Merge branch 'for-v3.16-rc/clk-dt-fixes' of https://github.com/t-kristo/linux-pm...
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144         char *name;
1145         u64 segment;
1146         int ret;
1147         char *name_format;
1148
1149         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150         if (!name)
1151                 return NULL;
1152         segment = offset >> rbd_dev->header.obj_order;
1153         name_format = "%s.%012llx";
1154         if (rbd_dev->image_format == 2)
1155                 name_format = "%s.%016llx";
1156         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157                         rbd_dev->header.object_prefix, segment);
1158         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159                 pr_err("error formatting segment name for #%llu (%d)\n",
1160                         segment, ret);
1161                 kfree(name);
1162                 name = NULL;
1163         }
1164
1165         return name;
1166 }
1167
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170         /* The explicit cast here is needed to drop the const qualifier */
1171
1172         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1531
1532         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1533 }
1534
1535 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1536 {
1537
1538         dout("%s: img %p\n", __func__, img_request);
1539
1540         /*
1541          * If no error occurred, compute the aggregate transfer
1542          * count for the image request.  We could instead use
1543          * atomic64_cmpxchg() to update it as each object request
1544          * completes; not clear which way is better off hand.
1545          */
1546         if (!img_request->result) {
1547                 struct rbd_obj_request *obj_request;
1548                 u64 xferred = 0;
1549
1550                 for_each_obj_request(img_request, obj_request)
1551                         xferred += obj_request->xferred;
1552                 img_request->xferred = xferred;
1553         }
1554
1555         if (img_request->callback)
1556                 img_request->callback(img_request);
1557         else
1558                 rbd_img_request_put(img_request);
1559 }
1560
1561 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1562
1563 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1564 {
1565         dout("%s: obj %p\n", __func__, obj_request);
1566
1567         return wait_for_completion_interruptible(&obj_request->completion);
1568 }
1569
1570 /*
1571  * The default/initial value for all image request flags is 0.  Each
1572  * is conditionally set to 1 at image request initialization time
1573  * and currently never change thereafter.
1574  */
1575 static void img_request_write_set(struct rbd_img_request *img_request)
1576 {
1577         set_bit(IMG_REQ_WRITE, &img_request->flags);
1578         smp_mb();
1579 }
1580
1581 static bool img_request_write_test(struct rbd_img_request *img_request)
1582 {
1583         smp_mb();
1584         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1585 }
1586
1587 static void img_request_child_set(struct rbd_img_request *img_request)
1588 {
1589         set_bit(IMG_REQ_CHILD, &img_request->flags);
1590         smp_mb();
1591 }
1592
1593 static void img_request_child_clear(struct rbd_img_request *img_request)
1594 {
1595         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1596         smp_mb();
1597 }
1598
1599 static bool img_request_child_test(struct rbd_img_request *img_request)
1600 {
1601         smp_mb();
1602         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1603 }
1604
1605 static void img_request_layered_set(struct rbd_img_request *img_request)
1606 {
1607         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1608         smp_mb();
1609 }
1610
1611 static void img_request_layered_clear(struct rbd_img_request *img_request)
1612 {
1613         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1614         smp_mb();
1615 }
1616
1617 static bool img_request_layered_test(struct rbd_img_request *img_request)
1618 {
1619         smp_mb();
1620         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1621 }
1622
1623 static void
1624 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1625 {
1626         u64 xferred = obj_request->xferred;
1627         u64 length = obj_request->length;
1628
1629         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1630                 obj_request, obj_request->img_request, obj_request->result,
1631                 xferred, length);
1632         /*
1633          * ENOENT means a hole in the image.  We zero-fill the entire
1634          * length of the request.  A short read also implies zero-fill
1635          * to the end of the request.  An error requires the whole
1636          * length of the request to be reported finished with an error
1637          * to the block layer.  In each case we update the xferred
1638          * count to indicate the whole request was satisfied.
1639          */
1640         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1641         if (obj_request->result == -ENOENT) {
1642                 if (obj_request->type == OBJ_REQUEST_BIO)
1643                         zero_bio_chain(obj_request->bio_list, 0);
1644                 else
1645                         zero_pages(obj_request->pages, 0, length);
1646                 obj_request->result = 0;
1647         } else if (xferred < length && !obj_request->result) {
1648                 if (obj_request->type == OBJ_REQUEST_BIO)
1649                         zero_bio_chain(obj_request->bio_list, xferred);
1650                 else
1651                         zero_pages(obj_request->pages, xferred, length);
1652         }
1653         obj_request->xferred = length;
1654         obj_request_done_set(obj_request);
1655 }
1656
1657 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1658 {
1659         dout("%s: obj %p cb %p\n", __func__, obj_request,
1660                 obj_request->callback);
1661         if (obj_request->callback)
1662                 obj_request->callback(obj_request);
1663         else
1664                 complete_all(&obj_request->completion);
1665 }
1666
1667 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1668 {
1669         dout("%s: obj %p\n", __func__, obj_request);
1670         obj_request_done_set(obj_request);
1671 }
1672
1673 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1674 {
1675         struct rbd_img_request *img_request = NULL;
1676         struct rbd_device *rbd_dev = NULL;
1677         bool layered = false;
1678
1679         if (obj_request_img_data_test(obj_request)) {
1680                 img_request = obj_request->img_request;
1681                 layered = img_request && img_request_layered_test(img_request);
1682                 rbd_dev = img_request->rbd_dev;
1683         }
1684
1685         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1686                 obj_request, img_request, obj_request->result,
1687                 obj_request->xferred, obj_request->length);
1688         if (layered && obj_request->result == -ENOENT &&
1689                         obj_request->img_offset < rbd_dev->parent_overlap)
1690                 rbd_img_parent_read(obj_request);
1691         else if (img_request)
1692                 rbd_img_obj_request_read_callback(obj_request);
1693         else
1694                 obj_request_done_set(obj_request);
1695 }
1696
1697 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1698 {
1699         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1700                 obj_request->result, obj_request->length);
1701         /*
1702          * There is no such thing as a successful short write.  Set
1703          * it to our originally-requested length.
1704          */
1705         obj_request->xferred = obj_request->length;
1706         obj_request_done_set(obj_request);
1707 }
1708
1709 /*
1710  * For a simple stat call there's nothing to do.  We'll do more if
1711  * this is part of a write sequence for a layered image.
1712  */
1713 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1714 {
1715         dout("%s: obj %p\n", __func__, obj_request);
1716         obj_request_done_set(obj_request);
1717 }
1718
1719 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1720                                 struct ceph_msg *msg)
1721 {
1722         struct rbd_obj_request *obj_request = osd_req->r_priv;
1723         u16 opcode;
1724
1725         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1726         rbd_assert(osd_req == obj_request->osd_req);
1727         if (obj_request_img_data_test(obj_request)) {
1728                 rbd_assert(obj_request->img_request);
1729                 rbd_assert(obj_request->which != BAD_WHICH);
1730         } else {
1731                 rbd_assert(obj_request->which == BAD_WHICH);
1732         }
1733
1734         if (osd_req->r_result < 0)
1735                 obj_request->result = osd_req->r_result;
1736
1737         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1738
1739         /*
1740          * We support a 64-bit length, but ultimately it has to be
1741          * passed to blk_end_request(), which takes an unsigned int.
1742          */
1743         obj_request->xferred = osd_req->r_reply_op_len[0];
1744         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1745
1746         opcode = osd_req->r_ops[0].op;
1747         switch (opcode) {
1748         case CEPH_OSD_OP_READ:
1749                 rbd_osd_read_callback(obj_request);
1750                 break;
1751         case CEPH_OSD_OP_SETALLOCHINT:
1752                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1753                 /* fall through */
1754         case CEPH_OSD_OP_WRITE:
1755                 rbd_osd_write_callback(obj_request);
1756                 break;
1757         case CEPH_OSD_OP_STAT:
1758                 rbd_osd_stat_callback(obj_request);
1759                 break;
1760         case CEPH_OSD_OP_CALL:
1761         case CEPH_OSD_OP_NOTIFY_ACK:
1762         case CEPH_OSD_OP_WATCH:
1763                 rbd_osd_trivial_callback(obj_request);
1764                 break;
1765         default:
1766                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1767                         obj_request->object_name, (unsigned short) opcode);
1768                 break;
1769         }
1770
1771         if (obj_request_done_test(obj_request))
1772                 rbd_obj_request_complete(obj_request);
1773 }
1774
1775 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1776 {
1777         struct rbd_img_request *img_request = obj_request->img_request;
1778         struct ceph_osd_request *osd_req = obj_request->osd_req;
1779         u64 snap_id;
1780
1781         rbd_assert(osd_req != NULL);
1782
1783         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1784         ceph_osdc_build_request(osd_req, obj_request->offset,
1785                         NULL, snap_id, NULL);
1786 }
1787
1788 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1789 {
1790         struct rbd_img_request *img_request = obj_request->img_request;
1791         struct ceph_osd_request *osd_req = obj_request->osd_req;
1792         struct ceph_snap_context *snapc;
1793         struct timespec mtime = CURRENT_TIME;
1794
1795         rbd_assert(osd_req != NULL);
1796
1797         snapc = img_request ? img_request->snapc : NULL;
1798         ceph_osdc_build_request(osd_req, obj_request->offset,
1799                         snapc, CEPH_NOSNAP, &mtime);
1800 }
1801
1802 /*
1803  * Create an osd request.  A read request has one osd op (read).
1804  * A write request has either one (watch) or two (hint+write) osd ops.
1805  * (All rbd data writes are prefixed with an allocation hint op, but
1806  * technically osd watch is a write request, hence this distinction.)
1807  */
1808 static struct ceph_osd_request *rbd_osd_req_create(
1809                                         struct rbd_device *rbd_dev,
1810                                         bool write_request,
1811                                         unsigned int num_ops,
1812                                         struct rbd_obj_request *obj_request)
1813 {
1814         struct ceph_snap_context *snapc = NULL;
1815         struct ceph_osd_client *osdc;
1816         struct ceph_osd_request *osd_req;
1817
1818         if (obj_request_img_data_test(obj_request)) {
1819                 struct rbd_img_request *img_request = obj_request->img_request;
1820
1821                 rbd_assert(write_request ==
1822                                 img_request_write_test(img_request));
1823                 if (write_request)
1824                         snapc = img_request->snapc;
1825         }
1826
1827         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1828
1829         /* Allocate and initialize the request, for the num_ops ops */
1830
1831         osdc = &rbd_dev->rbd_client->client->osdc;
1832         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1833                                           GFP_ATOMIC);
1834         if (!osd_req)
1835                 return NULL;    /* ENOMEM */
1836
1837         if (write_request)
1838                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1839         else
1840                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1841
1842         osd_req->r_callback = rbd_osd_req_callback;
1843         osd_req->r_priv = obj_request;
1844
1845         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1846         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1847
1848         return osd_req;
1849 }
1850
1851 /*
1852  * Create a copyup osd request based on the information in the
1853  * object request supplied.  A copyup request has three osd ops,
1854  * a copyup method call, a hint op, and a write op.
1855  */
1856 static struct ceph_osd_request *
1857 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1858 {
1859         struct rbd_img_request *img_request;
1860         struct ceph_snap_context *snapc;
1861         struct rbd_device *rbd_dev;
1862         struct ceph_osd_client *osdc;
1863         struct ceph_osd_request *osd_req;
1864
1865         rbd_assert(obj_request_img_data_test(obj_request));
1866         img_request = obj_request->img_request;
1867         rbd_assert(img_request);
1868         rbd_assert(img_request_write_test(img_request));
1869
1870         /* Allocate and initialize the request, for the three ops */
1871
1872         snapc = img_request->snapc;
1873         rbd_dev = img_request->rbd_dev;
1874         osdc = &rbd_dev->rbd_client->client->osdc;
1875         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1876         if (!osd_req)
1877                 return NULL;    /* ENOMEM */
1878
1879         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1880         osd_req->r_callback = rbd_osd_req_callback;
1881         osd_req->r_priv = obj_request;
1882
1883         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1884         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1885
1886         return osd_req;
1887 }
1888
1889
1890 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1891 {
1892         ceph_osdc_put_request(osd_req);
1893 }
1894
1895 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1896
1897 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1898                                                 u64 offset, u64 length,
1899                                                 enum obj_request_type type)
1900 {
1901         struct rbd_obj_request *obj_request;
1902         size_t size;
1903         char *name;
1904
1905         rbd_assert(obj_request_type_valid(type));
1906
1907         size = strlen(object_name) + 1;
1908         name = kmalloc(size, GFP_KERNEL);
1909         if (!name)
1910                 return NULL;
1911
1912         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1913         if (!obj_request) {
1914                 kfree(name);
1915                 return NULL;
1916         }
1917
1918         obj_request->object_name = memcpy(name, object_name, size);
1919         obj_request->offset = offset;
1920         obj_request->length = length;
1921         obj_request->flags = 0;
1922         obj_request->which = BAD_WHICH;
1923         obj_request->type = type;
1924         INIT_LIST_HEAD(&obj_request->links);
1925         init_completion(&obj_request->completion);
1926         kref_init(&obj_request->kref);
1927
1928         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1929                 offset, length, (int)type, obj_request);
1930
1931         return obj_request;
1932 }
1933
1934 static void rbd_obj_request_destroy(struct kref *kref)
1935 {
1936         struct rbd_obj_request *obj_request;
1937
1938         obj_request = container_of(kref, struct rbd_obj_request, kref);
1939
1940         dout("%s: obj %p\n", __func__, obj_request);
1941
1942         rbd_assert(obj_request->img_request == NULL);
1943         rbd_assert(obj_request->which == BAD_WHICH);
1944
1945         if (obj_request->osd_req)
1946                 rbd_osd_req_destroy(obj_request->osd_req);
1947
1948         rbd_assert(obj_request_type_valid(obj_request->type));
1949         switch (obj_request->type) {
1950         case OBJ_REQUEST_NODATA:
1951                 break;          /* Nothing to do */
1952         case OBJ_REQUEST_BIO:
1953                 if (obj_request->bio_list)
1954                         bio_chain_put(obj_request->bio_list);
1955                 break;
1956         case OBJ_REQUEST_PAGES:
1957                 if (obj_request->pages)
1958                         ceph_release_page_vector(obj_request->pages,
1959                                                 obj_request->page_count);
1960                 break;
1961         }
1962
1963         kfree(obj_request->object_name);
1964         obj_request->object_name = NULL;
1965         kmem_cache_free(rbd_obj_request_cache, obj_request);
1966 }
1967
1968 /* It's OK to call this for a device with no parent */
1969
1970 static void rbd_spec_put(struct rbd_spec *spec);
1971 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1972 {
1973         rbd_dev_remove_parent(rbd_dev);
1974         rbd_spec_put(rbd_dev->parent_spec);
1975         rbd_dev->parent_spec = NULL;
1976         rbd_dev->parent_overlap = 0;
1977 }
1978
1979 /*
1980  * Parent image reference counting is used to determine when an
1981  * image's parent fields can be safely torn down--after there are no
1982  * more in-flight requests to the parent image.  When the last
1983  * reference is dropped, cleaning them up is safe.
1984  */
1985 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1986 {
1987         int counter;
1988
1989         if (!rbd_dev->parent_spec)
1990                 return;
1991
1992         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1993         if (counter > 0)
1994                 return;
1995
1996         /* Last reference; clean up parent data structures */
1997
1998         if (!counter)
1999                 rbd_dev_unparent(rbd_dev);
2000         else
2001                 rbd_warn(rbd_dev, "parent reference underflow\n");
2002 }
2003
2004 /*
2005  * If an image has a non-zero parent overlap, get a reference to its
2006  * parent.
2007  *
2008  * We must get the reference before checking for the overlap to
2009  * coordinate properly with zeroing the parent overlap in
2010  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2011  * drop it again if there is no overlap.
2012  *
2013  * Returns true if the rbd device has a parent with a non-zero
2014  * overlap and a reference for it was successfully taken, or
2015  * false otherwise.
2016  */
2017 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2018 {
2019         int counter;
2020
2021         if (!rbd_dev->parent_spec)
2022                 return false;
2023
2024         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2025         if (counter > 0 && rbd_dev->parent_overlap)
2026                 return true;
2027
2028         /* Image was flattened, but parent is not yet torn down */
2029
2030         if (counter < 0)
2031                 rbd_warn(rbd_dev, "parent reference overflow\n");
2032
2033         return false;
2034 }
2035
2036 /*
2037  * Caller is responsible for filling in the list of object requests
2038  * that comprises the image request, and the Linux request pointer
2039  * (if there is one).
2040  */
2041 static struct rbd_img_request *rbd_img_request_create(
2042                                         struct rbd_device *rbd_dev,
2043                                         u64 offset, u64 length,
2044                                         bool write_request)
2045 {
2046         struct rbd_img_request *img_request;
2047
2048         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2049         if (!img_request)
2050                 return NULL;
2051
2052         if (write_request) {
2053                 down_read(&rbd_dev->header_rwsem);
2054                 ceph_get_snap_context(rbd_dev->header.snapc);
2055                 up_read(&rbd_dev->header_rwsem);
2056         }
2057
2058         img_request->rq = NULL;
2059         img_request->rbd_dev = rbd_dev;
2060         img_request->offset = offset;
2061         img_request->length = length;
2062         img_request->flags = 0;
2063         if (write_request) {
2064                 img_request_write_set(img_request);
2065                 img_request->snapc = rbd_dev->header.snapc;
2066         } else {
2067                 img_request->snap_id = rbd_dev->spec->snap_id;
2068         }
2069         if (rbd_dev_parent_get(rbd_dev))
2070                 img_request_layered_set(img_request);
2071         spin_lock_init(&img_request->completion_lock);
2072         img_request->next_completion = 0;
2073         img_request->callback = NULL;
2074         img_request->result = 0;
2075         img_request->obj_request_count = 0;
2076         INIT_LIST_HEAD(&img_request->obj_requests);
2077         kref_init(&img_request->kref);
2078
2079         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2080                 write_request ? "write" : "read", offset, length,
2081                 img_request);
2082
2083         return img_request;
2084 }
2085
2086 static void rbd_img_request_destroy(struct kref *kref)
2087 {
2088         struct rbd_img_request *img_request;
2089         struct rbd_obj_request *obj_request;
2090         struct rbd_obj_request *next_obj_request;
2091
2092         img_request = container_of(kref, struct rbd_img_request, kref);
2093
2094         dout("%s: img %p\n", __func__, img_request);
2095
2096         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2097                 rbd_img_obj_request_del(img_request, obj_request);
2098         rbd_assert(img_request->obj_request_count == 0);
2099
2100         if (img_request_layered_test(img_request)) {
2101                 img_request_layered_clear(img_request);
2102                 rbd_dev_parent_put(img_request->rbd_dev);
2103         }
2104
2105         if (img_request_write_test(img_request))
2106                 ceph_put_snap_context(img_request->snapc);
2107
2108         kmem_cache_free(rbd_img_request_cache, img_request);
2109 }
2110
2111 static struct rbd_img_request *rbd_parent_request_create(
2112                                         struct rbd_obj_request *obj_request,
2113                                         u64 img_offset, u64 length)
2114 {
2115         struct rbd_img_request *parent_request;
2116         struct rbd_device *rbd_dev;
2117
2118         rbd_assert(obj_request->img_request);
2119         rbd_dev = obj_request->img_request->rbd_dev;
2120
2121         parent_request = rbd_img_request_create(rbd_dev->parent,
2122                                                 img_offset, length, false);
2123         if (!parent_request)
2124                 return NULL;
2125
2126         img_request_child_set(parent_request);
2127         rbd_obj_request_get(obj_request);
2128         parent_request->obj_request = obj_request;
2129
2130         return parent_request;
2131 }
2132
2133 static void rbd_parent_request_destroy(struct kref *kref)
2134 {
2135         struct rbd_img_request *parent_request;
2136         struct rbd_obj_request *orig_request;
2137
2138         parent_request = container_of(kref, struct rbd_img_request, kref);
2139         orig_request = parent_request->obj_request;
2140
2141         parent_request->obj_request = NULL;
2142         rbd_obj_request_put(orig_request);
2143         img_request_child_clear(parent_request);
2144
2145         rbd_img_request_destroy(kref);
2146 }
2147
2148 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2149 {
2150         struct rbd_img_request *img_request;
2151         unsigned int xferred;
2152         int result;
2153         bool more;
2154
2155         rbd_assert(obj_request_img_data_test(obj_request));
2156         img_request = obj_request->img_request;
2157
2158         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2159         xferred = (unsigned int)obj_request->xferred;
2160         result = obj_request->result;
2161         if (result) {
2162                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2163
2164                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2165                         img_request_write_test(img_request) ? "write" : "read",
2166                         obj_request->length, obj_request->img_offset,
2167                         obj_request->offset);
2168                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2169                         result, xferred);
2170                 if (!img_request->result)
2171                         img_request->result = result;
2172         }
2173
2174         /* Image object requests don't own their page array */
2175
2176         if (obj_request->type == OBJ_REQUEST_PAGES) {
2177                 obj_request->pages = NULL;
2178                 obj_request->page_count = 0;
2179         }
2180
2181         if (img_request_child_test(img_request)) {
2182                 rbd_assert(img_request->obj_request != NULL);
2183                 more = obj_request->which < img_request->obj_request_count - 1;
2184         } else {
2185                 rbd_assert(img_request->rq != NULL);
2186                 more = blk_end_request(img_request->rq, result, xferred);
2187         }
2188
2189         return more;
2190 }
2191
2192 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2193 {
2194         struct rbd_img_request *img_request;
2195         u32 which = obj_request->which;
2196         bool more = true;
2197
2198         rbd_assert(obj_request_img_data_test(obj_request));
2199         img_request = obj_request->img_request;
2200
2201         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2202         rbd_assert(img_request != NULL);
2203         rbd_assert(img_request->obj_request_count > 0);
2204         rbd_assert(which != BAD_WHICH);
2205         rbd_assert(which < img_request->obj_request_count);
2206
2207         spin_lock_irq(&img_request->completion_lock);
2208         if (which != img_request->next_completion)
2209                 goto out;
2210
2211         for_each_obj_request_from(img_request, obj_request) {
2212                 rbd_assert(more);
2213                 rbd_assert(which < img_request->obj_request_count);
2214
2215                 if (!obj_request_done_test(obj_request))
2216                         break;
2217                 more = rbd_img_obj_end_request(obj_request);
2218                 which++;
2219         }
2220
2221         rbd_assert(more ^ (which == img_request->obj_request_count));
2222         img_request->next_completion = which;
2223 out:
2224         spin_unlock_irq(&img_request->completion_lock);
2225         rbd_img_request_put(img_request);
2226
2227         if (!more)
2228                 rbd_img_request_complete(img_request);
2229 }
2230
2231 /*
2232  * Split up an image request into one or more object requests, each
2233  * to a different object.  The "type" parameter indicates whether
2234  * "data_desc" is the pointer to the head of a list of bio
2235  * structures, or the base of a page array.  In either case this
2236  * function assumes data_desc describes memory sufficient to hold
2237  * all data described by the image request.
2238  */
2239 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2240                                         enum obj_request_type type,
2241                                         void *data_desc)
2242 {
2243         struct rbd_device *rbd_dev = img_request->rbd_dev;
2244         struct rbd_obj_request *obj_request = NULL;
2245         struct rbd_obj_request *next_obj_request;
2246         bool write_request = img_request_write_test(img_request);
2247         struct bio *bio_list = NULL;
2248         unsigned int bio_offset = 0;
2249         struct page **pages = NULL;
2250         u64 img_offset;
2251         u64 resid;
2252         u16 opcode;
2253
2254         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2255                 (int)type, data_desc);
2256
2257         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2258         img_offset = img_request->offset;
2259         resid = img_request->length;
2260         rbd_assert(resid > 0);
2261
2262         if (type == OBJ_REQUEST_BIO) {
2263                 bio_list = data_desc;
2264                 rbd_assert(img_offset ==
2265                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2266         } else {
2267                 rbd_assert(type == OBJ_REQUEST_PAGES);
2268                 pages = data_desc;
2269         }
2270
2271         while (resid) {
2272                 struct ceph_osd_request *osd_req;
2273                 const char *object_name;
2274                 u64 offset;
2275                 u64 length;
2276                 unsigned int which = 0;
2277
2278                 object_name = rbd_segment_name(rbd_dev, img_offset);
2279                 if (!object_name)
2280                         goto out_unwind;
2281                 offset = rbd_segment_offset(rbd_dev, img_offset);
2282                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2283                 obj_request = rbd_obj_request_create(object_name,
2284                                                 offset, length, type);
2285                 /* object request has its own copy of the object name */
2286                 rbd_segment_name_free(object_name);
2287                 if (!obj_request)
2288                         goto out_unwind;
2289
2290                 /*
2291                  * set obj_request->img_request before creating the
2292                  * osd_request so that it gets the right snapc
2293                  */
2294                 rbd_img_obj_request_add(img_request, obj_request);
2295
2296                 if (type == OBJ_REQUEST_BIO) {
2297                         unsigned int clone_size;
2298
2299                         rbd_assert(length <= (u64)UINT_MAX);
2300                         clone_size = (unsigned int)length;
2301                         obj_request->bio_list =
2302                                         bio_chain_clone_range(&bio_list,
2303                                                                 &bio_offset,
2304                                                                 clone_size,
2305                                                                 GFP_ATOMIC);
2306                         if (!obj_request->bio_list)
2307                                 goto out_unwind;
2308                 } else {
2309                         unsigned int page_count;
2310
2311                         obj_request->pages = pages;
2312                         page_count = (u32)calc_pages_for(offset, length);
2313                         obj_request->page_count = page_count;
2314                         if ((offset + length) & ~PAGE_MASK)
2315                                 page_count--;   /* more on last page */
2316                         pages += page_count;
2317                 }
2318
2319                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2320                                              (write_request ? 2 : 1),
2321                                              obj_request);
2322                 if (!osd_req)
2323                         goto out_unwind;
2324                 obj_request->osd_req = osd_req;
2325                 obj_request->callback = rbd_img_obj_callback;
2326                 rbd_img_request_get(img_request);
2327
2328                 if (write_request) {
2329                         osd_req_op_alloc_hint_init(osd_req, which,
2330                                              rbd_obj_bytes(&rbd_dev->header),
2331                                              rbd_obj_bytes(&rbd_dev->header));
2332                         which++;
2333                 }
2334
2335                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2336                                        0, 0);
2337                 if (type == OBJ_REQUEST_BIO)
2338                         osd_req_op_extent_osd_data_bio(osd_req, which,
2339                                         obj_request->bio_list, length);
2340                 else
2341                         osd_req_op_extent_osd_data_pages(osd_req, which,
2342                                         obj_request->pages, length,
2343                                         offset & ~PAGE_MASK, false, false);
2344
2345                 if (write_request)
2346                         rbd_osd_req_format_write(obj_request);
2347                 else
2348                         rbd_osd_req_format_read(obj_request);
2349
2350                 obj_request->img_offset = img_offset;
2351
2352                 img_offset += length;
2353                 resid -= length;
2354         }
2355
2356         return 0;
2357
2358 out_unwind:
2359         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2360                 rbd_img_obj_request_del(img_request, obj_request);
2361
2362         return -ENOMEM;
2363 }
2364
2365 static void
2366 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2367 {
2368         struct rbd_img_request *img_request;
2369         struct rbd_device *rbd_dev;
2370         struct page **pages;
2371         u32 page_count;
2372
2373         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2374         rbd_assert(obj_request_img_data_test(obj_request));
2375         img_request = obj_request->img_request;
2376         rbd_assert(img_request);
2377
2378         rbd_dev = img_request->rbd_dev;
2379         rbd_assert(rbd_dev);
2380
2381         pages = obj_request->copyup_pages;
2382         rbd_assert(pages != NULL);
2383         obj_request->copyup_pages = NULL;
2384         page_count = obj_request->copyup_page_count;
2385         rbd_assert(page_count);
2386         obj_request->copyup_page_count = 0;
2387         ceph_release_page_vector(pages, page_count);
2388
2389         /*
2390          * We want the transfer count to reflect the size of the
2391          * original write request.  There is no such thing as a
2392          * successful short write, so if the request was successful
2393          * we can just set it to the originally-requested length.
2394          */
2395         if (!obj_request->result)
2396                 obj_request->xferred = obj_request->length;
2397
2398         /* Finish up with the normal image object callback */
2399
2400         rbd_img_obj_callback(obj_request);
2401 }
2402
2403 static void
2404 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2405 {
2406         struct rbd_obj_request *orig_request;
2407         struct ceph_osd_request *osd_req;
2408         struct ceph_osd_client *osdc;
2409         struct rbd_device *rbd_dev;
2410         struct page **pages;
2411         u32 page_count;
2412         int img_result;
2413         u64 parent_length;
2414         u64 offset;
2415         u64 length;
2416
2417         rbd_assert(img_request_child_test(img_request));
2418
2419         /* First get what we need from the image request */
2420
2421         pages = img_request->copyup_pages;
2422         rbd_assert(pages != NULL);
2423         img_request->copyup_pages = NULL;
2424         page_count = img_request->copyup_page_count;
2425         rbd_assert(page_count);
2426         img_request->copyup_page_count = 0;
2427
2428         orig_request = img_request->obj_request;
2429         rbd_assert(orig_request != NULL);
2430         rbd_assert(obj_request_type_valid(orig_request->type));
2431         img_result = img_request->result;
2432         parent_length = img_request->length;
2433         rbd_assert(parent_length == img_request->xferred);
2434         rbd_img_request_put(img_request);
2435
2436         rbd_assert(orig_request->img_request);
2437         rbd_dev = orig_request->img_request->rbd_dev;
2438         rbd_assert(rbd_dev);
2439
2440         /*
2441          * If the overlap has become 0 (most likely because the
2442          * image has been flattened) we need to free the pages
2443          * and re-submit the original write request.
2444          */
2445         if (!rbd_dev->parent_overlap) {
2446                 struct ceph_osd_client *osdc;
2447
2448                 ceph_release_page_vector(pages, page_count);
2449                 osdc = &rbd_dev->rbd_client->client->osdc;
2450                 img_result = rbd_obj_request_submit(osdc, orig_request);
2451                 if (!img_result)
2452                         return;
2453         }
2454
2455         if (img_result)
2456                 goto out_err;
2457
2458         /*
2459          * The original osd request is of no use to use any more.
2460          * We need a new one that can hold the three ops in a copyup
2461          * request.  Allocate the new copyup osd request for the
2462          * original request, and release the old one.
2463          */
2464         img_result = -ENOMEM;
2465         osd_req = rbd_osd_req_create_copyup(orig_request);
2466         if (!osd_req)
2467                 goto out_err;
2468         rbd_osd_req_destroy(orig_request->osd_req);
2469         orig_request->osd_req = osd_req;
2470         orig_request->copyup_pages = pages;
2471         orig_request->copyup_page_count = page_count;
2472
2473         /* Initialize the copyup op */
2474
2475         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2476         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2477                                                 false, false);
2478
2479         /* Then the hint op */
2480
2481         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2482                                    rbd_obj_bytes(&rbd_dev->header));
2483
2484         /* And the original write request op */
2485
2486         offset = orig_request->offset;
2487         length = orig_request->length;
2488         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2489                                         offset, length, 0, 0);
2490         if (orig_request->type == OBJ_REQUEST_BIO)
2491                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2492                                         orig_request->bio_list, length);
2493         else
2494                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2495                                         orig_request->pages, length,
2496                                         offset & ~PAGE_MASK, false, false);
2497
2498         rbd_osd_req_format_write(orig_request);
2499
2500         /* All set, send it off. */
2501
2502         orig_request->callback = rbd_img_obj_copyup_callback;
2503         osdc = &rbd_dev->rbd_client->client->osdc;
2504         img_result = rbd_obj_request_submit(osdc, orig_request);
2505         if (!img_result)
2506                 return;
2507 out_err:
2508         /* Record the error code and complete the request */
2509
2510         orig_request->result = img_result;
2511         orig_request->xferred = 0;
2512         obj_request_done_set(orig_request);
2513         rbd_obj_request_complete(orig_request);
2514 }
2515
2516 /*
2517  * Read from the parent image the range of data that covers the
2518  * entire target of the given object request.  This is used for
2519  * satisfying a layered image write request when the target of an
2520  * object request from the image request does not exist.
2521  *
2522  * A page array big enough to hold the returned data is allocated
2523  * and supplied to rbd_img_request_fill() as the "data descriptor."
2524  * When the read completes, this page array will be transferred to
2525  * the original object request for the copyup operation.
2526  *
2527  * If an error occurs, record it as the result of the original
2528  * object request and mark it done so it gets completed.
2529  */
2530 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2531 {
2532         struct rbd_img_request *img_request = NULL;
2533         struct rbd_img_request *parent_request = NULL;
2534         struct rbd_device *rbd_dev;
2535         u64 img_offset;
2536         u64 length;
2537         struct page **pages = NULL;
2538         u32 page_count;
2539         int result;
2540
2541         rbd_assert(obj_request_img_data_test(obj_request));
2542         rbd_assert(obj_request_type_valid(obj_request->type));
2543
2544         img_request = obj_request->img_request;
2545         rbd_assert(img_request != NULL);
2546         rbd_dev = img_request->rbd_dev;
2547         rbd_assert(rbd_dev->parent != NULL);
2548
2549         /*
2550          * Determine the byte range covered by the object in the
2551          * child image to which the original request was to be sent.
2552          */
2553         img_offset = obj_request->img_offset - obj_request->offset;
2554         length = (u64)1 << rbd_dev->header.obj_order;
2555
2556         /*
2557          * There is no defined parent data beyond the parent
2558          * overlap, so limit what we read at that boundary if
2559          * necessary.
2560          */
2561         if (img_offset + length > rbd_dev->parent_overlap) {
2562                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2563                 length = rbd_dev->parent_overlap - img_offset;
2564         }
2565
2566         /*
2567          * Allocate a page array big enough to receive the data read
2568          * from the parent.
2569          */
2570         page_count = (u32)calc_pages_for(0, length);
2571         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2572         if (IS_ERR(pages)) {
2573                 result = PTR_ERR(pages);
2574                 pages = NULL;
2575                 goto out_err;
2576         }
2577
2578         result = -ENOMEM;
2579         parent_request = rbd_parent_request_create(obj_request,
2580                                                 img_offset, length);
2581         if (!parent_request)
2582                 goto out_err;
2583
2584         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2585         if (result)
2586                 goto out_err;
2587         parent_request->copyup_pages = pages;
2588         parent_request->copyup_page_count = page_count;
2589
2590         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2591         result = rbd_img_request_submit(parent_request);
2592         if (!result)
2593                 return 0;
2594
2595         parent_request->copyup_pages = NULL;
2596         parent_request->copyup_page_count = 0;
2597         parent_request->obj_request = NULL;
2598         rbd_obj_request_put(obj_request);
2599 out_err:
2600         if (pages)
2601                 ceph_release_page_vector(pages, page_count);
2602         if (parent_request)
2603                 rbd_img_request_put(parent_request);
2604         obj_request->result = result;
2605         obj_request->xferred = 0;
2606         obj_request_done_set(obj_request);
2607
2608         return result;
2609 }
2610
2611 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2612 {
2613         struct rbd_obj_request *orig_request;
2614         struct rbd_device *rbd_dev;
2615         int result;
2616
2617         rbd_assert(!obj_request_img_data_test(obj_request));
2618
2619         /*
2620          * All we need from the object request is the original
2621          * request and the result of the STAT op.  Grab those, then
2622          * we're done with the request.
2623          */
2624         orig_request = obj_request->obj_request;
2625         obj_request->obj_request = NULL;
2626         rbd_obj_request_put(orig_request);
2627         rbd_assert(orig_request);
2628         rbd_assert(orig_request->img_request);
2629
2630         result = obj_request->result;
2631         obj_request->result = 0;
2632
2633         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2634                 obj_request, orig_request, result,
2635                 obj_request->xferred, obj_request->length);
2636         rbd_obj_request_put(obj_request);
2637
2638         /*
2639          * If the overlap has become 0 (most likely because the
2640          * image has been flattened) we need to free the pages
2641          * and re-submit the original write request.
2642          */
2643         rbd_dev = orig_request->img_request->rbd_dev;
2644         if (!rbd_dev->parent_overlap) {
2645                 struct ceph_osd_client *osdc;
2646
2647                 osdc = &rbd_dev->rbd_client->client->osdc;
2648                 result = rbd_obj_request_submit(osdc, orig_request);
2649                 if (!result)
2650                         return;
2651         }
2652
2653         /*
2654          * Our only purpose here is to determine whether the object
2655          * exists, and we don't want to treat the non-existence as
2656          * an error.  If something else comes back, transfer the
2657          * error to the original request and complete it now.
2658          */
2659         if (!result) {
2660                 obj_request_existence_set(orig_request, true);
2661         } else if (result == -ENOENT) {
2662                 obj_request_existence_set(orig_request, false);
2663         } else if (result) {
2664                 orig_request->result = result;
2665                 goto out;
2666         }
2667
2668         /*
2669          * Resubmit the original request now that we have recorded
2670          * whether the target object exists.
2671          */
2672         orig_request->result = rbd_img_obj_request_submit(orig_request);
2673 out:
2674         if (orig_request->result)
2675                 rbd_obj_request_complete(orig_request);
2676 }
2677
2678 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2679 {
2680         struct rbd_obj_request *stat_request;
2681         struct rbd_device *rbd_dev;
2682         struct ceph_osd_client *osdc;
2683         struct page **pages = NULL;
2684         u32 page_count;
2685         size_t size;
2686         int ret;
2687
2688         /*
2689          * The response data for a STAT call consists of:
2690          *     le64 length;
2691          *     struct {
2692          *         le32 tv_sec;
2693          *         le32 tv_nsec;
2694          *     } mtime;
2695          */
2696         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2697         page_count = (u32)calc_pages_for(0, size);
2698         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2699         if (IS_ERR(pages))
2700                 return PTR_ERR(pages);
2701
2702         ret = -ENOMEM;
2703         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2704                                                         OBJ_REQUEST_PAGES);
2705         if (!stat_request)
2706                 goto out;
2707
2708         rbd_obj_request_get(obj_request);
2709         stat_request->obj_request = obj_request;
2710         stat_request->pages = pages;
2711         stat_request->page_count = page_count;
2712
2713         rbd_assert(obj_request->img_request);
2714         rbd_dev = obj_request->img_request->rbd_dev;
2715         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2716                                                    stat_request);
2717         if (!stat_request->osd_req)
2718                 goto out;
2719         stat_request->callback = rbd_img_obj_exists_callback;
2720
2721         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2722         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2723                                         false, false);
2724         rbd_osd_req_format_read(stat_request);
2725
2726         osdc = &rbd_dev->rbd_client->client->osdc;
2727         ret = rbd_obj_request_submit(osdc, stat_request);
2728 out:
2729         if (ret)
2730                 rbd_obj_request_put(obj_request);
2731
2732         return ret;
2733 }
2734
2735 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2736 {
2737         struct rbd_img_request *img_request;
2738         struct rbd_device *rbd_dev;
2739         bool known;
2740
2741         rbd_assert(obj_request_img_data_test(obj_request));
2742
2743         img_request = obj_request->img_request;
2744         rbd_assert(img_request);
2745         rbd_dev = img_request->rbd_dev;
2746
2747         /*
2748          * Only writes to layered images need special handling.
2749          * Reads and non-layered writes are simple object requests.
2750          * Layered writes that start beyond the end of the overlap
2751          * with the parent have no parent data, so they too are
2752          * simple object requests.  Finally, if the target object is
2753          * known to already exist, its parent data has already been
2754          * copied, so a write to the object can also be handled as a
2755          * simple object request.
2756          */
2757         if (!img_request_write_test(img_request) ||
2758                 !img_request_layered_test(img_request) ||
2759                 !obj_request_overlaps_parent(obj_request) ||
2760                 ((known = obj_request_known_test(obj_request)) &&
2761                         obj_request_exists_test(obj_request))) {
2762
2763                 struct rbd_device *rbd_dev;
2764                 struct ceph_osd_client *osdc;
2765
2766                 rbd_dev = obj_request->img_request->rbd_dev;
2767                 osdc = &rbd_dev->rbd_client->client->osdc;
2768
2769                 return rbd_obj_request_submit(osdc, obj_request);
2770         }
2771
2772         /*
2773          * It's a layered write.  The target object might exist but
2774          * we may not know that yet.  If we know it doesn't exist,
2775          * start by reading the data for the full target object from
2776          * the parent so we can use it for a copyup to the target.
2777          */
2778         if (known)
2779                 return rbd_img_obj_parent_read_full(obj_request);
2780
2781         /* We don't know whether the target exists.  Go find out. */
2782
2783         return rbd_img_obj_exists_submit(obj_request);
2784 }
2785
2786 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2787 {
2788         struct rbd_obj_request *obj_request;
2789         struct rbd_obj_request *next_obj_request;
2790
2791         dout("%s: img %p\n", __func__, img_request);
2792         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2793                 int ret;
2794
2795                 ret = rbd_img_obj_request_submit(obj_request);
2796                 if (ret)
2797                         return ret;
2798         }
2799
2800         return 0;
2801 }
2802
2803 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_device *rbd_dev;
2807         u64 obj_end;
2808         u64 img_xferred;
2809         int img_result;
2810
2811         rbd_assert(img_request_child_test(img_request));
2812
2813         /* First get what we need from the image request and release it */
2814
2815         obj_request = img_request->obj_request;
2816         img_xferred = img_request->xferred;
2817         img_result = img_request->result;
2818         rbd_img_request_put(img_request);
2819
2820         /*
2821          * If the overlap has become 0 (most likely because the
2822          * image has been flattened) we need to re-submit the
2823          * original request.
2824          */
2825         rbd_assert(obj_request);
2826         rbd_assert(obj_request->img_request);
2827         rbd_dev = obj_request->img_request->rbd_dev;
2828         if (!rbd_dev->parent_overlap) {
2829                 struct ceph_osd_client *osdc;
2830
2831                 osdc = &rbd_dev->rbd_client->client->osdc;
2832                 img_result = rbd_obj_request_submit(osdc, obj_request);
2833                 if (!img_result)
2834                         return;
2835         }
2836
2837         obj_request->result = img_result;
2838         if (obj_request->result)
2839                 goto out;
2840
2841         /*
2842          * We need to zero anything beyond the parent overlap
2843          * boundary.  Since rbd_img_obj_request_read_callback()
2844          * will zero anything beyond the end of a short read, an
2845          * easy way to do this is to pretend the data from the
2846          * parent came up short--ending at the overlap boundary.
2847          */
2848         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2849         obj_end = obj_request->img_offset + obj_request->length;
2850         if (obj_end > rbd_dev->parent_overlap) {
2851                 u64 xferred = 0;
2852
2853                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2854                         xferred = rbd_dev->parent_overlap -
2855                                         obj_request->img_offset;
2856
2857                 obj_request->xferred = min(img_xferred, xferred);
2858         } else {
2859                 obj_request->xferred = img_xferred;
2860         }
2861 out:
2862         rbd_img_obj_request_read_callback(obj_request);
2863         rbd_obj_request_complete(obj_request);
2864 }
2865
2866 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2867 {
2868         struct rbd_img_request *img_request;
2869         int result;
2870
2871         rbd_assert(obj_request_img_data_test(obj_request));
2872         rbd_assert(obj_request->img_request != NULL);
2873         rbd_assert(obj_request->result == (s32) -ENOENT);
2874         rbd_assert(obj_request_type_valid(obj_request->type));
2875
2876         /* rbd_read_finish(obj_request, obj_request->length); */
2877         img_request = rbd_parent_request_create(obj_request,
2878                                                 obj_request->img_offset,
2879                                                 obj_request->length);
2880         result = -ENOMEM;
2881         if (!img_request)
2882                 goto out_err;
2883
2884         if (obj_request->type == OBJ_REQUEST_BIO)
2885                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2886                                                 obj_request->bio_list);
2887         else
2888                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2889                                                 obj_request->pages);
2890         if (result)
2891                 goto out_err;
2892
2893         img_request->callback = rbd_img_parent_read_callback;
2894         result = rbd_img_request_submit(img_request);
2895         if (result)
2896                 goto out_err;
2897
2898         return;
2899 out_err:
2900         if (img_request)
2901                 rbd_img_request_put(img_request);
2902         obj_request->result = result;
2903         obj_request->xferred = 0;
2904         obj_request_done_set(obj_request);
2905 }
2906
2907 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2908 {
2909         struct rbd_obj_request *obj_request;
2910         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2911         int ret;
2912
2913         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2914                                                         OBJ_REQUEST_NODATA);
2915         if (!obj_request)
2916                 return -ENOMEM;
2917
2918         ret = -ENOMEM;
2919         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2920                                                   obj_request);
2921         if (!obj_request->osd_req)
2922                 goto out;
2923
2924         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2925                                         notify_id, 0, 0);
2926         rbd_osd_req_format_read(obj_request);
2927
2928         ret = rbd_obj_request_submit(osdc, obj_request);
2929         if (ret)
2930                 goto out;
2931         ret = rbd_obj_request_wait(obj_request);
2932 out:
2933         rbd_obj_request_put(obj_request);
2934
2935         return ret;
2936 }
2937
2938 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2939 {
2940         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2941         int ret;
2942
2943         if (!rbd_dev)
2944                 return;
2945
2946         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2947                 rbd_dev->header_name, (unsigned long long)notify_id,
2948                 (unsigned int)opcode);
2949         ret = rbd_dev_refresh(rbd_dev);
2950         if (ret)
2951                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2952
2953         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2954 }
2955
2956 /*
2957  * Initiate a watch request, synchronously.
2958  */
2959 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2960 {
2961         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2962         struct rbd_obj_request *obj_request;
2963         int ret;
2964
2965         rbd_assert(!rbd_dev->watch_event);
2966         rbd_assert(!rbd_dev->watch_request);
2967
2968         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2969                                      &rbd_dev->watch_event);
2970         if (ret < 0)
2971                 return ret;
2972
2973         rbd_assert(rbd_dev->watch_event);
2974
2975         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2976                                              OBJ_REQUEST_NODATA);
2977         if (!obj_request) {
2978                 ret = -ENOMEM;
2979                 goto out_cancel;
2980         }
2981
2982         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2983                                                   obj_request);
2984         if (!obj_request->osd_req) {
2985                 ret = -ENOMEM;
2986                 goto out_put;
2987         }
2988
2989         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2990
2991         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2992                               rbd_dev->watch_event->cookie, 0, 1);
2993         rbd_osd_req_format_write(obj_request);
2994
2995         ret = rbd_obj_request_submit(osdc, obj_request);
2996         if (ret)
2997                 goto out_linger;
2998
2999         ret = rbd_obj_request_wait(obj_request);
3000         if (ret)
3001                 goto out_linger;
3002
3003         ret = obj_request->result;
3004         if (ret)
3005                 goto out_linger;
3006
3007         /*
3008          * A watch request is set to linger, so the underlying osd
3009          * request won't go away until we unregister it.  We retain
3010          * a pointer to the object request during that time (in
3011          * rbd_dev->watch_request), so we'll keep a reference to
3012          * it.  We'll drop that reference (below) after we've
3013          * unregistered it.
3014          */
3015         rbd_dev->watch_request = obj_request;
3016
3017         return 0;
3018
3019 out_linger:
3020         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3021 out_put:
3022         rbd_obj_request_put(obj_request);
3023 out_cancel:
3024         ceph_osdc_cancel_event(rbd_dev->watch_event);
3025         rbd_dev->watch_event = NULL;
3026
3027         return ret;
3028 }
3029
3030 /*
3031  * Tear down a watch request, synchronously.
3032  */
3033 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3034 {
3035         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3036         struct rbd_obj_request *obj_request;
3037         int ret;
3038
3039         rbd_assert(rbd_dev->watch_event);
3040         rbd_assert(rbd_dev->watch_request);
3041
3042         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3043                                              OBJ_REQUEST_NODATA);
3044         if (!obj_request) {
3045                 ret = -ENOMEM;
3046                 goto out_cancel;
3047         }
3048
3049         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3050                                                   obj_request);
3051         if (!obj_request->osd_req) {
3052                 ret = -ENOMEM;
3053                 goto out_put;
3054         }
3055
3056         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3057                               rbd_dev->watch_event->cookie, 0, 0);
3058         rbd_osd_req_format_write(obj_request);
3059
3060         ret = rbd_obj_request_submit(osdc, obj_request);
3061         if (ret)
3062                 goto out_put;
3063
3064         ret = rbd_obj_request_wait(obj_request);
3065         if (ret)
3066                 goto out_put;
3067
3068         ret = obj_request->result;
3069         if (ret)
3070                 goto out_put;
3071
3072         /* We have successfully torn down the watch request */
3073
3074         ceph_osdc_unregister_linger_request(osdc,
3075                                             rbd_dev->watch_request->osd_req);
3076         rbd_obj_request_put(rbd_dev->watch_request);
3077         rbd_dev->watch_request = NULL;
3078
3079 out_put:
3080         rbd_obj_request_put(obj_request);
3081 out_cancel:
3082         ceph_osdc_cancel_event(rbd_dev->watch_event);
3083         rbd_dev->watch_event = NULL;
3084
3085         return ret;
3086 }
3087
3088 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3089 {
3090         int ret;
3091
3092         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3093         if (ret) {
3094                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3095                          ret);
3096         }
3097 }
3098
3099 /*
3100  * Synchronous osd object method call.  Returns the number of bytes
3101  * returned in the outbound buffer, or a negative error code.
3102  */
3103 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3104                              const char *object_name,
3105                              const char *class_name,
3106                              const char *method_name,
3107                              const void *outbound,
3108                              size_t outbound_size,
3109                              void *inbound,
3110                              size_t inbound_size)
3111 {
3112         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3113         struct rbd_obj_request *obj_request;
3114         struct page **pages;
3115         u32 page_count;
3116         int ret;
3117
3118         /*
3119          * Method calls are ultimately read operations.  The result
3120          * should placed into the inbound buffer provided.  They
3121          * also supply outbound data--parameters for the object
3122          * method.  Currently if this is present it will be a
3123          * snapshot id.
3124          */
3125         page_count = (u32)calc_pages_for(0, inbound_size);
3126         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3127         if (IS_ERR(pages))
3128                 return PTR_ERR(pages);
3129
3130         ret = -ENOMEM;
3131         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3132                                                         OBJ_REQUEST_PAGES);
3133         if (!obj_request)
3134                 goto out;
3135
3136         obj_request->pages = pages;
3137         obj_request->page_count = page_count;
3138
3139         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3140                                                   obj_request);
3141         if (!obj_request->osd_req)
3142                 goto out;
3143
3144         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3145                                         class_name, method_name);
3146         if (outbound_size) {
3147                 struct ceph_pagelist *pagelist;
3148
3149                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3150                 if (!pagelist)
3151                         goto out;
3152
3153                 ceph_pagelist_init(pagelist);
3154                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3155                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3156                                                 pagelist);
3157         }
3158         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3159                                         obj_request->pages, inbound_size,
3160                                         0, false, false);
3161         rbd_osd_req_format_read(obj_request);
3162
3163         ret = rbd_obj_request_submit(osdc, obj_request);
3164         if (ret)
3165                 goto out;
3166         ret = rbd_obj_request_wait(obj_request);
3167         if (ret)
3168                 goto out;
3169
3170         ret = obj_request->result;
3171         if (ret < 0)
3172                 goto out;
3173
3174         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3175         ret = (int)obj_request->xferred;
3176         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3177 out:
3178         if (obj_request)
3179                 rbd_obj_request_put(obj_request);
3180         else
3181                 ceph_release_page_vector(pages, page_count);
3182
3183         return ret;
3184 }
3185
3186 static void rbd_request_fn(struct request_queue *q)
3187                 __releases(q->queue_lock) __acquires(q->queue_lock)
3188 {
3189         struct rbd_device *rbd_dev = q->queuedata;
3190         struct request *rq;
3191         int result;
3192
3193         while ((rq = blk_fetch_request(q))) {
3194                 bool write_request = rq_data_dir(rq) == WRITE;
3195                 struct rbd_img_request *img_request;
3196                 u64 offset;
3197                 u64 length;
3198
3199                 /* Ignore any non-FS requests that filter through. */
3200
3201                 if (rq->cmd_type != REQ_TYPE_FS) {
3202                         dout("%s: non-fs request type %d\n", __func__,
3203                                 (int) rq->cmd_type);
3204                         __blk_end_request_all(rq, 0);
3205                         continue;
3206                 }
3207
3208                 /* Ignore/skip any zero-length requests */
3209
3210                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3211                 length = (u64) blk_rq_bytes(rq);
3212
3213                 if (!length) {
3214                         dout("%s: zero-length request\n", __func__);
3215                         __blk_end_request_all(rq, 0);
3216                         continue;
3217                 }
3218
3219                 spin_unlock_irq(q->queue_lock);
3220
3221                 /* Disallow writes to a read-only device */
3222
3223                 if (write_request) {
3224                         result = -EROFS;
3225                         if (rbd_dev->mapping.read_only)
3226                                 goto end_request;
3227                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3228                 }
3229
3230                 /*
3231                  * Quit early if the mapped snapshot no longer
3232                  * exists.  It's still possible the snapshot will
3233                  * have disappeared by the time our request arrives
3234                  * at the osd, but there's no sense in sending it if
3235                  * we already know.
3236                  */
3237                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3238                         dout("request for non-existent snapshot");
3239                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3240                         result = -ENXIO;
3241                         goto end_request;
3242                 }
3243
3244                 result = -EINVAL;
3245                 if (offset && length > U64_MAX - offset + 1) {
3246                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3247                                 offset, length);
3248                         goto end_request;       /* Shouldn't happen */
3249                 }
3250
3251                 result = -EIO;
3252                 if (offset + length > rbd_dev->mapping.size) {
3253                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3254                                 offset, length, rbd_dev->mapping.size);
3255                         goto end_request;
3256                 }
3257
3258                 result = -ENOMEM;
3259                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3260                                                         write_request);
3261                 if (!img_request)
3262                         goto end_request;
3263
3264                 img_request->rq = rq;
3265
3266                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3267                                                 rq->bio);
3268                 if (!result)
3269                         result = rbd_img_request_submit(img_request);
3270                 if (result)
3271                         rbd_img_request_put(img_request);
3272 end_request:
3273                 spin_lock_irq(q->queue_lock);
3274                 if (result < 0) {
3275                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3276                                 write_request ? "write" : "read",
3277                                 length, offset, result);
3278
3279                         __blk_end_request_all(rq, result);
3280                 }
3281         }
3282 }
3283
3284 /*
3285  * a queue callback. Makes sure that we don't create a bio that spans across
3286  * multiple osd objects. One exception would be with a single page bios,
3287  * which we handle later at bio_chain_clone_range()
3288  */
3289 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3290                           struct bio_vec *bvec)
3291 {
3292         struct rbd_device *rbd_dev = q->queuedata;
3293         sector_t sector_offset;
3294         sector_t sectors_per_obj;
3295         sector_t obj_sector_offset;
3296         int ret;
3297
3298         /*
3299          * Find how far into its rbd object the partition-relative
3300          * bio start sector is to offset relative to the enclosing
3301          * device.
3302          */
3303         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3304         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3305         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3306
3307         /*
3308          * Compute the number of bytes from that offset to the end
3309          * of the object.  Account for what's already used by the bio.
3310          */
3311         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3312         if (ret > bmd->bi_size)
3313                 ret -= bmd->bi_size;
3314         else
3315                 ret = 0;
3316
3317         /*
3318          * Don't send back more than was asked for.  And if the bio
3319          * was empty, let the whole thing through because:  "Note
3320          * that a block device *must* allow a single page to be
3321          * added to an empty bio."
3322          */
3323         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3324         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3325                 ret = (int) bvec->bv_len;
3326
3327         return ret;
3328 }
3329
3330 static void rbd_free_disk(struct rbd_device *rbd_dev)
3331 {
3332         struct gendisk *disk = rbd_dev->disk;
3333
3334         if (!disk)
3335                 return;
3336
3337         rbd_dev->disk = NULL;
3338         if (disk->flags & GENHD_FL_UP) {
3339                 del_gendisk(disk);
3340                 if (disk->queue)
3341                         blk_cleanup_queue(disk->queue);
3342         }
3343         put_disk(disk);
3344 }
3345
3346 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3347                                 const char *object_name,
3348                                 u64 offset, u64 length, void *buf)
3349
3350 {
3351         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3352         struct rbd_obj_request *obj_request;
3353         struct page **pages = NULL;
3354         u32 page_count;
3355         size_t size;
3356         int ret;
3357
3358         page_count = (u32) calc_pages_for(offset, length);
3359         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3360         if (IS_ERR(pages))
3361                 ret = PTR_ERR(pages);
3362
3363         ret = -ENOMEM;
3364         obj_request = rbd_obj_request_create(object_name, offset, length,
3365                                                         OBJ_REQUEST_PAGES);
3366         if (!obj_request)
3367                 goto out;
3368
3369         obj_request->pages = pages;
3370         obj_request->page_count = page_count;
3371
3372         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3373                                                   obj_request);
3374         if (!obj_request->osd_req)
3375                 goto out;
3376
3377         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3378                                         offset, length, 0, 0);
3379         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3380                                         obj_request->pages,
3381                                         obj_request->length,
3382                                         obj_request->offset & ~PAGE_MASK,
3383                                         false, false);
3384         rbd_osd_req_format_read(obj_request);
3385
3386         ret = rbd_obj_request_submit(osdc, obj_request);
3387         if (ret)
3388                 goto out;
3389         ret = rbd_obj_request_wait(obj_request);
3390         if (ret)
3391                 goto out;
3392
3393         ret = obj_request->result;
3394         if (ret < 0)
3395                 goto out;
3396
3397         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3398         size = (size_t) obj_request->xferred;
3399         ceph_copy_from_page_vector(pages, buf, 0, size);
3400         rbd_assert(size <= (size_t)INT_MAX);
3401         ret = (int)size;
3402 out:
3403         if (obj_request)
3404                 rbd_obj_request_put(obj_request);
3405         else
3406                 ceph_release_page_vector(pages, page_count);
3407
3408         return ret;
3409 }
3410
3411 /*
3412  * Read the complete header for the given rbd device.  On successful
3413  * return, the rbd_dev->header field will contain up-to-date
3414  * information about the image.
3415  */
3416 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3417 {
3418         struct rbd_image_header_ondisk *ondisk = NULL;
3419         u32 snap_count = 0;
3420         u64 names_size = 0;
3421         u32 want_count;
3422         int ret;
3423
3424         /*
3425          * The complete header will include an array of its 64-bit
3426          * snapshot ids, followed by the names of those snapshots as
3427          * a contiguous block of NUL-terminated strings.  Note that
3428          * the number of snapshots could change by the time we read
3429          * it in, in which case we re-read it.
3430          */
3431         do {
3432                 size_t size;
3433
3434                 kfree(ondisk);
3435
3436                 size = sizeof (*ondisk);
3437                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3438                 size += names_size;
3439                 ondisk = kmalloc(size, GFP_KERNEL);
3440                 if (!ondisk)
3441                         return -ENOMEM;
3442
3443                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3444                                        0, size, ondisk);
3445                 if (ret < 0)
3446                         goto out;
3447                 if ((size_t)ret < size) {
3448                         ret = -ENXIO;
3449                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3450                                 size, ret);
3451                         goto out;
3452                 }
3453                 if (!rbd_dev_ondisk_valid(ondisk)) {
3454                         ret = -ENXIO;
3455                         rbd_warn(rbd_dev, "invalid header");
3456                         goto out;
3457                 }
3458
3459                 names_size = le64_to_cpu(ondisk->snap_names_len);
3460                 want_count = snap_count;
3461                 snap_count = le32_to_cpu(ondisk->snap_count);
3462         } while (snap_count != want_count);
3463
3464         ret = rbd_header_from_disk(rbd_dev, ondisk);
3465 out:
3466         kfree(ondisk);
3467
3468         return ret;
3469 }
3470
3471 /*
3472  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3473  * has disappeared from the (just updated) snapshot context.
3474  */
3475 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3476 {
3477         u64 snap_id;
3478
3479         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3480                 return;
3481
3482         snap_id = rbd_dev->spec->snap_id;
3483         if (snap_id == CEPH_NOSNAP)
3484                 return;
3485
3486         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3487                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3488 }
3489
3490 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3491 {
3492         sector_t size;
3493         bool removing;
3494
3495         /*
3496          * Don't hold the lock while doing disk operations,
3497          * or lock ordering will conflict with the bdev mutex via:
3498          * rbd_add() -> blkdev_get() -> rbd_open()
3499          */
3500         spin_lock_irq(&rbd_dev->lock);
3501         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3502         spin_unlock_irq(&rbd_dev->lock);
3503         /*
3504          * If the device is being removed, rbd_dev->disk has
3505          * been destroyed, so don't try to update its size
3506          */
3507         if (!removing) {
3508                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3509                 dout("setting size to %llu sectors", (unsigned long long)size);
3510                 set_capacity(rbd_dev->disk, size);
3511                 revalidate_disk(rbd_dev->disk);
3512         }
3513 }
3514
3515 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3516 {
3517         u64 mapping_size;
3518         int ret;
3519
3520         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3521         down_write(&rbd_dev->header_rwsem);
3522         mapping_size = rbd_dev->mapping.size;
3523         if (rbd_dev->image_format == 1)
3524                 ret = rbd_dev_v1_header_info(rbd_dev);
3525         else
3526                 ret = rbd_dev_v2_header_info(rbd_dev);
3527
3528         /* If it's a mapped snapshot, validate its EXISTS flag */
3529
3530         rbd_exists_validate(rbd_dev);
3531         up_write(&rbd_dev->header_rwsem);
3532
3533         if (mapping_size != rbd_dev->mapping.size) {
3534                 rbd_dev_update_size(rbd_dev);
3535         }
3536
3537         return ret;
3538 }
3539
3540 static int rbd_init_disk(struct rbd_device *rbd_dev)
3541 {
3542         struct gendisk *disk;
3543         struct request_queue *q;
3544         u64 segment_size;
3545
3546         /* create gendisk info */
3547         disk = alloc_disk(single_major ?
3548                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3549                           RBD_MINORS_PER_MAJOR);
3550         if (!disk)
3551                 return -ENOMEM;
3552
3553         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3554                  rbd_dev->dev_id);
3555         disk->major = rbd_dev->major;
3556         disk->first_minor = rbd_dev->minor;
3557         if (single_major)
3558                 disk->flags |= GENHD_FL_EXT_DEVT;
3559         disk->fops = &rbd_bd_ops;
3560         disk->private_data = rbd_dev;
3561
3562         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3563         if (!q)
3564                 goto out_disk;
3565
3566         /* We use the default size, but let's be explicit about it. */
3567         blk_queue_physical_block_size(q, SECTOR_SIZE);
3568
3569         /* set io sizes to object size */
3570         segment_size = rbd_obj_bytes(&rbd_dev->header);
3571         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3572         blk_queue_max_segment_size(q, segment_size);
3573         blk_queue_io_min(q, segment_size);
3574         blk_queue_io_opt(q, segment_size);
3575
3576         blk_queue_merge_bvec(q, rbd_merge_bvec);
3577         disk->queue = q;
3578
3579         q->queuedata = rbd_dev;
3580
3581         rbd_dev->disk = disk;
3582
3583         return 0;
3584 out_disk:
3585         put_disk(disk);
3586
3587         return -ENOMEM;
3588 }
3589
3590 /*
3591   sysfs
3592 */
3593
3594 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3595 {
3596         return container_of(dev, struct rbd_device, dev);
3597 }
3598
3599 static ssize_t rbd_size_show(struct device *dev,
3600                              struct device_attribute *attr, char *buf)
3601 {
3602         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3603
3604         return sprintf(buf, "%llu\n",
3605                 (unsigned long long)rbd_dev->mapping.size);
3606 }
3607
3608 /*
3609  * Note this shows the features for whatever's mapped, which is not
3610  * necessarily the base image.
3611  */
3612 static ssize_t rbd_features_show(struct device *dev,
3613                              struct device_attribute *attr, char *buf)
3614 {
3615         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3616
3617         return sprintf(buf, "0x%016llx\n",
3618                         (unsigned long long)rbd_dev->mapping.features);
3619 }
3620
3621 static ssize_t rbd_major_show(struct device *dev,
3622                               struct device_attribute *attr, char *buf)
3623 {
3624         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3625
3626         if (rbd_dev->major)
3627                 return sprintf(buf, "%d\n", rbd_dev->major);
3628
3629         return sprintf(buf, "(none)\n");
3630 }
3631
3632 static ssize_t rbd_minor_show(struct device *dev,
3633                               struct device_attribute *attr, char *buf)
3634 {
3635         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3636
3637         return sprintf(buf, "%d\n", rbd_dev->minor);
3638 }
3639
3640 static ssize_t rbd_client_id_show(struct device *dev,
3641                                   struct device_attribute *attr, char *buf)
3642 {
3643         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3644
3645         return sprintf(buf, "client%lld\n",
3646                         ceph_client_id(rbd_dev->rbd_client->client));
3647 }
3648
3649 static ssize_t rbd_pool_show(struct device *dev,
3650                              struct device_attribute *attr, char *buf)
3651 {
3652         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653
3654         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3655 }
3656
3657 static ssize_t rbd_pool_id_show(struct device *dev,
3658                              struct device_attribute *attr, char *buf)
3659 {
3660         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3661
3662         return sprintf(buf, "%llu\n",
3663                         (unsigned long long) rbd_dev->spec->pool_id);
3664 }
3665
3666 static ssize_t rbd_name_show(struct device *dev,
3667                              struct device_attribute *attr, char *buf)
3668 {
3669         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3670
3671         if (rbd_dev->spec->image_name)
3672                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3673
3674         return sprintf(buf, "(unknown)\n");
3675 }
3676
3677 static ssize_t rbd_image_id_show(struct device *dev,
3678                              struct device_attribute *attr, char *buf)
3679 {
3680         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3681
3682         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3683 }
3684
3685 /*
3686  * Shows the name of the currently-mapped snapshot (or
3687  * RBD_SNAP_HEAD_NAME for the base image).
3688  */
3689 static ssize_t rbd_snap_show(struct device *dev,
3690                              struct device_attribute *attr,
3691                              char *buf)
3692 {
3693         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3694
3695         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3696 }
3697
3698 /*
3699  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3700  * for the parent image.  If there is no parent, simply shows
3701  * "(no parent image)".
3702  */
3703 static ssize_t rbd_parent_show(struct device *dev,
3704                              struct device_attribute *attr,
3705                              char *buf)
3706 {
3707         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3708         struct rbd_spec *spec = rbd_dev->parent_spec;
3709         int count;
3710         char *bufp = buf;
3711
3712         if (!spec)
3713                 return sprintf(buf, "(no parent image)\n");
3714
3715         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3716                         (unsigned long long) spec->pool_id, spec->pool_name);
3717         if (count < 0)
3718                 return count;
3719         bufp += count;
3720
3721         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3722                         spec->image_name ? spec->image_name : "(unknown)");
3723         if (count < 0)
3724                 return count;
3725         bufp += count;
3726
3727         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3728                         (unsigned long long) spec->snap_id, spec->snap_name);
3729         if (count < 0)
3730                 return count;
3731         bufp += count;
3732
3733         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3734         if (count < 0)
3735                 return count;
3736         bufp += count;
3737
3738         return (ssize_t) (bufp - buf);
3739 }
3740
3741 static ssize_t rbd_image_refresh(struct device *dev,
3742                                  struct device_attribute *attr,
3743                                  const char *buf,
3744                                  size_t size)
3745 {
3746         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3747         int ret;
3748
3749         ret = rbd_dev_refresh(rbd_dev);
3750         if (ret)
3751                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3752
3753         return ret < 0 ? ret : size;
3754 }
3755
3756 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3757 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3758 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3759 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3760 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3761 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3762 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3763 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3764 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3765 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3766 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3767 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3768
3769 static struct attribute *rbd_attrs[] = {
3770         &dev_attr_size.attr,
3771         &dev_attr_features.attr,
3772         &dev_attr_major.attr,
3773         &dev_attr_minor.attr,
3774         &dev_attr_client_id.attr,
3775         &dev_attr_pool.attr,
3776         &dev_attr_pool_id.attr,
3777         &dev_attr_name.attr,
3778         &dev_attr_image_id.attr,
3779         &dev_attr_current_snap.attr,
3780         &dev_attr_parent.attr,
3781         &dev_attr_refresh.attr,
3782         NULL
3783 };
3784
3785 static struct attribute_group rbd_attr_group = {
3786         .attrs = rbd_attrs,
3787 };
3788
3789 static const struct attribute_group *rbd_attr_groups[] = {
3790         &rbd_attr_group,
3791         NULL
3792 };
3793
3794 static void rbd_sysfs_dev_release(struct device *dev)
3795 {
3796 }
3797
3798 static struct device_type rbd_device_type = {
3799         .name           = "rbd",
3800         .groups         = rbd_attr_groups,
3801         .release        = rbd_sysfs_dev_release,
3802 };
3803
3804 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3805 {
3806         kref_get(&spec->kref);
3807
3808         return spec;
3809 }
3810
3811 static void rbd_spec_free(struct kref *kref);
3812 static void rbd_spec_put(struct rbd_spec *spec)
3813 {
3814         if (spec)
3815                 kref_put(&spec->kref, rbd_spec_free);
3816 }
3817
3818 static struct rbd_spec *rbd_spec_alloc(void)
3819 {
3820         struct rbd_spec *spec;
3821
3822         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3823         if (!spec)
3824                 return NULL;
3825         kref_init(&spec->kref);
3826
3827         return spec;
3828 }
3829
3830 static void rbd_spec_free(struct kref *kref)
3831 {
3832         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3833
3834         kfree(spec->pool_name);
3835         kfree(spec->image_id);
3836         kfree(spec->image_name);
3837         kfree(spec->snap_name);
3838         kfree(spec);
3839 }
3840
3841 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3842                                 struct rbd_spec *spec)
3843 {
3844         struct rbd_device *rbd_dev;
3845
3846         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3847         if (!rbd_dev)
3848                 return NULL;
3849
3850         spin_lock_init(&rbd_dev->lock);
3851         rbd_dev->flags = 0;
3852         atomic_set(&rbd_dev->parent_ref, 0);
3853         INIT_LIST_HEAD(&rbd_dev->node);
3854         init_rwsem(&rbd_dev->header_rwsem);
3855
3856         rbd_dev->spec = spec;
3857         rbd_dev->rbd_client = rbdc;
3858
3859         /* Initialize the layout used for all rbd requests */
3860
3861         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3862         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3863         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3864         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3865
3866         return rbd_dev;
3867 }
3868
3869 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3870 {
3871         rbd_put_client(rbd_dev->rbd_client);
3872         rbd_spec_put(rbd_dev->spec);
3873         kfree(rbd_dev);
3874 }
3875
3876 /*
3877  * Get the size and object order for an image snapshot, or if
3878  * snap_id is CEPH_NOSNAP, gets this information for the base
3879  * image.
3880  */
3881 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3882                                 u8 *order, u64 *snap_size)
3883 {
3884         __le64 snapid = cpu_to_le64(snap_id);
3885         int ret;
3886         struct {
3887                 u8 order;
3888                 __le64 size;
3889         } __attribute__ ((packed)) size_buf = { 0 };
3890
3891         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3892                                 "rbd", "get_size",
3893                                 &snapid, sizeof (snapid),
3894                                 &size_buf, sizeof (size_buf));
3895         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3896         if (ret < 0)
3897                 return ret;
3898         if (ret < sizeof (size_buf))
3899                 return -ERANGE;
3900
3901         if (order) {
3902                 *order = size_buf.order;
3903                 dout("  order %u", (unsigned int)*order);
3904         }
3905         *snap_size = le64_to_cpu(size_buf.size);
3906
3907         dout("  snap_id 0x%016llx snap_size = %llu\n",
3908                 (unsigned long long)snap_id,
3909                 (unsigned long long)*snap_size);
3910
3911         return 0;
3912 }
3913
3914 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3915 {
3916         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3917                                         &rbd_dev->header.obj_order,
3918                                         &rbd_dev->header.image_size);
3919 }
3920
3921 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3922 {
3923         void *reply_buf;
3924         int ret;
3925         void *p;
3926
3927         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3928         if (!reply_buf)
3929                 return -ENOMEM;
3930
3931         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3932                                 "rbd", "get_object_prefix", NULL, 0,
3933                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3934         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3935         if (ret < 0)
3936                 goto out;
3937
3938         p = reply_buf;
3939         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3940                                                 p + ret, NULL, GFP_NOIO);
3941         ret = 0;
3942
3943         if (IS_ERR(rbd_dev->header.object_prefix)) {
3944                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3945                 rbd_dev->header.object_prefix = NULL;
3946         } else {
3947                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3948         }
3949 out:
3950         kfree(reply_buf);
3951
3952         return ret;
3953 }
3954
3955 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3956                 u64 *snap_features)
3957 {
3958         __le64 snapid = cpu_to_le64(snap_id);
3959         struct {
3960                 __le64 features;
3961                 __le64 incompat;
3962         } __attribute__ ((packed)) features_buf = { 0 };
3963         u64 incompat;
3964         int ret;
3965
3966         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3967                                 "rbd", "get_features",
3968                                 &snapid, sizeof (snapid),
3969                                 &features_buf, sizeof (features_buf));
3970         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3971         if (ret < 0)
3972                 return ret;
3973         if (ret < sizeof (features_buf))
3974                 return -ERANGE;
3975
3976         incompat = le64_to_cpu(features_buf.incompat);
3977         if (incompat & ~RBD_FEATURES_SUPPORTED)
3978                 return -ENXIO;
3979
3980         *snap_features = le64_to_cpu(features_buf.features);
3981
3982         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3983                 (unsigned long long)snap_id,
3984                 (unsigned long long)*snap_features,
3985                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3986
3987         return 0;
3988 }
3989
3990 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3991 {
3992         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3993                                                 &rbd_dev->header.features);
3994 }
3995
3996 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3997 {
3998         struct rbd_spec *parent_spec;
3999         size_t size;
4000         void *reply_buf = NULL;
4001         __le64 snapid;
4002         void *p;
4003         void *end;
4004         u64 pool_id;
4005         char *image_id;
4006         u64 snap_id;
4007         u64 overlap;
4008         int ret;
4009
4010         parent_spec = rbd_spec_alloc();
4011         if (!parent_spec)
4012                 return -ENOMEM;
4013
4014         size = sizeof (__le64) +                                /* pool_id */
4015                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4016                 sizeof (__le64) +                               /* snap_id */
4017                 sizeof (__le64);                                /* overlap */
4018         reply_buf = kmalloc(size, GFP_KERNEL);
4019         if (!reply_buf) {
4020                 ret = -ENOMEM;
4021                 goto out_err;
4022         }
4023
4024         snapid = cpu_to_le64(CEPH_NOSNAP);
4025         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4026                                 "rbd", "get_parent",
4027                                 &snapid, sizeof (snapid),
4028                                 reply_buf, size);
4029         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4030         if (ret < 0)
4031                 goto out_err;
4032
4033         p = reply_buf;
4034         end = reply_buf + ret;
4035         ret = -ERANGE;
4036         ceph_decode_64_safe(&p, end, pool_id, out_err);
4037         if (pool_id == CEPH_NOPOOL) {
4038                 /*
4039                  * Either the parent never existed, or we have
4040                  * record of it but the image got flattened so it no
4041                  * longer has a parent.  When the parent of a
4042                  * layered image disappears we immediately set the
4043                  * overlap to 0.  The effect of this is that all new
4044                  * requests will be treated as if the image had no
4045                  * parent.
4046                  */
4047                 if (rbd_dev->parent_overlap) {
4048                         rbd_dev->parent_overlap = 0;
4049                         smp_mb();
4050                         rbd_dev_parent_put(rbd_dev);
4051                         pr_info("%s: clone image has been flattened\n",
4052                                 rbd_dev->disk->disk_name);
4053                 }
4054
4055                 goto out;       /* No parent?  No problem. */
4056         }
4057
4058         /* The ceph file layout needs to fit pool id in 32 bits */
4059
4060         ret = -EIO;
4061         if (pool_id > (u64)U32_MAX) {
4062                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4063                         (unsigned long long)pool_id, U32_MAX);
4064                 goto out_err;
4065         }
4066
4067         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4068         if (IS_ERR(image_id)) {
4069                 ret = PTR_ERR(image_id);
4070                 goto out_err;
4071         }
4072         ceph_decode_64_safe(&p, end, snap_id, out_err);
4073         ceph_decode_64_safe(&p, end, overlap, out_err);
4074
4075         /*
4076          * The parent won't change (except when the clone is
4077          * flattened, already handled that).  So we only need to
4078          * record the parent spec we have not already done so.
4079          */
4080         if (!rbd_dev->parent_spec) {
4081                 parent_spec->pool_id = pool_id;
4082                 parent_spec->image_id = image_id;
4083                 parent_spec->snap_id = snap_id;
4084                 rbd_dev->parent_spec = parent_spec;
4085                 parent_spec = NULL;     /* rbd_dev now owns this */
4086         }
4087
4088         /*
4089          * We always update the parent overlap.  If it's zero we
4090          * treat it specially.
4091          */
4092         rbd_dev->parent_overlap = overlap;
4093         smp_mb();
4094         if (!overlap) {
4095
4096                 /* A null parent_spec indicates it's the initial probe */
4097
4098                 if (parent_spec) {
4099                         /*
4100                          * The overlap has become zero, so the clone
4101                          * must have been resized down to 0 at some
4102                          * point.  Treat this the same as a flatten.
4103                          */
4104                         rbd_dev_parent_put(rbd_dev);
4105                         pr_info("%s: clone image now standalone\n",
4106                                 rbd_dev->disk->disk_name);
4107                 } else {
4108                         /*
4109                          * For the initial probe, if we find the
4110                          * overlap is zero we just pretend there was
4111                          * no parent image.
4112                          */
4113                         rbd_warn(rbd_dev, "ignoring parent of "
4114                                                 "clone with overlap 0\n");
4115                 }
4116         }
4117 out:
4118         ret = 0;
4119 out_err:
4120         kfree(reply_buf);
4121         rbd_spec_put(parent_spec);
4122
4123         return ret;
4124 }
4125
4126 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4127 {
4128         struct {
4129                 __le64 stripe_unit;
4130                 __le64 stripe_count;
4131         } __attribute__ ((packed)) striping_info_buf = { 0 };
4132         size_t size = sizeof (striping_info_buf);
4133         void *p;
4134         u64 obj_size;
4135         u64 stripe_unit;
4136         u64 stripe_count;
4137         int ret;
4138
4139         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4140                                 "rbd", "get_stripe_unit_count", NULL, 0,
4141                                 (char *)&striping_info_buf, size);
4142         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4143         if (ret < 0)
4144                 return ret;
4145         if (ret < size)
4146                 return -ERANGE;
4147
4148         /*
4149          * We don't actually support the "fancy striping" feature
4150          * (STRIPINGV2) yet, but if the striping sizes are the
4151          * defaults the behavior is the same as before.  So find
4152          * out, and only fail if the image has non-default values.
4153          */
4154         ret = -EINVAL;
4155         obj_size = (u64)1 << rbd_dev->header.obj_order;
4156         p = &striping_info_buf;
4157         stripe_unit = ceph_decode_64(&p);
4158         if (stripe_unit != obj_size) {
4159                 rbd_warn(rbd_dev, "unsupported stripe unit "
4160                                 "(got %llu want %llu)",
4161                                 stripe_unit, obj_size);
4162                 return -EINVAL;
4163         }
4164         stripe_count = ceph_decode_64(&p);
4165         if (stripe_count != 1) {
4166                 rbd_warn(rbd_dev, "unsupported stripe count "
4167                                 "(got %llu want 1)", stripe_count);
4168                 return -EINVAL;
4169         }
4170         rbd_dev->header.stripe_unit = stripe_unit;
4171         rbd_dev->header.stripe_count = stripe_count;
4172
4173         return 0;
4174 }
4175
4176 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4177 {
4178         size_t image_id_size;
4179         char *image_id;
4180         void *p;
4181         void *end;
4182         size_t size;
4183         void *reply_buf = NULL;
4184         size_t len = 0;
4185         char *image_name = NULL;
4186         int ret;
4187
4188         rbd_assert(!rbd_dev->spec->image_name);
4189
4190         len = strlen(rbd_dev->spec->image_id);
4191         image_id_size = sizeof (__le32) + len;
4192         image_id = kmalloc(image_id_size, GFP_KERNEL);
4193         if (!image_id)
4194                 return NULL;
4195
4196         p = image_id;
4197         end = image_id + image_id_size;
4198         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4199
4200         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4201         reply_buf = kmalloc(size, GFP_KERNEL);
4202         if (!reply_buf)
4203                 goto out;
4204
4205         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4206                                 "rbd", "dir_get_name",
4207                                 image_id, image_id_size,
4208                                 reply_buf, size);
4209         if (ret < 0)
4210                 goto out;
4211         p = reply_buf;
4212         end = reply_buf + ret;
4213
4214         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4215         if (IS_ERR(image_name))
4216                 image_name = NULL;
4217         else
4218                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4219 out:
4220         kfree(reply_buf);
4221         kfree(image_id);
4222
4223         return image_name;
4224 }
4225
4226 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4227 {
4228         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4229         const char *snap_name;
4230         u32 which = 0;
4231
4232         /* Skip over names until we find the one we are looking for */
4233
4234         snap_name = rbd_dev->header.snap_names;
4235         while (which < snapc->num_snaps) {
4236                 if (!strcmp(name, snap_name))
4237                         return snapc->snaps[which];
4238                 snap_name += strlen(snap_name) + 1;
4239                 which++;
4240         }
4241         return CEPH_NOSNAP;
4242 }
4243
4244 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4245 {
4246         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4247         u32 which;
4248         bool found = false;
4249         u64 snap_id;
4250
4251         for (which = 0; !found && which < snapc->num_snaps; which++) {
4252                 const char *snap_name;
4253
4254                 snap_id = snapc->snaps[which];
4255                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4256                 if (IS_ERR(snap_name)) {
4257                         /* ignore no-longer existing snapshots */
4258                         if (PTR_ERR(snap_name) == -ENOENT)
4259                                 continue;
4260                         else
4261                                 break;
4262                 }
4263                 found = !strcmp(name, snap_name);
4264                 kfree(snap_name);
4265         }
4266         return found ? snap_id : CEPH_NOSNAP;
4267 }
4268
4269 /*
4270  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4271  * no snapshot by that name is found, or if an error occurs.
4272  */
4273 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4274 {
4275         if (rbd_dev->image_format == 1)
4276                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4277
4278         return rbd_v2_snap_id_by_name(rbd_dev, name);
4279 }
4280
4281 /*
4282  * When an rbd image has a parent image, it is identified by the
4283  * pool, image, and snapshot ids (not names).  This function fills
4284  * in the names for those ids.  (It's OK if we can't figure out the
4285  * name for an image id, but the pool and snapshot ids should always
4286  * exist and have names.)  All names in an rbd spec are dynamically
4287  * allocated.
4288  *
4289  * When an image being mapped (not a parent) is probed, we have the
4290  * pool name and pool id, image name and image id, and the snapshot
4291  * name.  The only thing we're missing is the snapshot id.
4292  */
4293 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4294 {
4295         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4296         struct rbd_spec *spec = rbd_dev->spec;
4297         const char *pool_name;
4298         const char *image_name;
4299         const char *snap_name;
4300         int ret;
4301
4302         /*
4303          * An image being mapped will have the pool name (etc.), but
4304          * we need to look up the snapshot id.
4305          */
4306         if (spec->pool_name) {
4307                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4308                         u64 snap_id;
4309
4310                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4311                         if (snap_id == CEPH_NOSNAP)
4312                                 return -ENOENT;
4313                         spec->snap_id = snap_id;
4314                 } else {
4315                         spec->snap_id = CEPH_NOSNAP;
4316                 }
4317
4318                 return 0;
4319         }
4320
4321         /* Get the pool name; we have to make our own copy of this */
4322
4323         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4324         if (!pool_name) {
4325                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4326                 return -EIO;
4327         }
4328         pool_name = kstrdup(pool_name, GFP_KERNEL);
4329         if (!pool_name)
4330                 return -ENOMEM;
4331
4332         /* Fetch the image name; tolerate failure here */
4333
4334         image_name = rbd_dev_image_name(rbd_dev);
4335         if (!image_name)
4336                 rbd_warn(rbd_dev, "unable to get image name");
4337
4338         /* Look up the snapshot name, and make a copy */
4339
4340         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4341         if (IS_ERR(snap_name)) {
4342                 ret = PTR_ERR(snap_name);
4343                 goto out_err;
4344         }
4345
4346         spec->pool_name = pool_name;
4347         spec->image_name = image_name;
4348         spec->snap_name = snap_name;
4349
4350         return 0;
4351 out_err:
4352         kfree(image_name);
4353         kfree(pool_name);
4354
4355         return ret;
4356 }
4357
4358 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4359 {
4360         size_t size;
4361         int ret;
4362         void *reply_buf;
4363         void *p;
4364         void *end;
4365         u64 seq;
4366         u32 snap_count;
4367         struct ceph_snap_context *snapc;
4368         u32 i;
4369
4370         /*
4371          * We'll need room for the seq value (maximum snapshot id),
4372          * snapshot count, and array of that many snapshot ids.
4373          * For now we have a fixed upper limit on the number we're
4374          * prepared to receive.
4375          */
4376         size = sizeof (__le64) + sizeof (__le32) +
4377                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4378         reply_buf = kzalloc(size, GFP_KERNEL);
4379         if (!reply_buf)
4380                 return -ENOMEM;
4381
4382         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4383                                 "rbd", "get_snapcontext", NULL, 0,
4384                                 reply_buf, size);
4385         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4386         if (ret < 0)
4387                 goto out;
4388
4389         p = reply_buf;
4390         end = reply_buf + ret;
4391         ret = -ERANGE;
4392         ceph_decode_64_safe(&p, end, seq, out);
4393         ceph_decode_32_safe(&p, end, snap_count, out);
4394
4395         /*
4396          * Make sure the reported number of snapshot ids wouldn't go
4397          * beyond the end of our buffer.  But before checking that,
4398          * make sure the computed size of the snapshot context we
4399          * allocate is representable in a size_t.
4400          */
4401         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4402                                  / sizeof (u64)) {
4403                 ret = -EINVAL;
4404                 goto out;
4405         }
4406         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4407                 goto out;
4408         ret = 0;
4409
4410         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4411         if (!snapc) {
4412                 ret = -ENOMEM;
4413                 goto out;
4414         }
4415         snapc->seq = seq;
4416         for (i = 0; i < snap_count; i++)
4417                 snapc->snaps[i] = ceph_decode_64(&p);
4418
4419         ceph_put_snap_context(rbd_dev->header.snapc);
4420         rbd_dev->header.snapc = snapc;
4421
4422         dout("  snap context seq = %llu, snap_count = %u\n",
4423                 (unsigned long long)seq, (unsigned int)snap_count);
4424 out:
4425         kfree(reply_buf);
4426
4427         return ret;
4428 }
4429
4430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4431                                         u64 snap_id)
4432 {
4433         size_t size;
4434         void *reply_buf;
4435         __le64 snapid;
4436         int ret;
4437         void *p;
4438         void *end;
4439         char *snap_name;
4440
4441         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4442         reply_buf = kmalloc(size, GFP_KERNEL);
4443         if (!reply_buf)
4444                 return ERR_PTR(-ENOMEM);
4445
4446         snapid = cpu_to_le64(snap_id);
4447         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4448                                 "rbd", "get_snapshot_name",
4449                                 &snapid, sizeof (snapid),
4450                                 reply_buf, size);
4451         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4452         if (ret < 0) {
4453                 snap_name = ERR_PTR(ret);
4454                 goto out;
4455         }
4456
4457         p = reply_buf;
4458         end = reply_buf + ret;
4459         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4460         if (IS_ERR(snap_name))
4461                 goto out;
4462
4463         dout("  snap_id 0x%016llx snap_name = %s\n",
4464                 (unsigned long long)snap_id, snap_name);
4465 out:
4466         kfree(reply_buf);
4467
4468         return snap_name;
4469 }
4470
4471 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4472 {
4473         bool first_time = rbd_dev->header.object_prefix == NULL;
4474         int ret;
4475
4476         ret = rbd_dev_v2_image_size(rbd_dev);
4477         if (ret)
4478                 return ret;
4479
4480         if (first_time) {
4481                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4482                 if (ret)
4483                         return ret;
4484         }
4485
4486         /*
4487          * If the image supports layering, get the parent info.  We
4488          * need to probe the first time regardless.  Thereafter we
4489          * only need to if there's a parent, to see if it has
4490          * disappeared due to the mapped image getting flattened.
4491          */
4492         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4493                         (first_time || rbd_dev->parent_spec)) {
4494                 bool warn;
4495
4496                 ret = rbd_dev_v2_parent_info(rbd_dev);
4497                 if (ret)
4498                         return ret;
4499
4500                 /*
4501                  * Print a warning if this is the initial probe and
4502                  * the image has a parent.  Don't print it if the
4503                  * image now being probed is itself a parent.  We
4504                  * can tell at this point because we won't know its
4505                  * pool name yet (just its pool id).
4506                  */
4507                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4508                 if (first_time && warn)
4509                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4510                                         "is EXPERIMENTAL!");
4511         }
4512
4513         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4514                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4515                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4516
4517         ret = rbd_dev_v2_snap_context(rbd_dev);
4518         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4519
4520         return ret;
4521 }
4522
4523 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4524 {
4525         struct device *dev;
4526         int ret;
4527
4528         dev = &rbd_dev->dev;
4529         dev->bus = &rbd_bus_type;
4530         dev->type = &rbd_device_type;
4531         dev->parent = &rbd_root_dev;
4532         dev->release = rbd_dev_device_release;
4533         dev_set_name(dev, "%d", rbd_dev->dev_id);
4534         ret = device_register(dev);
4535
4536         return ret;
4537 }
4538
4539 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4540 {
4541         device_unregister(&rbd_dev->dev);
4542 }
4543
4544 /*
4545  * Get a unique rbd identifier for the given new rbd_dev, and add
4546  * the rbd_dev to the global list.
4547  */
4548 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4549 {
4550         int new_dev_id;
4551
4552         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4553                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4554                                     GFP_KERNEL);
4555         if (new_dev_id < 0)
4556                 return new_dev_id;
4557
4558         rbd_dev->dev_id = new_dev_id;
4559
4560         spin_lock(&rbd_dev_list_lock);
4561         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4562         spin_unlock(&rbd_dev_list_lock);
4563
4564         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4565
4566         return 0;
4567 }
4568
4569 /*
4570  * Remove an rbd_dev from the global list, and record that its
4571  * identifier is no longer in use.
4572  */
4573 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4574 {
4575         spin_lock(&rbd_dev_list_lock);
4576         list_del_init(&rbd_dev->node);
4577         spin_unlock(&rbd_dev_list_lock);
4578
4579         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4580
4581         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4582 }
4583
4584 /*
4585  * Skips over white space at *buf, and updates *buf to point to the
4586  * first found non-space character (if any). Returns the length of
4587  * the token (string of non-white space characters) found.  Note
4588  * that *buf must be terminated with '\0'.
4589  */
4590 static inline size_t next_token(const char **buf)
4591 {
4592         /*
4593         * These are the characters that produce nonzero for
4594         * isspace() in the "C" and "POSIX" locales.
4595         */
4596         const char *spaces = " \f\n\r\t\v";
4597
4598         *buf += strspn(*buf, spaces);   /* Find start of token */
4599
4600         return strcspn(*buf, spaces);   /* Return token length */
4601 }
4602
4603 /*
4604  * Finds the next token in *buf, and if the provided token buffer is
4605  * big enough, copies the found token into it.  The result, if
4606  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4607  * must be terminated with '\0' on entry.
4608  *
4609  * Returns the length of the token found (not including the '\0').
4610  * Return value will be 0 if no token is found, and it will be >=
4611  * token_size if the token would not fit.
4612  *
4613  * The *buf pointer will be updated to point beyond the end of the
4614  * found token.  Note that this occurs even if the token buffer is
4615  * too small to hold it.
4616  */
4617 static inline size_t copy_token(const char **buf,
4618                                 char *token,
4619                                 size_t token_size)
4620 {
4621         size_t len;
4622
4623         len = next_token(buf);
4624         if (len < token_size) {
4625                 memcpy(token, *buf, len);
4626                 *(token + len) = '\0';
4627         }
4628         *buf += len;
4629
4630         return len;
4631 }
4632
4633 /*
4634  * Finds the next token in *buf, dynamically allocates a buffer big
4635  * enough to hold a copy of it, and copies the token into the new
4636  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4637  * that a duplicate buffer is created even for a zero-length token.
4638  *
4639  * Returns a pointer to the newly-allocated duplicate, or a null
4640  * pointer if memory for the duplicate was not available.  If
4641  * the lenp argument is a non-null pointer, the length of the token
4642  * (not including the '\0') is returned in *lenp.
4643  *
4644  * If successful, the *buf pointer will be updated to point beyond
4645  * the end of the found token.
4646  *
4647  * Note: uses GFP_KERNEL for allocation.
4648  */
4649 static inline char *dup_token(const char **buf, size_t *lenp)
4650 {
4651         char *dup;
4652         size_t len;
4653
4654         len = next_token(buf);
4655         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4656         if (!dup)
4657                 return NULL;
4658         *(dup + len) = '\0';
4659         *buf += len;
4660
4661         if (lenp)
4662                 *lenp = len;
4663
4664         return dup;
4665 }
4666
4667 /*
4668  * Parse the options provided for an "rbd add" (i.e., rbd image
4669  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4670  * and the data written is passed here via a NUL-terminated buffer.
4671  * Returns 0 if successful or an error code otherwise.
4672  *
4673  * The information extracted from these options is recorded in
4674  * the other parameters which return dynamically-allocated
4675  * structures:
4676  *  ceph_opts
4677  *      The address of a pointer that will refer to a ceph options
4678  *      structure.  Caller must release the returned pointer using
4679  *      ceph_destroy_options() when it is no longer needed.
4680  *  rbd_opts
4681  *      Address of an rbd options pointer.  Fully initialized by
4682  *      this function; caller must release with kfree().
4683  *  spec
4684  *      Address of an rbd image specification pointer.  Fully
4685  *      initialized by this function based on parsed options.
4686  *      Caller must release with rbd_spec_put().
4687  *
4688  * The options passed take this form:
4689  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4690  * where:
4691  *  <mon_addrs>
4692  *      A comma-separated list of one or more monitor addresses.
4693  *      A monitor address is an ip address, optionally followed
4694  *      by a port number (separated by a colon).
4695  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4696  *  <options>
4697  *      A comma-separated list of ceph and/or rbd options.
4698  *  <pool_name>
4699  *      The name of the rados pool containing the rbd image.
4700  *  <image_name>
4701  *      The name of the image in that pool to map.
4702  *  <snap_id>
4703  *      An optional snapshot id.  If provided, the mapping will
4704  *      present data from the image at the time that snapshot was
4705  *      created.  The image head is used if no snapshot id is
4706  *      provided.  Snapshot mappings are always read-only.
4707  */
4708 static int rbd_add_parse_args(const char *buf,
4709                                 struct ceph_options **ceph_opts,
4710                                 struct rbd_options **opts,
4711                                 struct rbd_spec **rbd_spec)
4712 {
4713         size_t len;
4714         char *options;
4715         const char *mon_addrs;
4716         char *snap_name;
4717         size_t mon_addrs_size;
4718         struct rbd_spec *spec = NULL;
4719         struct rbd_options *rbd_opts = NULL;
4720         struct ceph_options *copts;
4721         int ret;
4722
4723         /* The first four tokens are required */
4724
4725         len = next_token(&buf);
4726         if (!len) {
4727                 rbd_warn(NULL, "no monitor address(es) provided");
4728                 return -EINVAL;
4729         }
4730         mon_addrs = buf;
4731         mon_addrs_size = len + 1;
4732         buf += len;
4733
4734         ret = -EINVAL;
4735         options = dup_token(&buf, NULL);
4736         if (!options)
4737                 return -ENOMEM;
4738         if (!*options) {
4739                 rbd_warn(NULL, "no options provided");
4740                 goto out_err;
4741         }
4742
4743         spec = rbd_spec_alloc();
4744         if (!spec)
4745                 goto out_mem;
4746
4747         spec->pool_name = dup_token(&buf, NULL);
4748         if (!spec->pool_name)
4749                 goto out_mem;
4750         if (!*spec->pool_name) {
4751                 rbd_warn(NULL, "no pool name provided");
4752                 goto out_err;
4753         }
4754
4755         spec->image_name = dup_token(&buf, NULL);
4756         if (!spec->image_name)
4757                 goto out_mem;
4758         if (!*spec->image_name) {
4759                 rbd_warn(NULL, "no image name provided");
4760                 goto out_err;
4761         }
4762
4763         /*
4764          * Snapshot name is optional; default is to use "-"
4765          * (indicating the head/no snapshot).
4766          */
4767         len = next_token(&buf);
4768         if (!len) {
4769                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4770                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4771         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4772                 ret = -ENAMETOOLONG;
4773                 goto out_err;
4774         }
4775         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4776         if (!snap_name)
4777                 goto out_mem;
4778         *(snap_name + len) = '\0';
4779         spec->snap_name = snap_name;
4780
4781         /* Initialize all rbd options to the defaults */
4782
4783         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4784         if (!rbd_opts)
4785                 goto out_mem;
4786
4787         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4788
4789         copts = ceph_parse_options(options, mon_addrs,
4790                                         mon_addrs + mon_addrs_size - 1,
4791                                         parse_rbd_opts_token, rbd_opts);
4792         if (IS_ERR(copts)) {
4793                 ret = PTR_ERR(copts);
4794                 goto out_err;
4795         }
4796         kfree(options);
4797
4798         *ceph_opts = copts;
4799         *opts = rbd_opts;
4800         *rbd_spec = spec;
4801
4802         return 0;
4803 out_mem:
4804         ret = -ENOMEM;
4805 out_err:
4806         kfree(rbd_opts);
4807         rbd_spec_put(spec);
4808         kfree(options);
4809
4810         return ret;
4811 }
4812
4813 /*
4814  * Return pool id (>= 0) or a negative error code.
4815  */
4816 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4817 {
4818         u64 newest_epoch;
4819         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4820         int tries = 0;
4821         int ret;
4822
4823 again:
4824         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4825         if (ret == -ENOENT && tries++ < 1) {
4826                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4827                                                &newest_epoch);
4828                 if (ret < 0)
4829                         return ret;
4830
4831                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4832                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4833                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4834                                                      newest_epoch, timeout);
4835                         goto again;
4836                 } else {
4837                         /* the osdmap we have is new enough */
4838                         return -ENOENT;
4839                 }
4840         }
4841
4842         return ret;
4843 }
4844
4845 /*
4846  * An rbd format 2 image has a unique identifier, distinct from the
4847  * name given to it by the user.  Internally, that identifier is
4848  * what's used to specify the names of objects related to the image.
4849  *
4850  * A special "rbd id" object is used to map an rbd image name to its
4851  * id.  If that object doesn't exist, then there is no v2 rbd image
4852  * with the supplied name.
4853  *
4854  * This function will record the given rbd_dev's image_id field if
4855  * it can be determined, and in that case will return 0.  If any
4856  * errors occur a negative errno will be returned and the rbd_dev's
4857  * image_id field will be unchanged (and should be NULL).
4858  */
4859 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4860 {
4861         int ret;
4862         size_t size;
4863         char *object_name;
4864         void *response;
4865         char *image_id;
4866
4867         /*
4868          * When probing a parent image, the image id is already
4869          * known (and the image name likely is not).  There's no
4870          * need to fetch the image id again in this case.  We
4871          * do still need to set the image format though.
4872          */
4873         if (rbd_dev->spec->image_id) {
4874                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4875
4876                 return 0;
4877         }
4878
4879         /*
4880          * First, see if the format 2 image id file exists, and if
4881          * so, get the image's persistent id from it.
4882          */
4883         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4884         object_name = kmalloc(size, GFP_NOIO);
4885         if (!object_name)
4886                 return -ENOMEM;
4887         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4888         dout("rbd id object name is %s\n", object_name);
4889
4890         /* Response will be an encoded string, which includes a length */
4891
4892         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4893         response = kzalloc(size, GFP_NOIO);
4894         if (!response) {
4895                 ret = -ENOMEM;
4896                 goto out;
4897         }
4898
4899         /* If it doesn't exist we'll assume it's a format 1 image */
4900
4901         ret = rbd_obj_method_sync(rbd_dev, object_name,
4902                                 "rbd", "get_id", NULL, 0,
4903                                 response, RBD_IMAGE_ID_LEN_MAX);
4904         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4905         if (ret == -ENOENT) {
4906                 image_id = kstrdup("", GFP_KERNEL);
4907                 ret = image_id ? 0 : -ENOMEM;
4908                 if (!ret)
4909                         rbd_dev->image_format = 1;
4910         } else if (ret > sizeof (__le32)) {
4911                 void *p = response;
4912
4913                 image_id = ceph_extract_encoded_string(&p, p + ret,
4914                                                 NULL, GFP_NOIO);
4915                 ret = PTR_ERR_OR_ZERO(image_id);
4916                 if (!ret)
4917                         rbd_dev->image_format = 2;
4918         } else {
4919                 ret = -EINVAL;
4920         }
4921
4922         if (!ret) {
4923                 rbd_dev->spec->image_id = image_id;
4924                 dout("image_id is %s\n", image_id);
4925         }
4926 out:
4927         kfree(response);
4928         kfree(object_name);
4929
4930         return ret;
4931 }
4932
4933 /*
4934  * Undo whatever state changes are made by v1 or v2 header info
4935  * call.
4936  */
4937 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4938 {
4939         struct rbd_image_header *header;
4940
4941         /* Drop parent reference unless it's already been done (or none) */
4942
4943         if (rbd_dev->parent_overlap)
4944                 rbd_dev_parent_put(rbd_dev);
4945
4946         /* Free dynamic fields from the header, then zero it out */
4947
4948         header = &rbd_dev->header;
4949         ceph_put_snap_context(header->snapc);
4950         kfree(header->snap_sizes);
4951         kfree(header->snap_names);
4952         kfree(header->object_prefix);
4953         memset(header, 0, sizeof (*header));
4954 }
4955
4956 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4957 {
4958         int ret;
4959
4960         ret = rbd_dev_v2_object_prefix(rbd_dev);
4961         if (ret)
4962                 goto out_err;
4963
4964         /*
4965          * Get the and check features for the image.  Currently the
4966          * features are assumed to never change.
4967          */
4968         ret = rbd_dev_v2_features(rbd_dev);
4969         if (ret)
4970                 goto out_err;
4971
4972         /* If the image supports fancy striping, get its parameters */
4973
4974         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4975                 ret = rbd_dev_v2_striping_info(rbd_dev);
4976                 if (ret < 0)
4977                         goto out_err;
4978         }
4979         /* No support for crypto and compression type format 2 images */
4980
4981         return 0;
4982 out_err:
4983         rbd_dev->header.features = 0;
4984         kfree(rbd_dev->header.object_prefix);
4985         rbd_dev->header.object_prefix = NULL;
4986
4987         return ret;
4988 }
4989
4990 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4991 {
4992         struct rbd_device *parent = NULL;
4993         struct rbd_spec *parent_spec;
4994         struct rbd_client *rbdc;
4995         int ret;
4996
4997         if (!rbd_dev->parent_spec)
4998                 return 0;
4999         /*
5000          * We need to pass a reference to the client and the parent
5001          * spec when creating the parent rbd_dev.  Images related by
5002          * parent/child relationships always share both.
5003          */
5004         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5005         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5006
5007         ret = -ENOMEM;
5008         parent = rbd_dev_create(rbdc, parent_spec);
5009         if (!parent)
5010                 goto out_err;
5011
5012         ret = rbd_dev_image_probe(parent, false);
5013         if (ret < 0)
5014                 goto out_err;
5015         rbd_dev->parent = parent;
5016         atomic_set(&rbd_dev->parent_ref, 1);
5017
5018         return 0;
5019 out_err:
5020         if (parent) {
5021                 rbd_dev_unparent(rbd_dev);
5022                 kfree(rbd_dev->header_name);
5023                 rbd_dev_destroy(parent);
5024         } else {
5025                 rbd_put_client(rbdc);
5026                 rbd_spec_put(parent_spec);
5027         }
5028
5029         return ret;
5030 }
5031
5032 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5033 {
5034         int ret;
5035
5036         /* Get an id and fill in device name. */
5037
5038         ret = rbd_dev_id_get(rbd_dev);
5039         if (ret)
5040                 return ret;
5041
5042         BUILD_BUG_ON(DEV_NAME_LEN
5043                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5044         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5045
5046         /* Record our major and minor device numbers. */
5047
5048         if (!single_major) {
5049                 ret = register_blkdev(0, rbd_dev->name);
5050                 if (ret < 0)
5051                         goto err_out_id;
5052
5053                 rbd_dev->major = ret;
5054                 rbd_dev->minor = 0;
5055         } else {
5056                 rbd_dev->major = rbd_major;
5057                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5058         }
5059
5060         /* Set up the blkdev mapping. */
5061
5062         ret = rbd_init_disk(rbd_dev);
5063         if (ret)
5064                 goto err_out_blkdev;
5065
5066         ret = rbd_dev_mapping_set(rbd_dev);
5067         if (ret)
5068                 goto err_out_disk;
5069         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5070         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5071
5072         ret = rbd_bus_add_dev(rbd_dev);
5073         if (ret)
5074                 goto err_out_mapping;
5075
5076         /* Everything's ready.  Announce the disk to the world. */
5077
5078         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5079         add_disk(rbd_dev->disk);
5080
5081         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5082                 (unsigned long long) rbd_dev->mapping.size);
5083
5084         return ret;
5085
5086 err_out_mapping:
5087         rbd_dev_mapping_clear(rbd_dev);
5088 err_out_disk:
5089         rbd_free_disk(rbd_dev);
5090 err_out_blkdev:
5091         if (!single_major)
5092                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5093 err_out_id:
5094         rbd_dev_id_put(rbd_dev);
5095         rbd_dev_mapping_clear(rbd_dev);
5096
5097         return ret;
5098 }
5099
5100 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5101 {
5102         struct rbd_spec *spec = rbd_dev->spec;
5103         size_t size;
5104
5105         /* Record the header object name for this rbd image. */
5106
5107         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5108
5109         if (rbd_dev->image_format == 1)
5110                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5111         else
5112                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5113
5114         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5115         if (!rbd_dev->header_name)
5116                 return -ENOMEM;
5117
5118         if (rbd_dev->image_format == 1)
5119                 sprintf(rbd_dev->header_name, "%s%s",
5120                         spec->image_name, RBD_SUFFIX);
5121         else
5122                 sprintf(rbd_dev->header_name, "%s%s",
5123                         RBD_HEADER_PREFIX, spec->image_id);
5124         return 0;
5125 }
5126
5127 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5128 {
5129         rbd_dev_unprobe(rbd_dev);
5130         kfree(rbd_dev->header_name);
5131         rbd_dev->header_name = NULL;
5132         rbd_dev->image_format = 0;
5133         kfree(rbd_dev->spec->image_id);
5134         rbd_dev->spec->image_id = NULL;
5135
5136         rbd_dev_destroy(rbd_dev);
5137 }
5138
5139 /*
5140  * Probe for the existence of the header object for the given rbd
5141  * device.  If this image is the one being mapped (i.e., not a
5142  * parent), initiate a watch on its header object before using that
5143  * object to get detailed information about the rbd image.
5144  */
5145 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5146 {
5147         int ret;
5148
5149         /*
5150          * Get the id from the image id object.  Unless there's an
5151          * error, rbd_dev->spec->image_id will be filled in with
5152          * a dynamically-allocated string, and rbd_dev->image_format
5153          * will be set to either 1 or 2.
5154          */
5155         ret = rbd_dev_image_id(rbd_dev);
5156         if (ret)
5157                 return ret;
5158         rbd_assert(rbd_dev->spec->image_id);
5159         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5160
5161         ret = rbd_dev_header_name(rbd_dev);
5162         if (ret)
5163                 goto err_out_format;
5164
5165         if (mapping) {
5166                 ret = rbd_dev_header_watch_sync(rbd_dev);
5167                 if (ret)
5168                         goto out_header_name;
5169         }
5170
5171         if (rbd_dev->image_format == 1)
5172                 ret = rbd_dev_v1_header_info(rbd_dev);
5173         else
5174                 ret = rbd_dev_v2_header_info(rbd_dev);
5175         if (ret)
5176                 goto err_out_watch;
5177
5178         ret = rbd_dev_spec_update(rbd_dev);
5179         if (ret)
5180                 goto err_out_probe;
5181
5182         ret = rbd_dev_probe_parent(rbd_dev);
5183         if (ret)
5184                 goto err_out_probe;
5185
5186         dout("discovered format %u image, header name is %s\n",
5187                 rbd_dev->image_format, rbd_dev->header_name);
5188
5189         return 0;
5190 err_out_probe:
5191         rbd_dev_unprobe(rbd_dev);
5192 err_out_watch:
5193         if (mapping)
5194                 rbd_dev_header_unwatch_sync(rbd_dev);
5195 out_header_name:
5196         kfree(rbd_dev->header_name);
5197         rbd_dev->header_name = NULL;
5198 err_out_format:
5199         rbd_dev->image_format = 0;
5200         kfree(rbd_dev->spec->image_id);
5201         rbd_dev->spec->image_id = NULL;
5202
5203         dout("probe failed, returning %d\n", ret);
5204
5205         return ret;
5206 }
5207
5208 static ssize_t do_rbd_add(struct bus_type *bus,
5209                           const char *buf,
5210                           size_t count)
5211 {
5212         struct rbd_device *rbd_dev = NULL;
5213         struct ceph_options *ceph_opts = NULL;
5214         struct rbd_options *rbd_opts = NULL;
5215         struct rbd_spec *spec = NULL;
5216         struct rbd_client *rbdc;
5217         bool read_only;
5218         int rc = -ENOMEM;
5219
5220         if (!try_module_get(THIS_MODULE))
5221                 return -ENODEV;
5222
5223         /* parse add command */
5224         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5225         if (rc < 0)
5226                 goto err_out_module;
5227         read_only = rbd_opts->read_only;
5228         kfree(rbd_opts);
5229         rbd_opts = NULL;        /* done with this */
5230
5231         rbdc = rbd_get_client(ceph_opts);
5232         if (IS_ERR(rbdc)) {
5233                 rc = PTR_ERR(rbdc);
5234                 goto err_out_args;
5235         }
5236
5237         /* pick the pool */
5238         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5239         if (rc < 0)
5240                 goto err_out_client;
5241         spec->pool_id = (u64)rc;
5242
5243         /* The ceph file layout needs to fit pool id in 32 bits */
5244
5245         if (spec->pool_id > (u64)U32_MAX) {
5246                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5247                                 (unsigned long long)spec->pool_id, U32_MAX);
5248                 rc = -EIO;
5249                 goto err_out_client;
5250         }
5251
5252         rbd_dev = rbd_dev_create(rbdc, spec);
5253         if (!rbd_dev)
5254                 goto err_out_client;
5255         rbdc = NULL;            /* rbd_dev now owns this */
5256         spec = NULL;            /* rbd_dev now owns this */
5257
5258         rc = rbd_dev_image_probe(rbd_dev, true);
5259         if (rc < 0)
5260                 goto err_out_rbd_dev;
5261
5262         /* If we are mapping a snapshot it must be marked read-only */
5263
5264         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5265                 read_only = true;
5266         rbd_dev->mapping.read_only = read_only;
5267
5268         rc = rbd_dev_device_setup(rbd_dev);
5269         if (rc) {
5270                 /*
5271                  * rbd_dev_header_unwatch_sync() can't be moved into
5272                  * rbd_dev_image_release() without refactoring, see
5273                  * commit 1f3ef78861ac.
5274                  */
5275                 rbd_dev_header_unwatch_sync(rbd_dev);
5276                 rbd_dev_image_release(rbd_dev);
5277                 goto err_out_module;
5278         }
5279
5280         return count;
5281
5282 err_out_rbd_dev:
5283         rbd_dev_destroy(rbd_dev);
5284 err_out_client:
5285         rbd_put_client(rbdc);
5286 err_out_args:
5287         rbd_spec_put(spec);
5288 err_out_module:
5289         module_put(THIS_MODULE);
5290
5291         dout("Error adding device %s\n", buf);
5292
5293         return (ssize_t)rc;
5294 }
5295
5296 static ssize_t rbd_add(struct bus_type *bus,
5297                        const char *buf,
5298                        size_t count)
5299 {
5300         if (single_major)
5301                 return -EINVAL;
5302
5303         return do_rbd_add(bus, buf, count);
5304 }
5305
5306 static ssize_t rbd_add_single_major(struct bus_type *bus,
5307                                     const char *buf,
5308                                     size_t count)
5309 {
5310         return do_rbd_add(bus, buf, count);
5311 }
5312
5313 static void rbd_dev_device_release(struct device *dev)
5314 {
5315         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5316
5317         rbd_free_disk(rbd_dev);
5318         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5319         rbd_dev_mapping_clear(rbd_dev);
5320         if (!single_major)
5321                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5322         rbd_dev_id_put(rbd_dev);
5323         rbd_dev_mapping_clear(rbd_dev);
5324 }
5325
5326 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5327 {
5328         while (rbd_dev->parent) {
5329                 struct rbd_device *first = rbd_dev;
5330                 struct rbd_device *second = first->parent;
5331                 struct rbd_device *third;
5332
5333                 /*
5334                  * Follow to the parent with no grandparent and
5335                  * remove it.
5336                  */
5337                 while (second && (third = second->parent)) {
5338                         first = second;
5339                         second = third;
5340                 }
5341                 rbd_assert(second);
5342                 rbd_dev_image_release(second);
5343                 first->parent = NULL;
5344                 first->parent_overlap = 0;
5345
5346                 rbd_assert(first->parent_spec);
5347                 rbd_spec_put(first->parent_spec);
5348                 first->parent_spec = NULL;
5349         }
5350 }
5351
5352 static ssize_t do_rbd_remove(struct bus_type *bus,
5353                              const char *buf,
5354                              size_t count)
5355 {
5356         struct rbd_device *rbd_dev = NULL;
5357         struct list_head *tmp;
5358         int dev_id;
5359         unsigned long ul;
5360         bool already = false;
5361         int ret;
5362
5363         ret = kstrtoul(buf, 10, &ul);
5364         if (ret)
5365                 return ret;
5366
5367         /* convert to int; abort if we lost anything in the conversion */
5368         dev_id = (int)ul;
5369         if (dev_id != ul)
5370                 return -EINVAL;
5371
5372         ret = -ENOENT;
5373         spin_lock(&rbd_dev_list_lock);
5374         list_for_each(tmp, &rbd_dev_list) {
5375                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5376                 if (rbd_dev->dev_id == dev_id) {
5377                         ret = 0;
5378                         break;
5379                 }
5380         }
5381         if (!ret) {
5382                 spin_lock_irq(&rbd_dev->lock);
5383                 if (rbd_dev->open_count)
5384                         ret = -EBUSY;
5385                 else
5386                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5387                                                         &rbd_dev->flags);
5388                 spin_unlock_irq(&rbd_dev->lock);
5389         }
5390         spin_unlock(&rbd_dev_list_lock);
5391         if (ret < 0 || already)
5392                 return ret;
5393
5394         rbd_dev_header_unwatch_sync(rbd_dev);
5395         /*
5396          * flush remaining watch callbacks - these must be complete
5397          * before the osd_client is shutdown
5398          */
5399         dout("%s: flushing notifies", __func__);
5400         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5401
5402         /*
5403          * Don't free anything from rbd_dev->disk until after all
5404          * notifies are completely processed. Otherwise
5405          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5406          * in a potential use after free of rbd_dev->disk or rbd_dev.
5407          */
5408         rbd_bus_del_dev(rbd_dev);
5409         rbd_dev_image_release(rbd_dev);
5410         module_put(THIS_MODULE);
5411
5412         return count;
5413 }
5414
5415 static ssize_t rbd_remove(struct bus_type *bus,
5416                           const char *buf,
5417                           size_t count)
5418 {
5419         if (single_major)
5420                 return -EINVAL;
5421
5422         return do_rbd_remove(bus, buf, count);
5423 }
5424
5425 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5426                                        const char *buf,
5427                                        size_t count)
5428 {
5429         return do_rbd_remove(bus, buf, count);
5430 }
5431
5432 /*
5433  * create control files in sysfs
5434  * /sys/bus/rbd/...
5435  */
5436 static int rbd_sysfs_init(void)
5437 {
5438         int ret;
5439
5440         ret = device_register(&rbd_root_dev);
5441         if (ret < 0)
5442                 return ret;
5443
5444         ret = bus_register(&rbd_bus_type);
5445         if (ret < 0)
5446                 device_unregister(&rbd_root_dev);
5447
5448         return ret;
5449 }
5450
5451 static void rbd_sysfs_cleanup(void)
5452 {
5453         bus_unregister(&rbd_bus_type);
5454         device_unregister(&rbd_root_dev);
5455 }
5456
5457 static int rbd_slab_init(void)
5458 {
5459         rbd_assert(!rbd_img_request_cache);
5460         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5461                                         sizeof (struct rbd_img_request),
5462                                         __alignof__(struct rbd_img_request),
5463                                         0, NULL);
5464         if (!rbd_img_request_cache)
5465                 return -ENOMEM;
5466
5467         rbd_assert(!rbd_obj_request_cache);
5468         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5469                                         sizeof (struct rbd_obj_request),
5470                                         __alignof__(struct rbd_obj_request),
5471                                         0, NULL);
5472         if (!rbd_obj_request_cache)
5473                 goto out_err;
5474
5475         rbd_assert(!rbd_segment_name_cache);
5476         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5477                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5478         if (rbd_segment_name_cache)
5479                 return 0;
5480 out_err:
5481         if (rbd_obj_request_cache) {
5482                 kmem_cache_destroy(rbd_obj_request_cache);
5483                 rbd_obj_request_cache = NULL;
5484         }
5485
5486         kmem_cache_destroy(rbd_img_request_cache);
5487         rbd_img_request_cache = NULL;
5488
5489         return -ENOMEM;
5490 }
5491
5492 static void rbd_slab_exit(void)
5493 {
5494         rbd_assert(rbd_segment_name_cache);
5495         kmem_cache_destroy(rbd_segment_name_cache);
5496         rbd_segment_name_cache = NULL;
5497
5498         rbd_assert(rbd_obj_request_cache);
5499         kmem_cache_destroy(rbd_obj_request_cache);
5500         rbd_obj_request_cache = NULL;
5501
5502         rbd_assert(rbd_img_request_cache);
5503         kmem_cache_destroy(rbd_img_request_cache);
5504         rbd_img_request_cache = NULL;
5505 }
5506
5507 static int __init rbd_init(void)
5508 {
5509         int rc;
5510
5511         if (!libceph_compatible(NULL)) {
5512                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5513                 return -EINVAL;
5514         }
5515
5516         rc = rbd_slab_init();
5517         if (rc)
5518                 return rc;
5519
5520         if (single_major) {
5521                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5522                 if (rbd_major < 0) {
5523                         rc = rbd_major;
5524                         goto err_out_slab;
5525                 }
5526         }
5527
5528         rc = rbd_sysfs_init();
5529         if (rc)
5530                 goto err_out_blkdev;
5531
5532         if (single_major)
5533                 pr_info("loaded (major %d)\n", rbd_major);
5534         else
5535                 pr_info("loaded\n");
5536
5537         return 0;
5538
5539 err_out_blkdev:
5540         if (single_major)
5541                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5542 err_out_slab:
5543         rbd_slab_exit();
5544         return rc;
5545 }
5546
5547 static void __exit rbd_exit(void)
5548 {
5549         ida_destroy(&rbd_dev_id_ida);
5550         rbd_sysfs_cleanup();
5551         if (single_major)
5552                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5553         rbd_slab_exit();
5554 }
5555
5556 module_init(rbd_init);
5557 module_exit(rbd_exit);
5558
5559 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5560 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5561 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5562 /* following authorship retained from original osdblk.c */
5563 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5564
5565 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5566 MODULE_LICENSE("GPL");