Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266         ilk_update_gt_irq(dev_priv, mask, mask);
267         POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         spin_lock_irq(&dev_priv->irq_lock);
344         I915_WRITE(reg, dev_priv->pm_rps_events);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         POSTING_READ(reg);
347         dev_priv->rps.pm_iir = 0;
348         spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
354                 return;
355
356         spin_lock_irq(&dev_priv->irq_lock);
357         WARN_ON_ONCE(dev_priv->rps.pm_iir);
358         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
359         dev_priv->rps.interrupts_enabled = true;
360         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
361                                 dev_priv->pm_rps_events);
362         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
363
364         spin_unlock_irq(&dev_priv->irq_lock);
365 }
366
367 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
368 {
369         return (mask & ~dev_priv->rps.pm_intr_keep);
370 }
371
372 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
373 {
374         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
375                 return;
376
377         spin_lock_irq(&dev_priv->irq_lock);
378         dev_priv->rps.interrupts_enabled = false;
379
380         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
381
382         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
383         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
384                                 ~dev_priv->pm_rps_events);
385
386         spin_unlock_irq(&dev_priv->irq_lock);
387         synchronize_irq(dev_priv->drm.irq);
388
389         /* Now that we will not be generating any more work, flush any
390          * outsanding tasks. As we are called on the RPS idle path,
391          * we will reset the GPU to minimum frequencies, so the current
392          * state of the worker can be discarded.
393          */
394         cancel_work_sync(&dev_priv->rps.work);
395         gen6_reset_rps_interrupts(dev_priv);
396 }
397
398 /**
399  * bdw_update_port_irq - update DE port interrupt
400  * @dev_priv: driver private
401  * @interrupt_mask: mask of interrupt bits to update
402  * @enabled_irq_mask: mask of interrupt bits to enable
403  */
404 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
405                                 uint32_t interrupt_mask,
406                                 uint32_t enabled_irq_mask)
407 {
408         uint32_t new_val;
409         uint32_t old_val;
410
411         assert_spin_locked(&dev_priv->irq_lock);
412
413         WARN_ON(enabled_irq_mask & ~interrupt_mask);
414
415         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
416                 return;
417
418         old_val = I915_READ(GEN8_DE_PORT_IMR);
419
420         new_val = old_val;
421         new_val &= ~interrupt_mask;
422         new_val |= (~enabled_irq_mask & interrupt_mask);
423
424         if (new_val != old_val) {
425                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
426                 POSTING_READ(GEN8_DE_PORT_IMR);
427         }
428 }
429
430 /**
431  * bdw_update_pipe_irq - update DE pipe interrupt
432  * @dev_priv: driver private
433  * @pipe: pipe whose interrupt to update
434  * @interrupt_mask: mask of interrupt bits to update
435  * @enabled_irq_mask: mask of interrupt bits to enable
436  */
437 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
438                          enum pipe pipe,
439                          uint32_t interrupt_mask,
440                          uint32_t enabled_irq_mask)
441 {
442         uint32_t new_val;
443
444         assert_spin_locked(&dev_priv->irq_lock);
445
446         WARN_ON(enabled_irq_mask & ~interrupt_mask);
447
448         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
449                 return;
450
451         new_val = dev_priv->de_irq_mask[pipe];
452         new_val &= ~interrupt_mask;
453         new_val |= (~enabled_irq_mask & interrupt_mask);
454
455         if (new_val != dev_priv->de_irq_mask[pipe]) {
456                 dev_priv->de_irq_mask[pipe] = new_val;
457                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
458                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
459         }
460 }
461
462 /**
463  * ibx_display_interrupt_update - update SDEIMR
464  * @dev_priv: driver private
465  * @interrupt_mask: mask of interrupt bits to update
466  * @enabled_irq_mask: mask of interrupt bits to enable
467  */
468 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
469                                   uint32_t interrupt_mask,
470                                   uint32_t enabled_irq_mask)
471 {
472         uint32_t sdeimr = I915_READ(SDEIMR);
473         sdeimr &= ~interrupt_mask;
474         sdeimr |= (~enabled_irq_mask & interrupt_mask);
475
476         WARN_ON(enabled_irq_mask & ~interrupt_mask);
477
478         assert_spin_locked(&dev_priv->irq_lock);
479
480         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
481                 return;
482
483         I915_WRITE(SDEIMR, sdeimr);
484         POSTING_READ(SDEIMR);
485 }
486
487 static void
488 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
489                        u32 enable_mask, u32 status_mask)
490 {
491         i915_reg_t reg = PIPESTAT(pipe);
492         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
493
494         assert_spin_locked(&dev_priv->irq_lock);
495         WARN_ON(!intel_irqs_enabled(dev_priv));
496
497         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
498                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
499                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
500                       pipe_name(pipe), enable_mask, status_mask))
501                 return;
502
503         if ((pipestat & enable_mask) == enable_mask)
504                 return;
505
506         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
507
508         /* Enable the interrupt, clear any pending status */
509         pipestat |= enable_mask | status_mask;
510         I915_WRITE(reg, pipestat);
511         POSTING_READ(reg);
512 }
513
514 static void
515 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
516                         u32 enable_mask, u32 status_mask)
517 {
518         i915_reg_t reg = PIPESTAT(pipe);
519         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
520
521         assert_spin_locked(&dev_priv->irq_lock);
522         WARN_ON(!intel_irqs_enabled(dev_priv));
523
524         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
525                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
526                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
527                       pipe_name(pipe), enable_mask, status_mask))
528                 return;
529
530         if ((pipestat & enable_mask) == 0)
531                 return;
532
533         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
534
535         pipestat &= ~enable_mask;
536         I915_WRITE(reg, pipestat);
537         POSTING_READ(reg);
538 }
539
540 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
541 {
542         u32 enable_mask = status_mask << 16;
543
544         /*
545          * On pipe A we don't support the PSR interrupt yet,
546          * on pipe B and C the same bit MBZ.
547          */
548         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
549                 return 0;
550         /*
551          * On pipe B and C we don't support the PSR interrupt yet, on pipe
552          * A the same bit is for perf counters which we don't use either.
553          */
554         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
555                 return 0;
556
557         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
558                          SPRITE0_FLIP_DONE_INT_EN_VLV |
559                          SPRITE1_FLIP_DONE_INT_EN_VLV);
560         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
561                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
562         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
563                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
564
565         return enable_mask;
566 }
567
568 void
569 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
570                      u32 status_mask)
571 {
572         u32 enable_mask;
573
574         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
575                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
576                                                            status_mask);
577         else
578                 enable_mask = status_mask << 16;
579         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
580 }
581
582 void
583 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
584                       u32 status_mask)
585 {
586         u32 enable_mask;
587
588         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
589                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
590                                                            status_mask);
591         else
592                 enable_mask = status_mask << 16;
593         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
594 }
595
596 /**
597  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
598  * @dev_priv: i915 device private
599  */
600 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
601 {
602         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
603                 return;
604
605         spin_lock_irq(&dev_priv->irq_lock);
606
607         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608         if (INTEL_GEN(dev_priv) >= 4)
609                 i915_enable_pipestat(dev_priv, PIPE_A,
610                                      PIPE_LEGACY_BLC_EVENT_STATUS);
611
612         spin_unlock_irq(&dev_priv->irq_lock);
613 }
614
615 /*
616  * This timing diagram depicts the video signal in and
617  * around the vertical blanking period.
618  *
619  * Assumptions about the fictitious mode used in this example:
620  *  vblank_start >= 3
621  *  vsync_start = vblank_start + 1
622  *  vsync_end = vblank_start + 2
623  *  vtotal = vblank_start + 3
624  *
625  *           start of vblank:
626  *           latch double buffered registers
627  *           increment frame counter (ctg+)
628  *           generate start of vblank interrupt (gen4+)
629  *           |
630  *           |          frame start:
631  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
632  *           |          may be shifted forward 1-3 extra lines via PIPECONF
633  *           |          |
634  *           |          |  start of vsync:
635  *           |          |  generate vsync interrupt
636  *           |          |  |
637  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
638  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
639  * ----va---> <-----------------vb--------------------> <--------va-------------
640  *       |          |       <----vs----->                     |
641  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
642  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
643  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
644  *       |          |                                         |
645  *       last visible pixel                                   first visible pixel
646  *                  |                                         increment frame counter (gen3/4)
647  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
648  *
649  * x  = horizontal active
650  * _  = horizontal blanking
651  * hs = horizontal sync
652  * va = vertical active
653  * vb = vertical blanking
654  * vs = vertical sync
655  * vbs = vblank_start (number)
656  *
657  * Summary:
658  * - most events happen at the start of horizontal sync
659  * - frame start happens at the start of horizontal blank, 1-4 lines
660  *   (depending on PIPECONF settings) after the start of vblank
661  * - gen3/4 pixel and frame counter are synchronized with the start
662  *   of horizontal active on the first line of vertical active
663  */
664
665 /* Called from drm generic code, passed a 'crtc', which
666  * we use as a pipe index
667  */
668 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
669 {
670         struct drm_i915_private *dev_priv = to_i915(dev);
671         i915_reg_t high_frame, low_frame;
672         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
673         struct intel_crtc *intel_crtc =
674                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
675         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
676
677         htotal = mode->crtc_htotal;
678         hsync_start = mode->crtc_hsync_start;
679         vbl_start = mode->crtc_vblank_start;
680         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
681                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
682
683         /* Convert to pixel count */
684         vbl_start *= htotal;
685
686         /* Start of vblank event occurs at start of hsync */
687         vbl_start -= htotal - hsync_start;
688
689         high_frame = PIPEFRAME(pipe);
690         low_frame = PIPEFRAMEPIXEL(pipe);
691
692         /*
693          * High & low register fields aren't synchronized, so make sure
694          * we get a low value that's stable across two reads of the high
695          * register.
696          */
697         do {
698                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699                 low   = I915_READ(low_frame);
700                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701         } while (high1 != high2);
702
703         high1 >>= PIPE_FRAME_HIGH_SHIFT;
704         pixel = low & PIPE_PIXEL_MASK;
705         low >>= PIPE_FRAME_LOW_SHIFT;
706
707         /*
708          * The frame counter increments at beginning of active.
709          * Cook up a vblank counter by also checking the pixel
710          * counter against vblank start.
711          */
712         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
713 }
714
715 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
716 {
717         struct drm_i915_private *dev_priv = to_i915(dev);
718
719         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
720 }
721
722 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         struct drm_i915_private *dev_priv = to_i915(dev);
727         const struct drm_display_mode *mode = &crtc->base.hwmode;
728         enum pipe pipe = crtc->pipe;
729         int position, vtotal;
730
731         vtotal = mode->crtc_vtotal;
732         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733                 vtotal /= 2;
734
735         if (IS_GEN2(dev_priv))
736                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737         else
738                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739
740         /*
741          * On HSW, the DSL reg (0x70000) appears to return 0 if we
742          * read it just before the start of vblank.  So try it again
743          * so we don't accidentally end up spanning a vblank frame
744          * increment, causing the pipe_update_end() code to squak at us.
745          *
746          * The nature of this problem means we can't simply check the ISR
747          * bit and return the vblank start value; nor can we use the scanline
748          * debug register in the transcoder as it appears to have the same
749          * problem.  We may need to extend this to include other platforms,
750          * but so far testing only shows the problem on HSW.
751          */
752         if (HAS_DDI(dev_priv) && !position) {
753                 int i, temp;
754
755                 for (i = 0; i < 100; i++) {
756                         udelay(1);
757                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758                                 DSL_LINEMASK_GEN3;
759                         if (temp != position) {
760                                 position = temp;
761                                 break;
762                         }
763                 }
764         }
765
766         /*
767          * See update_scanline_offset() for the details on the
768          * scanline_offset adjustment.
769          */
770         return (position + crtc->scanline_offset) % vtotal;
771 }
772
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774                                     unsigned int flags, int *vpos, int *hpos,
775                                     ktime_t *stime, ktime_t *etime,
776                                     const struct drm_display_mode *mode)
777 {
778         struct drm_i915_private *dev_priv = to_i915(dev);
779         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781         int position;
782         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783         bool in_vbl = true;
784         int ret = 0;
785         unsigned long irqflags;
786
787         if (WARN_ON(!mode->crtc_clock)) {
788                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789                                  "pipe %c\n", pipe_name(pipe));
790                 return 0;
791         }
792
793         htotal = mode->crtc_htotal;
794         hsync_start = mode->crtc_hsync_start;
795         vtotal = mode->crtc_vtotal;
796         vbl_start = mode->crtc_vblank_start;
797         vbl_end = mode->crtc_vblank_end;
798
799         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801                 vbl_end /= 2;
802                 vtotal /= 2;
803         }
804
805         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807         /*
808          * Lock uncore.lock, as we will do multiple timing critical raw
809          * register reads, potentially with preemption disabled, so the
810          * following code must not block on uncore.lock.
811          */
812         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816         /* Get optional system timestamp before query. */
817         if (stime)
818                 *stime = ktime_get();
819
820         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
821                 /* No obvious pixelcount register. Only query vertical
822                  * scanout position from Display scan line register.
823                  */
824                 position = __intel_get_crtc_scanline(intel_crtc);
825         } else {
826                 /* Have access to pixelcount since start of frame.
827                  * We can split this into vertical and horizontal
828                  * scanout position.
829                  */
830                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831
832                 /* convert to pixel counts */
833                 vbl_start *= htotal;
834                 vbl_end *= htotal;
835                 vtotal *= htotal;
836
837                 /*
838                  * In interlaced modes, the pixel counter counts all pixels,
839                  * so one field will have htotal more pixels. In order to avoid
840                  * the reported position from jumping backwards when the pixel
841                  * counter is beyond the length of the shorter field, just
842                  * clamp the position the length of the shorter field. This
843                  * matches how the scanline counter based position works since
844                  * the scanline counter doesn't count the two half lines.
845                  */
846                 if (position >= vtotal)
847                         position = vtotal - 1;
848
849                 /*
850                  * Start of vblank interrupt is triggered at start of hsync,
851                  * just prior to the first active line of vblank. However we
852                  * consider lines to start at the leading edge of horizontal
853                  * active. So, should we get here before we've crossed into
854                  * the horizontal active of the first line in vblank, we would
855                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856                  * always add htotal-hsync_start to the current pixel position.
857                  */
858                 position = (position + htotal - hsync_start) % vtotal;
859         }
860
861         /* Get optional system timestamp after query. */
862         if (etime)
863                 *etime = ktime_get();
864
865         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866
867         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868
869         in_vbl = position >= vbl_start && position < vbl_end;
870
871         /*
872          * While in vblank, position will be negative
873          * counting up towards 0 at vbl_end. And outside
874          * vblank, position will be positive counting
875          * up since vbl_end.
876          */
877         if (position >= vbl_start)
878                 position -= vbl_end;
879         else
880                 position += vtotal - vbl_end;
881
882         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
883                 *vpos = position;
884                 *hpos = 0;
885         } else {
886                 *vpos = position / htotal;
887                 *hpos = position - (*vpos * htotal);
888         }
889
890         /* In vblank? */
891         if (in_vbl)
892                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
893
894         return ret;
895 }
896
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900         unsigned long irqflags;
901         int position;
902
903         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904         position = __intel_get_crtc_scanline(crtc);
905         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907         return position;
908 }
909
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911                               int *max_error,
912                               struct timeval *vblank_time,
913                               unsigned flags)
914 {
915         struct drm_crtc *crtc;
916
917         if (pipe >= INTEL_INFO(dev)->num_pipes) {
918                 DRM_ERROR("Invalid crtc %u\n", pipe);
919                 return -EINVAL;
920         }
921
922         /* Get drm_crtc to timestamp: */
923         crtc = intel_get_crtc_for_pipe(dev, pipe);
924         if (crtc == NULL) {
925                 DRM_ERROR("Invalid crtc %u\n", pipe);
926                 return -EINVAL;
927         }
928
929         if (!crtc->hwmode.crtc_clock) {
930                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931                 return -EBUSY;
932         }
933
934         /* Helper routine in DRM core does all the work: */
935         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936                                                      vblank_time, flags,
937                                                      &crtc->hwmode);
938 }
939
940 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
941 {
942         u32 busy_up, busy_down, max_avg, min_avg;
943         u8 new_delay;
944
945         spin_lock(&mchdev_lock);
946
947         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948
949         new_delay = dev_priv->ips.cur_delay;
950
951         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952         busy_up = I915_READ(RCPREVBSYTUPAVG);
953         busy_down = I915_READ(RCPREVBSYTDNAVG);
954         max_avg = I915_READ(RCBMAXAVG);
955         min_avg = I915_READ(RCBMINAVG);
956
957         /* Handle RCS change request from hw */
958         if (busy_up > max_avg) {
959                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960                         new_delay = dev_priv->ips.cur_delay - 1;
961                 if (new_delay < dev_priv->ips.max_delay)
962                         new_delay = dev_priv->ips.max_delay;
963         } else if (busy_down < min_avg) {
964                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965                         new_delay = dev_priv->ips.cur_delay + 1;
966                 if (new_delay > dev_priv->ips.min_delay)
967                         new_delay = dev_priv->ips.min_delay;
968         }
969
970         if (ironlake_set_drps(dev_priv, new_delay))
971                 dev_priv->ips.cur_delay = new_delay;
972
973         spin_unlock(&mchdev_lock);
974
975         return;
976 }
977
978 static void notify_ring(struct intel_engine_cs *engine)
979 {
980         smp_store_mb(engine->breadcrumbs.irq_posted, true);
981         if (intel_engine_wakeup(engine))
982                 trace_i915_gem_request_notify(engine);
983 }
984
985 static void vlv_c0_read(struct drm_i915_private *dev_priv,
986                         struct intel_rps_ei *ei)
987 {
988         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
989         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
990         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
991 }
992
993 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
994                          const struct intel_rps_ei *old,
995                          const struct intel_rps_ei *now,
996                          int threshold)
997 {
998         u64 time, c0;
999         unsigned int mul = 100;
1000
1001         if (old->cz_clock == 0)
1002                 return false;
1003
1004         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1005                 mul <<= 8;
1006
1007         time = now->cz_clock - old->cz_clock;
1008         time *= threshold * dev_priv->czclk_freq;
1009
1010         /* Workload can be split between render + media, e.g. SwapBuffers
1011          * being blitted in X after being rendered in mesa. To account for
1012          * this we need to combine both engines into our activity counter.
1013          */
1014         c0 = now->render_c0 - old->render_c0;
1015         c0 += now->media_c0 - old->media_c0;
1016         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1017
1018         return c0 >= time;
1019 }
1020
1021 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1022 {
1023         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1024         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1025 }
1026
1027 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1028 {
1029         struct intel_rps_ei now;
1030         u32 events = 0;
1031
1032         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1033                 return 0;
1034
1035         vlv_c0_read(dev_priv, &now);
1036         if (now.cz_clock == 0)
1037                 return 0;
1038
1039         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1040                 if (!vlv_c0_above(dev_priv,
1041                                   &dev_priv->rps.down_ei, &now,
1042                                   dev_priv->rps.down_threshold))
1043                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1044                 dev_priv->rps.down_ei = now;
1045         }
1046
1047         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1048                 if (vlv_c0_above(dev_priv,
1049                                  &dev_priv->rps.up_ei, &now,
1050                                  dev_priv->rps.up_threshold))
1051                         events |= GEN6_PM_RP_UP_THRESHOLD;
1052                 dev_priv->rps.up_ei = now;
1053         }
1054
1055         return events;
1056 }
1057
1058 static bool any_waiters(struct drm_i915_private *dev_priv)
1059 {
1060         struct intel_engine_cs *engine;
1061
1062         for_each_engine(engine, dev_priv)
1063                 if (intel_engine_has_waiter(engine))
1064                         return true;
1065
1066         return false;
1067 }
1068
1069 static void gen6_pm_rps_work(struct work_struct *work)
1070 {
1071         struct drm_i915_private *dev_priv =
1072                 container_of(work, struct drm_i915_private, rps.work);
1073         bool client_boost;
1074         int new_delay, adj, min, max;
1075         u32 pm_iir;
1076
1077         spin_lock_irq(&dev_priv->irq_lock);
1078         /* Speed up work cancelation during disabling rps interrupts. */
1079         if (!dev_priv->rps.interrupts_enabled) {
1080                 spin_unlock_irq(&dev_priv->irq_lock);
1081                 return;
1082         }
1083
1084         pm_iir = dev_priv->rps.pm_iir;
1085         dev_priv->rps.pm_iir = 0;
1086         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1087         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1088         client_boost = dev_priv->rps.client_boost;
1089         dev_priv->rps.client_boost = false;
1090         spin_unlock_irq(&dev_priv->irq_lock);
1091
1092         /* Make sure we didn't queue anything we're not going to process. */
1093         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1094
1095         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1096                 return;
1097
1098         mutex_lock(&dev_priv->rps.hw_lock);
1099
1100         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1101
1102         adj = dev_priv->rps.last_adj;
1103         new_delay = dev_priv->rps.cur_freq;
1104         min = dev_priv->rps.min_freq_softlimit;
1105         max = dev_priv->rps.max_freq_softlimit;
1106         if (client_boost || any_waiters(dev_priv))
1107                 max = dev_priv->rps.max_freq;
1108         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1109                 new_delay = dev_priv->rps.boost_freq;
1110                 adj = 0;
1111         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1112                 if (adj > 0)
1113                         adj *= 2;
1114                 else /* CHV needs even encode values */
1115                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1116                 /*
1117                  * For better performance, jump directly
1118                  * to RPe if we're below it.
1119                  */
1120                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1121                         new_delay = dev_priv->rps.efficient_freq;
1122                         adj = 0;
1123                 }
1124         } else if (client_boost || any_waiters(dev_priv)) {
1125                 adj = 0;
1126         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1127                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1128                         new_delay = dev_priv->rps.efficient_freq;
1129                 else
1130                         new_delay = dev_priv->rps.min_freq_softlimit;
1131                 adj = 0;
1132         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1133                 if (adj < 0)
1134                         adj *= 2;
1135                 else /* CHV needs even encode values */
1136                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1137         } else { /* unknown event */
1138                 adj = 0;
1139         }
1140
1141         dev_priv->rps.last_adj = adj;
1142
1143         /* sysfs frequency interfaces may have snuck in while servicing the
1144          * interrupt
1145          */
1146         new_delay += adj;
1147         new_delay = clamp_t(int, new_delay, min, max);
1148
1149         intel_set_rps(dev_priv, new_delay);
1150
1151         mutex_unlock(&dev_priv->rps.hw_lock);
1152 }
1153
1154
1155 /**
1156  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1157  * occurred.
1158  * @work: workqueue struct
1159  *
1160  * Doesn't actually do anything except notify userspace. As a consequence of
1161  * this event, userspace should try to remap the bad rows since statistically
1162  * it is likely the same row is more likely to go bad again.
1163  */
1164 static void ivybridge_parity_work(struct work_struct *work)
1165 {
1166         struct drm_i915_private *dev_priv =
1167                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1168         u32 error_status, row, bank, subbank;
1169         char *parity_event[6];
1170         uint32_t misccpctl;
1171         uint8_t slice = 0;
1172
1173         /* We must turn off DOP level clock gating to access the L3 registers.
1174          * In order to prevent a get/put style interface, acquire struct mutex
1175          * any time we access those registers.
1176          */
1177         mutex_lock(&dev_priv->drm.struct_mutex);
1178
1179         /* If we've screwed up tracking, just let the interrupt fire again */
1180         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1181                 goto out;
1182
1183         misccpctl = I915_READ(GEN7_MISCCPCTL);
1184         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1185         POSTING_READ(GEN7_MISCCPCTL);
1186
1187         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1188                 i915_reg_t reg;
1189
1190                 slice--;
1191                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1192                         break;
1193
1194                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1195
1196                 reg = GEN7_L3CDERRST1(slice);
1197
1198                 error_status = I915_READ(reg);
1199                 row = GEN7_PARITY_ERROR_ROW(error_status);
1200                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1201                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1202
1203                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1204                 POSTING_READ(reg);
1205
1206                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1207                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1208                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1209                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1210                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1211                 parity_event[5] = NULL;
1212
1213                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1214                                    KOBJ_CHANGE, parity_event);
1215
1216                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1217                           slice, row, bank, subbank);
1218
1219                 kfree(parity_event[4]);
1220                 kfree(parity_event[3]);
1221                 kfree(parity_event[2]);
1222                 kfree(parity_event[1]);
1223         }
1224
1225         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1226
1227 out:
1228         WARN_ON(dev_priv->l3_parity.which_slice);
1229         spin_lock_irq(&dev_priv->irq_lock);
1230         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1231         spin_unlock_irq(&dev_priv->irq_lock);
1232
1233         mutex_unlock(&dev_priv->drm.struct_mutex);
1234 }
1235
1236 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1237                                                u32 iir)
1238 {
1239         if (!HAS_L3_DPF(dev_priv))
1240                 return;
1241
1242         spin_lock(&dev_priv->irq_lock);
1243         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1244         spin_unlock(&dev_priv->irq_lock);
1245
1246         iir &= GT_PARITY_ERROR(dev_priv);
1247         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1248                 dev_priv->l3_parity.which_slice |= 1 << 1;
1249
1250         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1251                 dev_priv->l3_parity.which_slice |= 1 << 0;
1252
1253         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1254 }
1255
1256 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1257                                u32 gt_iir)
1258 {
1259         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1260                 notify_ring(&dev_priv->engine[RCS]);
1261         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1262                 notify_ring(&dev_priv->engine[VCS]);
1263 }
1264
1265 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1266                                u32 gt_iir)
1267 {
1268         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1269                 notify_ring(&dev_priv->engine[RCS]);
1270         if (gt_iir & GT_BSD_USER_INTERRUPT)
1271                 notify_ring(&dev_priv->engine[VCS]);
1272         if (gt_iir & GT_BLT_USER_INTERRUPT)
1273                 notify_ring(&dev_priv->engine[BCS]);
1274
1275         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1276                       GT_BSD_CS_ERROR_INTERRUPT |
1277                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1278                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1279
1280         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1281                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1282 }
1283
1284 static __always_inline void
1285 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1286 {
1287         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1288                 notify_ring(engine);
1289         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1290                 tasklet_schedule(&engine->irq_tasklet);
1291 }
1292
1293 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1294                                    u32 master_ctl,
1295                                    u32 gt_iir[4])
1296 {
1297         irqreturn_t ret = IRQ_NONE;
1298
1299         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1300                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1301                 if (gt_iir[0]) {
1302                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1303                         ret = IRQ_HANDLED;
1304                 } else
1305                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1306         }
1307
1308         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1309                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1310                 if (gt_iir[1]) {
1311                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1312                         ret = IRQ_HANDLED;
1313                 } else
1314                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1315         }
1316
1317         if (master_ctl & GEN8_GT_VECS_IRQ) {
1318                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1319                 if (gt_iir[3]) {
1320                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1321                         ret = IRQ_HANDLED;
1322                 } else
1323                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1324         }
1325
1326         if (master_ctl & GEN8_GT_PM_IRQ) {
1327                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1328                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1329                         I915_WRITE_FW(GEN8_GT_IIR(2),
1330                                       gt_iir[2] & dev_priv->pm_rps_events);
1331                         ret = IRQ_HANDLED;
1332                 } else
1333                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1334         }
1335
1336         return ret;
1337 }
1338
1339 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1340                                 u32 gt_iir[4])
1341 {
1342         if (gt_iir[0]) {
1343                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1344                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1345                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1346                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1347         }
1348
1349         if (gt_iir[1]) {
1350                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1351                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1352                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1353                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1354         }
1355
1356         if (gt_iir[3])
1357                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1358                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1359
1360         if (gt_iir[2] & dev_priv->pm_rps_events)
1361                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1362 }
1363
1364 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1365 {
1366         switch (port) {
1367         case PORT_A:
1368                 return val & PORTA_HOTPLUG_LONG_DETECT;
1369         case PORT_B:
1370                 return val & PORTB_HOTPLUG_LONG_DETECT;
1371         case PORT_C:
1372                 return val & PORTC_HOTPLUG_LONG_DETECT;
1373         default:
1374                 return false;
1375         }
1376 }
1377
1378 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1379 {
1380         switch (port) {
1381         case PORT_E:
1382                 return val & PORTE_HOTPLUG_LONG_DETECT;
1383         default:
1384                 return false;
1385         }
1386 }
1387
1388 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1389 {
1390         switch (port) {
1391         case PORT_A:
1392                 return val & PORTA_HOTPLUG_LONG_DETECT;
1393         case PORT_B:
1394                 return val & PORTB_HOTPLUG_LONG_DETECT;
1395         case PORT_C:
1396                 return val & PORTC_HOTPLUG_LONG_DETECT;
1397         case PORT_D:
1398                 return val & PORTD_HOTPLUG_LONG_DETECT;
1399         default:
1400                 return false;
1401         }
1402 }
1403
1404 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1405 {
1406         switch (port) {
1407         case PORT_A:
1408                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1409         default:
1410                 return false;
1411         }
1412 }
1413
1414 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416         switch (port) {
1417         case PORT_B:
1418                 return val & PORTB_HOTPLUG_LONG_DETECT;
1419         case PORT_C:
1420                 return val & PORTC_HOTPLUG_LONG_DETECT;
1421         case PORT_D:
1422                 return val & PORTD_HOTPLUG_LONG_DETECT;
1423         default:
1424                 return false;
1425         }
1426 }
1427
1428 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1429 {
1430         switch (port) {
1431         case PORT_B:
1432                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1433         case PORT_C:
1434                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1435         case PORT_D:
1436                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1437         default:
1438                 return false;
1439         }
1440 }
1441
1442 /*
1443  * Get a bit mask of pins that have triggered, and which ones may be long.
1444  * This can be called multiple times with the same masks to accumulate
1445  * hotplug detection results from several registers.
1446  *
1447  * Note that the caller is expected to zero out the masks initially.
1448  */
1449 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1450                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1451                              const u32 hpd[HPD_NUM_PINS],
1452                              bool long_pulse_detect(enum port port, u32 val))
1453 {
1454         enum port port;
1455         int i;
1456
1457         for_each_hpd_pin(i) {
1458                 if ((hpd[i] & hotplug_trigger) == 0)
1459                         continue;
1460
1461                 *pin_mask |= BIT(i);
1462
1463                 if (!intel_hpd_pin_to_port(i, &port))
1464                         continue;
1465
1466                 if (long_pulse_detect(port, dig_hotplug_reg))
1467                         *long_mask |= BIT(i);
1468         }
1469
1470         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1471                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1472
1473 }
1474
1475 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1476 {
1477         wake_up_all(&dev_priv->gmbus_wait_queue);
1478 }
1479
1480 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1481 {
1482         wake_up_all(&dev_priv->gmbus_wait_queue);
1483 }
1484
1485 #if defined(CONFIG_DEBUG_FS)
1486 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1487                                          enum pipe pipe,
1488                                          uint32_t crc0, uint32_t crc1,
1489                                          uint32_t crc2, uint32_t crc3,
1490                                          uint32_t crc4)
1491 {
1492         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1493         struct intel_pipe_crc_entry *entry;
1494         int head, tail;
1495
1496         spin_lock(&pipe_crc->lock);
1497
1498         if (!pipe_crc->entries) {
1499                 spin_unlock(&pipe_crc->lock);
1500                 DRM_DEBUG_KMS("spurious interrupt\n");
1501                 return;
1502         }
1503
1504         head = pipe_crc->head;
1505         tail = pipe_crc->tail;
1506
1507         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1508                 spin_unlock(&pipe_crc->lock);
1509                 DRM_ERROR("CRC buffer overflowing\n");
1510                 return;
1511         }
1512
1513         entry = &pipe_crc->entries[head];
1514
1515         entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1516                                                                  pipe);
1517         entry->crc[0] = crc0;
1518         entry->crc[1] = crc1;
1519         entry->crc[2] = crc2;
1520         entry->crc[3] = crc3;
1521         entry->crc[4] = crc4;
1522
1523         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1524         pipe_crc->head = head;
1525
1526         spin_unlock(&pipe_crc->lock);
1527
1528         wake_up_interruptible(&pipe_crc->wq);
1529 }
1530 #else
1531 static inline void
1532 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1533                              enum pipe pipe,
1534                              uint32_t crc0, uint32_t crc1,
1535                              uint32_t crc2, uint32_t crc3,
1536                              uint32_t crc4) {}
1537 #endif
1538
1539
1540 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1541                                      enum pipe pipe)
1542 {
1543         display_pipe_crc_irq_handler(dev_priv, pipe,
1544                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1545                                      0, 0, 0, 0);
1546 }
1547
1548 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1549                                      enum pipe pipe)
1550 {
1551         display_pipe_crc_irq_handler(dev_priv, pipe,
1552                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1553                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1554                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1555                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1556                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1557 }
1558
1559 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1560                                       enum pipe pipe)
1561 {
1562         uint32_t res1, res2;
1563
1564         if (INTEL_GEN(dev_priv) >= 3)
1565                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1566         else
1567                 res1 = 0;
1568
1569         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1570                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1571         else
1572                 res2 = 0;
1573
1574         display_pipe_crc_irq_handler(dev_priv, pipe,
1575                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1576                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1577                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1578                                      res1, res2);
1579 }
1580
1581 /* The RPS events need forcewake, so we add them to a work queue and mask their
1582  * IMR bits until the work is done. Other interrupts can be processed without
1583  * the work queue. */
1584 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1585 {
1586         if (pm_iir & dev_priv->pm_rps_events) {
1587                 spin_lock(&dev_priv->irq_lock);
1588                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1589                 if (dev_priv->rps.interrupts_enabled) {
1590                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1591                         schedule_work(&dev_priv->rps.work);
1592                 }
1593                 spin_unlock(&dev_priv->irq_lock);
1594         }
1595
1596         if (INTEL_INFO(dev_priv)->gen >= 8)
1597                 return;
1598
1599         if (HAS_VEBOX(dev_priv)) {
1600                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1601                         notify_ring(&dev_priv->engine[VECS]);
1602
1603                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1604                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1605         }
1606 }
1607
1608 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1609                                      enum pipe pipe)
1610 {
1611         bool ret;
1612
1613         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1614         if (ret)
1615                 intel_finish_page_flip_mmio(dev_priv, pipe);
1616
1617         return ret;
1618 }
1619
1620 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1621                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1622 {
1623         int pipe;
1624
1625         spin_lock(&dev_priv->irq_lock);
1626
1627         if (!dev_priv->display_irqs_enabled) {
1628                 spin_unlock(&dev_priv->irq_lock);
1629                 return;
1630         }
1631
1632         for_each_pipe(dev_priv, pipe) {
1633                 i915_reg_t reg;
1634                 u32 mask, iir_bit = 0;
1635
1636                 /*
1637                  * PIPESTAT bits get signalled even when the interrupt is
1638                  * disabled with the mask bits, and some of the status bits do
1639                  * not generate interrupts at all (like the underrun bit). Hence
1640                  * we need to be careful that we only handle what we want to
1641                  * handle.
1642                  */
1643
1644                 /* fifo underruns are filterered in the underrun handler. */
1645                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1646
1647                 switch (pipe) {
1648                 case PIPE_A:
1649                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1650                         break;
1651                 case PIPE_B:
1652                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1653                         break;
1654                 case PIPE_C:
1655                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1656                         break;
1657                 }
1658                 if (iir & iir_bit)
1659                         mask |= dev_priv->pipestat_irq_mask[pipe];
1660
1661                 if (!mask)
1662                         continue;
1663
1664                 reg = PIPESTAT(pipe);
1665                 mask |= PIPESTAT_INT_ENABLE_MASK;
1666                 pipe_stats[pipe] = I915_READ(reg) & mask;
1667
1668                 /*
1669                  * Clear the PIPE*STAT regs before the IIR
1670                  */
1671                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1672                                         PIPESTAT_INT_STATUS_MASK))
1673                         I915_WRITE(reg, pipe_stats[pipe]);
1674         }
1675         spin_unlock(&dev_priv->irq_lock);
1676 }
1677
1678 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1679                                             u32 pipe_stats[I915_MAX_PIPES])
1680 {
1681         enum pipe pipe;
1682
1683         for_each_pipe(dev_priv, pipe) {
1684                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1685                     intel_pipe_handle_vblank(dev_priv, pipe))
1686                         intel_check_page_flip(dev_priv, pipe);
1687
1688                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1689                         intel_finish_page_flip_cs(dev_priv, pipe);
1690
1691                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1692                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1693
1694                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1695                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1696         }
1697
1698         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1699                 gmbus_irq_handler(dev_priv);
1700 }
1701
1702 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1703 {
1704         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1705
1706         if (hotplug_status)
1707                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1708
1709         return hotplug_status;
1710 }
1711
1712 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1713                                  u32 hotplug_status)
1714 {
1715         u32 pin_mask = 0, long_mask = 0;
1716
1717         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1718             IS_CHERRYVIEW(dev_priv)) {
1719                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1720
1721                 if (hotplug_trigger) {
1722                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1723                                            hotplug_trigger, hpd_status_g4x,
1724                                            i9xx_port_hotplug_long_detect);
1725
1726                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1727                 }
1728
1729                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1730                         dp_aux_irq_handler(dev_priv);
1731         } else {
1732                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1733
1734                 if (hotplug_trigger) {
1735                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1736                                            hotplug_trigger, hpd_status_i915,
1737                                            i9xx_port_hotplug_long_detect);
1738                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1739                 }
1740         }
1741 }
1742
1743 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1744 {
1745         struct drm_device *dev = arg;
1746         struct drm_i915_private *dev_priv = to_i915(dev);
1747         irqreturn_t ret = IRQ_NONE;
1748
1749         if (!intel_irqs_enabled(dev_priv))
1750                 return IRQ_NONE;
1751
1752         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1753         disable_rpm_wakeref_asserts(dev_priv);
1754
1755         do {
1756                 u32 iir, gt_iir, pm_iir;
1757                 u32 pipe_stats[I915_MAX_PIPES] = {};
1758                 u32 hotplug_status = 0;
1759                 u32 ier = 0;
1760
1761                 gt_iir = I915_READ(GTIIR);
1762                 pm_iir = I915_READ(GEN6_PMIIR);
1763                 iir = I915_READ(VLV_IIR);
1764
1765                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1766                         break;
1767
1768                 ret = IRQ_HANDLED;
1769
1770                 /*
1771                  * Theory on interrupt generation, based on empirical evidence:
1772                  *
1773                  * x = ((VLV_IIR & VLV_IER) ||
1774                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1775                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1776                  *
1777                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1778                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1779                  * guarantee the CPU interrupt will be raised again even if we
1780                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1781                  * bits this time around.
1782                  */
1783                 I915_WRITE(VLV_MASTER_IER, 0);
1784                 ier = I915_READ(VLV_IER);
1785                 I915_WRITE(VLV_IER, 0);
1786
1787                 if (gt_iir)
1788                         I915_WRITE(GTIIR, gt_iir);
1789                 if (pm_iir)
1790                         I915_WRITE(GEN6_PMIIR, pm_iir);
1791
1792                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1793                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1794
1795                 /* Call regardless, as some status bits might not be
1796                  * signalled in iir */
1797                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1798
1799                 /*
1800                  * VLV_IIR is single buffered, and reflects the level
1801                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1802                  */
1803                 if (iir)
1804                         I915_WRITE(VLV_IIR, iir);
1805
1806                 I915_WRITE(VLV_IER, ier);
1807                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1808                 POSTING_READ(VLV_MASTER_IER);
1809
1810                 if (gt_iir)
1811                         snb_gt_irq_handler(dev_priv, gt_iir);
1812                 if (pm_iir)
1813                         gen6_rps_irq_handler(dev_priv, pm_iir);
1814
1815                 if (hotplug_status)
1816                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1817
1818                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1819         } while (0);
1820
1821         enable_rpm_wakeref_asserts(dev_priv);
1822
1823         return ret;
1824 }
1825
1826 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1827 {
1828         struct drm_device *dev = arg;
1829         struct drm_i915_private *dev_priv = to_i915(dev);
1830         irqreturn_t ret = IRQ_NONE;
1831
1832         if (!intel_irqs_enabled(dev_priv))
1833                 return IRQ_NONE;
1834
1835         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1836         disable_rpm_wakeref_asserts(dev_priv);
1837
1838         do {
1839                 u32 master_ctl, iir;
1840                 u32 gt_iir[4] = {};
1841                 u32 pipe_stats[I915_MAX_PIPES] = {};
1842                 u32 hotplug_status = 0;
1843                 u32 ier = 0;
1844
1845                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1846                 iir = I915_READ(VLV_IIR);
1847
1848                 if (master_ctl == 0 && iir == 0)
1849                         break;
1850
1851                 ret = IRQ_HANDLED;
1852
1853                 /*
1854                  * Theory on interrupt generation, based on empirical evidence:
1855                  *
1856                  * x = ((VLV_IIR & VLV_IER) ||
1857                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1858                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1859                  *
1860                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1861                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1862                  * guarantee the CPU interrupt will be raised again even if we
1863                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1864                  * bits this time around.
1865                  */
1866                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1867                 ier = I915_READ(VLV_IER);
1868                 I915_WRITE(VLV_IER, 0);
1869
1870                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1871
1872                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1873                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1874
1875                 /* Call regardless, as some status bits might not be
1876                  * signalled in iir */
1877                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1878
1879                 /*
1880                  * VLV_IIR is single buffered, and reflects the level
1881                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1882                  */
1883                 if (iir)
1884                         I915_WRITE(VLV_IIR, iir);
1885
1886                 I915_WRITE(VLV_IER, ier);
1887                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1888                 POSTING_READ(GEN8_MASTER_IRQ);
1889
1890                 gen8_gt_irq_handler(dev_priv, gt_iir);
1891
1892                 if (hotplug_status)
1893                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1894
1895                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1896         } while (0);
1897
1898         enable_rpm_wakeref_asserts(dev_priv);
1899
1900         return ret;
1901 }
1902
1903 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1904                                 u32 hotplug_trigger,
1905                                 const u32 hpd[HPD_NUM_PINS])
1906 {
1907         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1908
1909         /*
1910          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1911          * unless we touch the hotplug register, even if hotplug_trigger is
1912          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1913          * errors.
1914          */
1915         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1916         if (!hotplug_trigger) {
1917                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1918                         PORTD_HOTPLUG_STATUS_MASK |
1919                         PORTC_HOTPLUG_STATUS_MASK |
1920                         PORTB_HOTPLUG_STATUS_MASK;
1921                 dig_hotplug_reg &= ~mask;
1922         }
1923
1924         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1925         if (!hotplug_trigger)
1926                 return;
1927
1928         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1929                            dig_hotplug_reg, hpd,
1930                            pch_port_hotplug_long_detect);
1931
1932         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1933 }
1934
1935 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1936 {
1937         int pipe;
1938         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1939
1940         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1941
1942         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1943                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1944                                SDE_AUDIO_POWER_SHIFT);
1945                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1946                                  port_name(port));
1947         }
1948
1949         if (pch_iir & SDE_AUX_MASK)
1950                 dp_aux_irq_handler(dev_priv);
1951
1952         if (pch_iir & SDE_GMBUS)
1953                 gmbus_irq_handler(dev_priv);
1954
1955         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1956                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1957
1958         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1959                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1960
1961         if (pch_iir & SDE_POISON)
1962                 DRM_ERROR("PCH poison interrupt\n");
1963
1964         if (pch_iir & SDE_FDI_MASK)
1965                 for_each_pipe(dev_priv, pipe)
1966                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1967                                          pipe_name(pipe),
1968                                          I915_READ(FDI_RX_IIR(pipe)));
1969
1970         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1971                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1972
1973         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1974                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1975
1976         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1977                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1978
1979         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1980                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1981 }
1982
1983 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1984 {
1985         u32 err_int = I915_READ(GEN7_ERR_INT);
1986         enum pipe pipe;
1987
1988         if (err_int & ERR_INT_POISON)
1989                 DRM_ERROR("Poison interrupt\n");
1990
1991         for_each_pipe(dev_priv, pipe) {
1992                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1993                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1994
1995                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1996                         if (IS_IVYBRIDGE(dev_priv))
1997                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1998                         else
1999                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2000                 }
2001         }
2002
2003         I915_WRITE(GEN7_ERR_INT, err_int);
2004 }
2005
2006 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2007 {
2008         u32 serr_int = I915_READ(SERR_INT);
2009
2010         if (serr_int & SERR_INT_POISON)
2011                 DRM_ERROR("PCH poison interrupt\n");
2012
2013         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2014                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2015
2016         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2017                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2018
2019         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2020                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2021
2022         I915_WRITE(SERR_INT, serr_int);
2023 }
2024
2025 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2026 {
2027         int pipe;
2028         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2029
2030         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2031
2032         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2033                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2034                                SDE_AUDIO_POWER_SHIFT_CPT);
2035                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2036                                  port_name(port));
2037         }
2038
2039         if (pch_iir & SDE_AUX_MASK_CPT)
2040                 dp_aux_irq_handler(dev_priv);
2041
2042         if (pch_iir & SDE_GMBUS_CPT)
2043                 gmbus_irq_handler(dev_priv);
2044
2045         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2046                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2047
2048         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2049                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2050
2051         if (pch_iir & SDE_FDI_MASK_CPT)
2052                 for_each_pipe(dev_priv, pipe)
2053                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2054                                          pipe_name(pipe),
2055                                          I915_READ(FDI_RX_IIR(pipe)));
2056
2057         if (pch_iir & SDE_ERROR_CPT)
2058                 cpt_serr_int_handler(dev_priv);
2059 }
2060
2061 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2062 {
2063         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2064                 ~SDE_PORTE_HOTPLUG_SPT;
2065         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2066         u32 pin_mask = 0, long_mask = 0;
2067
2068         if (hotplug_trigger) {
2069                 u32 dig_hotplug_reg;
2070
2071                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2072                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2073
2074                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2075                                    dig_hotplug_reg, hpd_spt,
2076                                    spt_port_hotplug_long_detect);
2077         }
2078
2079         if (hotplug2_trigger) {
2080                 u32 dig_hotplug_reg;
2081
2082                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2083                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2084
2085                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2086                                    dig_hotplug_reg, hpd_spt,
2087                                    spt_port_hotplug2_long_detect);
2088         }
2089
2090         if (pin_mask)
2091                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2092
2093         if (pch_iir & SDE_GMBUS_CPT)
2094                 gmbus_irq_handler(dev_priv);
2095 }
2096
2097 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2098                                 u32 hotplug_trigger,
2099                                 const u32 hpd[HPD_NUM_PINS])
2100 {
2101         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2102
2103         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2104         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2105
2106         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2107                            dig_hotplug_reg, hpd,
2108                            ilk_port_hotplug_long_detect);
2109
2110         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2111 }
2112
2113 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2114                                     u32 de_iir)
2115 {
2116         enum pipe pipe;
2117         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2118
2119         if (hotplug_trigger)
2120                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2121
2122         if (de_iir & DE_AUX_CHANNEL_A)
2123                 dp_aux_irq_handler(dev_priv);
2124
2125         if (de_iir & DE_GSE)
2126                 intel_opregion_asle_intr(dev_priv);
2127
2128         if (de_iir & DE_POISON)
2129                 DRM_ERROR("Poison interrupt\n");
2130
2131         for_each_pipe(dev_priv, pipe) {
2132                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2133                     intel_pipe_handle_vblank(dev_priv, pipe))
2134                         intel_check_page_flip(dev_priv, pipe);
2135
2136                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2137                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2138
2139                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2140                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2141
2142                 /* plane/pipes map 1:1 on ilk+ */
2143                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2144                         intel_finish_page_flip_cs(dev_priv, pipe);
2145         }
2146
2147         /* check event from PCH */
2148         if (de_iir & DE_PCH_EVENT) {
2149                 u32 pch_iir = I915_READ(SDEIIR);
2150
2151                 if (HAS_PCH_CPT(dev_priv))
2152                         cpt_irq_handler(dev_priv, pch_iir);
2153                 else
2154                         ibx_irq_handler(dev_priv, pch_iir);
2155
2156                 /* should clear PCH hotplug event before clear CPU irq */
2157                 I915_WRITE(SDEIIR, pch_iir);
2158         }
2159
2160         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2161                 ironlake_rps_change_irq_handler(dev_priv);
2162 }
2163
2164 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2165                                     u32 de_iir)
2166 {
2167         enum pipe pipe;
2168         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2169
2170         if (hotplug_trigger)
2171                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2172
2173         if (de_iir & DE_ERR_INT_IVB)
2174                 ivb_err_int_handler(dev_priv);
2175
2176         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2177                 dp_aux_irq_handler(dev_priv);
2178
2179         if (de_iir & DE_GSE_IVB)
2180                 intel_opregion_asle_intr(dev_priv);
2181
2182         for_each_pipe(dev_priv, pipe) {
2183                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2184                     intel_pipe_handle_vblank(dev_priv, pipe))
2185                         intel_check_page_flip(dev_priv, pipe);
2186
2187                 /* plane/pipes map 1:1 on ilk+ */
2188                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2189                         intel_finish_page_flip_cs(dev_priv, pipe);
2190         }
2191
2192         /* check event from PCH */
2193         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2194                 u32 pch_iir = I915_READ(SDEIIR);
2195
2196                 cpt_irq_handler(dev_priv, pch_iir);
2197
2198                 /* clear PCH hotplug event before clear CPU irq */
2199                 I915_WRITE(SDEIIR, pch_iir);
2200         }
2201 }
2202
2203 /*
2204  * To handle irqs with the minimum potential races with fresh interrupts, we:
2205  * 1 - Disable Master Interrupt Control.
2206  * 2 - Find the source(s) of the interrupt.
2207  * 3 - Clear the Interrupt Identity bits (IIR).
2208  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2209  * 5 - Re-enable Master Interrupt Control.
2210  */
2211 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2212 {
2213         struct drm_device *dev = arg;
2214         struct drm_i915_private *dev_priv = to_i915(dev);
2215         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2216         irqreturn_t ret = IRQ_NONE;
2217
2218         if (!intel_irqs_enabled(dev_priv))
2219                 return IRQ_NONE;
2220
2221         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2222         disable_rpm_wakeref_asserts(dev_priv);
2223
2224         /* disable master interrupt before clearing iir  */
2225         de_ier = I915_READ(DEIER);
2226         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2227         POSTING_READ(DEIER);
2228
2229         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2230          * interrupts will will be stored on its back queue, and then we'll be
2231          * able to process them after we restore SDEIER (as soon as we restore
2232          * it, we'll get an interrupt if SDEIIR still has something to process
2233          * due to its back queue). */
2234         if (!HAS_PCH_NOP(dev_priv)) {
2235                 sde_ier = I915_READ(SDEIER);
2236                 I915_WRITE(SDEIER, 0);
2237                 POSTING_READ(SDEIER);
2238         }
2239
2240         /* Find, clear, then process each source of interrupt */
2241
2242         gt_iir = I915_READ(GTIIR);
2243         if (gt_iir) {
2244                 I915_WRITE(GTIIR, gt_iir);
2245                 ret = IRQ_HANDLED;
2246                 if (INTEL_GEN(dev_priv) >= 6)
2247                         snb_gt_irq_handler(dev_priv, gt_iir);
2248                 else
2249                         ilk_gt_irq_handler(dev_priv, gt_iir);
2250         }
2251
2252         de_iir = I915_READ(DEIIR);
2253         if (de_iir) {
2254                 I915_WRITE(DEIIR, de_iir);
2255                 ret = IRQ_HANDLED;
2256                 if (INTEL_GEN(dev_priv) >= 7)
2257                         ivb_display_irq_handler(dev_priv, de_iir);
2258                 else
2259                         ilk_display_irq_handler(dev_priv, de_iir);
2260         }
2261
2262         if (INTEL_GEN(dev_priv) >= 6) {
2263                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2264                 if (pm_iir) {
2265                         I915_WRITE(GEN6_PMIIR, pm_iir);
2266                         ret = IRQ_HANDLED;
2267                         gen6_rps_irq_handler(dev_priv, pm_iir);
2268                 }
2269         }
2270
2271         I915_WRITE(DEIER, de_ier);
2272         POSTING_READ(DEIER);
2273         if (!HAS_PCH_NOP(dev_priv)) {
2274                 I915_WRITE(SDEIER, sde_ier);
2275                 POSTING_READ(SDEIER);
2276         }
2277
2278         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2279         enable_rpm_wakeref_asserts(dev_priv);
2280
2281         return ret;
2282 }
2283
2284 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2285                                 u32 hotplug_trigger,
2286                                 const u32 hpd[HPD_NUM_PINS])
2287 {
2288         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2289
2290         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2291         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2292
2293         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2294                            dig_hotplug_reg, hpd,
2295                            bxt_port_hotplug_long_detect);
2296
2297         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2298 }
2299
2300 static irqreturn_t
2301 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2302 {
2303         irqreturn_t ret = IRQ_NONE;
2304         u32 iir;
2305         enum pipe pipe;
2306
2307         if (master_ctl & GEN8_DE_MISC_IRQ) {
2308                 iir = I915_READ(GEN8_DE_MISC_IIR);
2309                 if (iir) {
2310                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2311                         ret = IRQ_HANDLED;
2312                         if (iir & GEN8_DE_MISC_GSE)
2313                                 intel_opregion_asle_intr(dev_priv);
2314                         else
2315                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2316                 }
2317                 else
2318                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2319         }
2320
2321         if (master_ctl & GEN8_DE_PORT_IRQ) {
2322                 iir = I915_READ(GEN8_DE_PORT_IIR);
2323                 if (iir) {
2324                         u32 tmp_mask;
2325                         bool found = false;
2326
2327                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2328                         ret = IRQ_HANDLED;
2329
2330                         tmp_mask = GEN8_AUX_CHANNEL_A;
2331                         if (INTEL_INFO(dev_priv)->gen >= 9)
2332                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2333                                             GEN9_AUX_CHANNEL_C |
2334                                             GEN9_AUX_CHANNEL_D;
2335
2336                         if (iir & tmp_mask) {
2337                                 dp_aux_irq_handler(dev_priv);
2338                                 found = true;
2339                         }
2340
2341                         if (IS_BROXTON(dev_priv)) {
2342                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2343                                 if (tmp_mask) {
2344                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2345                                                             hpd_bxt);
2346                                         found = true;
2347                                 }
2348                         } else if (IS_BROADWELL(dev_priv)) {
2349                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2350                                 if (tmp_mask) {
2351                                         ilk_hpd_irq_handler(dev_priv,
2352                                                             tmp_mask, hpd_bdw);
2353                                         found = true;
2354                                 }
2355                         }
2356
2357                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2358                                 gmbus_irq_handler(dev_priv);
2359                                 found = true;
2360                         }
2361
2362                         if (!found)
2363                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2364                 }
2365                 else
2366                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2367         }
2368
2369         for_each_pipe(dev_priv, pipe) {
2370                 u32 flip_done, fault_errors;
2371
2372                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2373                         continue;
2374
2375                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2376                 if (!iir) {
2377                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2378                         continue;
2379                 }
2380
2381                 ret = IRQ_HANDLED;
2382                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2383
2384                 if (iir & GEN8_PIPE_VBLANK &&
2385                     intel_pipe_handle_vblank(dev_priv, pipe))
2386                         intel_check_page_flip(dev_priv, pipe);
2387
2388                 flip_done = iir;
2389                 if (INTEL_INFO(dev_priv)->gen >= 9)
2390                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2391                 else
2392                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2393
2394                 if (flip_done)
2395                         intel_finish_page_flip_cs(dev_priv, pipe);
2396
2397                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2398                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2399
2400                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2401                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2402
2403                 fault_errors = iir;
2404                 if (INTEL_INFO(dev_priv)->gen >= 9)
2405                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2406                 else
2407                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2408
2409                 if (fault_errors)
2410                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2411                                   pipe_name(pipe),
2412                                   fault_errors);
2413         }
2414
2415         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2416             master_ctl & GEN8_DE_PCH_IRQ) {
2417                 /*
2418                  * FIXME(BDW): Assume for now that the new interrupt handling
2419                  * scheme also closed the SDE interrupt handling race we've seen
2420                  * on older pch-split platforms. But this needs testing.
2421                  */
2422                 iir = I915_READ(SDEIIR);
2423                 if (iir) {
2424                         I915_WRITE(SDEIIR, iir);
2425                         ret = IRQ_HANDLED;
2426
2427                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2428                                 spt_irq_handler(dev_priv, iir);
2429                         else
2430                                 cpt_irq_handler(dev_priv, iir);
2431                 } else {
2432                         /*
2433                          * Like on previous PCH there seems to be something
2434                          * fishy going on with forwarding PCH interrupts.
2435                          */
2436                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2437                 }
2438         }
2439
2440         return ret;
2441 }
2442
2443 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2444 {
2445         struct drm_device *dev = arg;
2446         struct drm_i915_private *dev_priv = to_i915(dev);
2447         u32 master_ctl;
2448         u32 gt_iir[4] = {};
2449         irqreturn_t ret;
2450
2451         if (!intel_irqs_enabled(dev_priv))
2452                 return IRQ_NONE;
2453
2454         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2455         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2456         if (!master_ctl)
2457                 return IRQ_NONE;
2458
2459         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2460
2461         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2462         disable_rpm_wakeref_asserts(dev_priv);
2463
2464         /* Find, clear, then process each source of interrupt */
2465         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2466         gen8_gt_irq_handler(dev_priv, gt_iir);
2467         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2468
2469         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2470         POSTING_READ_FW(GEN8_MASTER_IRQ);
2471
2472         enable_rpm_wakeref_asserts(dev_priv);
2473
2474         return ret;
2475 }
2476
2477 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2478 {
2479         /*
2480          * Notify all waiters for GPU completion events that reset state has
2481          * been changed, and that they need to restart their wait after
2482          * checking for potential errors (and bail out to drop locks if there is
2483          * a gpu reset pending so that i915_error_work_func can acquire them).
2484          */
2485
2486         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2487         wake_up_all(&dev_priv->gpu_error.wait_queue);
2488
2489         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2490         wake_up_all(&dev_priv->pending_flip_queue);
2491 }
2492
2493 /**
2494  * i915_reset_and_wakeup - do process context error handling work
2495  * @dev_priv: i915 device private
2496  *
2497  * Fire an error uevent so userspace can see that a hang or error
2498  * was detected.
2499  */
2500 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2501 {
2502         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2503         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2504         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2505         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2506
2507         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2508
2509         DRM_DEBUG_DRIVER("resetting chip\n");
2510         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2511
2512         /*
2513          * In most cases it's guaranteed that we get here with an RPM
2514          * reference held, for example because there is a pending GPU
2515          * request that won't finish until the reset is done. This
2516          * isn't the case at least when we get here by doing a
2517          * simulated reset via debugs, so get an RPM reference.
2518          */
2519         intel_runtime_pm_get(dev_priv);
2520         intel_prepare_reset(dev_priv);
2521
2522         do {
2523                 /*
2524                  * All state reset _must_ be completed before we update the
2525                  * reset counter, for otherwise waiters might miss the reset
2526                  * pending state and not properly drop locks, resulting in
2527                  * deadlocks with the reset work.
2528                  */
2529                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2530                         i915_reset(dev_priv);
2531                         mutex_unlock(&dev_priv->drm.struct_mutex);
2532                 }
2533
2534                 /* We need to wait for anyone holding the lock to wakeup */
2535         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2536                                      I915_RESET_IN_PROGRESS,
2537                                      TASK_UNINTERRUPTIBLE,
2538                                      HZ));
2539
2540         intel_finish_reset(dev_priv);
2541         intel_runtime_pm_put(dev_priv);
2542
2543         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2544                 kobject_uevent_env(kobj,
2545                                    KOBJ_CHANGE, reset_done_event);
2546
2547         /*
2548          * Note: The wake_up also serves as a memory barrier so that
2549          * waiters see the updated value of the dev_priv->gpu_error.
2550          */
2551         wake_up_all(&dev_priv->gpu_error.reset_queue);
2552 }
2553
2554 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2555 {
2556         uint32_t instdone[I915_NUM_INSTDONE_REG];
2557         u32 eir = I915_READ(EIR);
2558         int pipe, i;
2559
2560         if (!eir)
2561                 return;
2562
2563         pr_err("render error detected, EIR: 0x%08x\n", eir);
2564
2565         i915_get_extra_instdone(dev_priv, instdone);
2566
2567         if (IS_G4X(dev_priv)) {
2568                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2569                         u32 ipeir = I915_READ(IPEIR_I965);
2570
2571                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2572                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2573                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2574                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2575                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2576                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2577                         I915_WRITE(IPEIR_I965, ipeir);
2578                         POSTING_READ(IPEIR_I965);
2579                 }
2580                 if (eir & GM45_ERROR_PAGE_TABLE) {
2581                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2582                         pr_err("page table error\n");
2583                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2584                         I915_WRITE(PGTBL_ER, pgtbl_err);
2585                         POSTING_READ(PGTBL_ER);
2586                 }
2587         }
2588
2589         if (!IS_GEN2(dev_priv)) {
2590                 if (eir & I915_ERROR_PAGE_TABLE) {
2591                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2592                         pr_err("page table error\n");
2593                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2594                         I915_WRITE(PGTBL_ER, pgtbl_err);
2595                         POSTING_READ(PGTBL_ER);
2596                 }
2597         }
2598
2599         if (eir & I915_ERROR_MEMORY_REFRESH) {
2600                 pr_err("memory refresh error:\n");
2601                 for_each_pipe(dev_priv, pipe)
2602                         pr_err("pipe %c stat: 0x%08x\n",
2603                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2604                 /* pipestat has already been acked */
2605         }
2606         if (eir & I915_ERROR_INSTRUCTION) {
2607                 pr_err("instruction error\n");
2608                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2609                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2610                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2611                 if (INTEL_GEN(dev_priv) < 4) {
2612                         u32 ipeir = I915_READ(IPEIR);
2613
2614                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2615                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2616                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2617                         I915_WRITE(IPEIR, ipeir);
2618                         POSTING_READ(IPEIR);
2619                 } else {
2620                         u32 ipeir = I915_READ(IPEIR_I965);
2621
2622                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2623                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2624                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2625                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2626                         I915_WRITE(IPEIR_I965, ipeir);
2627                         POSTING_READ(IPEIR_I965);
2628                 }
2629         }
2630
2631         I915_WRITE(EIR, eir);
2632         POSTING_READ(EIR);
2633         eir = I915_READ(EIR);
2634         if (eir) {
2635                 /*
2636                  * some errors might have become stuck,
2637                  * mask them.
2638                  */
2639                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2640                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2641                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2642         }
2643 }
2644
2645 /**
2646  * i915_handle_error - handle a gpu error
2647  * @dev_priv: i915 device private
2648  * @engine_mask: mask representing engines that are hung
2649  * Do some basic checking of register state at error time and
2650  * dump it to the syslog.  Also call i915_capture_error_state() to make
2651  * sure we get a record and make it available in debugfs.  Fire a uevent
2652  * so userspace knows something bad happened (should trigger collection
2653  * of a ring dump etc.).
2654  * @fmt: Error message format string
2655  */
2656 void i915_handle_error(struct drm_i915_private *dev_priv,
2657                        u32 engine_mask,
2658                        const char *fmt, ...)
2659 {
2660         va_list args;
2661         char error_msg[80];
2662
2663         va_start(args, fmt);
2664         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2665         va_end(args);
2666
2667         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2668         i915_report_and_clear_eir(dev_priv);
2669
2670         if (!engine_mask)
2671                 return;
2672
2673         if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2674                              &dev_priv->gpu_error.flags))
2675                 return;
2676
2677         /*
2678          * Wakeup waiting processes so that the reset function
2679          * i915_reset_and_wakeup doesn't deadlock trying to grab
2680          * various locks. By bumping the reset counter first, the woken
2681          * processes will see a reset in progress and back off,
2682          * releasing their locks and then wait for the reset completion.
2683          * We must do this for _all_ gpu waiters that might hold locks
2684          * that the reset work needs to acquire.
2685          *
2686          * Note: The wake_up also provides a memory barrier to ensure that the
2687          * waiters see the updated value of the reset flags.
2688          */
2689         i915_error_wake_up(dev_priv);
2690
2691         i915_reset_and_wakeup(dev_priv);
2692 }
2693
2694 /* Called from drm generic code, passed 'crtc' which
2695  * we use as a pipe index
2696  */
2697 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2698 {
2699         struct drm_i915_private *dev_priv = to_i915(dev);
2700         unsigned long irqflags;
2701
2702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703         if (INTEL_INFO(dev)->gen >= 4)
2704                 i915_enable_pipestat(dev_priv, pipe,
2705                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2706         else
2707                 i915_enable_pipestat(dev_priv, pipe,
2708                                      PIPE_VBLANK_INTERRUPT_STATUS);
2709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710
2711         return 0;
2712 }
2713
2714 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2715 {
2716         struct drm_i915_private *dev_priv = to_i915(dev);
2717         unsigned long irqflags;
2718         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2719                                                      DE_PIPE_VBLANK(pipe);
2720
2721         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722         ilk_enable_display_irq(dev_priv, bit);
2723         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2724
2725         return 0;
2726 }
2727
2728 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2729 {
2730         struct drm_i915_private *dev_priv = to_i915(dev);
2731         unsigned long irqflags;
2732
2733         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734         i915_enable_pipestat(dev_priv, pipe,
2735                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2736         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738         return 0;
2739 }
2740
2741 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2742 {
2743         struct drm_i915_private *dev_priv = to_i915(dev);
2744         unsigned long irqflags;
2745
2746         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2747         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2748         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2749
2750         return 0;
2751 }
2752
2753 /* Called from drm generic code, passed 'crtc' which
2754  * we use as a pipe index
2755  */
2756 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758         struct drm_i915_private *dev_priv = to_i915(dev);
2759         unsigned long irqflags;
2760
2761         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762         i915_disable_pipestat(dev_priv, pipe,
2763                               PIPE_VBLANK_INTERRUPT_STATUS |
2764                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2765         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766 }
2767
2768 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2769 {
2770         struct drm_i915_private *dev_priv = to_i915(dev);
2771         unsigned long irqflags;
2772         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2773                                                      DE_PIPE_VBLANK(pipe);
2774
2775         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776         ilk_disable_display_irq(dev_priv, bit);
2777         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2778 }
2779
2780 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782         struct drm_i915_private *dev_priv = to_i915(dev);
2783         unsigned long irqflags;
2784
2785         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786         i915_disable_pipestat(dev_priv, pipe,
2787                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2788         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2789 }
2790
2791 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793         struct drm_i915_private *dev_priv = to_i915(dev);
2794         unsigned long irqflags;
2795
2796         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2798         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 }
2800
2801 static bool
2802 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2803 {
2804         if (INTEL_GEN(engine->i915) >= 8) {
2805                 return (ipehr >> 23) == 0x1c;
2806         } else {
2807                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2808                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2809                                  MI_SEMAPHORE_REGISTER);
2810         }
2811 }
2812
2813 static struct intel_engine_cs *
2814 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2815                                  u64 offset)
2816 {
2817         struct drm_i915_private *dev_priv = engine->i915;
2818         struct intel_engine_cs *signaller;
2819
2820         if (INTEL_GEN(dev_priv) >= 8) {
2821                 for_each_engine(signaller, dev_priv) {
2822                         if (engine == signaller)
2823                                 continue;
2824
2825                         if (offset == signaller->semaphore.signal_ggtt[engine->hw_id])
2826                                 return signaller;
2827                 }
2828         } else {
2829                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2830
2831                 for_each_engine(signaller, dev_priv) {
2832                         if(engine == signaller)
2833                                 continue;
2834
2835                         if (sync_bits == signaller->semaphore.mbox.wait[engine->hw_id])
2836                                 return signaller;
2837                 }
2838         }
2839
2840         DRM_DEBUG_DRIVER("No signaller ring found for %s, ipehr 0x%08x, offset 0x%016llx\n",
2841                          engine->name, ipehr, offset);
2842
2843         return ERR_PTR(-ENODEV);
2844 }
2845
2846 static struct intel_engine_cs *
2847 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2848 {
2849         struct drm_i915_private *dev_priv = engine->i915;
2850         void __iomem *vaddr;
2851         u32 cmd, ipehr, head;
2852         u64 offset = 0;
2853         int i, backwards;
2854
2855         /*
2856          * This function does not support execlist mode - any attempt to
2857          * proceed further into this function will result in a kernel panic
2858          * when dereferencing ring->buffer, which is not set up in execlist
2859          * mode.
2860          *
2861          * The correct way of doing it would be to derive the currently
2862          * executing ring buffer from the current context, which is derived
2863          * from the currently running request. Unfortunately, to get the
2864          * current request we would have to grab the struct_mutex before doing
2865          * anything else, which would be ill-advised since some other thread
2866          * might have grabbed it already and managed to hang itself, causing
2867          * the hang checker to deadlock.
2868          *
2869          * Therefore, this function does not support execlist mode in its
2870          * current form. Just return NULL and move on.
2871          */
2872         if (engine->buffer == NULL)
2873                 return NULL;
2874
2875         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2876         if (!ipehr_is_semaphore_wait(engine, ipehr))
2877                 return NULL;
2878
2879         /*
2880          * HEAD is likely pointing to the dword after the actual command,
2881          * so scan backwards until we find the MBOX. But limit it to just 3
2882          * or 4 dwords depending on the semaphore wait command size.
2883          * Note that we don't care about ACTHD here since that might
2884          * point at at batch, and semaphores are always emitted into the
2885          * ringbuffer itself.
2886          */
2887         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2888         backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2889         vaddr = (void __iomem *)engine->buffer->vaddr;
2890
2891         for (i = backwards; i; --i) {
2892                 /*
2893                  * Be paranoid and presume the hw has gone off into the wild -
2894                  * our ring is smaller than what the hardware (and hence
2895                  * HEAD_ADDR) allows. Also handles wrap-around.
2896                  */
2897                 head &= engine->buffer->size - 1;
2898
2899                 /* This here seems to blow up */
2900                 cmd = ioread32(vaddr + head);
2901                 if (cmd == ipehr)
2902                         break;
2903
2904                 head -= 4;
2905         }
2906
2907         if (!i)
2908                 return NULL;
2909
2910         *seqno = ioread32(vaddr + head + 4) + 1;
2911         if (INTEL_GEN(dev_priv) >= 8) {
2912                 offset = ioread32(vaddr + head + 12);
2913                 offset <<= 32;
2914                 offset |= ioread32(vaddr + head + 8);
2915         }
2916         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2917 }
2918
2919 static int semaphore_passed(struct intel_engine_cs *engine)
2920 {
2921         struct drm_i915_private *dev_priv = engine->i915;
2922         struct intel_engine_cs *signaller;
2923         u32 seqno;
2924
2925         engine->hangcheck.deadlock++;
2926
2927         signaller = semaphore_waits_for(engine, &seqno);
2928         if (signaller == NULL)
2929                 return -1;
2930
2931         if (IS_ERR(signaller))
2932                 return 0;
2933
2934         /* Prevent pathological recursion due to driver bugs */
2935         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2936                 return -1;
2937
2938         if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2939                 return 1;
2940
2941         /* cursory check for an unkickable deadlock */
2942         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2943             semaphore_passed(signaller) < 0)
2944                 return -1;
2945
2946         return 0;
2947 }
2948
2949 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2950 {
2951         struct intel_engine_cs *engine;
2952
2953         for_each_engine(engine, dev_priv)
2954                 engine->hangcheck.deadlock = 0;
2955 }
2956
2957 static bool subunits_stuck(struct intel_engine_cs *engine)
2958 {
2959         u32 instdone[I915_NUM_INSTDONE_REG];
2960         bool stuck;
2961         int i;
2962
2963         if (engine->id != RCS)
2964                 return true;
2965
2966         i915_get_extra_instdone(engine->i915, instdone);
2967
2968         /* There might be unstable subunit states even when
2969          * actual head is not moving. Filter out the unstable ones by
2970          * accumulating the undone -> done transitions and only
2971          * consider those as progress.
2972          */
2973         stuck = true;
2974         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2975                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2976
2977                 if (tmp != engine->hangcheck.instdone[i])
2978                         stuck = false;
2979
2980                 engine->hangcheck.instdone[i] |= tmp;
2981         }
2982
2983         return stuck;
2984 }
2985
2986 static enum intel_engine_hangcheck_action
2987 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2988 {
2989         if (acthd != engine->hangcheck.acthd) {
2990
2991                 /* Clear subunit states on head movement */
2992                 memset(engine->hangcheck.instdone, 0,
2993                        sizeof(engine->hangcheck.instdone));
2994
2995                 return HANGCHECK_ACTIVE;
2996         }
2997
2998         if (!subunits_stuck(engine))
2999                 return HANGCHECK_ACTIVE;
3000
3001         return HANGCHECK_HUNG;
3002 }
3003
3004 static enum intel_engine_hangcheck_action
3005 engine_stuck(struct intel_engine_cs *engine, u64 acthd)
3006 {
3007         struct drm_i915_private *dev_priv = engine->i915;
3008         enum intel_engine_hangcheck_action ha;
3009         u32 tmp;
3010
3011         ha = head_stuck(engine, acthd);
3012         if (ha != HANGCHECK_HUNG)
3013                 return ha;
3014
3015         if (IS_GEN2(dev_priv))
3016                 return HANGCHECK_HUNG;
3017
3018         /* Is the chip hanging on a WAIT_FOR_EVENT?
3019          * If so we can simply poke the RB_WAIT bit
3020          * and break the hang. This should work on
3021          * all but the second generation chipsets.
3022          */
3023         tmp = I915_READ_CTL(engine);
3024         if (tmp & RING_WAIT) {
3025                 i915_handle_error(dev_priv, 0,
3026                                   "Kicking stuck wait on %s",
3027                                   engine->name);
3028                 I915_WRITE_CTL(engine, tmp);
3029                 return HANGCHECK_KICK;
3030         }
3031
3032         if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3033                 switch (semaphore_passed(engine)) {
3034                 default:
3035                         return HANGCHECK_HUNG;
3036                 case 1:
3037                         i915_handle_error(dev_priv, 0,
3038                                           "Kicking stuck semaphore on %s",
3039                                           engine->name);
3040                         I915_WRITE_CTL(engine, tmp);
3041                         return HANGCHECK_KICK;
3042                 case 0:
3043                         return HANGCHECK_WAIT;
3044                 }
3045         }
3046
3047         return HANGCHECK_HUNG;
3048 }
3049
3050 /*
3051  * This is called when the chip hasn't reported back with completed
3052  * batchbuffers in a long time. We keep track per ring seqno progress and
3053  * if there are no progress, hangcheck score for that ring is increased.
3054  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3055  * we kick the ring. If we see no progress on three subsequent calls
3056  * we assume chip is wedged and try to fix it by resetting the chip.
3057  */
3058 static void i915_hangcheck_elapsed(struct work_struct *work)
3059 {
3060         struct drm_i915_private *dev_priv =
3061                 container_of(work, typeof(*dev_priv),
3062                              gpu_error.hangcheck_work.work);
3063         struct intel_engine_cs *engine;
3064         unsigned int hung = 0, stuck = 0;
3065         int busy_count = 0;
3066 #define BUSY 1
3067 #define KICK 5
3068 #define HUNG 20
3069 #define ACTIVE_DECAY 15
3070
3071         if (!i915.enable_hangcheck)
3072                 return;
3073
3074         if (!READ_ONCE(dev_priv->gt.awake))
3075                 return;
3076
3077         /* As enabling the GPU requires fairly extensive mmio access,
3078          * periodically arm the mmio checker to see if we are triggering
3079          * any invalid access.
3080          */
3081         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3082
3083         for_each_engine(engine, dev_priv) {
3084                 bool busy = intel_engine_has_waiter(engine);
3085                 u64 acthd;
3086                 u32 seqno;
3087                 u32 submit;
3088
3089                 semaphore_clear_deadlocks(dev_priv);
3090
3091                 /* We don't strictly need an irq-barrier here, as we are not
3092                  * serving an interrupt request, be paranoid in case the
3093                  * barrier has side-effects (such as preventing a broken
3094                  * cacheline snoop) and so be sure that we can see the seqno
3095                  * advance. If the seqno should stick, due to a stale
3096                  * cacheline, we would erroneously declare the GPU hung.
3097                  */
3098                 if (engine->irq_seqno_barrier)
3099                         engine->irq_seqno_barrier(engine);
3100
3101                 acthd = intel_engine_get_active_head(engine);
3102                 seqno = intel_engine_get_seqno(engine);
3103                 submit = READ_ONCE(engine->last_submitted_seqno);
3104
3105                 if (engine->hangcheck.seqno == seqno) {
3106                         if (i915_seqno_passed(seqno, submit)) {
3107                                 engine->hangcheck.action = HANGCHECK_IDLE;
3108                         } else {
3109                                 /* We always increment the hangcheck score
3110                                  * if the engine is busy and still processing
3111                                  * the same request, so that no single request
3112                                  * can run indefinitely (such as a chain of
3113                                  * batches). The only time we do not increment
3114                                  * the hangcheck score on this ring, if this
3115                                  * engine is in a legitimate wait for another
3116                                  * engine. In that case the waiting engine is a
3117                                  * victim and we want to be sure we catch the
3118                                  * right culprit. Then every time we do kick
3119                                  * the ring, add a small increment to the
3120                                  * score so that we can catch a batch that is
3121                                  * being repeatedly kicked and so responsible
3122                                  * for stalling the machine.
3123                                  */
3124                                 engine->hangcheck.action =
3125                                         engine_stuck(engine, acthd);
3126
3127                                 switch (engine->hangcheck.action) {
3128                                 case HANGCHECK_IDLE:
3129                                 case HANGCHECK_WAIT:
3130                                         break;
3131                                 case HANGCHECK_ACTIVE:
3132                                         engine->hangcheck.score += BUSY;
3133                                         break;
3134                                 case HANGCHECK_KICK:
3135                                         engine->hangcheck.score += KICK;
3136                                         break;
3137                                 case HANGCHECK_HUNG:
3138                                         engine->hangcheck.score += HUNG;
3139                                         break;
3140                                 }
3141                         }
3142
3143                         if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3144                                 hung |= intel_engine_flag(engine);
3145                                 if (engine->hangcheck.action != HANGCHECK_HUNG)
3146                                         stuck |= intel_engine_flag(engine);
3147                         }
3148                 } else {
3149                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3150
3151                         /* Gradually reduce the count so that we catch DoS
3152                          * attempts across multiple batches.
3153                          */
3154                         if (engine->hangcheck.score > 0)
3155                                 engine->hangcheck.score -= ACTIVE_DECAY;
3156                         if (engine->hangcheck.score < 0)
3157                                 engine->hangcheck.score = 0;
3158
3159                         /* Clear head and subunit states on seqno movement */
3160                         acthd = 0;
3161
3162                         memset(engine->hangcheck.instdone, 0,
3163                                sizeof(engine->hangcheck.instdone));
3164                 }
3165
3166                 engine->hangcheck.seqno = seqno;
3167                 engine->hangcheck.acthd = acthd;
3168                 busy_count += busy;
3169         }
3170
3171         if (hung) {
3172                 char msg[80];
3173                 unsigned int tmp;
3174                 int len;
3175
3176                 /* If some rings hung but others were still busy, only
3177                  * blame the hanging rings in the synopsis.
3178                  */
3179                 if (stuck != hung)
3180                         hung &= ~stuck;
3181                 len = scnprintf(msg, sizeof(msg),
3182                                 "%s on ", stuck == hung ? "No progress" : "Hang");
3183                 for_each_engine_masked(engine, dev_priv, hung, tmp)
3184                         len += scnprintf(msg + len, sizeof(msg) - len,
3185                                          "%s, ", engine->name);
3186                 msg[len-2] = '\0';
3187
3188                 return i915_handle_error(dev_priv, hung, msg);
3189         }
3190
3191         /* Reset timer in case GPU hangs without another request being added */
3192         if (busy_count)
3193                 i915_queue_hangcheck(dev_priv);
3194 }
3195
3196 static void ibx_irq_reset(struct drm_device *dev)
3197 {
3198         struct drm_i915_private *dev_priv = to_i915(dev);
3199
3200         if (HAS_PCH_NOP(dev))
3201                 return;
3202
3203         GEN5_IRQ_RESET(SDE);
3204
3205         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3206                 I915_WRITE(SERR_INT, 0xffffffff);
3207 }
3208
3209 /*
3210  * SDEIER is also touched by the interrupt handler to work around missed PCH
3211  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3212  * instead we unconditionally enable all PCH interrupt sources here, but then
3213  * only unmask them as needed with SDEIMR.
3214  *
3215  * This function needs to be called before interrupts are enabled.
3216  */
3217 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3218 {
3219         struct drm_i915_private *dev_priv = to_i915(dev);
3220
3221         if (HAS_PCH_NOP(dev))
3222                 return;
3223
3224         WARN_ON(I915_READ(SDEIER) != 0);
3225         I915_WRITE(SDEIER, 0xffffffff);
3226         POSTING_READ(SDEIER);
3227 }
3228
3229 static void gen5_gt_irq_reset(struct drm_device *dev)
3230 {
3231         struct drm_i915_private *dev_priv = to_i915(dev);
3232
3233         GEN5_IRQ_RESET(GT);
3234         if (INTEL_INFO(dev)->gen >= 6)
3235                 GEN5_IRQ_RESET(GEN6_PM);
3236 }
3237
3238 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3239 {
3240         enum pipe pipe;
3241
3242         if (IS_CHERRYVIEW(dev_priv))
3243                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3244         else
3245                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3246
3247         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3248         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3249
3250         for_each_pipe(dev_priv, pipe) {
3251                 I915_WRITE(PIPESTAT(pipe),
3252                            PIPE_FIFO_UNDERRUN_STATUS |
3253                            PIPESTAT_INT_STATUS_MASK);
3254                 dev_priv->pipestat_irq_mask[pipe] = 0;
3255         }
3256
3257         GEN5_IRQ_RESET(VLV_);
3258         dev_priv->irq_mask = ~0;
3259 }
3260
3261 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3262 {
3263         u32 pipestat_mask;
3264         u32 enable_mask;
3265         enum pipe pipe;
3266
3267         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3268                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3269
3270         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3271         for_each_pipe(dev_priv, pipe)
3272                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3273
3274         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3275                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3276                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3277         if (IS_CHERRYVIEW(dev_priv))
3278                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3279
3280         WARN_ON(dev_priv->irq_mask != ~0);
3281
3282         dev_priv->irq_mask = ~enable_mask;
3283
3284         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3285 }
3286
3287 /* drm_dma.h hooks
3288 */
3289 static void ironlake_irq_reset(struct drm_device *dev)
3290 {
3291         struct drm_i915_private *dev_priv = to_i915(dev);
3292
3293         I915_WRITE(HWSTAM, 0xffffffff);
3294
3295         GEN5_IRQ_RESET(DE);
3296         if (IS_GEN7(dev))
3297                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3298
3299         gen5_gt_irq_reset(dev);
3300
3301         ibx_irq_reset(dev);
3302 }
3303
3304 static void valleyview_irq_preinstall(struct drm_device *dev)
3305 {
3306         struct drm_i915_private *dev_priv = to_i915(dev);
3307
3308         I915_WRITE(VLV_MASTER_IER, 0);
3309         POSTING_READ(VLV_MASTER_IER);
3310
3311         gen5_gt_irq_reset(dev);
3312
3313         spin_lock_irq(&dev_priv->irq_lock);
3314         if (dev_priv->display_irqs_enabled)
3315                 vlv_display_irq_reset(dev_priv);
3316         spin_unlock_irq(&dev_priv->irq_lock);
3317 }
3318
3319 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3320 {
3321         GEN8_IRQ_RESET_NDX(GT, 0);
3322         GEN8_IRQ_RESET_NDX(GT, 1);
3323         GEN8_IRQ_RESET_NDX(GT, 2);
3324         GEN8_IRQ_RESET_NDX(GT, 3);
3325 }
3326
3327 static void gen8_irq_reset(struct drm_device *dev)
3328 {
3329         struct drm_i915_private *dev_priv = to_i915(dev);
3330         int pipe;
3331
3332         I915_WRITE(GEN8_MASTER_IRQ, 0);
3333         POSTING_READ(GEN8_MASTER_IRQ);
3334
3335         gen8_gt_irq_reset(dev_priv);
3336
3337         for_each_pipe(dev_priv, pipe)
3338                 if (intel_display_power_is_enabled(dev_priv,
3339                                                    POWER_DOMAIN_PIPE(pipe)))
3340                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3341
3342         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3343         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3344         GEN5_IRQ_RESET(GEN8_PCU_);
3345
3346         if (HAS_PCH_SPLIT(dev))
3347                 ibx_irq_reset(dev);
3348 }
3349
3350 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3351                                      unsigned int pipe_mask)
3352 {
3353         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3354         enum pipe pipe;
3355
3356         spin_lock_irq(&dev_priv->irq_lock);
3357         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3358                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3359                                   dev_priv->de_irq_mask[pipe],
3360                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3361         spin_unlock_irq(&dev_priv->irq_lock);
3362 }
3363
3364 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3365                                      unsigned int pipe_mask)
3366 {
3367         enum pipe pipe;
3368
3369         spin_lock_irq(&dev_priv->irq_lock);
3370         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3371                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3372         spin_unlock_irq(&dev_priv->irq_lock);
3373
3374         /* make sure we're done processing display irqs */
3375         synchronize_irq(dev_priv->drm.irq);
3376 }
3377
3378 static void cherryview_irq_preinstall(struct drm_device *dev)
3379 {
3380         struct drm_i915_private *dev_priv = to_i915(dev);
3381
3382         I915_WRITE(GEN8_MASTER_IRQ, 0);
3383         POSTING_READ(GEN8_MASTER_IRQ);
3384
3385         gen8_gt_irq_reset(dev_priv);
3386
3387         GEN5_IRQ_RESET(GEN8_PCU_);
3388
3389         spin_lock_irq(&dev_priv->irq_lock);
3390         if (dev_priv->display_irqs_enabled)
3391                 vlv_display_irq_reset(dev_priv);
3392         spin_unlock_irq(&dev_priv->irq_lock);
3393 }
3394
3395 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3396                                   const u32 hpd[HPD_NUM_PINS])
3397 {
3398         struct intel_encoder *encoder;
3399         u32 enabled_irqs = 0;
3400
3401         for_each_intel_encoder(&dev_priv->drm, encoder)
3402                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3403                         enabled_irqs |= hpd[encoder->hpd_pin];
3404
3405         return enabled_irqs;
3406 }
3407
3408 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3409 {
3410         u32 hotplug_irqs, hotplug, enabled_irqs;
3411
3412         if (HAS_PCH_IBX(dev_priv)) {
3413                 hotplug_irqs = SDE_HOTPLUG_MASK;
3414                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3415         } else {
3416                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3417                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3418         }
3419
3420         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3421
3422         /*
3423          * Enable digital hotplug on the PCH, and configure the DP short pulse
3424          * duration to 2ms (which is the minimum in the Display Port spec).
3425          * The pulse duration bits are reserved on LPT+.
3426          */
3427         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3428         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3429         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3430         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3431         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3432         /*
3433          * When CPU and PCH are on the same package, port A
3434          * HPD must be enabled in both north and south.
3435          */
3436         if (HAS_PCH_LPT_LP(dev_priv))
3437                 hotplug |= PORTA_HOTPLUG_ENABLE;
3438         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3439 }
3440
3441 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3442 {
3443         u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3447
3448         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450         /* Enable digital hotplug on the PCH */
3451         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457         hotplug |= PORTE_HOTPLUG_ENABLE;
3458         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459 }
3460
3461 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3462 {
3463         u32 hotplug_irqs, hotplug, enabled_irqs;
3464
3465         if (INTEL_GEN(dev_priv) >= 8) {
3466                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3467                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3468
3469                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3470         } else if (INTEL_GEN(dev_priv) >= 7) {
3471                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3472                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3473
3474                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3475         } else {
3476                 hotplug_irqs = DE_DP_A_HOTPLUG;
3477                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3478
3479                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3480         }
3481
3482         /*
3483          * Enable digital hotplug on the CPU, and configure the DP short pulse
3484          * duration to 2ms (which is the minimum in the Display Port spec)
3485          * The pulse duration bits are reserved on HSW+.
3486          */
3487         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3488         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3489         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3490         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3491
3492         ibx_hpd_irq_setup(dev_priv);
3493 }
3494
3495 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3496 {
3497         u32 hotplug_irqs, hotplug, enabled_irqs;
3498
3499         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3500         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3501
3502         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3503
3504         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3505         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3506                 PORTA_HOTPLUG_ENABLE;
3507
3508         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3509                       hotplug, enabled_irqs);
3510         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3511
3512         /*
3513          * For BXT invert bit has to be set based on AOB design
3514          * for HPD detection logic, update it based on VBT fields.
3515          */
3516
3517         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3518             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3519                 hotplug |= BXT_DDIA_HPD_INVERT;
3520         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3521             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3522                 hotplug |= BXT_DDIB_HPD_INVERT;
3523         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3524             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3525                 hotplug |= BXT_DDIC_HPD_INVERT;
3526
3527         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3528 }
3529
3530 static void ibx_irq_postinstall(struct drm_device *dev)
3531 {
3532         struct drm_i915_private *dev_priv = to_i915(dev);
3533         u32 mask;
3534
3535         if (HAS_PCH_NOP(dev))
3536                 return;
3537
3538         if (HAS_PCH_IBX(dev))
3539                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3540         else
3541                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3542
3543         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3544         I915_WRITE(SDEIMR, ~mask);
3545 }
3546
3547 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3548 {
3549         struct drm_i915_private *dev_priv = to_i915(dev);
3550         u32 pm_irqs, gt_irqs;
3551
3552         pm_irqs = gt_irqs = 0;
3553
3554         dev_priv->gt_irq_mask = ~0;
3555         if (HAS_L3_DPF(dev)) {
3556                 /* L3 parity interrupt is always unmasked. */
3557                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3558                 gt_irqs |= GT_PARITY_ERROR(dev);
3559         }
3560
3561         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3562         if (IS_GEN5(dev)) {
3563                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3564         } else {
3565                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3566         }
3567
3568         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3569
3570         if (INTEL_INFO(dev)->gen >= 6) {
3571                 /*
3572                  * RPS interrupts will get enabled/disabled on demand when RPS
3573                  * itself is enabled/disabled.
3574                  */
3575                 if (HAS_VEBOX(dev))
3576                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3577
3578                 dev_priv->pm_irq_mask = 0xffffffff;
3579                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3580         }
3581 }
3582
3583 static int ironlake_irq_postinstall(struct drm_device *dev)
3584 {
3585         struct drm_i915_private *dev_priv = to_i915(dev);
3586         u32 display_mask, extra_mask;
3587
3588         if (INTEL_INFO(dev)->gen >= 7) {
3589                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3590                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3591                                 DE_PLANEB_FLIP_DONE_IVB |
3592                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3593                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3594                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3595                               DE_DP_A_HOTPLUG_IVB);
3596         } else {
3597                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3598                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3599                                 DE_AUX_CHANNEL_A |
3600                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3601                                 DE_POISON);
3602                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3603                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3604                               DE_DP_A_HOTPLUG);
3605         }
3606
3607         dev_priv->irq_mask = ~display_mask;
3608
3609         I915_WRITE(HWSTAM, 0xeffe);
3610
3611         ibx_irq_pre_postinstall(dev);
3612
3613         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3614
3615         gen5_gt_irq_postinstall(dev);
3616
3617         ibx_irq_postinstall(dev);
3618
3619         if (IS_IRONLAKE_M(dev)) {
3620                 /* Enable PCU event interrupts
3621                  *
3622                  * spinlocking not required here for correctness since interrupt
3623                  * setup is guaranteed to run in single-threaded context. But we
3624                  * need it to make the assert_spin_locked happy. */
3625                 spin_lock_irq(&dev_priv->irq_lock);
3626                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3627                 spin_unlock_irq(&dev_priv->irq_lock);
3628         }
3629
3630         return 0;
3631 }
3632
3633 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3634 {
3635         assert_spin_locked(&dev_priv->irq_lock);
3636
3637         if (dev_priv->display_irqs_enabled)
3638                 return;
3639
3640         dev_priv->display_irqs_enabled = true;
3641
3642         if (intel_irqs_enabled(dev_priv)) {
3643                 vlv_display_irq_reset(dev_priv);
3644                 vlv_display_irq_postinstall(dev_priv);
3645         }
3646 }
3647
3648 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3649 {
3650         assert_spin_locked(&dev_priv->irq_lock);
3651
3652         if (!dev_priv->display_irqs_enabled)
3653                 return;
3654
3655         dev_priv->display_irqs_enabled = false;
3656
3657         if (intel_irqs_enabled(dev_priv))
3658                 vlv_display_irq_reset(dev_priv);
3659 }
3660
3661
3662 static int valleyview_irq_postinstall(struct drm_device *dev)
3663 {
3664         struct drm_i915_private *dev_priv = to_i915(dev);
3665
3666         gen5_gt_irq_postinstall(dev);
3667
3668         spin_lock_irq(&dev_priv->irq_lock);
3669         if (dev_priv->display_irqs_enabled)
3670                 vlv_display_irq_postinstall(dev_priv);
3671         spin_unlock_irq(&dev_priv->irq_lock);
3672
3673         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3674         POSTING_READ(VLV_MASTER_IER);
3675
3676         return 0;
3677 }
3678
3679 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3680 {
3681         /* These are interrupts we'll toggle with the ring mask register */
3682         uint32_t gt_interrupts[] = {
3683                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3684                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3685                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3686                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3687                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3688                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3689                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3690                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3691                 0,
3692                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3693                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3694                 };
3695
3696         if (HAS_L3_DPF(dev_priv))
3697                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3698
3699         dev_priv->pm_irq_mask = 0xffffffff;
3700         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3701         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3702         /*
3703          * RPS interrupts will get enabled/disabled on demand when RPS itself
3704          * is enabled/disabled.
3705          */
3706         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3707         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3708 }
3709
3710 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3711 {
3712         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3713         uint32_t de_pipe_enables;
3714         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3715         u32 de_port_enables;
3716         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3717         enum pipe pipe;
3718
3719         if (INTEL_INFO(dev_priv)->gen >= 9) {
3720                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3721                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3722                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3723                                   GEN9_AUX_CHANNEL_D;
3724                 if (IS_BROXTON(dev_priv))
3725                         de_port_masked |= BXT_DE_PORT_GMBUS;
3726         } else {
3727                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3728                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3729         }
3730
3731         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3732                                            GEN8_PIPE_FIFO_UNDERRUN;
3733
3734         de_port_enables = de_port_masked;
3735         if (IS_BROXTON(dev_priv))
3736                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3737         else if (IS_BROADWELL(dev_priv))
3738                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3739
3740         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3741         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3742         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3743
3744         for_each_pipe(dev_priv, pipe)
3745                 if (intel_display_power_is_enabled(dev_priv,
3746                                 POWER_DOMAIN_PIPE(pipe)))
3747                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3748                                           dev_priv->de_irq_mask[pipe],
3749                                           de_pipe_enables);
3750
3751         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3752         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3753 }
3754
3755 static int gen8_irq_postinstall(struct drm_device *dev)
3756 {
3757         struct drm_i915_private *dev_priv = to_i915(dev);
3758
3759         if (HAS_PCH_SPLIT(dev))
3760                 ibx_irq_pre_postinstall(dev);
3761
3762         gen8_gt_irq_postinstall(dev_priv);
3763         gen8_de_irq_postinstall(dev_priv);
3764
3765         if (HAS_PCH_SPLIT(dev))
3766                 ibx_irq_postinstall(dev);
3767
3768         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3769         POSTING_READ(GEN8_MASTER_IRQ);
3770
3771         return 0;
3772 }
3773
3774 static int cherryview_irq_postinstall(struct drm_device *dev)
3775 {
3776         struct drm_i915_private *dev_priv = to_i915(dev);
3777
3778         gen8_gt_irq_postinstall(dev_priv);
3779
3780         spin_lock_irq(&dev_priv->irq_lock);
3781         if (dev_priv->display_irqs_enabled)
3782                 vlv_display_irq_postinstall(dev_priv);
3783         spin_unlock_irq(&dev_priv->irq_lock);
3784
3785         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3786         POSTING_READ(GEN8_MASTER_IRQ);
3787
3788         return 0;
3789 }
3790
3791 static void gen8_irq_uninstall(struct drm_device *dev)
3792 {
3793         struct drm_i915_private *dev_priv = to_i915(dev);
3794
3795         if (!dev_priv)
3796                 return;
3797
3798         gen8_irq_reset(dev);
3799 }
3800
3801 static void valleyview_irq_uninstall(struct drm_device *dev)
3802 {
3803         struct drm_i915_private *dev_priv = to_i915(dev);
3804
3805         if (!dev_priv)
3806                 return;
3807
3808         I915_WRITE(VLV_MASTER_IER, 0);
3809         POSTING_READ(VLV_MASTER_IER);
3810
3811         gen5_gt_irq_reset(dev);
3812
3813         I915_WRITE(HWSTAM, 0xffffffff);
3814
3815         spin_lock_irq(&dev_priv->irq_lock);
3816         if (dev_priv->display_irqs_enabled)
3817                 vlv_display_irq_reset(dev_priv);
3818         spin_unlock_irq(&dev_priv->irq_lock);
3819 }
3820
3821 static void cherryview_irq_uninstall(struct drm_device *dev)
3822 {
3823         struct drm_i915_private *dev_priv = to_i915(dev);
3824
3825         if (!dev_priv)
3826                 return;
3827
3828         I915_WRITE(GEN8_MASTER_IRQ, 0);
3829         POSTING_READ(GEN8_MASTER_IRQ);
3830
3831         gen8_gt_irq_reset(dev_priv);
3832
3833         GEN5_IRQ_RESET(GEN8_PCU_);
3834
3835         spin_lock_irq(&dev_priv->irq_lock);
3836         if (dev_priv->display_irqs_enabled)
3837                 vlv_display_irq_reset(dev_priv);
3838         spin_unlock_irq(&dev_priv->irq_lock);
3839 }
3840
3841 static void ironlake_irq_uninstall(struct drm_device *dev)
3842 {
3843         struct drm_i915_private *dev_priv = to_i915(dev);
3844
3845         if (!dev_priv)
3846                 return;
3847
3848         ironlake_irq_reset(dev);
3849 }
3850
3851 static void i8xx_irq_preinstall(struct drm_device * dev)
3852 {
3853         struct drm_i915_private *dev_priv = to_i915(dev);
3854         int pipe;
3855
3856         for_each_pipe(dev_priv, pipe)
3857                 I915_WRITE(PIPESTAT(pipe), 0);
3858         I915_WRITE16(IMR, 0xffff);
3859         I915_WRITE16(IER, 0x0);
3860         POSTING_READ16(IER);
3861 }
3862
3863 static int i8xx_irq_postinstall(struct drm_device *dev)
3864 {
3865         struct drm_i915_private *dev_priv = to_i915(dev);
3866
3867         I915_WRITE16(EMR,
3868                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3869
3870         /* Unmask the interrupts that we always want on. */
3871         dev_priv->irq_mask =
3872                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3873                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3874                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3875                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3876         I915_WRITE16(IMR, dev_priv->irq_mask);
3877
3878         I915_WRITE16(IER,
3879                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3880                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3881                      I915_USER_INTERRUPT);
3882         POSTING_READ16(IER);
3883
3884         /* Interrupt setup is already guaranteed to be single-threaded, this is
3885          * just to make the assert_spin_locked check happy. */
3886         spin_lock_irq(&dev_priv->irq_lock);
3887         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3888         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3889         spin_unlock_irq(&dev_priv->irq_lock);
3890
3891         return 0;
3892 }
3893
3894 /*
3895  * Returns true when a page flip has completed.
3896  */
3897 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3898                                int plane, int pipe, u32 iir)
3899 {
3900         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3901
3902         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3903                 return false;
3904
3905         if ((iir & flip_pending) == 0)
3906                 goto check_page_flip;
3907
3908         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3909          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3910          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3911          * the flip is completed (no longer pending). Since this doesn't raise
3912          * an interrupt per se, we watch for the change at vblank.
3913          */
3914         if (I915_READ16(ISR) & flip_pending)
3915                 goto check_page_flip;
3916
3917         intel_finish_page_flip_cs(dev_priv, pipe);
3918         return true;
3919
3920 check_page_flip:
3921         intel_check_page_flip(dev_priv, pipe);
3922         return false;
3923 }
3924
3925 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3926 {
3927         struct drm_device *dev = arg;
3928         struct drm_i915_private *dev_priv = to_i915(dev);
3929         u16 iir, new_iir;
3930         u32 pipe_stats[2];
3931         int pipe;
3932         u16 flip_mask =
3933                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3934                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3935         irqreturn_t ret;
3936
3937         if (!intel_irqs_enabled(dev_priv))
3938                 return IRQ_NONE;
3939
3940         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3941         disable_rpm_wakeref_asserts(dev_priv);
3942
3943         ret = IRQ_NONE;
3944         iir = I915_READ16(IIR);
3945         if (iir == 0)
3946                 goto out;
3947
3948         while (iir & ~flip_mask) {
3949                 /* Can't rely on pipestat interrupt bit in iir as it might
3950                  * have been cleared after the pipestat interrupt was received.
3951                  * It doesn't set the bit in iir again, but it still produces
3952                  * interrupts (for non-MSI).
3953                  */
3954                 spin_lock(&dev_priv->irq_lock);
3955                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3956                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3957
3958                 for_each_pipe(dev_priv, pipe) {
3959                         i915_reg_t reg = PIPESTAT(pipe);
3960                         pipe_stats[pipe] = I915_READ(reg);
3961
3962                         /*
3963                          * Clear the PIPE*STAT regs before the IIR
3964                          */
3965                         if (pipe_stats[pipe] & 0x8000ffff)
3966                                 I915_WRITE(reg, pipe_stats[pipe]);
3967                 }
3968                 spin_unlock(&dev_priv->irq_lock);
3969
3970                 I915_WRITE16(IIR, iir & ~flip_mask);
3971                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3972
3973                 if (iir & I915_USER_INTERRUPT)
3974                         notify_ring(&dev_priv->engine[RCS]);
3975
3976                 for_each_pipe(dev_priv, pipe) {
3977                         int plane = pipe;
3978                         if (HAS_FBC(dev_priv))
3979                                 plane = !plane;
3980
3981                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3982                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3983                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3984
3985                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3986                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3987
3988                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3989                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3990                                                                     pipe);
3991                 }
3992
3993                 iir = new_iir;
3994         }
3995         ret = IRQ_HANDLED;
3996
3997 out:
3998         enable_rpm_wakeref_asserts(dev_priv);
3999
4000         return ret;
4001 }
4002
4003 static void i8xx_irq_uninstall(struct drm_device * dev)
4004 {
4005         struct drm_i915_private *dev_priv = to_i915(dev);
4006         int pipe;
4007
4008         for_each_pipe(dev_priv, pipe) {
4009                 /* Clear enable bits; then clear status bits */
4010                 I915_WRITE(PIPESTAT(pipe), 0);
4011                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4012         }
4013         I915_WRITE16(IMR, 0xffff);
4014         I915_WRITE16(IER, 0x0);
4015         I915_WRITE16(IIR, I915_READ16(IIR));
4016 }
4017
4018 static void i915_irq_preinstall(struct drm_device * dev)
4019 {
4020         struct drm_i915_private *dev_priv = to_i915(dev);
4021         int pipe;
4022
4023         if (I915_HAS_HOTPLUG(dev)) {
4024                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4025                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4026         }
4027
4028         I915_WRITE16(HWSTAM, 0xeffe);
4029         for_each_pipe(dev_priv, pipe)
4030                 I915_WRITE(PIPESTAT(pipe), 0);
4031         I915_WRITE(IMR, 0xffffffff);
4032         I915_WRITE(IER, 0x0);
4033         POSTING_READ(IER);
4034 }
4035
4036 static int i915_irq_postinstall(struct drm_device *dev)
4037 {
4038         struct drm_i915_private *dev_priv = to_i915(dev);
4039         u32 enable_mask;
4040
4041         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4042
4043         /* Unmask the interrupts that we always want on. */
4044         dev_priv->irq_mask =
4045                 ~(I915_ASLE_INTERRUPT |
4046                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4047                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4048                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4049                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4050
4051         enable_mask =
4052                 I915_ASLE_INTERRUPT |
4053                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4054                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4055                 I915_USER_INTERRUPT;
4056
4057         if (I915_HAS_HOTPLUG(dev)) {
4058                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4059                 POSTING_READ(PORT_HOTPLUG_EN);
4060
4061                 /* Enable in IER... */
4062                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4063                 /* and unmask in IMR */
4064                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4065         }
4066
4067         I915_WRITE(IMR, dev_priv->irq_mask);
4068         I915_WRITE(IER, enable_mask);
4069         POSTING_READ(IER);
4070
4071         i915_enable_asle_pipestat(dev_priv);
4072
4073         /* Interrupt setup is already guaranteed to be single-threaded, this is
4074          * just to make the assert_spin_locked check happy. */
4075         spin_lock_irq(&dev_priv->irq_lock);
4076         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4077         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4078         spin_unlock_irq(&dev_priv->irq_lock);
4079
4080         return 0;
4081 }
4082
4083 /*
4084  * Returns true when a page flip has completed.
4085  */
4086 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4087                                int plane, int pipe, u32 iir)
4088 {
4089         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4090
4091         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4092                 return false;
4093
4094         if ((iir & flip_pending) == 0)
4095                 goto check_page_flip;
4096
4097         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4098          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4099          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4100          * the flip is completed (no longer pending). Since this doesn't raise
4101          * an interrupt per se, we watch for the change at vblank.
4102          */
4103         if (I915_READ(ISR) & flip_pending)
4104                 goto check_page_flip;
4105
4106         intel_finish_page_flip_cs(dev_priv, pipe);
4107         return true;
4108
4109 check_page_flip:
4110         intel_check_page_flip(dev_priv, pipe);
4111         return false;
4112 }
4113
4114 static irqreturn_t i915_irq_handler(int irq, void *arg)
4115 {
4116         struct drm_device *dev = arg;
4117         struct drm_i915_private *dev_priv = to_i915(dev);
4118         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4119         u32 flip_mask =
4120                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4121                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4122         int pipe, ret = IRQ_NONE;
4123
4124         if (!intel_irqs_enabled(dev_priv))
4125                 return IRQ_NONE;
4126
4127         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4128         disable_rpm_wakeref_asserts(dev_priv);
4129
4130         iir = I915_READ(IIR);
4131         do {
4132                 bool irq_received = (iir & ~flip_mask) != 0;
4133                 bool blc_event = false;
4134
4135                 /* Can't rely on pipestat interrupt bit in iir as it might
4136                  * have been cleared after the pipestat interrupt was received.
4137                  * It doesn't set the bit in iir again, but it still produces
4138                  * interrupts (for non-MSI).
4139                  */
4140                 spin_lock(&dev_priv->irq_lock);
4141                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4142                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4143
4144                 for_each_pipe(dev_priv, pipe) {
4145                         i915_reg_t reg = PIPESTAT(pipe);
4146                         pipe_stats[pipe] = I915_READ(reg);
4147
4148                         /* Clear the PIPE*STAT regs before the IIR */
4149                         if (pipe_stats[pipe] & 0x8000ffff) {
4150                                 I915_WRITE(reg, pipe_stats[pipe]);
4151                                 irq_received = true;
4152                         }
4153                 }
4154                 spin_unlock(&dev_priv->irq_lock);
4155
4156                 if (!irq_received)
4157                         break;
4158
4159                 /* Consume port.  Then clear IIR or we'll miss events */
4160                 if (I915_HAS_HOTPLUG(dev_priv) &&
4161                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4162                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4163                         if (hotplug_status)
4164                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4165                 }
4166
4167                 I915_WRITE(IIR, iir & ~flip_mask);
4168                 new_iir = I915_READ(IIR); /* Flush posted writes */
4169
4170                 if (iir & I915_USER_INTERRUPT)
4171                         notify_ring(&dev_priv->engine[RCS]);
4172
4173                 for_each_pipe(dev_priv, pipe) {
4174                         int plane = pipe;
4175                         if (HAS_FBC(dev_priv))
4176                                 plane = !plane;
4177
4178                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4179                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4180                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4181
4182                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4183                                 blc_event = true;
4184
4185                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4186                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4187
4188                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4189                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4190                                                                     pipe);
4191                 }
4192
4193                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4194                         intel_opregion_asle_intr(dev_priv);
4195
4196                 /* With MSI, interrupts are only generated when iir
4197                  * transitions from zero to nonzero.  If another bit got
4198                  * set while we were handling the existing iir bits, then
4199                  * we would never get another interrupt.
4200                  *
4201                  * This is fine on non-MSI as well, as if we hit this path
4202                  * we avoid exiting the interrupt handler only to generate
4203                  * another one.
4204                  *
4205                  * Note that for MSI this could cause a stray interrupt report
4206                  * if an interrupt landed in the time between writing IIR and
4207                  * the posting read.  This should be rare enough to never
4208                  * trigger the 99% of 100,000 interrupts test for disabling
4209                  * stray interrupts.
4210                  */
4211                 ret = IRQ_HANDLED;
4212                 iir = new_iir;
4213         } while (iir & ~flip_mask);
4214
4215         enable_rpm_wakeref_asserts(dev_priv);
4216
4217         return ret;
4218 }
4219
4220 static void i915_irq_uninstall(struct drm_device * dev)
4221 {
4222         struct drm_i915_private *dev_priv = to_i915(dev);
4223         int pipe;
4224
4225         if (I915_HAS_HOTPLUG(dev)) {
4226                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4227                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4228         }
4229
4230         I915_WRITE16(HWSTAM, 0xffff);
4231         for_each_pipe(dev_priv, pipe) {
4232                 /* Clear enable bits; then clear status bits */
4233                 I915_WRITE(PIPESTAT(pipe), 0);
4234                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4235         }
4236         I915_WRITE(IMR, 0xffffffff);
4237         I915_WRITE(IER, 0x0);
4238
4239         I915_WRITE(IIR, I915_READ(IIR));
4240 }
4241
4242 static void i965_irq_preinstall(struct drm_device * dev)
4243 {
4244         struct drm_i915_private *dev_priv = to_i915(dev);
4245         int pipe;
4246
4247         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4248         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4249
4250         I915_WRITE(HWSTAM, 0xeffe);
4251         for_each_pipe(dev_priv, pipe)
4252                 I915_WRITE(PIPESTAT(pipe), 0);
4253         I915_WRITE(IMR, 0xffffffff);
4254         I915_WRITE(IER, 0x0);
4255         POSTING_READ(IER);
4256 }
4257
4258 static int i965_irq_postinstall(struct drm_device *dev)
4259 {
4260         struct drm_i915_private *dev_priv = to_i915(dev);
4261         u32 enable_mask;
4262         u32 error_mask;
4263
4264         /* Unmask the interrupts that we always want on. */
4265         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4266                                I915_DISPLAY_PORT_INTERRUPT |
4267                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4268                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4269                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4270                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4271                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4272
4273         enable_mask = ~dev_priv->irq_mask;
4274         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4275                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4276         enable_mask |= I915_USER_INTERRUPT;
4277
4278         if (IS_G4X(dev_priv))
4279                 enable_mask |= I915_BSD_USER_INTERRUPT;
4280
4281         /* Interrupt setup is already guaranteed to be single-threaded, this is
4282          * just to make the assert_spin_locked check happy. */
4283         spin_lock_irq(&dev_priv->irq_lock);
4284         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4285         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4286         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4287         spin_unlock_irq(&dev_priv->irq_lock);
4288
4289         /*
4290          * Enable some error detection, note the instruction error mask
4291          * bit is reserved, so we leave it masked.
4292          */
4293         if (IS_G4X(dev_priv)) {
4294                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4295                                GM45_ERROR_MEM_PRIV |
4296                                GM45_ERROR_CP_PRIV |
4297                                I915_ERROR_MEMORY_REFRESH);
4298         } else {
4299                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4300                                I915_ERROR_MEMORY_REFRESH);
4301         }
4302         I915_WRITE(EMR, error_mask);
4303
4304         I915_WRITE(IMR, dev_priv->irq_mask);
4305         I915_WRITE(IER, enable_mask);
4306         POSTING_READ(IER);
4307
4308         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4309         POSTING_READ(PORT_HOTPLUG_EN);
4310
4311         i915_enable_asle_pipestat(dev_priv);
4312
4313         return 0;
4314 }
4315
4316 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4317 {
4318         u32 hotplug_en;
4319
4320         assert_spin_locked(&dev_priv->irq_lock);
4321
4322         /* Note HDMI and DP share hotplug bits */
4323         /* enable bits are the same for all generations */
4324         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4325         /* Programming the CRT detection parameters tends
4326            to generate a spurious hotplug event about three
4327            seconds later.  So just do it once.
4328         */
4329         if (IS_G4X(dev_priv))
4330                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4331         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4332
4333         /* Ignore TV since it's buggy */
4334         i915_hotplug_interrupt_update_locked(dev_priv,
4335                                              HOTPLUG_INT_EN_MASK |
4336                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4337                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4338                                              hotplug_en);
4339 }
4340
4341 static irqreturn_t i965_irq_handler(int irq, void *arg)
4342 {
4343         struct drm_device *dev = arg;
4344         struct drm_i915_private *dev_priv = to_i915(dev);
4345         u32 iir, new_iir;
4346         u32 pipe_stats[I915_MAX_PIPES];
4347         int ret = IRQ_NONE, pipe;
4348         u32 flip_mask =
4349                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4350                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4351
4352         if (!intel_irqs_enabled(dev_priv))
4353                 return IRQ_NONE;
4354
4355         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4356         disable_rpm_wakeref_asserts(dev_priv);
4357
4358         iir = I915_READ(IIR);
4359
4360         for (;;) {
4361                 bool irq_received = (iir & ~flip_mask) != 0;
4362                 bool blc_event = false;
4363
4364                 /* Can't rely on pipestat interrupt bit in iir as it might
4365                  * have been cleared after the pipestat interrupt was received.
4366                  * It doesn't set the bit in iir again, but it still produces
4367                  * interrupts (for non-MSI).
4368                  */
4369                 spin_lock(&dev_priv->irq_lock);
4370                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4371                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4372
4373                 for_each_pipe(dev_priv, pipe) {
4374                         i915_reg_t reg = PIPESTAT(pipe);
4375                         pipe_stats[pipe] = I915_READ(reg);
4376
4377                         /*
4378                          * Clear the PIPE*STAT regs before the IIR
4379                          */
4380                         if (pipe_stats[pipe] & 0x8000ffff) {
4381                                 I915_WRITE(reg, pipe_stats[pipe]);
4382                                 irq_received = true;
4383                         }
4384                 }
4385                 spin_unlock(&dev_priv->irq_lock);
4386
4387                 if (!irq_received)
4388                         break;
4389
4390                 ret = IRQ_HANDLED;
4391
4392                 /* Consume port.  Then clear IIR or we'll miss events */
4393                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4394                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4395                         if (hotplug_status)
4396                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4397                 }
4398
4399                 I915_WRITE(IIR, iir & ~flip_mask);
4400                 new_iir = I915_READ(IIR); /* Flush posted writes */
4401
4402                 if (iir & I915_USER_INTERRUPT)
4403                         notify_ring(&dev_priv->engine[RCS]);
4404                 if (iir & I915_BSD_USER_INTERRUPT)
4405                         notify_ring(&dev_priv->engine[VCS]);
4406
4407                 for_each_pipe(dev_priv, pipe) {
4408                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4409                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4410                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4411
4412                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4413                                 blc_event = true;
4414
4415                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4416                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4417
4418                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4419                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4420                 }
4421
4422                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4423                         intel_opregion_asle_intr(dev_priv);
4424
4425                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4426                         gmbus_irq_handler(dev_priv);
4427
4428                 /* With MSI, interrupts are only generated when iir
4429                  * transitions from zero to nonzero.  If another bit got
4430                  * set while we were handling the existing iir bits, then
4431                  * we would never get another interrupt.
4432                  *
4433                  * This is fine on non-MSI as well, as if we hit this path
4434                  * we avoid exiting the interrupt handler only to generate
4435                  * another one.
4436                  *
4437                  * Note that for MSI this could cause a stray interrupt report
4438                  * if an interrupt landed in the time between writing IIR and
4439                  * the posting read.  This should be rare enough to never
4440                  * trigger the 99% of 100,000 interrupts test for disabling
4441                  * stray interrupts.
4442                  */
4443                 iir = new_iir;
4444         }
4445
4446         enable_rpm_wakeref_asserts(dev_priv);
4447
4448         return ret;
4449 }
4450
4451 static void i965_irq_uninstall(struct drm_device * dev)
4452 {
4453         struct drm_i915_private *dev_priv = to_i915(dev);
4454         int pipe;
4455
4456         if (!dev_priv)
4457                 return;
4458
4459         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4460         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4461
4462         I915_WRITE(HWSTAM, 0xffffffff);
4463         for_each_pipe(dev_priv, pipe)
4464                 I915_WRITE(PIPESTAT(pipe), 0);
4465         I915_WRITE(IMR, 0xffffffff);
4466         I915_WRITE(IER, 0x0);
4467
4468         for_each_pipe(dev_priv, pipe)
4469                 I915_WRITE(PIPESTAT(pipe),
4470                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4471         I915_WRITE(IIR, I915_READ(IIR));
4472 }
4473
4474 /**
4475  * intel_irq_init - initializes irq support
4476  * @dev_priv: i915 device instance
4477  *
4478  * This function initializes all the irq support including work items, timers
4479  * and all the vtables. It does not setup the interrupt itself though.
4480  */
4481 void intel_irq_init(struct drm_i915_private *dev_priv)
4482 {
4483         struct drm_device *dev = &dev_priv->drm;
4484
4485         intel_hpd_init_work(dev_priv);
4486
4487         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4488         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4489
4490         /* Let's track the enabled rps events */
4491         if (IS_VALLEYVIEW(dev_priv))
4492                 /* WaGsvRC0ResidencyMethod:vlv */
4493                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4494         else
4495                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4496
4497         dev_priv->rps.pm_intr_keep = 0;
4498
4499         /*
4500          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4501          * if GEN6_PM_UP_EI_EXPIRED is masked.
4502          *
4503          * TODO: verify if this can be reproduced on VLV,CHV.
4504          */
4505         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4506                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4507
4508         if (INTEL_INFO(dev_priv)->gen >= 8)
4509                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4510
4511         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4512                           i915_hangcheck_elapsed);
4513
4514         if (IS_GEN2(dev_priv)) {
4515                 /* Gen2 doesn't have a hardware frame counter */
4516                 dev->max_vblank_count = 0;
4517                 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4518         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4519                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4520                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4521         } else {
4522                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4523                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4524         }
4525
4526         /*
4527          * Opt out of the vblank disable timer on everything except gen2.
4528          * Gen2 doesn't have a hardware frame counter and so depends on
4529          * vblank interrupts to produce sane vblank seuquence numbers.
4530          */
4531         if (!IS_GEN2(dev_priv))
4532                 dev->vblank_disable_immediate = true;
4533
4534         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4535         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4536
4537         if (IS_CHERRYVIEW(dev_priv)) {
4538                 dev->driver->irq_handler = cherryview_irq_handler;
4539                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4540                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4541                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4542                 dev->driver->enable_vblank = valleyview_enable_vblank;
4543                 dev->driver->disable_vblank = valleyview_disable_vblank;
4544                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4545         } else if (IS_VALLEYVIEW(dev_priv)) {
4546                 dev->driver->irq_handler = valleyview_irq_handler;
4547                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4548                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4549                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4550                 dev->driver->enable_vblank = valleyview_enable_vblank;
4551                 dev->driver->disable_vblank = valleyview_disable_vblank;
4552                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4553         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4554                 dev->driver->irq_handler = gen8_irq_handler;
4555                 dev->driver->irq_preinstall = gen8_irq_reset;
4556                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4557                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4558                 dev->driver->enable_vblank = gen8_enable_vblank;
4559                 dev->driver->disable_vblank = gen8_disable_vblank;
4560                 if (IS_BROXTON(dev))
4561                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4562                 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4563                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4564                 else
4565                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4566         } else if (HAS_PCH_SPLIT(dev)) {
4567                 dev->driver->irq_handler = ironlake_irq_handler;
4568                 dev->driver->irq_preinstall = ironlake_irq_reset;
4569                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4570                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4571                 dev->driver->enable_vblank = ironlake_enable_vblank;
4572                 dev->driver->disable_vblank = ironlake_disable_vblank;
4573                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4574         } else {
4575                 if (IS_GEN2(dev_priv)) {
4576                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4577                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4578                         dev->driver->irq_handler = i8xx_irq_handler;
4579                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4580                 } else if (IS_GEN3(dev_priv)) {
4581                         dev->driver->irq_preinstall = i915_irq_preinstall;
4582                         dev->driver->irq_postinstall = i915_irq_postinstall;
4583                         dev->driver->irq_uninstall = i915_irq_uninstall;
4584                         dev->driver->irq_handler = i915_irq_handler;
4585                 } else {
4586                         dev->driver->irq_preinstall = i965_irq_preinstall;
4587                         dev->driver->irq_postinstall = i965_irq_postinstall;
4588                         dev->driver->irq_uninstall = i965_irq_uninstall;
4589                         dev->driver->irq_handler = i965_irq_handler;
4590                 }
4591                 if (I915_HAS_HOTPLUG(dev_priv))
4592                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4593                 dev->driver->enable_vblank = i915_enable_vblank;
4594                 dev->driver->disable_vblank = i915_disable_vblank;
4595         }
4596 }
4597
4598 /**
4599  * intel_irq_install - enables the hardware interrupt
4600  * @dev_priv: i915 device instance
4601  *
4602  * This function enables the hardware interrupt handling, but leaves the hotplug
4603  * handling still disabled. It is called after intel_irq_init().
4604  *
4605  * In the driver load and resume code we need working interrupts in a few places
4606  * but don't want to deal with the hassle of concurrent probe and hotplug
4607  * workers. Hence the split into this two-stage approach.
4608  */
4609 int intel_irq_install(struct drm_i915_private *dev_priv)
4610 {
4611         /*
4612          * We enable some interrupt sources in our postinstall hooks, so mark
4613          * interrupts as enabled _before_ actually enabling them to avoid
4614          * special cases in our ordering checks.
4615          */
4616         dev_priv->pm.irqs_enabled = true;
4617
4618         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4619 }
4620
4621 /**
4622  * intel_irq_uninstall - finilizes all irq handling
4623  * @dev_priv: i915 device instance
4624  *
4625  * This stops interrupt and hotplug handling and unregisters and frees all
4626  * resources acquired in the init functions.
4627  */
4628 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4629 {
4630         drm_irq_uninstall(&dev_priv->drm);
4631         intel_hpd_cancel_work(dev_priv);
4632         dev_priv->pm.irqs_enabled = false;
4633 }
4634
4635 /**
4636  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4637  * @dev_priv: i915 device instance
4638  *
4639  * This function is used to disable interrupts at runtime, both in the runtime
4640  * pm and the system suspend/resume code.
4641  */
4642 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4643 {
4644         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4645         dev_priv->pm.irqs_enabled = false;
4646         synchronize_irq(dev_priv->drm.irq);
4647 }
4648
4649 /**
4650  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4651  * @dev_priv: i915 device instance
4652  *
4653  * This function is used to enable interrupts at runtime, both in the runtime
4654  * pm and the system suspend/resume code.
4655  */
4656 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4657 {
4658         dev_priv->pm.irqs_enabled = true;
4659         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4660         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4661 }