm_inject_pending_timer_irqs(vcpu);
3620
3621                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3622                         r = -EINTR;
3623                         kvm_run->exit_reason = KVM_EXIT_INTR;
3624                         ++vcpu->stat.request_irq_exits;
3625                 }
3626                 if (signal_pending(current)) {
3627                         r = -EINTR;
3628                         kvm_run->exit_reason = KVM_EXIT_INTR;
3629                         ++vcpu->stat.signal_exits;
3630                 }
3631                 if (need_resched()) {
3632                         up_read(&vcpu->kvm->slots_lock);
3633                         kvm_resched(vcpu);
3634                         down_read(&vcpu->kvm->slots_lock);
3635                 }
3636         }
3637
3638         up_read(&vcpu->kvm->slots_lock);
3639         post_kvm_run_save(vcpu, kvm_run);
3640
3641         vapic_exit(vcpu);
3642
3643         return r;
3644 }
3645
3646 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3647 {
3648         int r;
3649         sigset_t sigsaved;
3650
3651         vcpu_load(vcpu);
3652
3653         if (vcpu->sigset_active)
3654                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3655
3656         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3657                 kvm_vcpu_block(vcpu);
3658                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3659                 r = -EAGAIN;
3660                 goto out;
3661         }
3662
3663         /* re-sync apic's tpr */
3664         if (!irqchip_in_kernel(vcpu->kvm))
3665                 kvm_set_cr8(vcpu, kvm_run->cr8);
3666
3667         if (vcpu->arch.pio.cur_count) {
3668                 r = complete_pio(vcpu);
3669                 if (r)
3670                         goto out;
3671         }
3672 #if CONFIG_HAS_IOMEM
3673         if (vcpu->mmio_needed) {
3674                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3675                 vcpu->mmio_read_completed = 1;
3676                 vcpu->mmio_needed = 0;
3677
3678                 down_read(&vcpu->kvm->slots_lock);
3679                 r = emulate_instruction(vcpu, kvm_run,
3680                                         vcpu->arch.mmio_fault_cr2, 0,
3681                                         EMULTYPE_NO_DECODE);
3682                 up_read(&vcpu->kvm->slots_lock);
3683                 if (r == EMULATE_DO_MMIO) {
3684                         /*
3685                          * Read-modify-write.  Back to userspace.
3686                          */
3687                         r = 0;
3688                         goto out;
3689                 }
3690         }
3691 #endif
3692         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3693                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3694                                      kvm_run->hypercall.ret);
3695
3696         r = __vcpu_run(vcpu, kvm_run);
3697
3698 out:
3699         if (vcpu->sigset_active)
3700                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3701
3702         vcpu_put(vcpu);
3703         return r;
3704 }
3705
3706 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3707 {
3708         vcpu_load(vcpu);
3709
3710         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3711         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3712         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3713         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3714         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3715         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3716         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3717         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3718 #ifdef CONFIG_X86_64
3719         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3720         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3721         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3722         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3723         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3724         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3725         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3726         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3727 #endif
3728
3729         regs->rip = kvm_rip_read(vcpu);
3730         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3731
3732         /*
3733          * Don't leak debug flags in case they were set for guest debugging
3734          */
3735         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3736                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3737
3738         vcpu_put(vcpu);
3739
3740         return 0;
3741 }
3742
3743 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3744 {
3745         vcpu_load(vcpu);
3746
3747         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3748         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3749         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3750         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3751         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3752         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3753         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3754         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3755 #ifdef CONFIG_X86_64
3756         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3757         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3758         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3759         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3760         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3761         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3762         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3763         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3764
3765 #endif
3766
3767         kvm_rip_write(vcpu, regs->rip);
3768         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3769
3770
3771         vcpu->arch.exception.pending = false;
3772
3773         vcpu_put(vcpu);
3774
3775         return 0;
3776 }
3777
3778 void kvm_get_segment(struct kvm_vcpu *vcpu,
3779                      struct kvm_segment *var, int seg)
3780 {
3781         kvm_x86_ops->get_segment(vcpu, var, seg);
3782 }
3783
3784 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3785 {
3786         struct kvm_segment cs;
3787
3788         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3789         *db = cs.db;
3790         *l = cs.l;
3791 }
3792 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3793
3794 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3795                                   struct kvm_sregs *sregs)
3796 {
3797         struct descriptor_table dt;
3798
3799         vcpu_load(vcpu);
3800
3801         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3802         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3803         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3804         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3805         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3806         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3807
3808         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3809         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3810
3811         kvm_x86_ops->get_idt(vcpu, &dt);
3812         sregs->idt.limit = dt.limit;
3813         sregs->idt.base = dt.base;
3814         kvm_x86_ops->get_gdt(vcpu, &dt);
3815         sregs->gdt.limit = dt.limit;
3816         sregs->gdt.base = dt.base;
3817
3818         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3819         sregs->cr0 = vcpu->arch.cr0;
3820         sregs->cr2 = vcpu->arch.cr2;
3821         sregs->cr3 = vcpu->arch.cr3;
3822         sregs->cr4 = vcpu->arch.cr4;
3823         sregs->cr8 = kvm_get_cr8(vcpu);
3824         sregs->efer = vcpu->arch.shadow_efer;
3825         sregs->apic_base = kvm_get_apic_base(vcpu);
3826
3827         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3828
3829         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3830                 set_bit(vcpu->arch.interrupt.nr,
3831                         (unsigned long *)sregs->interrupt_bitmap);
3832
3833         vcpu_put(vcpu);
3834
3835         return 0;
3836 }
3837
3838 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3839                                     struct kvm_mp_state *mp_state)
3840 {
3841         vcpu_load(vcpu);
3842         mp_state->mp_state = vcpu->arch.mp_state;
3843         vcpu_put(vcpu);
3844         return 0;
3845 }
3846
3847 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3848                                     struct kvm_mp_state *mp_state)
3849 {
3850         vcpu_load(vcpu);
3851         vcpu->arch.mp_state = mp_state->mp_state;
3852         vcpu_put(vcpu);
3853         return 0;
3854 }
3855
3856 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3857                         struct kvm_segment *var, int seg)
3858 {
3859         kvm_x86_ops->set_segment(vcpu, var, seg);
3860 }
3861
3862 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3863                                    struct kvm_segment *kvm_desct)
3864 {
3865         kvm_desct->base = seg_desc->base0;
3866         kvm_desct->base |= seg_desc->base1 << 16;
3867         kvm_desct->base |= seg_desc->base2 << 24;
3868         kvm_desct->limit = seg_desc->limit0;
3869         kvm_desct->limit |= seg_desc->limit << 16;
3870         if (seg_desc->g) {
3871                 kvm_desct->limit <<= 12;
3872                 kvm_desct->limit |= 0xfff;
3873         }
3874         kvm_desct->selector = selector;
3875         kvm_desct->type = seg_desc->type;
3876         kvm_desct->present = seg_desc->p;
3877         kvm_desct->dpl = seg_desc->dpl;
3878         kvm_desct->db = seg_desc->d;
3879         kvm_desct->s = seg_desc->s;
3880         kvm_desct->l = seg_desc->l;
3881         kvm_desct->g = seg_desc->g;
3882         kvm_desct->avl = seg_desc->avl;
3883         if (!selector)
3884                 kvm_desct->unusable = 1;
3885         else
3886                 kvm_desct->unusable = 0;
3887         kvm_desct->padding = 0;
3888 }
3889
3890 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3891                                           u16 selector,
3892                                           struct descriptor_table *dtable)
3893 {
3894         if (selector & 1 << 2) {
3895                 struct kvm_segment kvm_seg;
3896
3897                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3898
3899                 if (kvm_seg.unusable)
3900                         dtable->limit = 0;
3901                 else
3902                         dtable->limit = kvm_seg.limit;
3903                 dtable->base = kvm_seg.base;
3904         }
3905         else
3906                 kvm_x86_ops->get_gdt(vcpu, dtable);
3907 }
3908
3909 /* allowed just for 8 bytes segments */
3910 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3911                                          struct desc_struct *seg_desc)
3912 {
3913         gpa_t gpa;
3914         struct descriptor_table dtable;
3915         u16 index = selector >> 3;
3916
3917         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3918
3919         if (dtable.limit < index * 8 + 7) {
3920                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3921                 return 1;
3922         }
3923         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3924         gpa += index * 8;
3925         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3926 }
3927
3928 /* allowed just for 8 bytes segments */
3929 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3930                                          struct desc_struct *seg_desc)
3931 {
3932         gpa_t gpa;
3933         struct descriptor_table dtable;
3934         u16 index = selector >> 3;
3935
3936         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3937
3938         if (dtable.limit < index * 8 + 7)
3939                 return 1;
3940         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3941         gpa += index * 8;
3942         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3943 }
3944
3945 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3946                              struct desc_struct *seg_desc)
3947 {
3948         u32 base_addr;
3949
3950         base_addr = seg_desc->base0;
3951         base_addr |= (seg_desc->base1 << 16);
3952         base_addr |= (seg_desc->base2 << 24);
3953
3954         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3955 }
3956
3957 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3958 {
3959         struct kvm_segment kvm_seg;
3960
3961         kvm_get_segment(vcpu, &kvm_seg, seg);
3962         return kvm_seg.selector;
3963 }
3964
3965 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3966                                                 u16 selector,
3967                                                 struct kvm_segment *kvm_seg)
3968 {
3969         struct desc_struct seg_desc;
3970
3971         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3972                 return 1;
3973         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3974         return 0;
3975 }
3976
3977 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3978 {
3979         struct kvm_segment segvar = {
3980                 .base = selector << 4,
3981                 .limit = 0xffff,
3982                 .selector = selector,
3983                 .type = 3,
3984                 .present = 1,
3985                 .dpl = 3,
3986                 .db = 0,
3987                 .s = 1,
3988                 .l = 0,
3989                 .g = 0,
3990                 .avl = 0,
3991                 .unusable = 0,
3992         };
3993         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3994         return 0;
3995 }
3996
3997 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3998                                 int type_bits, int seg)
3999 {
4000         struct kvm_segment kvm_seg;
4001
4002         if (!(vcpu->arch.cr0 & X86_CR0_PE))
4003                 return kvm_load_realmode_segment(vcpu, selector, seg);
4004         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4005                 return 1;
4006         kvm_seg.type |= type_bits;
4007
4008         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4009             seg != VCPU_SREG_LDTR)
4010                 if (!kvm_seg.s)
4011                         kvm_seg.unusable = 1;
4012
4013         kvm_set_segment(vcpu, &kvm_seg, seg);
4014         return 0;
4015 }
4016
4017 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4018                                 struct tss_segment_32 *tss)
4019 {
4020         tss->cr3 = vcpu->arch.cr3;
4021         tss->eip = kvm_rip_read(vcpu);
4022         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4023         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4024         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4025         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4026         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4027         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4028         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4029         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4030         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4031         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4032         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4033         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4034         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4035         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4036         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4037         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4038 }
4039
4040 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4041                                   struct tss_segment_32 *tss)
4042 {
4043         kvm_set_cr3(vcpu, tss->cr3);
4044
4045         kvm_rip_write(vcpu, tss->eip);
4046         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4047
4048         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4049         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4050         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4051         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4052         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4053         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4054         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4055         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4056
4057         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4058                 return 1;
4059
4060         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4061                 return 1;
4062
4063         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4064                 return 1;
4065
4066         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4067                 return 1;
4068
4069         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4070                 return 1;
4071
4072         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4073                 return 1;
4074
4075         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4076                 return 1;
4077         return 0;
4078 }
4079
4080 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4081                                 struct tss_segment_16 *tss)
4082 {
4083         tss->ip = kvm_rip_read(vcpu);
4084         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4085         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4086         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4087         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4088         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4089         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4090         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4091         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4092         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4093
4094         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4095         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4096         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4097         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4098         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4099         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4100 }
4101
4102 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4103                                  struct tss_segment_16 *tss)
4104 {
4105         kvm_rip_write(vcpu, tss->ip);
4106         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4107         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4108         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4109         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4110         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4111         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4112         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4113         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4114         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4115
4116         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4117                 return 1;
4118
4119         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4120                 return 1;
4121
4122         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4123                 return 1;
4124
4125         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4126                 return 1;
4127
4128         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4129                 return 1;
4130         return 0;
4131 }
4132
4133 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4134                               u16 old_tss_sel, u32 old_tss_base,
4135                               struct desc_struct *nseg_desc)
4136 {
4137         struct tss_segment_16 tss_segment_16;
4138         int ret = 0;
4139
4140         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4141                            sizeof tss_segment_16))
4142                 goto out;
4143
4144         save_state_to_tss16(vcpu, &tss_segment_16);
4145
4146         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4147                             sizeof tss_segment_16))
4148                 goto out;
4149
4150         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4151                            &tss_segment_16, sizeof tss_segment_16))
4152                 goto out;
4153
4154         if (old_tss_sel != 0xffff) {
4155                 tss_segment_16.prev_task_link = old_tss_sel;
4156
4157                 if (kvm_write_guest(vcpu->kvm,
4158                                     get_tss_base_addr(vcpu, nseg_desc),
4159                                     &tss_segment_16.prev_task_link,
4160                                     sizeof tss_segment_16.prev_task_link))
4161                         goto out;
4162         }
4163
4164         if (load_state_from_tss16(vcpu, &tss_segment_16))
4165                 goto out;
4166
4167         ret = 1;
4168 out:
4169         return ret;
4170 }
4171
4172 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4173                        u16 old_tss_sel, u32 old_tss_base,
4174                        struct desc_struct *nseg_desc)
4175 {
4176         struct tss_segment_32 tss_segment_32;
4177         int ret = 0;
4178
4179         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4180                            sizeof tss_segment_32))
4181                 goto out;
4182
4183         save_state_to_tss32(vcpu, &tss_segment_32);
4184
4185         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4186                             sizeof tss_segment_32))
4187                 goto out;
4188
4189         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4190                            &tss_segment_32, sizeof tss_segment_32))
4191                 goto out;
4192
4193         if (old_tss_sel != 0xffff) {
4194                 tss_segment_32.prev_task_link = old_tss_sel;
4195
4196                 if (kvm_write_guest(vcpu->kvm,
4197                                     get_tss_base_addr(vcpu, nseg_desc),
4198                                     &tss_segment_32.prev_task_link,
4199                                     sizeof tss_segment_32.prev_task_link))
4200                         goto out;
4201         }
4202
4203         if (load_state_from_tss32(vcpu, &tss_segment_32))
4204                 goto out;
4205
4206         ret = 1;
4207 out:
4208         return ret;
4209 }
4210
4211 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4212 {
4213         struct kvm_segment tr_seg;
4214         struct desc_struct cseg_desc;
4215         struct desc_struct nseg_desc;
4216         int ret = 0;
4217         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4218         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4219
4220         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4221
4222         /* FIXME: Handle errors. Failure to read either TSS or their
4223          * descriptors should generate a pagefault.
4224          */
4225         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4226                 goto out;
4227
4228         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4229                 goto out;
4230
4231         if (reason != TASK_SWITCH_IRET) {
4232                 int cpl;
4233
4234                 cpl = kvm_x86_ops->get_cpl(vcpu);
4235                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4236                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4237                         return 1;
4238                 }
4239         }
4240
4241         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4242                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4243                 return 1;
4244         }
4245
4246         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4247                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4248                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4249         }
4250
4251         if (reason == TASK_SWITCH_IRET) {
4252                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4253                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4254         }
4255
4256         /* set back link to prev task only if NT bit is set in eflags
4257            note that old_tss_sel is not used afetr this point */
4258         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4259                 old_tss_sel = 0xffff;
4260
4261         /* set back link to prev task only if NT bit is set in eflags
4262            note that old_tss_sel is not used afetr this point */
4263         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4264                 old_tss_sel = 0xffff;
4265
4266         if (nseg_desc.type & 8)
4267                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4268                                          old_tss_base, &nseg_desc);
4269         else
4270                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4271                                          old_tss_base, &nseg_desc);
4272
4273         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4274                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4275                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4276         }
4277
4278         if (reason != TASK_SWITCH_IRET) {
4279                 nseg_desc.type |= (1 << 1);
4280                 save_guest_segment_descriptor(vcpu, tss_selector,
4281                                               &nseg_desc);
4282         }
4283
4284         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4285         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4286         tr_seg.type = 11;
4287         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4288 out:
4289         return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(kvm_task_switch);
4292
4293 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4294                                   struct kvm_sregs *sregs)
4295 {
4296         int mmu_reset_needed = 0;
4297         int pending_vec, max_bits;
4298         struct descriptor_table dt;
4299
4300         vcpu_load(vcpu);
4301
4302         dt.limit = sregs->idt.limit;
4303         dt.base = sregs->idt.base;
4304         kvm_x86_ops->set_idt(vcpu, &dt);
4305         dt.limit = sregs->gdt.limit;
4306         dt.base = sregs->gdt.base;
4307         kvm_x86_ops->set_gdt(vcpu, &dt);
4308
4309         vcpu->arch.cr2 = sregs->cr2;
4310         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4311
4312         down_read(&vcpu->kvm->slots_lock);
4313         if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4314                 vcpu->arch.cr3 = sregs->cr3;
4315         else
4316                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4317         up_read(&vcpu->kvm->slots_lock);
4318
4319         kvm_set_cr8(vcpu, sregs->cr8);
4320
4321         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4322         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4323         kvm_set_apic_base(vcpu, sregs->apic_base);
4324
4325         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4326
4327         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4328         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4329         vcpu->arch.cr0 = sregs->cr0;
4330
4331         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4332         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4333         if (!is_long_mode(vcpu) && is_pae(vcpu))
4334                 load_pdptrs(vcpu, vcpu->arch.cr3);
4335
4336         if (mmu_reset_needed)
4337                 kvm_mmu_reset_context(vcpu);
4338
4339         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4340         pending_vec = find_first_bit(
4341                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4342         if (pending_vec < max_bits) {
4343                 kvm_queue_interrupt(vcpu, pending_vec, false);
4344                 pr_debug("Set back pending irq %d\n", pending_vec);
4345                 if (irqchip_in_kernel(vcpu->kvm))
4346                         kvm_pic_clear_isr_ack(vcpu->kvm);
4347         }
4348
4349         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4350         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4351         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4352         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4353         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4354         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4355
4356         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4357         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4358
4359         /* Older userspace won't unhalt the vcpu on reset. */
4360         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4361             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4362             !(vcpu->arch.cr0 & X86_CR0_PE))
4363                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4364
4365         vcpu_put(vcpu);
4366
4367         return 0;
4368 }
4369
4370 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4371                                         struct kvm_guest_debug *dbg)
4372 {
4373         int i, r;
4374
4375         vcpu_load(vcpu);
4376
4377         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4378             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4379                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4380                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4381                 vcpu->arch.switch_db_regs =
4382                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4383         } else {
4384                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4385                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4386                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4387         }
4388
4389         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4390
4391         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4392                 kvm_queue_exception(vcpu, DB_VECTOR);
4393         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4394                 kvm_queue_exception(vcpu, BP_VECTOR);
4395
4396         vcpu_put(vcpu);
4397
4398         return r;
4399 }
4400
4401 /*
4402  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4403  * we have asm/x86/processor.h
4404  */
4405 struct fxsave {
4406         u16     cwd;
4407         u16     swd;
4408         u16     twd;
4409         u16     fop;
4410         u64     rip;
4411         u64     rdp;
4412         u32     mxcsr;
4413         u32     mxcsr_mask;
4414         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4415 #ifdef CONFIG_X86_64
4416         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4417 #else
4418         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4419 #endif
4420 };
4421
4422 /*
4423  * Translate a guest virtual address to a guest physical address.
4424  */
4425 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4426                                     struct kvm_translation *tr)
4427 {
4428         unsigned long vaddr = tr->linear_address;
4429         gpa_t gpa;
4430
4431         vcpu_load(vcpu);
4432         down_read(&vcpu->kvm->slots_lock);
4433         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4434         up_read(&vcpu->kvm->slots_lock);
4435         tr->physical_address = gpa;
4436         tr->valid = gpa != UNMAPPED_GVA;
4437         tr->writeable = 1;
4438         tr->usermode = 0;
4439         vcpu_put(vcpu);
4440
4441         return 0;
4442 }
4443
4444 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4445 {
4446         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4447
4448         vcpu_load(vcpu);
4449
4450         memcpy(fpu->fpr, fxsave->st_space, 128);
4451         fpu->fcw = fxsave->cwd;
4452         fpu->fsw = fxsave->swd;
4453         fpu->ftwx = fxsave->twd;
4454         fpu->last_opcode = fxsave->fop;
4455         fpu->last_ip = fxsave->rip;
4456         fpu->last_dp = fxsave->rdp;
4457         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4458
4459         vcpu_put(vcpu);
4460
4461         return 0;
4462 }
4463
4464 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4465 {
4466         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4467
4468         vcpu_load(vcpu);
4469
4470         memcpy(fxsave->st_space, fpu->fpr, 128);
4471         fxsave->cwd = fpu->fcw;
4472         fxsave->swd = fpu->fsw;
4473         fxsave->twd = fpu->ftwx;
4474         fxsave->fop = fpu->last_opcode;
4475         fxsave->rip = fpu->last_ip;
4476         fxsave->rdp = fpu->last_dp;
4477         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4478
4479         vcpu_put(vcpu);
4480
4481         return 0;
4482 }
4483
4484 void fx_init(struct kvm_vcpu *vcpu)
4485 {
4486         unsigned after_mxcsr_mask;
4487
4488         /*
4489          * Touch the fpu the first time in non atomic context as if
4490          * this is the first fpu instruction the exception handler
4491          * will fire before the instruction returns and it'll have to
4492          * allocate ram with GFP_KERNEL.
4493          */
4494         if (!used_math())
4495                 kvm_fx_save(&vcpu->arch.host_fx_image);
4496
4497         /* Initialize guest FPU by resetting ours and saving into guest's */
4498         preempt_disable();
4499         kvm_fx_save(&vcpu->arch.host_fx_image);
4500         kvm_fx_finit();
4501         kvm_fx_save(&vcpu->arch.guest_fx_image);
4502         kvm_fx_restore(&vcpu->arch.host_fx_image);
4503         preempt_enable();
4504
4505         vcpu->arch.cr0 |= X86_CR0_ET;
4506         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4507         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4508         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4509                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4510 }
4511 EXPORT_SYMBOL_GPL(fx_init);
4512
4513 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4514 {
4515         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4516                 return;
4517
4518         vcpu->guest_fpu_loaded = 1;
4519         kvm_fx_save(&vcpu->arch.host_fx_image);
4520         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4521 }
4522 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4523
4524 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4525 {
4526         if (!vcpu->guest_fpu_loaded)
4527                 return;
4528
4529         vcpu->guest_fpu_loaded = 0;
4530         kvm_fx_save(&vcpu->arch.guest_fx_image);
4531         kvm_fx_restore(&vcpu->arch.host_fx_image);
4532         ++vcpu->stat.fpu_reload;
4533 }
4534 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4535
4536 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4537 {
4538         if (vcpu->arch.time_page) {
4539                 kvm_release_page_dirty(vcpu->arch.time_page);
4540                 vcpu->arch.time_page = NULL;
4541         }
4542
4543         kvm_x86_ops->vcpu_free(vcpu);
4544 }
4545
4546 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4547                                                 unsigned int id)
4548 {
4549         return kvm_x86_ops->vcpu_create(kvm, id);
4550 }
4551
4552 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4553 {
4554         int r;
4555
4556         /* We do fxsave: this must be aligned. */
4557         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4558
4559         vcpu->arch.mtrr_state.have_fixed = 1;
4560         vcpu_load(vcpu);
4561         r = kvm_arch_vcpu_reset(vcpu);
4562         if (r == 0)
4563                 r = kvm_mmu_setup(vcpu);
4564         vcpu_put(vcpu);
4565         if (r < 0)
4566                 goto free_vcpu;
4567
4568         return 0;
4569 free_vcpu:
4570         kvm_x86_ops->vcpu_free(vcpu);
4571         return r;
4572 }
4573
4574 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4575 {
4576         vcpu_load(vcpu);
4577         kvm_mmu_unload(vcpu);
4578         vcpu_put(vcpu);
4579
4580         kvm_x86_ops->vcpu_free(vcpu);
4581 }
4582
4583 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4584 {
4585         vcpu->arch.nmi_pending = false;
4586         vcpu->arch.nmi_injected = false;
4587
4588         vcpu->arch.switch_db_regs = 0;
4589         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4590         vcpu->arch.dr6 = DR6_FIXED_1;
4591         vcpu->arch.dr7 = DR7_FIXED_1;
4592
4593         return kvm_x86_ops->vcpu_reset(vcpu);
4594 }
4595
4596 void kvm_arch_hardware_enable(void *garbage)
4597 {
4598         kvm_x86_ops->hardware_enable(garbage);
4599 }
4600
4601 void kvm_arch_hardware_disable(void *garbage)
4602 {
4603         kvm_x86_ops->hardware_disable(garbage);
4604 }
4605
4606 int kvm_arch_hardware_setup(void)
4607 {
4608         return kvm_x86_ops->hardware_setup();
4609 }
4610
4611 void kvm_arch_hardware_unsetup(void)
4612 {
4613         kvm_x86_ops->hardware_unsetup();
4614 }
4615
4616 void kvm_arch_check_processor_compat(void *rtn)
4617 {
4618         kvm_x86_ops->check_processor_compatibility(rtn);
4619 }
4620
4621 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4622 {
4623         struct page *page;
4624         struct kvm *kvm;
4625         int r;
4626
4627         BUG_ON(vcpu->kvm == NULL);
4628         kvm = vcpu->kvm;
4629
4630         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4631         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4632                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4633         else
4634                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4635
4636         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4637         if (!page) {
4638                 r = -ENOMEM;
4639                 goto fail;
4640         }
4641         vcpu->arch.pio_data = page_address(page);
4642
4643         r = kvm_mmu_create(vcpu);
4644         if (r < 0)
4645                 goto fail_free_pio_data;
4646
4647         if (irqchip_in_kernel(kvm)) {
4648                 r = kvm_create_lapic(vcpu);
4649                 if (r < 0)
4650                         goto fail_mmu_destroy;
4651         }
4652
4653         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4654                                        GFP_KERNEL);
4655         if (!vcpu->arch.mce_banks) {
4656                 r = -ENOMEM;
4657                 goto fail_mmu_destroy;
4658         }
4659         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4660
4661         return 0;
4662
4663 fail_mmu_destroy:
4664         kvm_mmu_destroy(vcpu);
4665 fail_free_pio_data:
4666         free_page((unsigned long)vcpu->arch.pio_data);
4667 fail:
4668         return r;
4669 }
4670
4671 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4672 {
4673         kvm_free_lapic(vcpu);
4674         down_read(&vcpu->kvm->slots_lock);
4675         kvm_mmu_destroy(vcpu);
4676         up_read(&vcpu->kvm->slots_lock);
4677         free_page((unsigned long)vcpu->arch.pio_data);
4678 }
4679
4680 struct  kvm *kvm_arch_create_vm(void)
4681 {
4682         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4683
4684         if (!kvm)
4685                 return ERR_PTR(-ENOMEM);
4686
4687         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4688         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4689
4690         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4691         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4692
4693         rdtscll(kvm->arch.vm_init_tsc);
4694
4695         return kvm;
4696 }
4697
4698 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4699 {
4700         vcpu_load(vcpu);
4701         kvm_mmu_unload(vcpu);
4702         vcpu_put(vcpu);
4703 }
4704
4705 static void kvm_free_vcpus(struct kvm *kvm)
4706 {
4707         unsigned int i;
4708         struct kvm_vcpu *vcpu;
4709
4710         /*
4711          * Unpin any mmu pages first.
4712          */
4713         kvm_for_each_vcpu(i, vcpu, kvm)
4714                 kvm_unload_vcpu_mmu(vcpu);
4715         kvm_for_each_vcpu(i, vcpu, kvm)
4716                 kvm_arch_vcpu_free(vcpu);
4717
4718         mutex_lock(&kvm->lock);
4719         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4720                 kvm->vcpus[i] = NULL;
4721
4722         atomic_set(&kvm->online_vcpus, 0);
4723         mutex_unlock(&kvm->lock);
4724 }
4725
4726 void kvm_arch_sync_events(struct kvm *kvm)
4727 {
4728         kvm_free_all_assigned_devices(kvm);
4729 }
4730
4731 void kvm_arch_destroy_vm(struct kvm *kvm)
4732 {
4733         kvm_iommu_unmap_guest(kvm);
4734         kvm_free_pit(kvm);
4735         kfree(kvm->arch.vpic);
4736         kfree(kvm->arch.vioapic);
4737         kvm_free_vcpus(kvm);
4738         kvm_free_physmem(kvm);
4739         if (kvm->arch.apic_access_page)
4740                 put_page(kvm->arch.apic_access_page);
4741         if (kvm->arch.ept_identity_pagetable)
4742                 put_page(kvm->arch.ept_identity_pagetable);
4743         kfree(kvm);
4744 }
4745
4746 int kvm_arch_set_memory_region(struct kvm *kvm,
4747                                 struct kvm_userspace_memory_region *mem,
4748                                 struct kvm_memory_slot old,
4749                                 int user_alloc)
4750 {
4751         int npages = mem->memory_size >> PAGE_SHIFT;
4752         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4753
4754         /*To keep backward compatibility with older userspace,
4755          *x86 needs to hanlde !user_alloc case.
4756          */
4757         if (!user_alloc) {
4758                 if (npages && !old.rmap) {
4759                         unsigned long userspace_addr;
4760
4761                         down_write(&current->mm->mmap_sem);
4762                         userspace_addr = do_mmap(NULL, 0,
4763                                                  npages * PAGE_SIZE,
4764                                                  PROT_READ | PROT_WRITE,
4765                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4766                                                  0);
4767                         up_write(&current->mm->mmap_sem);
4768
4769                         if (IS_ERR((void *)userspace_addr))
4770                                 return PTR_ERR((void *)userspace_addr);
4771
4772                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4773                         spin_lock(&kvm->mmu_lock);
4774                         memslot->userspace_addr = userspace_addr;
4775                         spin_unlock(&kvm->mmu_lock);
4776                 } else {
4777                         if (!old.user_alloc && old.rmap) {
4778                                 int ret;
4779
4780                                 down_write(&current->mm->mmap_sem);
4781                                 ret = do_munmap(current->mm, old.userspace_addr,
4782                                                 old.npages * PAGE_SIZE);
4783                                 up_write(&current->mm->mmap_sem);
4784                                 if (ret < 0)
4785                                         printk(KERN_WARNING
4786                                        "kvm_vm_ioctl_set_memory_region: "
4787                                        "failed to munmap memory\n");
4788                         }
4789                 }
4790         }
4791
4792         spin_lock(&kvm->mmu_lock);
4793         if (!kvm->arch.n_requested_mmu_pages) {
4794                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4795                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4796         }
4797
4798         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4799         spin_unlock(&kvm->mmu_lock);
4800         kvm_flush_remote_tlbs(kvm);
4801
4802         return 0;
4803 }
4804
4805 void kvm_arch_flush_shadow(struct kvm *kvm)
4806 {
4807         kvm_mmu_zap_all(kvm);
4808         kvm_reload_remote_mmus(kvm);
4809 }
4810
4811 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4812 {
4813         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4814                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4815                || vcpu->arch.nmi_pending;
4816 }
4817
4818 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4819 {
4820         int me;
4821         int cpu = vcpu->cpu;
4822
4823         if (waitqueue_active(&vcpu->wq)) {
4824                 wake_up_interruptible(&vcpu->wq);
4825                 ++vcpu->stat.halt_wakeup;
4826         }
4827
4828         me = get_cpu();
4829         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4830                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4831                         smp_send_reschedule(cpu);
4832         put_cpu();
4833 }
4834
4835 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4836 {
4837         return kvm_x86_ops->interrupt_allowed(vcpu);
4838 }
4839
4840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);