Merge tag 'xfs-for-linus-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (!intel_irqs_enabled(dev_priv))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095         struct drm_i915_private *dev_priv =
1096                 container_of(work, struct drm_i915_private, dig_port_work);
1097         unsigned long irqflags;
1098         u32 long_port_mask, short_port_mask;
1099         struct intel_digital_port *intel_dig_port;
1100         int i, ret;
1101         u32 old_bits = 0;
1102
1103         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104         long_port_mask = dev_priv->long_hpd_port_mask;
1105         dev_priv->long_hpd_port_mask = 0;
1106         short_port_mask = dev_priv->short_hpd_port_mask;
1107         dev_priv->short_hpd_port_mask = 0;
1108         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110         for (i = 0; i < I915_MAX_PORTS; i++) {
1111                 bool valid = false;
1112                 bool long_hpd = false;
1113                 intel_dig_port = dev_priv->hpd_irq_port[i];
1114                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115                         continue;
1116
1117                 if (long_port_mask & (1 << i))  {
1118                         valid = true;
1119                         long_hpd = true;
1120                 } else if (short_port_mask & (1 << i))
1121                         valid = true;
1122
1123                 if (valid) {
1124                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125                         if (ret == true) {
1126                                 /* if we get true fallback to old school hpd */
1127                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128                         }
1129                 }
1130         }
1131
1132         if (old_bits) {
1133                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134                 dev_priv->hpd_event_bits |= old_bits;
1135                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136                 schedule_work(&dev_priv->hotplug_work);
1137         }
1138 }
1139
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147         struct drm_i915_private *dev_priv =
1148                 container_of(work, struct drm_i915_private, hotplug_work);
1149         struct drm_device *dev = dev_priv->dev;
1150         struct drm_mode_config *mode_config = &dev->mode_config;
1151         struct intel_connector *intel_connector;
1152         struct intel_encoder *intel_encoder;
1153         struct drm_connector *connector;
1154         unsigned long irqflags;
1155         bool hpd_disabled = false;
1156         bool changed = false;
1157         u32 hpd_event_bits;
1158
1159         mutex_lock(&mode_config->mutex);
1160         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164         hpd_event_bits = dev_priv->hpd_event_bits;
1165         dev_priv->hpd_event_bits = 0;
1166         list_for_each_entry(connector, &mode_config->connector_list, head) {
1167                 intel_connector = to_intel_connector(connector);
1168                 if (!intel_connector->encoder)
1169                         continue;
1170                 intel_encoder = intel_connector->encoder;
1171                 if (intel_encoder->hpd_pin > HPD_NONE &&
1172                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1175                                  "switching from hotplug detection to polling\n",
1176                                 connector->name);
1177                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1180                         hpd_disabled = true;
1181                 }
1182                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184                                       connector->name, intel_encoder->hpd_pin);
1185                 }
1186         }
1187          /* if there were no outputs to poll, poll was disabled,
1188           * therefore make sure it's enabled when disabling HPD on
1189           * some connectors */
1190         if (hpd_disabled) {
1191                 drm_kms_helper_poll_enable(dev);
1192                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194         }
1195
1196         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198         list_for_each_entry(connector, &mode_config->connector_list, head) {
1199                 intel_connector = to_intel_connector(connector);
1200                 if (!intel_connector->encoder)
1201                         continue;
1202                 intel_encoder = intel_connector->encoder;
1203                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204                         if (intel_encoder->hot_plug)
1205                                 intel_encoder->hot_plug(intel_encoder);
1206                         if (intel_hpd_irq_event(dev, connector))
1207                                 changed = true;
1208                 }
1209         }
1210         mutex_unlock(&mode_config->mutex);
1211
1212         if (changed)
1213                 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         u32 busy_up, busy_down, max_avg, min_avg;
1220         u8 new_delay;
1221
1222         spin_lock(&mchdev_lock);
1223
1224         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226         new_delay = dev_priv->ips.cur_delay;
1227
1228         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229         busy_up = I915_READ(RCPREVBSYTUPAVG);
1230         busy_down = I915_READ(RCPREVBSYTDNAVG);
1231         max_avg = I915_READ(RCBMAXAVG);
1232         min_avg = I915_READ(RCBMINAVG);
1233
1234         /* Handle RCS change request from hw */
1235         if (busy_up > max_avg) {
1236                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237                         new_delay = dev_priv->ips.cur_delay - 1;
1238                 if (new_delay < dev_priv->ips.max_delay)
1239                         new_delay = dev_priv->ips.max_delay;
1240         } else if (busy_down < min_avg) {
1241                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242                         new_delay = dev_priv->ips.cur_delay + 1;
1243                 if (new_delay > dev_priv->ips.min_delay)
1244                         new_delay = dev_priv->ips.min_delay;
1245         }
1246
1247         if (ironlake_set_drps(dev, new_delay))
1248                 dev_priv->ips.cur_delay = new_delay;
1249
1250         spin_unlock(&mchdev_lock);
1251
1252         return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256                         struct intel_engine_cs *ring)
1257 {
1258         if (!intel_ring_initialized(ring))
1259                 return;
1260
1261         trace_i915_gem_request_complete(ring);
1262
1263         if (drm_core_check_feature(dev, DRIVER_MODESET))
1264                 intel_notify_mmio_flip(ring);
1265
1266         wake_up_all(&ring->irq_queue);
1267         i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271                             struct intel_rps_ei *rps_ei)
1272 {
1273         u32 cz_ts, cz_freq_khz;
1274         u32 render_count, media_count;
1275         u32 elapsed_render, elapsed_media, elapsed_time;
1276         u32 residency = 0;
1277
1278         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284         if (rps_ei->cz_clock == 0) {
1285                 rps_ei->cz_clock = cz_ts;
1286                 rps_ei->render_c0 = render_count;
1287                 rps_ei->media_c0 = media_count;
1288
1289                 return dev_priv->rps.cur_freq;
1290         }
1291
1292         elapsed_time = cz_ts - rps_ei->cz_clock;
1293         rps_ei->cz_clock = cz_ts;
1294
1295         elapsed_render = render_count - rps_ei->render_c0;
1296         rps_ei->render_c0 = render_count;
1297
1298         elapsed_media = media_count - rps_ei->media_c0;
1299         rps_ei->media_c0 = media_count;
1300
1301         /* Convert all the counters into common unit of milli sec */
1302         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303         elapsed_render /=  cz_freq_khz;
1304         elapsed_media /= cz_freq_khz;
1305
1306         /*
1307          * Calculate overall C0 residency percentage
1308          * only if elapsed time is non zero
1309          */
1310         if (elapsed_time) {
1311                 residency =
1312                         ((max(elapsed_render, elapsed_media) * 100)
1313                                 / elapsed_time);
1314         }
1315
1316         return residency;
1317 }
1318
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
1325 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327         u32 residency_C0_up = 0, residency_C0_down = 0;
1328         u8 new_delay, adj;
1329
1330         dev_priv->rps.ei_interrupt_count++;
1331
1332         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335         if (dev_priv->rps.up_ei.cz_clock == 0) {
1336                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338                 return dev_priv->rps.cur_freq;
1339         }
1340
1341
1342         /*
1343          * To down throttle, C0 residency should be less than down threshold
1344          * for continous EI intervals. So calculate down EI counters
1345          * once in VLV_INT_COUNT_FOR_DOWN_EI
1346          */
1347         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349                 dev_priv->rps.ei_interrupt_count = 0;
1350
1351                 residency_C0_down = vlv_c0_residency(dev_priv,
1352                                                      &dev_priv->rps.down_ei);
1353         } else {
1354                 residency_C0_up = vlv_c0_residency(dev_priv,
1355                                                    &dev_priv->rps.up_ei);
1356         }
1357
1358         new_delay = dev_priv->rps.cur_freq;
1359
1360         adj = dev_priv->rps.last_adj;
1361         /* C0 residency is greater than UP threshold. Increase Frequency */
1362         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363                 if (adj > 0)
1364                         adj *= 2;
1365                 else
1366                         adj = 1;
1367
1368                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369                         new_delay = dev_priv->rps.cur_freq + adj;
1370
1371                 /*
1372                  * For better performance, jump directly
1373                  * to RPe if we're below it.
1374                  */
1375                 if (new_delay < dev_priv->rps.efficient_freq)
1376                         new_delay = dev_priv->rps.efficient_freq;
1377
1378         } else if (!dev_priv->rps.ei_interrupt_count &&
1379                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380                 if (adj < 0)
1381                         adj *= 2;
1382                 else
1383                         adj = -1;
1384                 /*
1385                  * This means, C0 residency is less than down threshold over
1386                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387                  */
1388                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389                         new_delay = dev_priv->rps.cur_freq + adj;
1390         }
1391
1392         return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397         struct drm_i915_private *dev_priv =
1398                 container_of(work, struct drm_i915_private, rps.work);
1399         u32 pm_iir;
1400         int new_delay, adj;
1401
1402         spin_lock_irq(&dev_priv->irq_lock);
1403         pm_iir = dev_priv->rps.pm_iir;
1404         dev_priv->rps.pm_iir = 0;
1405         if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406                 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407         else {
1408                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410         }
1411         spin_unlock_irq(&dev_priv->irq_lock);
1412
1413         /* Make sure we didn't queue anything we're not going to process. */
1414         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417                 return;
1418
1419         mutex_lock(&dev_priv->rps.hw_lock);
1420
1421         adj = dev_priv->rps.last_adj;
1422         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423                 if (adj > 0)
1424                         adj *= 2;
1425                 else {
1426                         /* CHV needs even encode values */
1427                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428                 }
1429                 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431                 /*
1432                  * For better performance, jump directly
1433                  * to RPe if we're below it.
1434                  */
1435                 if (new_delay < dev_priv->rps.efficient_freq)
1436                         new_delay = dev_priv->rps.efficient_freq;
1437         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439                         new_delay = dev_priv->rps.efficient_freq;
1440                 else
1441                         new_delay = dev_priv->rps.min_freq_softlimit;
1442                 adj = 0;
1443         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446                 if (adj < 0)
1447                         adj *= 2;
1448                 else {
1449                         /* CHV needs even encode values */
1450                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451                 }
1452                 new_delay = dev_priv->rps.cur_freq + adj;
1453         } else { /* unknown event */
1454                 new_delay = dev_priv->rps.cur_freq;
1455         }
1456
1457         /* sysfs frequency interfaces may have snuck in while servicing the
1458          * interrupt
1459          */
1460         new_delay = clamp_t(int, new_delay,
1461                             dev_priv->rps.min_freq_softlimit,
1462                             dev_priv->rps.max_freq_softlimit);
1463
1464         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466         if (IS_VALLEYVIEW(dev_priv->dev))
1467                 valleyview_set_rps(dev_priv->dev, new_delay);
1468         else
1469                 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471         mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486         struct drm_i915_private *dev_priv =
1487                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488         u32 error_status, row, bank, subbank;
1489         char *parity_event[6];
1490         uint32_t misccpctl;
1491         unsigned long flags;
1492         uint8_t slice = 0;
1493
1494         /* We must turn off DOP level clock gating to access the L3 registers.
1495          * In order to prevent a get/put style interface, acquire struct mutex
1496          * any time we access those registers.
1497          */
1498         mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500         /* If we've screwed up tracking, just let the interrupt fire again */
1501         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502                 goto out;
1503
1504         misccpctl = I915_READ(GEN7_MISCCPCTL);
1505         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506         POSTING_READ(GEN7_MISCCPCTL);
1507
1508         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509                 u32 reg;
1510
1511                 slice--;
1512                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513                         break;
1514
1515                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519                 error_status = I915_READ(reg);
1520                 row = GEN7_PARITY_ERROR_ROW(error_status);
1521                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525                 POSTING_READ(reg);
1526
1527                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532                 parity_event[5] = NULL;
1533
1534                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535                                    KOBJ_CHANGE, parity_event);
1536
1537                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538                           slice, row, bank, subbank);
1539
1540                 kfree(parity_event[4]);
1541                 kfree(parity_event[3]);
1542                 kfree(parity_event[2]);
1543                 kfree(parity_event[1]);
1544         }
1545
1546         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549         WARN_ON(dev_priv->l3_parity.which_slice);
1550         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554         mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561         if (!HAS_L3_DPF(dev))
1562                 return;
1563
1564         spin_lock(&dev_priv->irq_lock);
1565         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566         spin_unlock(&dev_priv->irq_lock);
1567
1568         iir &= GT_PARITY_ERROR(dev);
1569         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570                 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573                 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579                                struct drm_i915_private *dev_priv,
1580                                u32 gt_iir)
1581 {
1582         if (gt_iir &
1583             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584                 notify_ring(dev, &dev_priv->ring[RCS]);
1585         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586                 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590                                struct drm_i915_private *dev_priv,
1591                                u32 gt_iir)
1592 {
1593
1594         if (gt_iir &
1595             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596                 notify_ring(dev, &dev_priv->ring[RCS]);
1597         if (gt_iir & GT_BSD_USER_INTERRUPT)
1598                 notify_ring(dev, &dev_priv->ring[VCS]);
1599         if (gt_iir & GT_BLT_USER_INTERRUPT)
1600                 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603                       GT_BSD_CS_ERROR_INTERRUPT |
1604                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606                                   gt_iir);
1607         }
1608
1609         if (gt_iir & GT_PARITY_ERROR(dev))
1610                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616                 return;
1617
1618         spin_lock(&dev_priv->irq_lock);
1619         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620         gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621         spin_unlock(&dev_priv->irq_lock);
1622
1623         queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627                                        struct drm_i915_private *dev_priv,
1628                                        u32 master_ctl)
1629 {
1630         u32 rcs, bcs, vcs;
1631         uint32_t tmp = 0;
1632         irqreturn_t ret = IRQ_NONE;
1633
1634         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1635                 tmp = I915_READ(GEN8_GT_IIR(0));
1636                 if (tmp) {
1637                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1638                         ret = IRQ_HANDLED;
1639                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1640                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1641                         if (rcs & GT_RENDER_USER_INTERRUPT)
1642                                 notify_ring(dev, &dev_priv->ring[RCS]);
1643                         if (bcs & GT_RENDER_USER_INTERRUPT)
1644                                 notify_ring(dev, &dev_priv->ring[BCS]);
1645                 } else
1646                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1647         }
1648
1649         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1650                 tmp = I915_READ(GEN8_GT_IIR(1));
1651                 if (tmp) {
1652                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1653                         ret = IRQ_HANDLED;
1654                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1655                         if (vcs & GT_RENDER_USER_INTERRUPT)
1656                                 notify_ring(dev, &dev_priv->ring[VCS]);
1657                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1658                         if (vcs & GT_RENDER_USER_INTERRUPT)
1659                                 notify_ring(dev, &dev_priv->ring[VCS2]);
1660                 } else
1661                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1662         }
1663
1664         if (master_ctl & GEN8_GT_PM_IRQ) {
1665                 tmp = I915_READ(GEN8_GT_IIR(2));
1666                 if (tmp & dev_priv->pm_rps_events) {
1667                         I915_WRITE(GEN8_GT_IIR(2),
1668                                    tmp & dev_priv->pm_rps_events);
1669                         ret = IRQ_HANDLED;
1670                         gen8_rps_irq_handler(dev_priv, tmp);
1671                 } else
1672                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1673         }
1674
1675         if (master_ctl & GEN8_GT_VECS_IRQ) {
1676                 tmp = I915_READ(GEN8_GT_IIR(3));
1677                 if (tmp) {
1678                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1679                         ret = IRQ_HANDLED;
1680                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1681                         if (vcs & GT_RENDER_USER_INTERRUPT)
1682                                 notify_ring(dev, &dev_priv->ring[VECS]);
1683                 } else
1684                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1685         }
1686
1687         return ret;
1688 }
1689
1690 #define HPD_STORM_DETECT_PERIOD 1000
1691 #define HPD_STORM_THRESHOLD 5
1692
1693 static int ilk_port_to_hotplug_shift(enum port port)
1694 {
1695         switch (port) {
1696         case PORT_A:
1697         case PORT_E:
1698         default:
1699                 return -1;
1700         case PORT_B:
1701                 return 0;
1702         case PORT_C:
1703                 return 8;
1704         case PORT_D:
1705                 return 16;
1706         }
1707 }
1708
1709 static int g4x_port_to_hotplug_shift(enum port port)
1710 {
1711         switch (port) {
1712         case PORT_A:
1713         case PORT_E:
1714         default:
1715                 return -1;
1716         case PORT_B:
1717                 return 17;
1718         case PORT_C:
1719                 return 19;
1720         case PORT_D:
1721                 return 21;
1722         }
1723 }
1724
1725 static inline enum port get_port_from_pin(enum hpd_pin pin)
1726 {
1727         switch (pin) {
1728         case HPD_PORT_B:
1729                 return PORT_B;
1730         case HPD_PORT_C:
1731                 return PORT_C;
1732         case HPD_PORT_D:
1733                 return PORT_D;
1734         default:
1735                 return PORT_A; /* no hpd */
1736         }
1737 }
1738
1739 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1740                                          u32 hotplug_trigger,
1741                                          u32 dig_hotplug_reg,
1742                                          const u32 *hpd)
1743 {
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         int i;
1746         enum port port;
1747         bool storm_detected = false;
1748         bool queue_dig = false, queue_hp = false;
1749         u32 dig_shift;
1750         u32 dig_port_mask = 0;
1751
1752         if (!hotplug_trigger)
1753                 return;
1754
1755         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1756                          hotplug_trigger, dig_hotplug_reg);
1757
1758         spin_lock(&dev_priv->irq_lock);
1759         for (i = 1; i < HPD_NUM_PINS; i++) {
1760                 if (!(hpd[i] & hotplug_trigger))
1761                         continue;
1762
1763                 port = get_port_from_pin(i);
1764                 if (port && dev_priv->hpd_irq_port[port]) {
1765                         bool long_hpd;
1766
1767                         if (IS_G4X(dev)) {
1768                                 dig_shift = g4x_port_to_hotplug_shift(port);
1769                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1770                         } else {
1771                                 dig_shift = ilk_port_to_hotplug_shift(port);
1772                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1773                         }
1774
1775                         DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1776                         /* for long HPD pulses we want to have the digital queue happen,
1777                            but we still want HPD storm detection to function. */
1778                         if (long_hpd) {
1779                                 dev_priv->long_hpd_port_mask |= (1 << port);
1780                                 dig_port_mask |= hpd[i];
1781                         } else {
1782                                 /* for short HPD just trigger the digital queue */
1783                                 dev_priv->short_hpd_port_mask |= (1 << port);
1784                                 hotplug_trigger &= ~hpd[i];
1785                         }
1786                         queue_dig = true;
1787                 }
1788         }
1789
1790         for (i = 1; i < HPD_NUM_PINS; i++) {
1791                 if (hpd[i] & hotplug_trigger &&
1792                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1793                         /*
1794                          * On GMCH platforms the interrupt mask bits only
1795                          * prevent irq generation, not the setting of the
1796                          * hotplug bits itself. So only WARN about unexpected
1797                          * interrupts on saner platforms.
1798                          */
1799                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1800                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1801                                   hotplug_trigger, i, hpd[i]);
1802
1803                         continue;
1804                 }
1805
1806                 if (!(hpd[i] & hotplug_trigger) ||
1807                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1808                         continue;
1809
1810                 if (!(dig_port_mask & hpd[i])) {
1811                         dev_priv->hpd_event_bits |= (1 << i);
1812                         queue_hp = true;
1813                 }
1814
1815                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1816                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1817                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1818                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1819                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1820                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1821                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1822                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1823                         dev_priv->hpd_event_bits &= ~(1 << i);
1824                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1825                         storm_detected = true;
1826                 } else {
1827                         dev_priv->hpd_stats[i].hpd_cnt++;
1828                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1829                                       dev_priv->hpd_stats[i].hpd_cnt);
1830                 }
1831         }
1832
1833         if (storm_detected)
1834                 dev_priv->display.hpd_irq_setup(dev);
1835         spin_unlock(&dev_priv->irq_lock);
1836
1837         /*
1838          * Our hotplug handler can grab modeset locks (by calling down into the
1839          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1840          * queue for otherwise the flush_work in the pageflip code will
1841          * deadlock.
1842          */
1843         if (queue_dig)
1844                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1845         if (queue_hp)
1846                 schedule_work(&dev_priv->hotplug_work);
1847 }
1848
1849 static void gmbus_irq_handler(struct drm_device *dev)
1850 {
1851         struct drm_i915_private *dev_priv = dev->dev_private;
1852
1853         wake_up_all(&dev_priv->gmbus_wait_queue);
1854 }
1855
1856 static void dp_aux_irq_handler(struct drm_device *dev)
1857 {
1858         struct drm_i915_private *dev_priv = dev->dev_private;
1859
1860         wake_up_all(&dev_priv->gmbus_wait_queue);
1861 }
1862
1863 #if defined(CONFIG_DEBUG_FS)
1864 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1865                                          uint32_t crc0, uint32_t crc1,
1866                                          uint32_t crc2, uint32_t crc3,
1867                                          uint32_t crc4)
1868 {
1869         struct drm_i915_private *dev_priv = dev->dev_private;
1870         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1871         struct intel_pipe_crc_entry *entry;
1872         int head, tail;
1873
1874         spin_lock(&pipe_crc->lock);
1875
1876         if (!pipe_crc->entries) {
1877                 spin_unlock(&pipe_crc->lock);
1878                 DRM_ERROR("spurious interrupt\n");
1879                 return;
1880         }
1881
1882         head = pipe_crc->head;
1883         tail = pipe_crc->tail;
1884
1885         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1886                 spin_unlock(&pipe_crc->lock);
1887                 DRM_ERROR("CRC buffer overflowing\n");
1888                 return;
1889         }
1890
1891         entry = &pipe_crc->entries[head];
1892
1893         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1894         entry->crc[0] = crc0;
1895         entry->crc[1] = crc1;
1896         entry->crc[2] = crc2;
1897         entry->crc[3] = crc3;
1898         entry->crc[4] = crc4;
1899
1900         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1901         pipe_crc->head = head;
1902
1903         spin_unlock(&pipe_crc->lock);
1904
1905         wake_up_interruptible(&pipe_crc->wq);
1906 }
1907 #else
1908 static inline void
1909 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1910                              uint32_t crc0, uint32_t crc1,
1911                              uint32_t crc2, uint32_t crc3,
1912                              uint32_t crc4) {}
1913 #endif
1914
1915
1916 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1917 {
1918         struct drm_i915_private *dev_priv = dev->dev_private;
1919
1920         display_pipe_crc_irq_handler(dev, pipe,
1921                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1922                                      0, 0, 0, 0);
1923 }
1924
1925 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1926 {
1927         struct drm_i915_private *dev_priv = dev->dev_private;
1928
1929         display_pipe_crc_irq_handler(dev, pipe,
1930                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1931                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1932                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1933                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1934                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1935 }
1936
1937 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1938 {
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         uint32_t res1, res2;
1941
1942         if (INTEL_INFO(dev)->gen >= 3)
1943                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1944         else
1945                 res1 = 0;
1946
1947         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1948                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1949         else
1950                 res2 = 0;
1951
1952         display_pipe_crc_irq_handler(dev, pipe,
1953                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1954                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1955                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1956                                      res1, res2);
1957 }
1958
1959 /* The RPS events need forcewake, so we add them to a work queue and mask their
1960  * IMR bits until the work is done. Other interrupts can be processed without
1961  * the work queue. */
1962 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1963 {
1964         if (pm_iir & dev_priv->pm_rps_events) {
1965                 spin_lock(&dev_priv->irq_lock);
1966                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1967                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1968                 spin_unlock(&dev_priv->irq_lock);
1969
1970                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1971         }
1972
1973         if (HAS_VEBOX(dev_priv->dev)) {
1974                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1975                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1976
1977                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1978                         i915_handle_error(dev_priv->dev, false,
1979                                           "VEBOX CS error interrupt 0x%08x",
1980                                           pm_iir);
1981                 }
1982         }
1983 }
1984
1985 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1986 {
1987         struct intel_crtc *crtc;
1988
1989         if (!drm_handle_vblank(dev, pipe))
1990                 return false;
1991
1992         crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1993         wake_up(&crtc->vbl_wait);
1994
1995         return true;
1996 }
1997
1998 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1999 {
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         u32 pipe_stats[I915_MAX_PIPES] = { };
2002         int pipe;
2003
2004         spin_lock(&dev_priv->irq_lock);
2005         for_each_pipe(pipe) {
2006                 int reg;
2007                 u32 mask, iir_bit = 0;
2008
2009                 /*
2010                  * PIPESTAT bits get signalled even when the interrupt is
2011                  * disabled with the mask bits, and some of the status bits do
2012                  * not generate interrupts at all (like the underrun bit). Hence
2013                  * we need to be careful that we only handle what we want to
2014                  * handle.
2015                  */
2016                 mask = 0;
2017                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2018                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
2019
2020                 switch (pipe) {
2021                 case PIPE_A:
2022                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2023                         break;
2024                 case PIPE_B:
2025                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2026                         break;
2027                 case PIPE_C:
2028                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2029                         break;
2030                 }
2031                 if (iir & iir_bit)
2032                         mask |= dev_priv->pipestat_irq_mask[pipe];
2033
2034                 if (!mask)
2035                         continue;
2036
2037                 reg = PIPESTAT(pipe);
2038                 mask |= PIPESTAT_INT_ENABLE_MASK;
2039                 pipe_stats[pipe] = I915_READ(reg) & mask;
2040
2041                 /*
2042                  * Clear the PIPE*STAT regs before the IIR
2043                  */
2044                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2045                                         PIPESTAT_INT_STATUS_MASK))
2046                         I915_WRITE(reg, pipe_stats[pipe]);
2047         }
2048         spin_unlock(&dev_priv->irq_lock);
2049
2050         for_each_pipe(pipe) {
2051                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2052                         intel_pipe_handle_vblank(dev, pipe);
2053
2054                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2055                         intel_prepare_page_flip(dev, pipe);
2056                         intel_finish_page_flip(dev, pipe);
2057                 }
2058
2059                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2060                         i9xx_pipe_crc_irq_handler(dev, pipe);
2061
2062                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2063                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2064                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2065         }
2066
2067         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2068                 gmbus_irq_handler(dev);
2069 }
2070
2071 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2072 {
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2075
2076         if (hotplug_status) {
2077                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2078                 /*
2079                  * Make sure hotplug status is cleared before we clear IIR, or else we
2080                  * may miss hotplug events.
2081                  */
2082                 POSTING_READ(PORT_HOTPLUG_STAT);
2083
2084                 if (IS_G4X(dev)) {
2085                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2086
2087                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2088                 } else {
2089                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090
2091                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2092                 }
2093
2094                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2095                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2096                         dp_aux_irq_handler(dev);
2097         }
2098 }
2099
2100 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2101 {
2102         struct drm_device *dev = arg;
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         u32 iir, gt_iir, pm_iir;
2105         irqreturn_t ret = IRQ_NONE;
2106
2107         while (true) {
2108                 /* Find, clear, then process each source of interrupt */
2109
2110                 gt_iir = I915_READ(GTIIR);
2111                 if (gt_iir)
2112                         I915_WRITE(GTIIR, gt_iir);
2113
2114                 pm_iir = I915_READ(GEN6_PMIIR);
2115                 if (pm_iir)
2116                         I915_WRITE(GEN6_PMIIR, pm_iir);
2117
2118                 iir = I915_READ(VLV_IIR);
2119                 if (iir) {
2120                         /* Consume port before clearing IIR or we'll miss events */
2121                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2122                                 i9xx_hpd_irq_handler(dev);
2123                         I915_WRITE(VLV_IIR, iir);
2124                 }
2125
2126                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2127                         goto out;
2128
2129                 ret = IRQ_HANDLED;
2130
2131                 if (gt_iir)
2132                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2133                 if (pm_iir)
2134                         gen6_rps_irq_handler(dev_priv, pm_iir);
2135                 /* Call regardless, as some status bits might not be
2136                  * signalled in iir */
2137                 valleyview_pipestat_irq_handler(dev, iir);
2138         }
2139
2140 out:
2141         return ret;
2142 }
2143
2144 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2145 {
2146         struct drm_device *dev = arg;
2147         struct drm_i915_private *dev_priv = dev->dev_private;
2148         u32 master_ctl, iir;
2149         irqreturn_t ret = IRQ_NONE;
2150
2151         for (;;) {
2152                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2153                 iir = I915_READ(VLV_IIR);
2154
2155                 if (master_ctl == 0 && iir == 0)
2156                         break;
2157
2158                 ret = IRQ_HANDLED;
2159
2160                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2161
2162                 /* Find, clear, then process each source of interrupt */
2163
2164                 if (iir) {
2165                         /* Consume port before clearing IIR or we'll miss events */
2166                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2167                                 i9xx_hpd_irq_handler(dev);
2168                         I915_WRITE(VLV_IIR, iir);
2169                 }
2170
2171                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2172
2173                 /* Call regardless, as some status bits might not be
2174                  * signalled in iir */
2175                 valleyview_pipestat_irq_handler(dev, iir);
2176
2177                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2178                 POSTING_READ(GEN8_MASTER_IRQ);
2179         }
2180
2181         return ret;
2182 }
2183
2184 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         int pipe;
2188         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2189         u32 dig_hotplug_reg;
2190
2191         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2192         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2193
2194         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2195
2196         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2197                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2198                                SDE_AUDIO_POWER_SHIFT);
2199                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2200                                  port_name(port));
2201         }
2202
2203         if (pch_iir & SDE_AUX_MASK)
2204                 dp_aux_irq_handler(dev);
2205
2206         if (pch_iir & SDE_GMBUS)
2207                 gmbus_irq_handler(dev);
2208
2209         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2210                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2211
2212         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2213                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2214
2215         if (pch_iir & SDE_POISON)
2216                 DRM_ERROR("PCH poison interrupt\n");
2217
2218         if (pch_iir & SDE_FDI_MASK)
2219                 for_each_pipe(pipe)
2220                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2221                                          pipe_name(pipe),
2222                                          I915_READ(FDI_RX_IIR(pipe)));
2223
2224         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2225                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2226
2227         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2228                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2229
2230         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2231                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2232                                                           false))
2233                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2234
2235         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2236                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2237                                                           false))
2238                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2239 }
2240
2241 static void ivb_err_int_handler(struct drm_device *dev)
2242 {
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244         u32 err_int = I915_READ(GEN7_ERR_INT);
2245         enum pipe pipe;
2246
2247         if (err_int & ERR_INT_POISON)
2248                 DRM_ERROR("Poison interrupt\n");
2249
2250         for_each_pipe(pipe) {
2251                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2252                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2253                                                                   false))
2254                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2255                                           pipe_name(pipe));
2256                 }
2257
2258                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2259                         if (IS_IVYBRIDGE(dev))
2260                                 ivb_pipe_crc_irq_handler(dev, pipe);
2261                         else
2262                                 hsw_pipe_crc_irq_handler(dev, pipe);
2263                 }
2264         }
2265
2266         I915_WRITE(GEN7_ERR_INT, err_int);
2267 }
2268
2269 static void cpt_serr_int_handler(struct drm_device *dev)
2270 {
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         u32 serr_int = I915_READ(SERR_INT);
2273
2274         if (serr_int & SERR_INT_POISON)
2275                 DRM_ERROR("PCH poison interrupt\n");
2276
2277         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2278                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2279                                                           false))
2280                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2281
2282         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2283                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2284                                                           false))
2285                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2286
2287         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2288                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2289                                                           false))
2290                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2291
2292         I915_WRITE(SERR_INT, serr_int);
2293 }
2294
2295 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2296 {
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298         int pipe;
2299         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2300         u32 dig_hotplug_reg;
2301
2302         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2303         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2304
2305         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2306
2307         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2308                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2309                                SDE_AUDIO_POWER_SHIFT_CPT);
2310                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2311                                  port_name(port));
2312         }
2313
2314         if (pch_iir & SDE_AUX_MASK_CPT)
2315                 dp_aux_irq_handler(dev);
2316
2317         if (pch_iir & SDE_GMBUS_CPT)
2318                 gmbus_irq_handler(dev);
2319
2320         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2321                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2322
2323         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2324                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2325
2326         if (pch_iir & SDE_FDI_MASK_CPT)
2327                 for_each_pipe(pipe)
2328                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2329                                          pipe_name(pipe),
2330                                          I915_READ(FDI_RX_IIR(pipe)));
2331
2332         if (pch_iir & SDE_ERROR_CPT)
2333                 cpt_serr_int_handler(dev);
2334 }
2335
2336 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2337 {
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         enum pipe pipe;
2340
2341         if (de_iir & DE_AUX_CHANNEL_A)
2342                 dp_aux_irq_handler(dev);
2343
2344         if (de_iir & DE_GSE)
2345                 intel_opregion_asle_intr(dev);
2346
2347         if (de_iir & DE_POISON)
2348                 DRM_ERROR("Poison interrupt\n");
2349
2350         for_each_pipe(pipe) {
2351                 if (de_iir & DE_PIPE_VBLANK(pipe))
2352                         intel_pipe_handle_vblank(dev, pipe);
2353
2354                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2355                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2356                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2357                                           pipe_name(pipe));
2358
2359                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2360                         i9xx_pipe_crc_irq_handler(dev, pipe);
2361
2362                 /* plane/pipes map 1:1 on ilk+ */
2363                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2364                         intel_prepare_page_flip(dev, pipe);
2365                         intel_finish_page_flip_plane(dev, pipe);
2366                 }
2367         }
2368
2369         /* check event from PCH */
2370         if (de_iir & DE_PCH_EVENT) {
2371                 u32 pch_iir = I915_READ(SDEIIR);
2372
2373                 if (HAS_PCH_CPT(dev))
2374                         cpt_irq_handler(dev, pch_iir);
2375                 else
2376                         ibx_irq_handler(dev, pch_iir);
2377
2378                 /* should clear PCH hotplug event before clear CPU irq */
2379                 I915_WRITE(SDEIIR, pch_iir);
2380         }
2381
2382         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2383                 ironlake_rps_change_irq_handler(dev);
2384 }
2385
2386 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389         enum pipe pipe;
2390
2391         if (de_iir & DE_ERR_INT_IVB)
2392                 ivb_err_int_handler(dev);
2393
2394         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2395                 dp_aux_irq_handler(dev);
2396
2397         if (de_iir & DE_GSE_IVB)
2398                 intel_opregion_asle_intr(dev);
2399
2400         for_each_pipe(pipe) {
2401                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2402                         intel_pipe_handle_vblank(dev, pipe);
2403
2404                 /* plane/pipes map 1:1 on ilk+ */
2405                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2406                         intel_prepare_page_flip(dev, pipe);
2407                         intel_finish_page_flip_plane(dev, pipe);
2408                 }
2409         }
2410
2411         /* check event from PCH */
2412         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2413                 u32 pch_iir = I915_READ(SDEIIR);
2414
2415                 cpt_irq_handler(dev, pch_iir);
2416
2417                 /* clear PCH hotplug event before clear CPU irq */
2418                 I915_WRITE(SDEIIR, pch_iir);
2419         }
2420 }
2421
2422 /*
2423  * To handle irqs with the minimum potential races with fresh interrupts, we:
2424  * 1 - Disable Master Interrupt Control.
2425  * 2 - Find the source(s) of the interrupt.
2426  * 3 - Clear the Interrupt Identity bits (IIR).
2427  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2428  * 5 - Re-enable Master Interrupt Control.
2429  */
2430 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2431 {
2432         struct drm_device *dev = arg;
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2435         irqreturn_t ret = IRQ_NONE;
2436
2437         /* We get interrupts on unclaimed registers, so check for this before we
2438          * do any I915_{READ,WRITE}. */
2439         intel_uncore_check_errors(dev);
2440
2441         /* disable master interrupt before clearing iir  */
2442         de_ier = I915_READ(DEIER);
2443         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2444         POSTING_READ(DEIER);
2445
2446         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2447          * interrupts will will be stored on its back queue, and then we'll be
2448          * able to process them after we restore SDEIER (as soon as we restore
2449          * it, we'll get an interrupt if SDEIIR still has something to process
2450          * due to its back queue). */
2451         if (!HAS_PCH_NOP(dev)) {
2452                 sde_ier = I915_READ(SDEIER);
2453                 I915_WRITE(SDEIER, 0);
2454                 POSTING_READ(SDEIER);
2455         }
2456
2457         /* Find, clear, then process each source of interrupt */
2458
2459         gt_iir = I915_READ(GTIIR);
2460         if (gt_iir) {
2461                 I915_WRITE(GTIIR, gt_iir);
2462                 ret = IRQ_HANDLED;
2463                 if (INTEL_INFO(dev)->gen >= 6)
2464                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2465                 else
2466                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2467         }
2468
2469         de_iir = I915_READ(DEIIR);
2470         if (de_iir) {
2471                 I915_WRITE(DEIIR, de_iir);
2472                 ret = IRQ_HANDLED;
2473                 if (INTEL_INFO(dev)->gen >= 7)
2474                         ivb_display_irq_handler(dev, de_iir);
2475                 else
2476                         ilk_display_irq_handler(dev, de_iir);
2477         }
2478
2479         if (INTEL_INFO(dev)->gen >= 6) {
2480                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2481                 if (pm_iir) {
2482                         I915_WRITE(GEN6_PMIIR, pm_iir);
2483                         ret = IRQ_HANDLED;
2484                         gen6_rps_irq_handler(dev_priv, pm_iir);
2485                 }
2486         }
2487
2488         I915_WRITE(DEIER, de_ier);
2489         POSTING_READ(DEIER);
2490         if (!HAS_PCH_NOP(dev)) {
2491                 I915_WRITE(SDEIER, sde_ier);
2492                 POSTING_READ(SDEIER);
2493         }
2494
2495         return ret;
2496 }
2497
2498 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2499 {
2500         struct drm_device *dev = arg;
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         u32 master_ctl;
2503         irqreturn_t ret = IRQ_NONE;
2504         uint32_t tmp = 0;
2505         enum pipe pipe;
2506
2507         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2508         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2509         if (!master_ctl)
2510                 return IRQ_NONE;
2511
2512         I915_WRITE(GEN8_MASTER_IRQ, 0);
2513         POSTING_READ(GEN8_MASTER_IRQ);
2514
2515         /* Find, clear, then process each source of interrupt */
2516
2517         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2518
2519         if (master_ctl & GEN8_DE_MISC_IRQ) {
2520                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2521                 if (tmp) {
2522                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2523                         ret = IRQ_HANDLED;
2524                         if (tmp & GEN8_DE_MISC_GSE)
2525                                 intel_opregion_asle_intr(dev);
2526                         else
2527                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2528                 }
2529                 else
2530                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2531         }
2532
2533         if (master_ctl & GEN8_DE_PORT_IRQ) {
2534                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2535                 if (tmp) {
2536                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2537                         ret = IRQ_HANDLED;
2538                         if (tmp & GEN8_AUX_CHANNEL_A)
2539                                 dp_aux_irq_handler(dev);
2540                         else
2541                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2542                 }
2543                 else
2544                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2545         }
2546
2547         for_each_pipe(pipe) {
2548                 uint32_t pipe_iir;
2549
2550                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2551                         continue;
2552
2553                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2554                 if (pipe_iir) {
2555                         ret = IRQ_HANDLED;
2556                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2557                         if (pipe_iir & GEN8_PIPE_VBLANK)
2558                                 intel_pipe_handle_vblank(dev, pipe);
2559
2560                         if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2561                                 intel_prepare_page_flip(dev, pipe);
2562                                 intel_finish_page_flip_plane(dev, pipe);
2563                         }
2564
2565                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2566                                 hsw_pipe_crc_irq_handler(dev, pipe);
2567
2568                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2569                                 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2570                                                                           false))
2571                                         DRM_ERROR("Pipe %c FIFO underrun\n",
2572                                                   pipe_name(pipe));
2573                         }
2574
2575                         if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2576                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2577                                           pipe_name(pipe),
2578                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2579                         }
2580                 } else
2581                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2582         }
2583
2584         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2585                 /*
2586                  * FIXME(BDW): Assume for now that the new interrupt handling
2587                  * scheme also closed the SDE interrupt handling race we've seen
2588                  * on older pch-split platforms. But this needs testing.
2589                  */
2590                 u32 pch_iir = I915_READ(SDEIIR);
2591                 if (pch_iir) {
2592                         I915_WRITE(SDEIIR, pch_iir);
2593                         ret = IRQ_HANDLED;
2594                         cpt_irq_handler(dev, pch_iir);
2595                 } else
2596                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2597
2598         }
2599
2600         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2601         POSTING_READ(GEN8_MASTER_IRQ);
2602
2603         return ret;
2604 }
2605
2606 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2607                                bool reset_completed)
2608 {
2609         struct intel_engine_cs *ring;
2610         int i;
2611
2612         /*
2613          * Notify all waiters for GPU completion events that reset state has
2614          * been changed, and that they need to restart their wait after
2615          * checking for potential errors (and bail out to drop locks if there is
2616          * a gpu reset pending so that i915_error_work_func can acquire them).
2617          */
2618
2619         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2620         for_each_ring(ring, dev_priv, i)
2621                 wake_up_all(&ring->irq_queue);
2622
2623         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2624         wake_up_all(&dev_priv->pending_flip_queue);
2625
2626         /*
2627          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2628          * reset state is cleared.
2629          */
2630         if (reset_completed)
2631                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2632 }
2633
2634 /**
2635  * i915_error_work_func - do process context error handling work
2636  * @work: work struct
2637  *
2638  * Fire an error uevent so userspace can see that a hang or error
2639  * was detected.
2640  */
2641 static void i915_error_work_func(struct work_struct *work)
2642 {
2643         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2644                                                     work);
2645         struct drm_i915_private *dev_priv =
2646                 container_of(error, struct drm_i915_private, gpu_error);
2647         struct drm_device *dev = dev_priv->dev;
2648         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2649         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2650         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2651         int ret;
2652
2653         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2654
2655         /*
2656          * Note that there's only one work item which does gpu resets, so we
2657          * need not worry about concurrent gpu resets potentially incrementing
2658          * error->reset_counter twice. We only need to take care of another
2659          * racing irq/hangcheck declaring the gpu dead for a second time. A
2660          * quick check for that is good enough: schedule_work ensures the
2661          * correct ordering between hang detection and this work item, and since
2662          * the reset in-progress bit is only ever set by code outside of this
2663          * work we don't need to worry about any other races.
2664          */
2665         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2666                 DRM_DEBUG_DRIVER("resetting chip\n");
2667                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2668                                    reset_event);
2669
2670                 /*
2671                  * In most cases it's guaranteed that we get here with an RPM
2672                  * reference held, for example because there is a pending GPU
2673                  * request that won't finish until the reset is done. This
2674                  * isn't the case at least when we get here by doing a
2675                  * simulated reset via debugs, so get an RPM reference.
2676                  */
2677                 intel_runtime_pm_get(dev_priv);
2678                 /*
2679                  * All state reset _must_ be completed before we update the
2680                  * reset counter, for otherwise waiters might miss the reset
2681                  * pending state and not properly drop locks, resulting in
2682                  * deadlocks with the reset work.
2683                  */
2684                 ret = i915_reset(dev);
2685
2686                 intel_display_handle_reset(dev);
2687
2688                 intel_runtime_pm_put(dev_priv);
2689
2690                 if (ret == 0) {
2691                         /*
2692                          * After all the gem state is reset, increment the reset
2693                          * counter and wake up everyone waiting for the reset to
2694                          * complete.
2695                          *
2696                          * Since unlock operations are a one-sided barrier only,
2697                          * we need to insert a barrier here to order any seqno
2698                          * updates before
2699                          * the counter increment.
2700                          */
2701                         smp_mb__before_atomic();
2702                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2703
2704                         kobject_uevent_env(&dev->primary->kdev->kobj,
2705                                            KOBJ_CHANGE, reset_done_event);
2706                 } else {
2707                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2708                 }
2709
2710                 /*
2711                  * Note: The wake_up also serves as a memory barrier so that
2712                  * waiters see the update value of the reset counter atomic_t.
2713                  */
2714                 i915_error_wake_up(dev_priv, true);
2715         }
2716 }
2717
2718 static void i915_report_and_clear_eir(struct drm_device *dev)
2719 {
2720         struct drm_i915_private *dev_priv = dev->dev_private;
2721         uint32_t instdone[I915_NUM_INSTDONE_REG];
2722         u32 eir = I915_READ(EIR);
2723         int pipe, i;
2724
2725         if (!eir)
2726                 return;
2727
2728         pr_err("render error detected, EIR: 0x%08x\n", eir);
2729
2730         i915_get_extra_instdone(dev, instdone);
2731
2732         if (IS_G4X(dev)) {
2733                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2734                         u32 ipeir = I915_READ(IPEIR_I965);
2735
2736                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2737                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2738                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2739                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2740                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2741                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2742                         I915_WRITE(IPEIR_I965, ipeir);
2743                         POSTING_READ(IPEIR_I965);
2744                 }
2745                 if (eir & GM45_ERROR_PAGE_TABLE) {
2746                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2747                         pr_err("page table error\n");
2748                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2749                         I915_WRITE(PGTBL_ER, pgtbl_err);
2750                         POSTING_READ(PGTBL_ER);
2751                 }
2752         }
2753
2754         if (!IS_GEN2(dev)) {
2755                 if (eir & I915_ERROR_PAGE_TABLE) {
2756                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2757                         pr_err("page table error\n");
2758                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2759                         I915_WRITE(PGTBL_ER, pgtbl_err);
2760                         POSTING_READ(PGTBL_ER);
2761                 }
2762         }
2763
2764         if (eir & I915_ERROR_MEMORY_REFRESH) {
2765                 pr_err("memory refresh error:\n");
2766                 for_each_pipe(pipe)
2767                         pr_err("pipe %c stat: 0x%08x\n",
2768                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2769                 /* pipestat has already been acked */
2770         }
2771         if (eir & I915_ERROR_INSTRUCTION) {
2772                 pr_err("instruction error\n");
2773                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2774                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2775                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2776                 if (INTEL_INFO(dev)->gen < 4) {
2777                         u32 ipeir = I915_READ(IPEIR);
2778
2779                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2780                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2781                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2782                         I915_WRITE(IPEIR, ipeir);
2783                         POSTING_READ(IPEIR);
2784                 } else {
2785                         u32 ipeir = I915_READ(IPEIR_I965);
2786
2787                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2788                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2789                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2790                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2791                         I915_WRITE(IPEIR_I965, ipeir);
2792                         POSTING_READ(IPEIR_I965);
2793                 }
2794         }
2795
2796         I915_WRITE(EIR, eir);
2797         POSTING_READ(EIR);
2798         eir = I915_READ(EIR);
2799         if (eir) {
2800                 /*
2801                  * some errors might have become stuck,
2802                  * mask them.
2803                  */
2804                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2805                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2806                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2807         }
2808 }
2809
2810 /**
2811  * i915_handle_error - handle an error interrupt
2812  * @dev: drm device
2813  *
2814  * Do some basic checking of regsiter state at error interrupt time and
2815  * dump it to the syslog.  Also call i915_capture_error_state() to make
2816  * sure we get a record and make it available in debugfs.  Fire a uevent
2817  * so userspace knows something bad happened (should trigger collection
2818  * of a ring dump etc.).
2819  */
2820 void i915_handle_error(struct drm_device *dev, bool wedged,
2821                        const char *fmt, ...)
2822 {
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         va_list args;
2825         char error_msg[80];
2826
2827         va_start(args, fmt);
2828         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2829         va_end(args);
2830
2831         i915_capture_error_state(dev, wedged, error_msg);
2832         i915_report_and_clear_eir(dev);
2833
2834         if (wedged) {
2835                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2836                                 &dev_priv->gpu_error.reset_counter);
2837
2838                 /*
2839                  * Wakeup waiting processes so that the reset work function
2840                  * i915_error_work_func doesn't deadlock trying to grab various
2841                  * locks. By bumping the reset counter first, the woken
2842                  * processes will see a reset in progress and back off,
2843                  * releasing their locks and then wait for the reset completion.
2844                  * We must do this for _all_ gpu waiters that might hold locks
2845                  * that the reset work needs to acquire.
2846                  *
2847                  * Note: The wake_up serves as the required memory barrier to
2848                  * ensure that the waiters see the updated value of the reset
2849                  * counter atomic_t.
2850                  */
2851                 i915_error_wake_up(dev_priv, false);
2852         }
2853
2854         /*
2855          * Our reset work can grab modeset locks (since it needs to reset the
2856          * state of outstanding pagelips). Hence it must not be run on our own
2857          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2858          * code will deadlock.
2859          */
2860         schedule_work(&dev_priv->gpu_error.work);
2861 }
2862
2863 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2864 {
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2868         struct drm_i915_gem_object *obj;
2869         struct intel_unpin_work *work;
2870         unsigned long flags;
2871         bool stall_detected;
2872
2873         /* Ignore early vblank irqs */
2874         if (intel_crtc == NULL)
2875                 return;
2876
2877         spin_lock_irqsave(&dev->event_lock, flags);
2878         work = intel_crtc->unpin_work;
2879
2880         if (work == NULL ||
2881             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2882             !work->enable_stall_check) {
2883                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2884                 spin_unlock_irqrestore(&dev->event_lock, flags);
2885                 return;
2886         }
2887
2888         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2889         obj = work->pending_flip_obj;
2890         if (INTEL_INFO(dev)->gen >= 4) {
2891                 int dspsurf = DSPSURF(intel_crtc->plane);
2892                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2893                                         i915_gem_obj_ggtt_offset(obj);
2894         } else {
2895                 int dspaddr = DSPADDR(intel_crtc->plane);
2896                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2897                                                         crtc->y * crtc->primary->fb->pitches[0] +
2898                                                         crtc->x * crtc->primary->fb->bits_per_pixel/8);
2899         }
2900
2901         spin_unlock_irqrestore(&dev->event_lock, flags);
2902
2903         if (stall_detected) {
2904                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2905                 intel_prepare_page_flip(dev, intel_crtc->plane);
2906         }
2907 }
2908
2909 /* Called from drm generic code, passed 'crtc' which
2910  * we use as a pipe index
2911  */
2912 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2913 {
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915         unsigned long irqflags;
2916
2917         if (!i915_pipe_enabled(dev, pipe))
2918                 return -EINVAL;
2919
2920         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2921         if (INTEL_INFO(dev)->gen >= 4)
2922                 i915_enable_pipestat(dev_priv, pipe,
2923                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2924         else
2925                 i915_enable_pipestat(dev_priv, pipe,
2926                                      PIPE_VBLANK_INTERRUPT_STATUS);
2927         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2928
2929         return 0;
2930 }
2931
2932 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2933 {
2934         struct drm_i915_private *dev_priv = dev->dev_private;
2935         unsigned long irqflags;
2936         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2937                                                      DE_PIPE_VBLANK(pipe);
2938
2939         if (!i915_pipe_enabled(dev, pipe))
2940                 return -EINVAL;
2941
2942         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2943         ironlake_enable_display_irq(dev_priv, bit);
2944         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2945
2946         return 0;
2947 }
2948
2949 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2950 {
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         unsigned long irqflags;
2953
2954         if (!i915_pipe_enabled(dev, pipe))
2955                 return -EINVAL;
2956
2957         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2958         i915_enable_pipestat(dev_priv, pipe,
2959                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2960         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2961
2962         return 0;
2963 }
2964
2965 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2966 {
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         unsigned long irqflags;
2969
2970         if (!i915_pipe_enabled(dev, pipe))
2971                 return -EINVAL;
2972
2973         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2974         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2975         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2976         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2977         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978         return 0;
2979 }
2980
2981 /* Called from drm generic code, passed 'crtc' which
2982  * we use as a pipe index
2983  */
2984 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         unsigned long irqflags;
2988
2989         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990         i915_disable_pipestat(dev_priv, pipe,
2991                               PIPE_VBLANK_INTERRUPT_STATUS |
2992                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2993         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2994 }
2995
2996 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2997 {
2998         struct drm_i915_private *dev_priv = dev->dev_private;
2999         unsigned long irqflags;
3000         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3001                                                      DE_PIPE_VBLANK(pipe);
3002
3003         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004         ironlake_disable_display_irq(dev_priv, bit);
3005         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3006 }
3007
3008 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3009 {
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         unsigned long irqflags;
3012
3013         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3014         i915_disable_pipestat(dev_priv, pipe,
3015                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3016         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3017 }
3018
3019 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3020 {
3021         struct drm_i915_private *dev_priv = dev->dev_private;
3022         unsigned long irqflags;
3023
3024         if (!i915_pipe_enabled(dev, pipe))
3025                 return;
3026
3027         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3028         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3029         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3030         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3031         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3032 }
3033
3034 static u32
3035 ring_last_seqno(struct intel_engine_cs *ring)
3036 {
3037         return list_entry(ring->request_list.prev,
3038                           struct drm_i915_gem_request, list)->seqno;
3039 }
3040
3041 static bool
3042 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3043 {
3044         return (list_empty(&ring->request_list) ||
3045                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3046 }
3047
3048 static bool
3049 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3050 {
3051         if (INTEL_INFO(dev)->gen >= 8) {
3052                 return (ipehr >> 23) == 0x1c;
3053         } else {
3054                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3055                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3056                                  MI_SEMAPHORE_REGISTER);
3057         }
3058 }
3059
3060 static struct intel_engine_cs *
3061 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3062 {
3063         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3064         struct intel_engine_cs *signaller;
3065         int i;
3066
3067         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3068                 for_each_ring(signaller, dev_priv, i) {
3069                         if (ring == signaller)
3070                                 continue;
3071
3072                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
3073                                 return signaller;
3074                 }
3075         } else {
3076                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3077
3078                 for_each_ring(signaller, dev_priv, i) {
3079                         if(ring == signaller)
3080                                 continue;
3081
3082                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3083                                 return signaller;
3084                 }
3085         }
3086
3087         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3088                   ring->id, ipehr, offset);
3089
3090         return NULL;
3091 }
3092
3093 static struct intel_engine_cs *
3094 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3095 {
3096         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3097         u32 cmd, ipehr, head;
3098         u64 offset = 0;
3099         int i, backwards;
3100
3101         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3102         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3103                 return NULL;
3104
3105         /*
3106          * HEAD is likely pointing to the dword after the actual command,
3107          * so scan backwards until we find the MBOX. But limit it to just 3
3108          * or 4 dwords depending on the semaphore wait command size.
3109          * Note that we don't care about ACTHD here since that might
3110          * point at at batch, and semaphores are always emitted into the
3111          * ringbuffer itself.
3112          */
3113         head = I915_READ_HEAD(ring) & HEAD_ADDR;
3114         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3115
3116         for (i = backwards; i; --i) {
3117                 /*
3118                  * Be paranoid and presume the hw has gone off into the wild -
3119                  * our ring is smaller than what the hardware (and hence
3120                  * HEAD_ADDR) allows. Also handles wrap-around.
3121                  */
3122                 head &= ring->buffer->size - 1;
3123
3124                 /* This here seems to blow up */
3125                 cmd = ioread32(ring->buffer->virtual_start + head);
3126                 if (cmd == ipehr)
3127                         break;
3128
3129                 head -= 4;
3130         }
3131
3132         if (!i)
3133                 return NULL;
3134
3135         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3136         if (INTEL_INFO(ring->dev)->gen >= 8) {
3137                 offset = ioread32(ring->buffer->virtual_start + head + 12);
3138                 offset <<= 32;
3139                 offset = ioread32(ring->buffer->virtual_start + head + 8);
3140         }
3141         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3142 }
3143
3144 static int semaphore_passed(struct intel_engine_cs *ring)
3145 {
3146         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3147         struct intel_engine_cs *signaller;
3148         u32 seqno;
3149
3150         ring->hangcheck.deadlock++;
3151
3152         signaller = semaphore_waits_for(ring, &seqno);
3153         if (signaller == NULL)
3154                 return -1;
3155
3156         /* Prevent pathological recursion due to driver bugs */
3157         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3158                 return -1;
3159
3160         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3161                 return 1;
3162
3163         /* cursory check for an unkickable deadlock */
3164         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3165             semaphore_passed(signaller) < 0)
3166                 return -1;
3167
3168         return 0;
3169 }
3170
3171 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3172 {
3173         struct intel_engine_cs *ring;
3174         int i;
3175
3176         for_each_ring(ring, dev_priv, i)
3177                 ring->hangcheck.deadlock = 0;
3178 }
3179
3180 static enum intel_ring_hangcheck_action
3181 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3182 {
3183         struct drm_device *dev = ring->dev;
3184         struct drm_i915_private *dev_priv = dev->dev_private;
3185         u32 tmp;
3186
3187         if (acthd != ring->hangcheck.acthd) {
3188                 if (acthd > ring->hangcheck.max_acthd) {
3189                         ring->hangcheck.max_acthd = acthd;
3190                         return HANGCHECK_ACTIVE;
3191                 }
3192
3193                 return HANGCHECK_ACTIVE_LOOP;
3194         }
3195
3196         if (IS_GEN2(dev))
3197                 return HANGCHECK_HUNG;
3198
3199         /* Is the chip hanging on a WAIT_FOR_EVENT?
3200          * If so we can simply poke the RB_WAIT bit
3201          * and break the hang. This should work on
3202          * all but the second generation chipsets.
3203          */
3204         tmp = I915_READ_CTL(ring);
3205         if (tmp & RING_WAIT) {
3206                 i915_handle_error(dev, false,
3207                                   "Kicking stuck wait on %s",
3208                                   ring->name);
3209                 I915_WRITE_CTL(ring, tmp);
3210                 return HANGCHECK_KICK;
3211         }
3212
3213         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3214                 switch (semaphore_passed(ring)) {
3215                 default:
3216                         return HANGCHECK_HUNG;
3217                 case 1:
3218                         i915_handle_error(dev, false,
3219                                           "Kicking stuck semaphore on %s",
3220                                           ring->name);
3221                         I915_WRITE_CTL(ring, tmp);
3222                         return HANGCHECK_KICK;
3223                 case 0:
3224                         return HANGCHECK_WAIT;
3225                 }
3226         }
3227
3228         return HANGCHECK_HUNG;
3229 }
3230
3231 /**
3232  * This is called when the chip hasn't reported back with completed
3233  * batchbuffers in a long time. We keep track per ring seqno progress and
3234  * if there are no progress, hangcheck score for that ring is increased.
3235  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3236  * we kick the ring. If we see no progress on three subsequent calls
3237  * we assume chip is wedged and try to fix it by resetting the chip.
3238  */
3239 static void i915_hangcheck_elapsed(unsigned long data)
3240 {
3241         struct drm_device *dev = (struct drm_device *)data;
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         struct intel_engine_cs *ring;
3244         int i;
3245         int busy_count = 0, rings_hung = 0;
3246         bool stuck[I915_NUM_RINGS] = { 0 };
3247 #define BUSY 1
3248 #define KICK 5
3249 #define HUNG 20
3250
3251         if (!i915.enable_hangcheck)
3252                 return;
3253
3254         for_each_ring(ring, dev_priv, i) {
3255                 u64 acthd;
3256                 u32 seqno;
3257                 bool busy = true;
3258
3259                 semaphore_clear_deadlocks(dev_priv);
3260
3261                 seqno = ring->get_seqno(ring, false);
3262                 acthd = intel_ring_get_active_head(ring);
3263
3264                 if (ring->hangcheck.seqno == seqno) {
3265                         if (ring_idle(ring, seqno)) {
3266                                 ring->hangcheck.action = HANGCHECK_IDLE;
3267
3268                                 if (waitqueue_active(&ring->irq_queue)) {
3269                                         /* Issue a wake-up to catch stuck h/w. */
3270                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3271                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3272                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3273                                                                   ring->name);
3274                                                 else
3275                                                         DRM_INFO("Fake missed irq on %s\n",
3276                                                                  ring->name);
3277                                                 wake_up_all(&ring->irq_queue);
3278                                         }
3279                                         /* Safeguard against driver failure */
3280                                         ring->hangcheck.score += BUSY;
3281                                 } else
3282                                         busy = false;
3283                         } else {
3284                                 /* We always increment the hangcheck score
3285                                  * if the ring is busy and still processing
3286                                  * the same request, so that no single request
3287                                  * can run indefinitely (such as a chain of
3288                                  * batches). The only time we do not increment
3289                                  * the hangcheck score on this ring, if this
3290                                  * ring is in a legitimate wait for another
3291                                  * ring. In that case the waiting ring is a
3292                                  * victim and we want to be sure we catch the
3293                                  * right culprit. Then every time we do kick
3294                                  * the ring, add a small increment to the
3295                                  * score so that we can catch a batch that is
3296                                  * being repeatedly kicked and so responsible
3297                                  * for stalling the machine.
3298                                  */
3299                                 ring->hangcheck.action = ring_stuck(ring,
3300                                                                     acthd);
3301
3302                                 switch (ring->hangcheck.action) {
3303                                 case HANGCHECK_IDLE:
3304                                 case HANGCHECK_WAIT:
3305                                 case HANGCHECK_ACTIVE:
3306                                         break;
3307                                 case HANGCHECK_ACTIVE_LOOP:
3308                                         ring->hangcheck.score += BUSY;
3309                                         break;
3310                                 case HANGCHECK_KICK:
3311                                         ring->hangcheck.score += KICK;
3312                                         break;
3313                                 case HANGCHECK_HUNG:
3314                                         ring->hangcheck.score += HUNG;
3315                                         stuck[i] = true;
3316                                         break;
3317                                 }
3318                         }
3319                 } else {
3320                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3321
3322                         /* Gradually reduce the count so that we catch DoS
3323                          * attempts across multiple batches.
3324                          */
3325                         if (ring->hangcheck.score > 0)
3326                                 ring->hangcheck.score--;
3327
3328                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3329                 }
3330
3331                 ring->hangcheck.seqno = seqno;
3332                 ring->hangcheck.acthd = acthd;
3333                 busy_count += busy;
3334         }
3335
3336         for_each_ring(ring, dev_priv, i) {
3337                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3338                         DRM_INFO("%s on %s\n",
3339                                  stuck[i] ? "stuck" : "no progress",
3340                                  ring->name);
3341                         rings_hung++;
3342                 }
3343         }
3344
3345         if (rings_hung)
3346                 return i915_handle_error(dev, true, "Ring hung");
3347
3348         if (busy_count)
3349                 /* Reset timer case chip hangs without another request
3350                  * being added */
3351                 i915_queue_hangcheck(dev);
3352 }
3353
3354 void i915_queue_hangcheck(struct drm_device *dev)
3355 {
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357         if (!i915.enable_hangcheck)
3358                 return;
3359
3360         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3361                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3362 }
3363
3364 static void ibx_irq_reset(struct drm_device *dev)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367
3368         if (HAS_PCH_NOP(dev))
3369                 return;
3370
3371         GEN5_IRQ_RESET(SDE);
3372
3373         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3374                 I915_WRITE(SERR_INT, 0xffffffff);
3375 }
3376
3377 /*
3378  * SDEIER is also touched by the interrupt handler to work around missed PCH
3379  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3380  * instead we unconditionally enable all PCH interrupt sources here, but then
3381  * only unmask them as needed with SDEIMR.
3382  *
3383  * This function needs to be called before interrupts are enabled.
3384  */
3385 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3386 {
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388
3389         if (HAS_PCH_NOP(dev))
3390                 return;
3391
3392         WARN_ON(I915_READ(SDEIER) != 0);
3393         I915_WRITE(SDEIER, 0xffffffff);
3394         POSTING_READ(SDEIER);
3395 }
3396
3397 static void gen5_gt_irq_reset(struct drm_device *dev)
3398 {
3399         struct drm_i915_private *dev_priv = dev->dev_private;
3400
3401         GEN5_IRQ_RESET(GT);
3402         if (INTEL_INFO(dev)->gen >= 6)
3403                 GEN5_IRQ_RESET(GEN6_PM);
3404 }
3405
3406 /* drm_dma.h hooks
3407 */
3408 static void ironlake_irq_reset(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412         I915_WRITE(HWSTAM, 0xffffffff);
3413
3414         GEN5_IRQ_RESET(DE);
3415         if (IS_GEN7(dev))
3416                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3417
3418         gen5_gt_irq_reset(dev);
3419
3420         ibx_irq_reset(dev);
3421 }
3422
3423 static void valleyview_irq_preinstall(struct drm_device *dev)
3424 {
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426         int pipe;
3427
3428         /* VLV magic */
3429         I915_WRITE(VLV_IMR, 0);
3430         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3431         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3432         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3433
3434         /* and GT */
3435         I915_WRITE(GTIIR, I915_READ(GTIIR));
3436         I915_WRITE(GTIIR, I915_READ(GTIIR));
3437
3438         gen5_gt_irq_reset(dev);
3439
3440         I915_WRITE(DPINVGTT, 0xff);
3441
3442         I915_WRITE(PORT_HOTPLUG_EN, 0);
3443         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3444         for_each_pipe(pipe)
3445                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3446         I915_WRITE(VLV_IIR, 0xffffffff);
3447         I915_WRITE(VLV_IMR, 0xffffffff);
3448         I915_WRITE(VLV_IER, 0x0);
3449         POSTING_READ(VLV_IER);
3450 }
3451
3452 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3453 {
3454         GEN8_IRQ_RESET_NDX(GT, 0);
3455         GEN8_IRQ_RESET_NDX(GT, 1);
3456         GEN8_IRQ_RESET_NDX(GT, 2);
3457         GEN8_IRQ_RESET_NDX(GT, 3);
3458 }
3459
3460 static void gen8_irq_reset(struct drm_device *dev)
3461 {
3462         struct drm_i915_private *dev_priv = dev->dev_private;
3463         int pipe;
3464
3465         I915_WRITE(GEN8_MASTER_IRQ, 0);
3466         POSTING_READ(GEN8_MASTER_IRQ);
3467
3468         gen8_gt_irq_reset(dev_priv);
3469
3470         for_each_pipe(pipe)
3471                 if (intel_display_power_enabled(dev_priv,
3472                                                 POWER_DOMAIN_PIPE(pipe)))
3473                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3474
3475         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3476         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3477         GEN5_IRQ_RESET(GEN8_PCU_);
3478
3479         ibx_irq_reset(dev);
3480 }
3481
3482 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3483 {
3484         unsigned long irqflags;
3485
3486         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3487         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3488                           ~dev_priv->de_irq_mask[PIPE_B]);
3489         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3490                           ~dev_priv->de_irq_mask[PIPE_C]);
3491         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3492 }
3493
3494 static void cherryview_irq_preinstall(struct drm_device *dev)
3495 {
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         int pipe;
3498
3499         I915_WRITE(GEN8_MASTER_IRQ, 0);
3500         POSTING_READ(GEN8_MASTER_IRQ);
3501
3502         gen8_gt_irq_reset(dev_priv);
3503
3504         GEN5_IRQ_RESET(GEN8_PCU_);
3505
3506         POSTING_READ(GEN8_PCU_IIR);
3507
3508         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3509
3510         I915_WRITE(PORT_HOTPLUG_EN, 0);
3511         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3512
3513         for_each_pipe(pipe)
3514                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3515
3516         I915_WRITE(VLV_IMR, 0xffffffff);
3517         I915_WRITE(VLV_IER, 0x0);
3518         I915_WRITE(VLV_IIR, 0xffffffff);
3519         POSTING_READ(VLV_IIR);
3520 }
3521
3522 static void ibx_hpd_irq_setup(struct drm_device *dev)
3523 {
3524         struct drm_i915_private *dev_priv = dev->dev_private;
3525         struct drm_mode_config *mode_config = &dev->mode_config;
3526         struct intel_encoder *intel_encoder;
3527         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3528
3529         if (HAS_PCH_IBX(dev)) {
3530                 hotplug_irqs = SDE_HOTPLUG_MASK;
3531                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3532                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3533                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3534         } else {
3535                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3536                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3537                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3538                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3539         }
3540
3541         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3542
3543         /*
3544          * Enable digital hotplug on the PCH, and configure the DP short pulse
3545          * duration to 2ms (which is the minimum in the Display Port spec)
3546          *
3547          * This register is the same on all known PCH chips.
3548          */
3549         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3550         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3551         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3552         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3553         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3554         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3555 }
3556
3557 static void ibx_irq_postinstall(struct drm_device *dev)
3558 {
3559         struct drm_i915_private *dev_priv = dev->dev_private;
3560         u32 mask;
3561
3562         if (HAS_PCH_NOP(dev))
3563                 return;
3564
3565         if (HAS_PCH_IBX(dev))
3566                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3567         else
3568                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3569
3570         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3571         I915_WRITE(SDEIMR, ~mask);
3572 }
3573
3574 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3575 {
3576         struct drm_i915_private *dev_priv = dev->dev_private;
3577         u32 pm_irqs, gt_irqs;
3578
3579         pm_irqs = gt_irqs = 0;
3580
3581         dev_priv->gt_irq_mask = ~0;
3582         if (HAS_L3_DPF(dev)) {
3583                 /* L3 parity interrupt is always unmasked. */
3584                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3585                 gt_irqs |= GT_PARITY_ERROR(dev);
3586         }
3587
3588         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3589         if (IS_GEN5(dev)) {
3590                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3591                            ILK_BSD_USER_INTERRUPT;
3592         } else {
3593                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3594         }
3595
3596         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3597
3598         if (INTEL_INFO(dev)->gen >= 6) {
3599                 pm_irqs |= dev_priv->pm_rps_events;
3600
3601                 if (HAS_VEBOX(dev))
3602                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3603
3604                 dev_priv->pm_irq_mask = 0xffffffff;
3605                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3606         }
3607 }
3608
3609 static int ironlake_irq_postinstall(struct drm_device *dev)
3610 {
3611         unsigned long irqflags;
3612         struct drm_i915_private *dev_priv = dev->dev_private;
3613         u32 display_mask, extra_mask;
3614
3615         if (INTEL_INFO(dev)->gen >= 7) {
3616                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3617                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3618                                 DE_PLANEB_FLIP_DONE_IVB |
3619                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3620                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3621                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3622         } else {
3623                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3624                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3625                                 DE_AUX_CHANNEL_A |
3626                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3627                                 DE_POISON);
3628                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3629                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3630         }
3631
3632         dev_priv->irq_mask = ~display_mask;
3633
3634         I915_WRITE(HWSTAM, 0xeffe);
3635
3636         ibx_irq_pre_postinstall(dev);
3637
3638         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3639
3640         gen5_gt_irq_postinstall(dev);
3641
3642         ibx_irq_postinstall(dev);
3643
3644         if (IS_IRONLAKE_M(dev)) {
3645                 /* Enable PCU event interrupts
3646                  *
3647                  * spinlocking not required here for correctness since interrupt
3648                  * setup is guaranteed to run in single-threaded context. But we
3649                  * need it to make the assert_spin_locked happy. */
3650                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3651                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3652                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3653         }
3654
3655         return 0;
3656 }
3657
3658 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3659 {
3660         u32 pipestat_mask;
3661         u32 iir_mask;
3662
3663         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3664                         PIPE_FIFO_UNDERRUN_STATUS;
3665
3666         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3667         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3668         POSTING_READ(PIPESTAT(PIPE_A));
3669
3670         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3671                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3672
3673         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3674                                                PIPE_GMBUS_INTERRUPT_STATUS);
3675         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3676
3677         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3678                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3679                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3680         dev_priv->irq_mask &= ~iir_mask;
3681
3682         I915_WRITE(VLV_IIR, iir_mask);
3683         I915_WRITE(VLV_IIR, iir_mask);
3684         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3685         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3686         POSTING_READ(VLV_IER);
3687 }
3688
3689 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3690 {
3691         u32 pipestat_mask;
3692         u32 iir_mask;
3693
3694         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3695                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3697
3698         dev_priv->irq_mask |= iir_mask;
3699         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3700         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3701         I915_WRITE(VLV_IIR, iir_mask);
3702         I915_WRITE(VLV_IIR, iir_mask);
3703         POSTING_READ(VLV_IIR);
3704
3705         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3706                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3707
3708         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3709                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3710         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3711
3712         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3713                         PIPE_FIFO_UNDERRUN_STATUS;
3714         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3715         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3716         POSTING_READ(PIPESTAT(PIPE_A));
3717 }
3718
3719 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3720 {
3721         assert_spin_locked(&dev_priv->irq_lock);
3722
3723         if (dev_priv->display_irqs_enabled)
3724                 return;
3725
3726         dev_priv->display_irqs_enabled = true;
3727
3728         if (dev_priv->dev->irq_enabled)
3729                 valleyview_display_irqs_install(dev_priv);
3730 }
3731
3732 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3733 {
3734         assert_spin_locked(&dev_priv->irq_lock);
3735
3736         if (!dev_priv->display_irqs_enabled)
3737                 return;
3738
3739         dev_priv->display_irqs_enabled = false;
3740
3741         if (dev_priv->dev->irq_enabled)
3742                 valleyview_display_irqs_uninstall(dev_priv);
3743 }
3744
3745 static int valleyview_irq_postinstall(struct drm_device *dev)
3746 {
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748         unsigned long irqflags;
3749
3750         dev_priv->irq_mask = ~0;
3751
3752         I915_WRITE(PORT_HOTPLUG_EN, 0);
3753         POSTING_READ(PORT_HOTPLUG_EN);
3754
3755         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3756         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3757         I915_WRITE(VLV_IIR, 0xffffffff);
3758         POSTING_READ(VLV_IER);
3759
3760         /* Interrupt setup is already guaranteed to be single-threaded, this is
3761          * just to make the assert_spin_locked check happy. */
3762         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3763         if (dev_priv->display_irqs_enabled)
3764                 valleyview_display_irqs_install(dev_priv);
3765         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3766
3767         I915_WRITE(VLV_IIR, 0xffffffff);
3768         I915_WRITE(VLV_IIR, 0xffffffff);
3769
3770         gen5_gt_irq_postinstall(dev);
3771
3772         /* ack & enable invalid PTE error interrupts */
3773 #if 0 /* FIXME: add support to irq handler for checking these bits */
3774         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3775         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3776 #endif
3777
3778         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3779
3780         return 0;
3781 }
3782
3783 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785         int i;
3786
3787         /* These are interrupts we'll toggle with the ring mask register */
3788         uint32_t gt_interrupts[] = {
3789                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3790                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3791                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3792                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3793                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3794                 0,
3795                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3796                 };
3797
3798         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3799                 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3800
3801         dev_priv->pm_irq_mask = 0xffffffff;
3802 }
3803
3804 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3805 {
3806         struct drm_device *dev = dev_priv->dev;
3807         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3808                 GEN8_PIPE_CDCLK_CRC_DONE |
3809                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3810         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3811                 GEN8_PIPE_FIFO_UNDERRUN;
3812         int pipe;
3813         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3814         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3815         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3816
3817         for_each_pipe(pipe)
3818                 if (intel_display_power_enabled(dev_priv,
3819                                 POWER_DOMAIN_PIPE(pipe)))
3820                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3821                                           dev_priv->de_irq_mask[pipe],
3822                                           de_pipe_enables);
3823
3824         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3825 }
3826
3827 static int gen8_irq_postinstall(struct drm_device *dev)
3828 {
3829         struct drm_i915_private *dev_priv = dev->dev_private;
3830
3831         ibx_irq_pre_postinstall(dev);
3832
3833         gen8_gt_irq_postinstall(dev_priv);
3834         gen8_de_irq_postinstall(dev_priv);
3835
3836         ibx_irq_postinstall(dev);
3837
3838         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3839         POSTING_READ(GEN8_MASTER_IRQ);
3840
3841         return 0;
3842 }
3843
3844 static int cherryview_irq_postinstall(struct drm_device *dev)
3845 {
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3848                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3851         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3852                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3853         unsigned long irqflags;
3854         int pipe;
3855
3856         /*
3857          * Leave vblank interrupts masked initially.  enable/disable will
3858          * toggle them based on usage.
3859          */
3860         dev_priv->irq_mask = ~enable_mask;
3861
3862         for_each_pipe(pipe)
3863                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3864
3865         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3866         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3867         for_each_pipe(pipe)
3868                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3869         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3870
3871         I915_WRITE(VLV_IIR, 0xffffffff);
3872         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3873         I915_WRITE(VLV_IER, enable_mask);
3874
3875         gen8_gt_irq_postinstall(dev_priv);
3876
3877         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3878         POSTING_READ(GEN8_MASTER_IRQ);
3879
3880         return 0;
3881 }
3882
3883 static void gen8_irq_uninstall(struct drm_device *dev)
3884 {
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886
3887         if (!dev_priv)
3888                 return;
3889
3890         gen8_irq_reset(dev);
3891 }
3892
3893 static void valleyview_irq_uninstall(struct drm_device *dev)
3894 {
3895         struct drm_i915_private *dev_priv = dev->dev_private;
3896         unsigned long irqflags;
3897         int pipe;
3898
3899         if (!dev_priv)
3900                 return;
3901
3902         I915_WRITE(VLV_MASTER_IER, 0);
3903
3904         for_each_pipe(pipe)
3905                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3906
3907         I915_WRITE(HWSTAM, 0xffffffff);
3908         I915_WRITE(PORT_HOTPLUG_EN, 0);
3909         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3910
3911         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3912         if (dev_priv->display_irqs_enabled)
3913                 valleyview_display_irqs_uninstall(dev_priv);
3914         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3915
3916         dev_priv->irq_mask = 0;
3917
3918         I915_WRITE(VLV_IIR, 0xffffffff);
3919         I915_WRITE(VLV_IMR, 0xffffffff);
3920         I915_WRITE(VLV_IER, 0x0);
3921         POSTING_READ(VLV_IER);
3922 }
3923
3924 static void cherryview_irq_uninstall(struct drm_device *dev)
3925 {
3926         struct drm_i915_private *dev_priv = dev->dev_private;
3927         int pipe;
3928
3929         if (!dev_priv)
3930                 return;
3931
3932         I915_WRITE(GEN8_MASTER_IRQ, 0);
3933         POSTING_READ(GEN8_MASTER_IRQ);
3934
3935 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3936 do {                                                            \
3937         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3938         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3939         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3940         POSTING_READ(GEN8_##type##_IIR(which));                 \
3941         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3942 } while (0)
3943
3944 #define GEN8_IRQ_FINI(type)                             \
3945 do {                                                    \
3946         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3947         I915_WRITE(GEN8_##type##_IER, 0);               \
3948         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3949         POSTING_READ(GEN8_##type##_IIR);                \
3950         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3951 } while (0)
3952
3953         GEN8_IRQ_FINI_NDX(GT, 0);
3954         GEN8_IRQ_FINI_NDX(GT, 1);
3955         GEN8_IRQ_FINI_NDX(GT, 2);
3956         GEN8_IRQ_FINI_NDX(GT, 3);
3957
3958         GEN8_IRQ_FINI(PCU);
3959
3960 #undef GEN8_IRQ_FINI
3961 #undef GEN8_IRQ_FINI_NDX
3962
3963         I915_WRITE(PORT_HOTPLUG_EN, 0);
3964         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965
3966         for_each_pipe(pipe)
3967                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3968
3969         I915_WRITE(VLV_IMR, 0xffffffff);
3970         I915_WRITE(VLV_IER, 0x0);
3971         I915_WRITE(VLV_IIR, 0xffffffff);
3972         POSTING_READ(VLV_IIR);
3973 }
3974
3975 static void ironlake_irq_uninstall(struct drm_device *dev)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979         if (!dev_priv)
3980                 return;
3981
3982         ironlake_irq_reset(dev);
3983 }
3984
3985 static void i8xx_irq_preinstall(struct drm_device * dev)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         int pipe;
3989
3990         for_each_pipe(pipe)
3991                 I915_WRITE(PIPESTAT(pipe), 0);
3992         I915_WRITE16(IMR, 0xffff);
3993         I915_WRITE16(IER, 0x0);
3994         POSTING_READ16(IER);
3995 }
3996
3997 static int i8xx_irq_postinstall(struct drm_device *dev)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000         unsigned long irqflags;
4001
4002         I915_WRITE16(EMR,
4003                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4004
4005         /* Unmask the interrupts that we always want on. */
4006         dev_priv->irq_mask =
4007                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4008                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4009                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4011                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4012         I915_WRITE16(IMR, dev_priv->irq_mask);
4013
4014         I915_WRITE16(IER,
4015                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4016                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4017                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4018                      I915_USER_INTERRUPT);
4019         POSTING_READ16(IER);
4020
4021         /* Interrupt setup is already guaranteed to be single-threaded, this is
4022          * just to make the assert_spin_locked check happy. */
4023         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4024         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4025         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4026         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4027
4028         return 0;
4029 }
4030
4031 /*
4032  * Returns true when a page flip has completed.
4033  */
4034 static bool i8xx_handle_vblank(struct drm_device *dev,
4035                                int plane, int pipe, u32 iir)
4036 {
4037         struct drm_i915_private *dev_priv = dev->dev_private;
4038         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4039
4040         if (!intel_pipe_handle_vblank(dev, pipe))
4041                 return false;
4042
4043         if ((iir & flip_pending) == 0)
4044                 return false;
4045
4046         intel_prepare_page_flip(dev, plane);
4047
4048         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4049          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4050          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4051          * the flip is completed (no longer pending). Since this doesn't raise
4052          * an interrupt per se, we watch for the change at vblank.
4053          */
4054         if (I915_READ16(ISR) & flip_pending)
4055                 return false;
4056
4057         intel_finish_page_flip(dev, pipe);
4058
4059         return true;
4060 }
4061
4062 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4063 {
4064         struct drm_device *dev = arg;
4065         struct drm_i915_private *dev_priv = dev->dev_private;
4066         u16 iir, new_iir;
4067         u32 pipe_stats[2];
4068         unsigned long irqflags;
4069         int pipe;
4070         u16 flip_mask =
4071                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4072                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4073
4074         iir = I915_READ16(IIR);
4075         if (iir == 0)
4076                 return IRQ_NONE;
4077
4078         while (iir & ~flip_mask) {
4079                 /* Can't rely on pipestat interrupt bit in iir as it might
4080                  * have been cleared after the pipestat interrupt was received.
4081                  * It doesn't set the bit in iir again, but it still produces
4082                  * interrupts (for non-MSI).
4083                  */
4084                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4085                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4086                         i915_handle_error(dev, false,
4087                                           "Command parser error, iir 0x%08x",
4088                                           iir);
4089
4090                 for_each_pipe(pipe) {
4091                         int reg = PIPESTAT(pipe);
4092                         pipe_stats[pipe] = I915_READ(reg);
4093
4094                         /*
4095                          * Clear the PIPE*STAT regs before the IIR
4096                          */
4097                         if (pipe_stats[pipe] & 0x8000ffff)
4098                                 I915_WRITE(reg, pipe_stats[pipe]);
4099                 }
4100                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4101
4102                 I915_WRITE16(IIR, iir & ~flip_mask);
4103                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4104
4105                 i915_update_dri1_breadcrumb(dev);
4106
4107                 if (iir & I915_USER_INTERRUPT)
4108                         notify_ring(dev, &dev_priv->ring[RCS]);
4109
4110                 for_each_pipe(pipe) {
4111                         int plane = pipe;
4112                         if (HAS_FBC(dev))
4113                                 plane = !plane;
4114
4115                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4116                             i8xx_handle_vblank(dev, plane, pipe, iir))
4117                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4118
4119                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4120                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4121
4122                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4123                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4124                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4125                 }
4126
4127                 iir = new_iir;
4128         }
4129
4130         return IRQ_HANDLED;
4131 }
4132
4133 static void i8xx_irq_uninstall(struct drm_device * dev)
4134 {
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136         int pipe;
4137
4138         for_each_pipe(pipe) {
4139                 /* Clear enable bits; then clear status bits */
4140                 I915_WRITE(PIPESTAT(pipe), 0);
4141                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4142         }
4143         I915_WRITE16(IMR, 0xffff);
4144         I915_WRITE16(IER, 0x0);
4145         I915_WRITE16(IIR, I915_READ16(IIR));
4146 }
4147
4148 static void i915_irq_preinstall(struct drm_device * dev)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         int pipe;
4152
4153         if (I915_HAS_HOTPLUG(dev)) {
4154                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4155                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4156         }
4157
4158         I915_WRITE16(HWSTAM, 0xeffe);
4159         for_each_pipe(pipe)
4160                 I915_WRITE(PIPESTAT(pipe), 0);
4161         I915_WRITE(IMR, 0xffffffff);
4162         I915_WRITE(IER, 0x0);
4163         POSTING_READ(IER);
4164 }
4165
4166 static int i915_irq_postinstall(struct drm_device *dev)
4167 {
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169         u32 enable_mask;
4170         unsigned long irqflags;
4171
4172         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4173
4174         /* Unmask the interrupts that we always want on. */
4175         dev_priv->irq_mask =
4176                 ~(I915_ASLE_INTERRUPT |
4177                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4178                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4179                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4180                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4181                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4182
4183         enable_mask =
4184                 I915_ASLE_INTERRUPT |
4185                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4186                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4187                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4188                 I915_USER_INTERRUPT;
4189
4190         if (I915_HAS_HOTPLUG(dev)) {
4191                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4192                 POSTING_READ(PORT_HOTPLUG_EN);
4193
4194                 /* Enable in IER... */
4195                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4196                 /* and unmask in IMR */
4197                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4198         }
4199
4200         I915_WRITE(IMR, dev_priv->irq_mask);
4201         I915_WRITE(IER, enable_mask);
4202         POSTING_READ(IER);
4203
4204         i915_enable_asle_pipestat(dev);
4205
4206         /* Interrupt setup is already guaranteed to be single-threaded, this is
4207          * just to make the assert_spin_locked check happy. */
4208         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4209         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4210         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4211         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4212
4213         return 0;
4214 }
4215
4216 /*
4217  * Returns true when a page flip has completed.
4218  */
4219 static bool i915_handle_vblank(struct drm_device *dev,
4220                                int plane, int pipe, u32 iir)
4221 {
4222         struct drm_i915_private *dev_priv = dev->dev_private;
4223         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4224
4225         if (!intel_pipe_handle_vblank(dev, pipe))
4226                 return false;
4227
4228         if ((iir & flip_pending) == 0)
4229                 return false;
4230
4231         intel_prepare_page_flip(dev, plane);
4232
4233         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4234          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4235          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4236          * the flip is completed (no longer pending). Since this doesn't raise
4237          * an interrupt per se, we watch for the change at vblank.
4238          */
4239         if (I915_READ(ISR) & flip_pending)
4240                 return false;
4241
4242         intel_finish_page_flip(dev, pipe);
4243
4244         return true;
4245 }
4246
4247 static irqreturn_t i915_irq_handler(int irq, void *arg)
4248 {
4249         struct drm_device *dev = arg;
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4252         unsigned long irqflags;
4253         u32 flip_mask =
4254                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4255                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4256         int pipe, ret = IRQ_NONE;
4257
4258         iir = I915_READ(IIR);
4259         do {
4260                 bool irq_received = (iir & ~flip_mask) != 0;
4261                 bool blc_event = false;
4262
4263                 /* Can't rely on pipestat interrupt bit in iir as it might
4264                  * have been cleared after the pipestat interrupt was received.
4265                  * It doesn't set the bit in iir again, but it still produces
4266                  * interrupts (for non-MSI).
4267                  */
4268                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4269                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4270                         i915_handle_error(dev, false,
4271                                           "Command parser error, iir 0x%08x",
4272                                           iir);
4273
4274                 for_each_pipe(pipe) {
4275                         int reg = PIPESTAT(pipe);
4276                         pipe_stats[pipe] = I915_READ(reg);
4277
4278                         /* Clear the PIPE*STAT regs before the IIR */
4279                         if (pipe_stats[pipe] & 0x8000ffff) {
4280                                 I915_WRITE(reg, pipe_stats[pipe]);
4281                                 irq_received = true;
4282                         }
4283                 }
4284                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4285
4286                 if (!irq_received)
4287                         break;
4288
4289                 /* Consume port.  Then clear IIR or we'll miss events */
4290                 if (I915_HAS_HOTPLUG(dev) &&
4291                     iir & I915_DISPLAY_PORT_INTERRUPT)
4292                         i9xx_hpd_irq_handler(dev);
4293
4294                 I915_WRITE(IIR, iir & ~flip_mask);
4295                 new_iir = I915_READ(IIR); /* Flush posted writes */
4296
4297                 if (iir & I915_USER_INTERRUPT)
4298                         notify_ring(dev, &dev_priv->ring[RCS]);
4299
4300                 for_each_pipe(pipe) {
4301                         int plane = pipe;
4302                         if (HAS_FBC(dev))
4303                                 plane = !plane;
4304
4305                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4306                             i915_handle_vblank(dev, plane, pipe, iir))
4307                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4308
4309                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4310                                 blc_event = true;
4311
4312                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4313                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4314
4315                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4316                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4317                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4318                 }
4319
4320                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4321                         intel_opregion_asle_intr(dev);
4322
4323                 /* With MSI, interrupts are only generated when iir
4324                  * transitions from zero to nonzero.  If another bit got
4325                  * set while we were handling the existing iir bits, then
4326                  * we would never get another interrupt.
4327                  *
4328                  * This is fine on non-MSI as well, as if we hit this path
4329                  * we avoid exiting the interrupt handler only to generate
4330                  * another one.
4331                  *
4332                  * Note that for MSI this could cause a stray interrupt report
4333                  * if an interrupt landed in the time between writing IIR and
4334                  * the posting read.  This should be rare enough to never
4335                  * trigger the 99% of 100,000 interrupts test for disabling
4336                  * stray interrupts.
4337                  */
4338                 ret = IRQ_HANDLED;
4339                 iir = new_iir;
4340         } while (iir & ~flip_mask);
4341
4342         i915_update_dri1_breadcrumb(dev);
4343
4344         return ret;
4345 }
4346
4347 static void i915_irq_uninstall(struct drm_device * dev)
4348 {
4349         struct drm_i915_private *dev_priv = dev->dev_private;
4350         int pipe;
4351
4352         if (I915_HAS_HOTPLUG(dev)) {
4353                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4354                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4355         }
4356
4357         I915_WRITE16(HWSTAM, 0xffff);
4358         for_each_pipe(pipe) {
4359                 /* Clear enable bits; then clear status bits */
4360                 I915_WRITE(PIPESTAT(pipe), 0);
4361                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4362         }
4363         I915_WRITE(IMR, 0xffffffff);
4364         I915_WRITE(IER, 0x0);
4365
4366         I915_WRITE(IIR, I915_READ(IIR));
4367 }
4368
4369 static void i965_irq_preinstall(struct drm_device * dev)
4370 {
4371         struct drm_i915_private *dev_priv = dev->dev_private;
4372         int pipe;
4373
4374         I915_WRITE(PORT_HOTPLUG_EN, 0);
4375         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4376
4377         I915_WRITE(HWSTAM, 0xeffe);
4378         for_each_pipe(pipe)
4379                 I915_WRITE(PIPESTAT(pipe), 0);
4380         I915_WRITE(IMR, 0xffffffff);
4381         I915_WRITE(IER, 0x0);
4382         POSTING_READ(IER);
4383 }
4384
4385 static int i965_irq_postinstall(struct drm_device *dev)
4386 {
4387         struct drm_i915_private *dev_priv = dev->dev_private;
4388         u32 enable_mask;
4389         u32 error_mask;
4390         unsigned long irqflags;
4391
4392         /* Unmask the interrupts that we always want on. */
4393         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4394                                I915_DISPLAY_PORT_INTERRUPT |
4395                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4396                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4397                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4398                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4399                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4400
4401         enable_mask = ~dev_priv->irq_mask;
4402         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4403                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4404         enable_mask |= I915_USER_INTERRUPT;
4405
4406         if (IS_G4X(dev))
4407                 enable_mask |= I915_BSD_USER_INTERRUPT;
4408
4409         /* Interrupt setup is already guaranteed to be single-threaded, this is
4410          * just to make the assert_spin_locked check happy. */
4411         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4412         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4413         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4414         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4415         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4416
4417         /*
4418          * Enable some error detection, note the instruction error mask
4419          * bit is reserved, so we leave it masked.
4420          */
4421         if (IS_G4X(dev)) {
4422                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4423                                GM45_ERROR_MEM_PRIV |
4424                                GM45_ERROR_CP_PRIV |
4425                                I915_ERROR_MEMORY_REFRESH);
4426         } else {
4427                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4428                                I915_ERROR_MEMORY_REFRESH);
4429         }
4430         I915_WRITE(EMR, error_mask);
4431
4432         I915_WRITE(IMR, dev_priv->irq_mask);
4433         I915_WRITE(IER, enable_mask);
4434         POSTING_READ(IER);
4435
4436         I915_WRITE(PORT_HOTPLUG_EN, 0);
4437         POSTING_READ(PORT_HOTPLUG_EN);
4438
4439         i915_enable_asle_pipestat(dev);
4440
4441         return 0;
4442 }
4443
4444 static void i915_hpd_irq_setup(struct drm_device *dev)
4445 {
4446         struct drm_i915_private *dev_priv = dev->dev_private;
4447         struct drm_mode_config *mode_config = &dev->mode_config;
4448         struct intel_encoder *intel_encoder;
4449         u32 hotplug_en;
4450
4451         assert_spin_locked(&dev_priv->irq_lock);
4452
4453         if (I915_HAS_HOTPLUG(dev)) {
4454                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4455                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4456                 /* Note HDMI and DP share hotplug bits */
4457                 /* enable bits are the same for all generations */
4458                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4459                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4460                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4461                 /* Programming the CRT detection parameters tends
4462                    to generate a spurious hotplug event about three
4463                    seconds later.  So just do it once.
4464                 */
4465                 if (IS_G4X(dev))
4466                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4467                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4468                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4469
4470                 /* Ignore TV since it's buggy */
4471                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4472         }
4473 }
4474
4475 static irqreturn_t i965_irq_handler(int irq, void *arg)
4476 {
4477         struct drm_device *dev = arg;
4478         struct drm_i915_private *dev_priv = dev->dev_private;
4479         u32 iir, new_iir;
4480         u32 pipe_stats[I915_MAX_PIPES];
4481         unsigned long irqflags;
4482         int ret = IRQ_NONE, pipe;
4483         u32 flip_mask =
4484                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4485                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4486
4487         iir = I915_READ(IIR);
4488
4489         for (;;) {
4490                 bool irq_received = (iir & ~flip_mask) != 0;
4491                 bool blc_event = false;
4492
4493                 /* Can't rely on pipestat interrupt bit in iir as it might
4494                  * have been cleared after the pipestat interrupt was received.
4495                  * It doesn't set the bit in iir again, but it still produces
4496                  * interrupts (for non-MSI).
4497                  */
4498                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4499                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4500                         i915_handle_error(dev, false,
4501                                           "Command parser error, iir 0x%08x",
4502                                           iir);
4503
4504                 for_each_pipe(pipe) {
4505                         int reg = PIPESTAT(pipe);
4506                         pipe_stats[pipe] = I915_READ(reg);
4507
4508                         /*
4509                          * Clear the PIPE*STAT regs before the IIR
4510                          */
4511                         if (pipe_stats[pipe] & 0x8000ffff) {
4512                                 I915_WRITE(reg, pipe_stats[pipe]);
4513                                 irq_received = true;
4514                         }
4515                 }
4516                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4517
4518                 if (!irq_received)
4519                         break;
4520
4521                 ret = IRQ_HANDLED;
4522
4523                 /* Consume port.  Then clear IIR or we'll miss events */
4524                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4525                         i9xx_hpd_irq_handler(dev);
4526
4527                 I915_WRITE(IIR, iir & ~flip_mask);
4528                 new_iir = I915_READ(IIR); /* Flush posted writes */
4529
4530                 if (iir & I915_USER_INTERRUPT)
4531                         notify_ring(dev, &dev_priv->ring[RCS]);
4532                 if (iir & I915_BSD_USER_INTERRUPT)
4533                         notify_ring(dev, &dev_priv->ring[VCS]);
4534
4535                 for_each_pipe(pipe) {
4536                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4537                             i915_handle_vblank(dev, pipe, pipe, iir))
4538                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4539
4540                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4541                                 blc_event = true;
4542
4543                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4544                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4545
4546                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4547                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4548                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4549                 }
4550
4551                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4552                         intel_opregion_asle_intr(dev);
4553
4554                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4555                         gmbus_irq_handler(dev);
4556
4557                 /* With MSI, interrupts are only generated when iir
4558                  * transitions from zero to nonzero.  If another bit got
4559                  * set while we were handling the existing iir bits, then
4560                  * we would never get another interrupt.
4561                  *
4562                  * This is fine on non-MSI as well, as if we hit this path
4563                  * we avoid exiting the interrupt handler only to generate
4564                  * another one.
4565                  *
4566                  * Note that for MSI this could cause a stray interrupt report
4567                  * if an interrupt landed in the time between writing IIR and
4568                  * the posting read.  This should be rare enough to never
4569                  * trigger the 99% of 100,000 interrupts test for disabling
4570                  * stray interrupts.
4571                  */
4572                 iir = new_iir;
4573         }
4574
4575         i915_update_dri1_breadcrumb(dev);
4576
4577         return ret;
4578 }
4579
4580 static void i965_irq_uninstall(struct drm_device * dev)
4581 {
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583         int pipe;
4584
4585         if (!dev_priv)
4586                 return;
4587
4588         I915_WRITE(PORT_HOTPLUG_EN, 0);
4589         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4590
4591         I915_WRITE(HWSTAM, 0xffffffff);
4592         for_each_pipe(pipe)
4593                 I915_WRITE(PIPESTAT(pipe), 0);
4594         I915_WRITE(IMR, 0xffffffff);
4595         I915_WRITE(IER, 0x0);
4596
4597         for_each_pipe(pipe)
4598                 I915_WRITE(PIPESTAT(pipe),
4599                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4600         I915_WRITE(IIR, I915_READ(IIR));
4601 }
4602
4603 static void intel_hpd_irq_reenable(struct work_struct *work)
4604 {
4605         struct drm_i915_private *dev_priv =
4606                 container_of(work, typeof(*dev_priv),
4607                              hotplug_reenable_work.work);
4608         struct drm_device *dev = dev_priv->dev;
4609         struct drm_mode_config *mode_config = &dev->mode_config;
4610         unsigned long irqflags;
4611         int i;
4612
4613         intel_runtime_pm_get(dev_priv);
4614
4615         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4616         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4617                 struct drm_connector *connector;
4618
4619                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4620                         continue;
4621
4622                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4623
4624                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4625                         struct intel_connector *intel_connector = to_intel_connector(connector);
4626
4627                         if (intel_connector->encoder->hpd_pin == i) {
4628                                 if (connector->polled != intel_connector->polled)
4629                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4630                                                          connector->name);
4631                                 connector->polled = intel_connector->polled;
4632                                 if (!connector->polled)
4633                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4634                         }
4635                 }
4636         }
4637         if (dev_priv->display.hpd_irq_setup)
4638                 dev_priv->display.hpd_irq_setup(dev);
4639         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4640
4641         intel_runtime_pm_put(dev_priv);
4642 }
4643
4644 void intel_irq_init(struct drm_device *dev)
4645 {
4646         struct drm_i915_private *dev_priv = dev->dev_private;
4647
4648         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4649         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4650         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4651         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4652         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4653
4654         /* Let's track the enabled rps events */
4655         if (IS_VALLEYVIEW(dev))
4656                 /* WaGsvRC0ResidenncyMethod:VLV */
4657                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4658         else
4659                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4660
4661         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4662                     i915_hangcheck_elapsed,
4663                     (unsigned long) dev);
4664         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4665                           intel_hpd_irq_reenable);
4666
4667         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4668
4669         /* Haven't installed the IRQ handler yet */
4670         dev_priv->pm._irqs_disabled = true;
4671
4672         if (IS_GEN2(dev)) {
4673                 dev->max_vblank_count = 0;
4674                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4675         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4676                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4677                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4678         } else {
4679                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4680                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4681         }
4682
4683         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4684                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4685                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4686         }
4687
4688         if (IS_CHERRYVIEW(dev)) {
4689                 dev->driver->irq_handler = cherryview_irq_handler;
4690                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4691                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4692                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4693                 dev->driver->enable_vblank = valleyview_enable_vblank;
4694                 dev->driver->disable_vblank = valleyview_disable_vblank;
4695                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4696         } else if (IS_VALLEYVIEW(dev)) {
4697                 dev->driver->irq_handler = valleyview_irq_handler;
4698                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4699                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4700                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4701                 dev->driver->enable_vblank = valleyview_enable_vblank;
4702                 dev->driver->disable_vblank = valleyview_disable_vblank;
4703                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4704         } else if (IS_GEN8(dev)) {
4705                 dev->driver->irq_handler = gen8_irq_handler;
4706                 dev->driver->irq_preinstall = gen8_irq_reset;
4707                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4708                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4709                 dev->driver->enable_vblank = gen8_enable_vblank;
4710                 dev->driver->disable_vblank = gen8_disable_vblank;
4711                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4712         } else if (HAS_PCH_SPLIT(dev)) {
4713                 dev->driver->irq_handler = ironlake_irq_handler;
4714                 dev->driver->irq_preinstall = ironlake_irq_reset;
4715                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4716                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4717                 dev->driver->enable_vblank = ironlake_enable_vblank;
4718                 dev->driver->disable_vblank = ironlake_disable_vblank;
4719                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4720         } else {
4721                 if (INTEL_INFO(dev)->gen == 2) {
4722                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4723                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4724                         dev->driver->irq_handler = i8xx_irq_handler;
4725                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4726                 } else if (INTEL_INFO(dev)->gen == 3) {
4727                         dev->driver->irq_preinstall = i915_irq_preinstall;
4728                         dev->driver->irq_postinstall = i915_irq_postinstall;
4729                         dev->driver->irq_uninstall = i915_irq_uninstall;
4730                         dev->driver->irq_handler = i915_irq_handler;
4731                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4732                 } else {
4733                         dev->driver->irq_preinstall = i965_irq_preinstall;
4734                         dev->driver->irq_postinstall = i965_irq_postinstall;
4735                         dev->driver->irq_uninstall = i965_irq_uninstall;
4736                         dev->driver->irq_handler = i965_irq_handler;
4737                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4738                 }
4739                 dev->driver->enable_vblank = i915_enable_vblank;
4740                 dev->driver->disable_vblank = i915_disable_vblank;
4741         }
4742 }
4743
4744 void intel_hpd_init(struct drm_device *dev)
4745 {
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         struct drm_mode_config *mode_config = &dev->mode_config;
4748         struct drm_connector *connector;
4749         unsigned long irqflags;
4750         int i;
4751
4752         for (i = 1; i < HPD_NUM_PINS; i++) {
4753                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4754                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4755         }
4756         list_for_each_entry(connector, &mode_config->connector_list, head) {
4757                 struct intel_connector *intel_connector = to_intel_connector(connector);
4758                 connector->polled = intel_connector->polled;
4759                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4760                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4761                 if (intel_connector->mst_port)
4762                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4763         }
4764
4765         /* Interrupt setup is already guaranteed to be single-threaded, this is
4766          * just to make the assert_spin_locked checks happy. */
4767         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4768         if (dev_priv->display.hpd_irq_setup)
4769                 dev_priv->display.hpd_irq_setup(dev);
4770         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4771 }
4772
4773 /* Disable interrupts so we can allow runtime PM. */
4774 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4775 {
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777
4778         dev->driver->irq_uninstall(dev);
4779         dev_priv->pm._irqs_disabled = true;
4780 }
4781
4782 /* Restore interrupts so we can recover from runtime PM. */
4783 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4784 {
4785         struct drm_i915_private *dev_priv = dev->dev_private;
4786
4787         dev_priv->pm._irqs_disabled = false;
4788         dev->driver->irq_preinstall(dev);
4789         dev->driver->irq_postinstall(dev);
4790 }