drm/i915: sanitize rps irq disabling
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187                 return;
188
189         dev_priv->gt_irq_mask &= ~interrupt_mask;
190         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
191         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
192         POSTING_READ(GTIMR);
193 }
194
195 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
196 {
197         ilk_update_gt_irq(dev_priv, mask, mask);
198 }
199
200 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
201 {
202         ilk_update_gt_irq(dev_priv, mask, 0);
203 }
204
205 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
206 {
207         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
208 }
209
210 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
211 {
212         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
213 }
214
215 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
216 {
217         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
218 }
219
220 /**
221   * snb_update_pm_irq - update GEN6_PMIMR
222   * @dev_priv: driver private
223   * @interrupt_mask: mask of interrupt bits to update
224   * @enabled_irq_mask: mask of interrupt bits to enable
225   */
226 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
227                               uint32_t interrupt_mask,
228                               uint32_t enabled_irq_mask)
229 {
230         uint32_t new_val;
231
232         assert_spin_locked(&dev_priv->irq_lock);
233
234         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
235                 return;
236
237         new_val = dev_priv->pm_irq_mask;
238         new_val &= ~interrupt_mask;
239         new_val |= (~enabled_irq_mask & interrupt_mask);
240
241         if (new_val != dev_priv->pm_irq_mask) {
242                 dev_priv->pm_irq_mask = new_val;
243                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
244                 POSTING_READ(gen6_pm_imr(dev_priv));
245         }
246 }
247
248 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
249 {
250         snb_update_pm_irq(dev_priv, mask, mask);
251 }
252
253 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
254 {
255         snb_update_pm_irq(dev_priv, mask, 0);
256 }
257
258 void gen6_reset_rps_interrupts(struct drm_device *dev)
259 {
260         struct drm_i915_private *dev_priv = dev->dev_private;
261         uint32_t reg = gen6_pm_iir(dev_priv);
262
263         spin_lock_irq(&dev_priv->irq_lock);
264         I915_WRITE(reg, dev_priv->pm_rps_events);
265         I915_WRITE(reg, dev_priv->pm_rps_events);
266         POSTING_READ(reg);
267         spin_unlock_irq(&dev_priv->irq_lock);
268 }
269
270 void gen6_enable_rps_interrupts(struct drm_device *dev)
271 {
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         spin_lock_irq(&dev_priv->irq_lock);
275         WARN_ON(dev_priv->rps.pm_iir);
276         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
277         dev_priv->rps.interrupts_enabled = true;
278         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
279         spin_unlock_irq(&dev_priv->irq_lock);
280 }
281
282 void gen6_disable_rps_interrupts(struct drm_device *dev)
283 {
284         struct drm_i915_private *dev_priv = dev->dev_private;
285
286         spin_lock_irq(&dev_priv->irq_lock);
287         dev_priv->rps.interrupts_enabled = false;
288         spin_unlock_irq(&dev_priv->irq_lock);
289
290         cancel_work_sync(&dev_priv->rps.work);
291
292         I915_WRITE(GEN6_PMINTRMSK, INTEL_INFO(dev_priv)->gen >= 8 ?
293                    ~GEN8_PMINTR_REDIRECT_TO_NON_DISP : ~0);
294         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
295                                 ~dev_priv->pm_rps_events);
296
297         spin_lock_irq(&dev_priv->irq_lock);
298         dev_priv->rps.pm_iir = 0;
299         spin_unlock_irq(&dev_priv->irq_lock);
300
301         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
302 }
303
304 /**
305  * ibx_display_interrupt_update - update SDEIMR
306  * @dev_priv: driver private
307  * @interrupt_mask: mask of interrupt bits to update
308  * @enabled_irq_mask: mask of interrupt bits to enable
309  */
310 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
311                                   uint32_t interrupt_mask,
312                                   uint32_t enabled_irq_mask)
313 {
314         uint32_t sdeimr = I915_READ(SDEIMR);
315         sdeimr &= ~interrupt_mask;
316         sdeimr |= (~enabled_irq_mask & interrupt_mask);
317
318         assert_spin_locked(&dev_priv->irq_lock);
319
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         I915_WRITE(SDEIMR, sdeimr);
324         POSTING_READ(SDEIMR);
325 }
326
327 static void
328 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
329                        u32 enable_mask, u32 status_mask)
330 {
331         u32 reg = PIPESTAT(pipe);
332         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
333
334         assert_spin_locked(&dev_priv->irq_lock);
335         WARN_ON(!intel_irqs_enabled(dev_priv));
336
337         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
338                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
339                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
340                       pipe_name(pipe), enable_mask, status_mask))
341                 return;
342
343         if ((pipestat & enable_mask) == enable_mask)
344                 return;
345
346         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
347
348         /* Enable the interrupt, clear any pending status */
349         pipestat |= enable_mask | status_mask;
350         I915_WRITE(reg, pipestat);
351         POSTING_READ(reg);
352 }
353
354 static void
355 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
356                         u32 enable_mask, u32 status_mask)
357 {
358         u32 reg = PIPESTAT(pipe);
359         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
360
361         assert_spin_locked(&dev_priv->irq_lock);
362         WARN_ON(!intel_irqs_enabled(dev_priv));
363
364         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
365                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
366                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
367                       pipe_name(pipe), enable_mask, status_mask))
368                 return;
369
370         if ((pipestat & enable_mask) == 0)
371                 return;
372
373         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
374
375         pipestat &= ~enable_mask;
376         I915_WRITE(reg, pipestat);
377         POSTING_READ(reg);
378 }
379
380 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
381 {
382         u32 enable_mask = status_mask << 16;
383
384         /*
385          * On pipe A we don't support the PSR interrupt yet,
386          * on pipe B and C the same bit MBZ.
387          */
388         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
389                 return 0;
390         /*
391          * On pipe B and C we don't support the PSR interrupt yet, on pipe
392          * A the same bit is for perf counters which we don't use either.
393          */
394         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
395                 return 0;
396
397         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
398                          SPRITE0_FLIP_DONE_INT_EN_VLV |
399                          SPRITE1_FLIP_DONE_INT_EN_VLV);
400         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
401                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
402         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
403                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
404
405         return enable_mask;
406 }
407
408 void
409 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
410                      u32 status_mask)
411 {
412         u32 enable_mask;
413
414         if (IS_VALLEYVIEW(dev_priv->dev))
415                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
416                                                            status_mask);
417         else
418                 enable_mask = status_mask << 16;
419         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
420 }
421
422 void
423 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
424                       u32 status_mask)
425 {
426         u32 enable_mask;
427
428         if (IS_VALLEYVIEW(dev_priv->dev))
429                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
430                                                            status_mask);
431         else
432                 enable_mask = status_mask << 16;
433         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
434 }
435
436 /**
437  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
438  */
439 static void i915_enable_asle_pipestat(struct drm_device *dev)
440 {
441         struct drm_i915_private *dev_priv = dev->dev_private;
442
443         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
444                 return;
445
446         spin_lock_irq(&dev_priv->irq_lock);
447
448         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
449         if (INTEL_INFO(dev)->gen >= 4)
450                 i915_enable_pipestat(dev_priv, PIPE_A,
451                                      PIPE_LEGACY_BLC_EVENT_STATUS);
452
453         spin_unlock_irq(&dev_priv->irq_lock);
454 }
455
456 /**
457  * i915_pipe_enabled - check if a pipe is enabled
458  * @dev: DRM device
459  * @pipe: pipe to check
460  *
461  * Reading certain registers when the pipe is disabled can hang the chip.
462  * Use this routine to make sure the PLL is running and the pipe is active
463  * before reading such registers if unsure.
464  */
465 static int
466 i915_pipe_enabled(struct drm_device *dev, int pipe)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
471                 /* Locking is horribly broken here, but whatever. */
472                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
473                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
474
475                 return intel_crtc->active;
476         } else {
477                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
478         }
479 }
480
481 /*
482  * This timing diagram depicts the video signal in and
483  * around the vertical blanking period.
484  *
485  * Assumptions about the fictitious mode used in this example:
486  *  vblank_start >= 3
487  *  vsync_start = vblank_start + 1
488  *  vsync_end = vblank_start + 2
489  *  vtotal = vblank_start + 3
490  *
491  *           start of vblank:
492  *           latch double buffered registers
493  *           increment frame counter (ctg+)
494  *           generate start of vblank interrupt (gen4+)
495  *           |
496  *           |          frame start:
497  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
498  *           |          may be shifted forward 1-3 extra lines via PIPECONF
499  *           |          |
500  *           |          |  start of vsync:
501  *           |          |  generate vsync interrupt
502  *           |          |  |
503  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
504  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
505  * ----va---> <-----------------vb--------------------> <--------va-------------
506  *       |          |       <----vs----->                     |
507  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
508  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
509  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
510  *       |          |                                         |
511  *       last visible pixel                                   first visible pixel
512  *                  |                                         increment frame counter (gen3/4)
513  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
514  *
515  * x  = horizontal active
516  * _  = horizontal blanking
517  * hs = horizontal sync
518  * va = vertical active
519  * vb = vertical blanking
520  * vs = vertical sync
521  * vbs = vblank_start (number)
522  *
523  * Summary:
524  * - most events happen at the start of horizontal sync
525  * - frame start happens at the start of horizontal blank, 1-4 lines
526  *   (depending on PIPECONF settings) after the start of vblank
527  * - gen3/4 pixel and frame counter are synchronized with the start
528  *   of horizontal active on the first line of vertical active
529  */
530
531 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
532 {
533         /* Gen2 doesn't have a hardware frame counter */
534         return 0;
535 }
536
537 /* Called from drm generic code, passed a 'crtc', which
538  * we use as a pipe index
539  */
540 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
541 {
542         struct drm_i915_private *dev_priv = dev->dev_private;
543         unsigned long high_frame;
544         unsigned long low_frame;
545         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
546
547         if (!i915_pipe_enabled(dev, pipe)) {
548                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
549                                 "pipe %c\n", pipe_name(pipe));
550                 return 0;
551         }
552
553         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
554                 struct intel_crtc *intel_crtc =
555                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
556                 const struct drm_display_mode *mode =
557                         &intel_crtc->config.adjusted_mode;
558
559                 htotal = mode->crtc_htotal;
560                 hsync_start = mode->crtc_hsync_start;
561                 vbl_start = mode->crtc_vblank_start;
562                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
563                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
564         } else {
565                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
566
567                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
568                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
569                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
570                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
571                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
572                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
573         }
574
575         /* Convert to pixel count */
576         vbl_start *= htotal;
577
578         /* Start of vblank event occurs at start of hsync */
579         vbl_start -= htotal - hsync_start;
580
581         high_frame = PIPEFRAME(pipe);
582         low_frame = PIPEFRAMEPIXEL(pipe);
583
584         /*
585          * High & low register fields aren't synchronized, so make sure
586          * we get a low value that's stable across two reads of the high
587          * register.
588          */
589         do {
590                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
591                 low   = I915_READ(low_frame);
592                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
593         } while (high1 != high2);
594
595         high1 >>= PIPE_FRAME_HIGH_SHIFT;
596         pixel = low & PIPE_PIXEL_MASK;
597         low >>= PIPE_FRAME_LOW_SHIFT;
598
599         /*
600          * The frame counter increments at beginning of active.
601          * Cook up a vblank counter by also checking the pixel
602          * counter against vblank start.
603          */
604         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
605 }
606
607 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
608 {
609         struct drm_i915_private *dev_priv = dev->dev_private;
610         int reg = PIPE_FRMCOUNT_GM45(pipe);
611
612         if (!i915_pipe_enabled(dev, pipe)) {
613                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
614                                  "pipe %c\n", pipe_name(pipe));
615                 return 0;
616         }
617
618         return I915_READ(reg);
619 }
620
621 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
622 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
623
624 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
625 {
626         struct drm_device *dev = crtc->base.dev;
627         struct drm_i915_private *dev_priv = dev->dev_private;
628         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
629         enum pipe pipe = crtc->pipe;
630         int position, vtotal;
631
632         vtotal = mode->crtc_vtotal;
633         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
634                 vtotal /= 2;
635
636         if (IS_GEN2(dev))
637                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
638         else
639                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
640
641         /*
642          * See update_scanline_offset() for the details on the
643          * scanline_offset adjustment.
644          */
645         return (position + crtc->scanline_offset) % vtotal;
646 }
647
648 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
649                                     unsigned int flags, int *vpos, int *hpos,
650                                     ktime_t *stime, ktime_t *etime)
651 {
652         struct drm_i915_private *dev_priv = dev->dev_private;
653         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
655         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
656         int position;
657         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
658         bool in_vbl = true;
659         int ret = 0;
660         unsigned long irqflags;
661
662         if (!intel_crtc->active) {
663                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
664                                  "pipe %c\n", pipe_name(pipe));
665                 return 0;
666         }
667
668         htotal = mode->crtc_htotal;
669         hsync_start = mode->crtc_hsync_start;
670         vtotal = mode->crtc_vtotal;
671         vbl_start = mode->crtc_vblank_start;
672         vbl_end = mode->crtc_vblank_end;
673
674         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
675                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
676                 vbl_end /= 2;
677                 vtotal /= 2;
678         }
679
680         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
681
682         /*
683          * Lock uncore.lock, as we will do multiple timing critical raw
684          * register reads, potentially with preemption disabled, so the
685          * following code must not block on uncore.lock.
686          */
687         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
688
689         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
690
691         /* Get optional system timestamp before query. */
692         if (stime)
693                 *stime = ktime_get();
694
695         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
696                 /* No obvious pixelcount register. Only query vertical
697                  * scanout position from Display scan line register.
698                  */
699                 position = __intel_get_crtc_scanline(intel_crtc);
700         } else {
701                 /* Have access to pixelcount since start of frame.
702                  * We can split this into vertical and horizontal
703                  * scanout position.
704                  */
705                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
706
707                 /* convert to pixel counts */
708                 vbl_start *= htotal;
709                 vbl_end *= htotal;
710                 vtotal *= htotal;
711
712                 /*
713                  * In interlaced modes, the pixel counter counts all pixels,
714                  * so one field will have htotal more pixels. In order to avoid
715                  * the reported position from jumping backwards when the pixel
716                  * counter is beyond the length of the shorter field, just
717                  * clamp the position the length of the shorter field. This
718                  * matches how the scanline counter based position works since
719                  * the scanline counter doesn't count the two half lines.
720                  */
721                 if (position >= vtotal)
722                         position = vtotal - 1;
723
724                 /*
725                  * Start of vblank interrupt is triggered at start of hsync,
726                  * just prior to the first active line of vblank. However we
727                  * consider lines to start at the leading edge of horizontal
728                  * active. So, should we get here before we've crossed into
729                  * the horizontal active of the first line in vblank, we would
730                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
731                  * always add htotal-hsync_start to the current pixel position.
732                  */
733                 position = (position + htotal - hsync_start) % vtotal;
734         }
735
736         /* Get optional system timestamp after query. */
737         if (etime)
738                 *etime = ktime_get();
739
740         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
741
742         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
743
744         in_vbl = position >= vbl_start && position < vbl_end;
745
746         /*
747          * While in vblank, position will be negative
748          * counting up towards 0 at vbl_end. And outside
749          * vblank, position will be positive counting
750          * up since vbl_end.
751          */
752         if (position >= vbl_start)
753                 position -= vbl_end;
754         else
755                 position += vtotal - vbl_end;
756
757         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
758                 *vpos = position;
759                 *hpos = 0;
760         } else {
761                 *vpos = position / htotal;
762                 *hpos = position - (*vpos * htotal);
763         }
764
765         /* In vblank? */
766         if (in_vbl)
767                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
768
769         return ret;
770 }
771
772 int intel_get_crtc_scanline(struct intel_crtc *crtc)
773 {
774         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
775         unsigned long irqflags;
776         int position;
777
778         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
779         position = __intel_get_crtc_scanline(crtc);
780         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
781
782         return position;
783 }
784
785 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
786                               int *max_error,
787                               struct timeval *vblank_time,
788                               unsigned flags)
789 {
790         struct drm_crtc *crtc;
791
792         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
793                 DRM_ERROR("Invalid crtc %d\n", pipe);
794                 return -EINVAL;
795         }
796
797         /* Get drm_crtc to timestamp: */
798         crtc = intel_get_crtc_for_pipe(dev, pipe);
799         if (crtc == NULL) {
800                 DRM_ERROR("Invalid crtc %d\n", pipe);
801                 return -EINVAL;
802         }
803
804         if (!crtc->enabled) {
805                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
806                 return -EBUSY;
807         }
808
809         /* Helper routine in DRM core does all the work: */
810         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
811                                                      vblank_time, flags,
812                                                      crtc,
813                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
814 }
815
816 static bool intel_hpd_irq_event(struct drm_device *dev,
817                                 struct drm_connector *connector)
818 {
819         enum drm_connector_status old_status;
820
821         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
822         old_status = connector->status;
823
824         connector->status = connector->funcs->detect(connector, false);
825         if (old_status == connector->status)
826                 return false;
827
828         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
829                       connector->base.id,
830                       connector->name,
831                       drm_get_connector_status_name(old_status),
832                       drm_get_connector_status_name(connector->status));
833
834         return true;
835 }
836
837 static void i915_digport_work_func(struct work_struct *work)
838 {
839         struct drm_i915_private *dev_priv =
840                 container_of(work, struct drm_i915_private, dig_port_work);
841         u32 long_port_mask, short_port_mask;
842         struct intel_digital_port *intel_dig_port;
843         int i, ret;
844         u32 old_bits = 0;
845
846         spin_lock_irq(&dev_priv->irq_lock);
847         long_port_mask = dev_priv->long_hpd_port_mask;
848         dev_priv->long_hpd_port_mask = 0;
849         short_port_mask = dev_priv->short_hpd_port_mask;
850         dev_priv->short_hpd_port_mask = 0;
851         spin_unlock_irq(&dev_priv->irq_lock);
852
853         for (i = 0; i < I915_MAX_PORTS; i++) {
854                 bool valid = false;
855                 bool long_hpd = false;
856                 intel_dig_port = dev_priv->hpd_irq_port[i];
857                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
858                         continue;
859
860                 if (long_port_mask & (1 << i))  {
861                         valid = true;
862                         long_hpd = true;
863                 } else if (short_port_mask & (1 << i))
864                         valid = true;
865
866                 if (valid) {
867                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
868                         if (ret == true) {
869                                 /* if we get true fallback to old school hpd */
870                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
871                         }
872                 }
873         }
874
875         if (old_bits) {
876                 spin_lock_irq(&dev_priv->irq_lock);
877                 dev_priv->hpd_event_bits |= old_bits;
878                 spin_unlock_irq(&dev_priv->irq_lock);
879                 schedule_work(&dev_priv->hotplug_work);
880         }
881 }
882
883 /*
884  * Handle hotplug events outside the interrupt handler proper.
885  */
886 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
887
888 static void i915_hotplug_work_func(struct work_struct *work)
889 {
890         struct drm_i915_private *dev_priv =
891                 container_of(work, struct drm_i915_private, hotplug_work);
892         struct drm_device *dev = dev_priv->dev;
893         struct drm_mode_config *mode_config = &dev->mode_config;
894         struct intel_connector *intel_connector;
895         struct intel_encoder *intel_encoder;
896         struct drm_connector *connector;
897         bool hpd_disabled = false;
898         bool changed = false;
899         u32 hpd_event_bits;
900
901         mutex_lock(&mode_config->mutex);
902         DRM_DEBUG_KMS("running encoder hotplug functions\n");
903
904         spin_lock_irq(&dev_priv->irq_lock);
905
906         hpd_event_bits = dev_priv->hpd_event_bits;
907         dev_priv->hpd_event_bits = 0;
908         list_for_each_entry(connector, &mode_config->connector_list, head) {
909                 intel_connector = to_intel_connector(connector);
910                 if (!intel_connector->encoder)
911                         continue;
912                 intel_encoder = intel_connector->encoder;
913                 if (intel_encoder->hpd_pin > HPD_NONE &&
914                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
915                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
916                         DRM_INFO("HPD interrupt storm detected on connector %s: "
917                                  "switching from hotplug detection to polling\n",
918                                 connector->name);
919                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
920                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
921                                 | DRM_CONNECTOR_POLL_DISCONNECT;
922                         hpd_disabled = true;
923                 }
924                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
925                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
926                                       connector->name, intel_encoder->hpd_pin);
927                 }
928         }
929          /* if there were no outputs to poll, poll was disabled,
930           * therefore make sure it's enabled when disabling HPD on
931           * some connectors */
932         if (hpd_disabled) {
933                 drm_kms_helper_poll_enable(dev);
934                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
935                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
936         }
937
938         spin_unlock_irq(&dev_priv->irq_lock);
939
940         list_for_each_entry(connector, &mode_config->connector_list, head) {
941                 intel_connector = to_intel_connector(connector);
942                 if (!intel_connector->encoder)
943                         continue;
944                 intel_encoder = intel_connector->encoder;
945                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
946                         if (intel_encoder->hot_plug)
947                                 intel_encoder->hot_plug(intel_encoder);
948                         if (intel_hpd_irq_event(dev, connector))
949                                 changed = true;
950                 }
951         }
952         mutex_unlock(&mode_config->mutex);
953
954         if (changed)
955                 drm_kms_helper_hotplug_event(dev);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 busy_up, busy_down, max_avg, min_avg;
962         u8 new_delay;
963
964         spin_lock(&mchdev_lock);
965
966         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968         new_delay = dev_priv->ips.cur_delay;
969
970         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971         busy_up = I915_READ(RCPREVBSYTUPAVG);
972         busy_down = I915_READ(RCPREVBSYTDNAVG);
973         max_avg = I915_READ(RCBMAXAVG);
974         min_avg = I915_READ(RCBMINAVG);
975
976         /* Handle RCS change request from hw */
977         if (busy_up > max_avg) {
978                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979                         new_delay = dev_priv->ips.cur_delay - 1;
980                 if (new_delay < dev_priv->ips.max_delay)
981                         new_delay = dev_priv->ips.max_delay;
982         } else if (busy_down < min_avg) {
983                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984                         new_delay = dev_priv->ips.cur_delay + 1;
985                 if (new_delay > dev_priv->ips.min_delay)
986                         new_delay = dev_priv->ips.min_delay;
987         }
988
989         if (ironlake_set_drps(dev, new_delay))
990                 dev_priv->ips.cur_delay = new_delay;
991
992         spin_unlock(&mchdev_lock);
993
994         return;
995 }
996
997 static void notify_ring(struct drm_device *dev,
998                         struct intel_engine_cs *ring)
999 {
1000         if (!intel_ring_initialized(ring))
1001                 return;
1002
1003         trace_i915_gem_request_complete(ring);
1004
1005         wake_up_all(&ring->irq_queue);
1006 }
1007
1008 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1009                             struct intel_rps_ei *rps_ei)
1010 {
1011         u32 cz_ts, cz_freq_khz;
1012         u32 render_count, media_count;
1013         u32 elapsed_render, elapsed_media, elapsed_time;
1014         u32 residency = 0;
1015
1016         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1017         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1018
1019         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1020         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1021
1022         if (rps_ei->cz_clock == 0) {
1023                 rps_ei->cz_clock = cz_ts;
1024                 rps_ei->render_c0 = render_count;
1025                 rps_ei->media_c0 = media_count;
1026
1027                 return dev_priv->rps.cur_freq;
1028         }
1029
1030         elapsed_time = cz_ts - rps_ei->cz_clock;
1031         rps_ei->cz_clock = cz_ts;
1032
1033         elapsed_render = render_count - rps_ei->render_c0;
1034         rps_ei->render_c0 = render_count;
1035
1036         elapsed_media = media_count - rps_ei->media_c0;
1037         rps_ei->media_c0 = media_count;
1038
1039         /* Convert all the counters into common unit of milli sec */
1040         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1041         elapsed_render /=  cz_freq_khz;
1042         elapsed_media /= cz_freq_khz;
1043
1044         /*
1045          * Calculate overall C0 residency percentage
1046          * only if elapsed time is non zero
1047          */
1048         if (elapsed_time) {
1049                 residency =
1050                         ((max(elapsed_render, elapsed_media) * 100)
1051                                 / elapsed_time);
1052         }
1053
1054         return residency;
1055 }
1056
1057 /**
1058  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1059  * busy-ness calculated from C0 counters of render & media power wells
1060  * @dev_priv: DRM device private
1061  *
1062  */
1063 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1064 {
1065         u32 residency_C0_up = 0, residency_C0_down = 0;
1066         int new_delay, adj;
1067
1068         dev_priv->rps.ei_interrupt_count++;
1069
1070         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1071
1072
1073         if (dev_priv->rps.up_ei.cz_clock == 0) {
1074                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1075                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1076                 return dev_priv->rps.cur_freq;
1077         }
1078
1079
1080         /*
1081          * To down throttle, C0 residency should be less than down threshold
1082          * for continous EI intervals. So calculate down EI counters
1083          * once in VLV_INT_COUNT_FOR_DOWN_EI
1084          */
1085         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1086
1087                 dev_priv->rps.ei_interrupt_count = 0;
1088
1089                 residency_C0_down = vlv_c0_residency(dev_priv,
1090                                                      &dev_priv->rps.down_ei);
1091         } else {
1092                 residency_C0_up = vlv_c0_residency(dev_priv,
1093                                                    &dev_priv->rps.up_ei);
1094         }
1095
1096         new_delay = dev_priv->rps.cur_freq;
1097
1098         adj = dev_priv->rps.last_adj;
1099         /* C0 residency is greater than UP threshold. Increase Frequency */
1100         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1101                 if (adj > 0)
1102                         adj *= 2;
1103                 else
1104                         adj = 1;
1105
1106                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1107                         new_delay = dev_priv->rps.cur_freq + adj;
1108
1109                 /*
1110                  * For better performance, jump directly
1111                  * to RPe if we're below it.
1112                  */
1113                 if (new_delay < dev_priv->rps.efficient_freq)
1114                         new_delay = dev_priv->rps.efficient_freq;
1115
1116         } else if (!dev_priv->rps.ei_interrupt_count &&
1117                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1118                 if (adj < 0)
1119                         adj *= 2;
1120                 else
1121                         adj = -1;
1122                 /*
1123                  * This means, C0 residency is less than down threshold over
1124                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1125                  */
1126                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1127                         new_delay = dev_priv->rps.cur_freq + adj;
1128         }
1129
1130         return new_delay;
1131 }
1132
1133 static void gen6_pm_rps_work(struct work_struct *work)
1134 {
1135         struct drm_i915_private *dev_priv =
1136                 container_of(work, struct drm_i915_private, rps.work);
1137         u32 pm_iir;
1138         int new_delay, adj;
1139
1140         spin_lock_irq(&dev_priv->irq_lock);
1141         /* Speed up work cancelation during disabling rps interrupts. */
1142         if (!dev_priv->rps.interrupts_enabled) {
1143                 spin_unlock_irq(&dev_priv->irq_lock);
1144                 return;
1145         }
1146         pm_iir = dev_priv->rps.pm_iir;
1147         dev_priv->rps.pm_iir = 0;
1148         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1149         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1150         spin_unlock_irq(&dev_priv->irq_lock);
1151
1152         /* Make sure we didn't queue anything we're not going to process. */
1153         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1154
1155         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1156                 return;
1157
1158         mutex_lock(&dev_priv->rps.hw_lock);
1159
1160         adj = dev_priv->rps.last_adj;
1161         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1162                 if (adj > 0)
1163                         adj *= 2;
1164                 else {
1165                         /* CHV needs even encode values */
1166                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1167                 }
1168                 new_delay = dev_priv->rps.cur_freq + adj;
1169
1170                 /*
1171                  * For better performance, jump directly
1172                  * to RPe if we're below it.
1173                  */
1174                 if (new_delay < dev_priv->rps.efficient_freq)
1175                         new_delay = dev_priv->rps.efficient_freq;
1176         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1177                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1178                         new_delay = dev_priv->rps.efficient_freq;
1179                 else
1180                         new_delay = dev_priv->rps.min_freq_softlimit;
1181                 adj = 0;
1182         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1183                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1184         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1185                 if (adj < 0)
1186                         adj *= 2;
1187                 else {
1188                         /* CHV needs even encode values */
1189                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1190                 }
1191                 new_delay = dev_priv->rps.cur_freq + adj;
1192         } else { /* unknown event */
1193                 new_delay = dev_priv->rps.cur_freq;
1194         }
1195
1196         /* sysfs frequency interfaces may have snuck in while servicing the
1197          * interrupt
1198          */
1199         new_delay = clamp_t(int, new_delay,
1200                             dev_priv->rps.min_freq_softlimit,
1201                             dev_priv->rps.max_freq_softlimit);
1202
1203         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1204
1205         if (IS_VALLEYVIEW(dev_priv->dev))
1206                 valleyview_set_rps(dev_priv->dev, new_delay);
1207         else
1208                 gen6_set_rps(dev_priv->dev, new_delay);
1209
1210         mutex_unlock(&dev_priv->rps.hw_lock);
1211 }
1212
1213
1214 /**
1215  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1216  * occurred.
1217  * @work: workqueue struct
1218  *
1219  * Doesn't actually do anything except notify userspace. As a consequence of
1220  * this event, userspace should try to remap the bad rows since statistically
1221  * it is likely the same row is more likely to go bad again.
1222  */
1223 static void ivybridge_parity_work(struct work_struct *work)
1224 {
1225         struct drm_i915_private *dev_priv =
1226                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1227         u32 error_status, row, bank, subbank;
1228         char *parity_event[6];
1229         uint32_t misccpctl;
1230         uint8_t slice = 0;
1231
1232         /* We must turn off DOP level clock gating to access the L3 registers.
1233          * In order to prevent a get/put style interface, acquire struct mutex
1234          * any time we access those registers.
1235          */
1236         mutex_lock(&dev_priv->dev->struct_mutex);
1237
1238         /* If we've screwed up tracking, just let the interrupt fire again */
1239         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1240                 goto out;
1241
1242         misccpctl = I915_READ(GEN7_MISCCPCTL);
1243         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1244         POSTING_READ(GEN7_MISCCPCTL);
1245
1246         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1247                 u32 reg;
1248
1249                 slice--;
1250                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1251                         break;
1252
1253                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1254
1255                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1256
1257                 error_status = I915_READ(reg);
1258                 row = GEN7_PARITY_ERROR_ROW(error_status);
1259                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1260                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1261
1262                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1263                 POSTING_READ(reg);
1264
1265                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1266                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1267                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1268                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1269                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1270                 parity_event[5] = NULL;
1271
1272                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1273                                    KOBJ_CHANGE, parity_event);
1274
1275                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1276                           slice, row, bank, subbank);
1277
1278                 kfree(parity_event[4]);
1279                 kfree(parity_event[3]);
1280                 kfree(parity_event[2]);
1281                 kfree(parity_event[1]);
1282         }
1283
1284         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1285
1286 out:
1287         WARN_ON(dev_priv->l3_parity.which_slice);
1288         spin_lock_irq(&dev_priv->irq_lock);
1289         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1290         spin_unlock_irq(&dev_priv->irq_lock);
1291
1292         mutex_unlock(&dev_priv->dev->struct_mutex);
1293 }
1294
1295 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1296 {
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298
1299         if (!HAS_L3_DPF(dev))
1300                 return;
1301
1302         spin_lock(&dev_priv->irq_lock);
1303         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1304         spin_unlock(&dev_priv->irq_lock);
1305
1306         iir &= GT_PARITY_ERROR(dev);
1307         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1308                 dev_priv->l3_parity.which_slice |= 1 << 1;
1309
1310         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1311                 dev_priv->l3_parity.which_slice |= 1 << 0;
1312
1313         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1314 }
1315
1316 static void ilk_gt_irq_handler(struct drm_device *dev,
1317                                struct drm_i915_private *dev_priv,
1318                                u32 gt_iir)
1319 {
1320         if (gt_iir &
1321             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1322                 notify_ring(dev, &dev_priv->ring[RCS]);
1323         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1324                 notify_ring(dev, &dev_priv->ring[VCS]);
1325 }
1326
1327 static void snb_gt_irq_handler(struct drm_device *dev,
1328                                struct drm_i915_private *dev_priv,
1329                                u32 gt_iir)
1330 {
1331
1332         if (gt_iir &
1333             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1334                 notify_ring(dev, &dev_priv->ring[RCS]);
1335         if (gt_iir & GT_BSD_USER_INTERRUPT)
1336                 notify_ring(dev, &dev_priv->ring[VCS]);
1337         if (gt_iir & GT_BLT_USER_INTERRUPT)
1338                 notify_ring(dev, &dev_priv->ring[BCS]);
1339
1340         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1341                       GT_BSD_CS_ERROR_INTERRUPT |
1342                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1343                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1344                                   gt_iir);
1345         }
1346
1347         if (gt_iir & GT_PARITY_ERROR(dev))
1348                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1349 }
1350
1351 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1352                                        struct drm_i915_private *dev_priv,
1353                                        u32 master_ctl)
1354 {
1355         struct intel_engine_cs *ring;
1356         u32 rcs, bcs, vcs;
1357         uint32_t tmp = 0;
1358         irqreturn_t ret = IRQ_NONE;
1359
1360         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1361                 tmp = I915_READ(GEN8_GT_IIR(0));
1362                 if (tmp) {
1363                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1364                         ret = IRQ_HANDLED;
1365
1366                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1367                         ring = &dev_priv->ring[RCS];
1368                         if (rcs & GT_RENDER_USER_INTERRUPT)
1369                                 notify_ring(dev, ring);
1370                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1371                                 intel_execlists_handle_ctx_events(ring);
1372
1373                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1374                         ring = &dev_priv->ring[BCS];
1375                         if (bcs & GT_RENDER_USER_INTERRUPT)
1376                                 notify_ring(dev, ring);
1377                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1378                                 intel_execlists_handle_ctx_events(ring);
1379                 } else
1380                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1381         }
1382
1383         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1384                 tmp = I915_READ(GEN8_GT_IIR(1));
1385                 if (tmp) {
1386                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1387                         ret = IRQ_HANDLED;
1388
1389                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1390                         ring = &dev_priv->ring[VCS];
1391                         if (vcs & GT_RENDER_USER_INTERRUPT)
1392                                 notify_ring(dev, ring);
1393                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1394                                 intel_execlists_handle_ctx_events(ring);
1395
1396                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1397                         ring = &dev_priv->ring[VCS2];
1398                         if (vcs & GT_RENDER_USER_INTERRUPT)
1399                                 notify_ring(dev, ring);
1400                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1401                                 intel_execlists_handle_ctx_events(ring);
1402                 } else
1403                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1404         }
1405
1406         if (master_ctl & GEN8_GT_PM_IRQ) {
1407                 tmp = I915_READ(GEN8_GT_IIR(2));
1408                 if (tmp & dev_priv->pm_rps_events) {
1409                         I915_WRITE(GEN8_GT_IIR(2),
1410                                    tmp & dev_priv->pm_rps_events);
1411                         ret = IRQ_HANDLED;
1412                         gen6_rps_irq_handler(dev_priv, tmp);
1413                 } else
1414                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1415         }
1416
1417         if (master_ctl & GEN8_GT_VECS_IRQ) {
1418                 tmp = I915_READ(GEN8_GT_IIR(3));
1419                 if (tmp) {
1420                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1421                         ret = IRQ_HANDLED;
1422
1423                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1424                         ring = &dev_priv->ring[VECS];
1425                         if (vcs & GT_RENDER_USER_INTERRUPT)
1426                                 notify_ring(dev, ring);
1427                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1428                                 intel_execlists_handle_ctx_events(ring);
1429                 } else
1430                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1431         }
1432
1433         return ret;
1434 }
1435
1436 #define HPD_STORM_DETECT_PERIOD 1000
1437 #define HPD_STORM_THRESHOLD 5
1438
1439 static int pch_port_to_hotplug_shift(enum port port)
1440 {
1441         switch (port) {
1442         case PORT_A:
1443         case PORT_E:
1444         default:
1445                 return -1;
1446         case PORT_B:
1447                 return 0;
1448         case PORT_C:
1449                 return 8;
1450         case PORT_D:
1451                 return 16;
1452         }
1453 }
1454
1455 static int i915_port_to_hotplug_shift(enum port port)
1456 {
1457         switch (port) {
1458         case PORT_A:
1459         case PORT_E:
1460         default:
1461                 return -1;
1462         case PORT_B:
1463                 return 17;
1464         case PORT_C:
1465                 return 19;
1466         case PORT_D:
1467                 return 21;
1468         }
1469 }
1470
1471 static inline enum port get_port_from_pin(enum hpd_pin pin)
1472 {
1473         switch (pin) {
1474         case HPD_PORT_B:
1475                 return PORT_B;
1476         case HPD_PORT_C:
1477                 return PORT_C;
1478         case HPD_PORT_D:
1479                 return PORT_D;
1480         default:
1481                 return PORT_A; /* no hpd */
1482         }
1483 }
1484
1485 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1486                                          u32 hotplug_trigger,
1487                                          u32 dig_hotplug_reg,
1488                                          const u32 *hpd)
1489 {
1490         struct drm_i915_private *dev_priv = dev->dev_private;
1491         int i;
1492         enum port port;
1493         bool storm_detected = false;
1494         bool queue_dig = false, queue_hp = false;
1495         u32 dig_shift;
1496         u32 dig_port_mask = 0;
1497
1498         if (!hotplug_trigger)
1499                 return;
1500
1501         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1502                          hotplug_trigger, dig_hotplug_reg);
1503
1504         spin_lock(&dev_priv->irq_lock);
1505         for (i = 1; i < HPD_NUM_PINS; i++) {
1506                 if (!(hpd[i] & hotplug_trigger))
1507                         continue;
1508
1509                 port = get_port_from_pin(i);
1510                 if (port && dev_priv->hpd_irq_port[port]) {
1511                         bool long_hpd;
1512
1513                         if (HAS_PCH_SPLIT(dev)) {
1514                                 dig_shift = pch_port_to_hotplug_shift(port);
1515                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1516                         } else {
1517                                 dig_shift = i915_port_to_hotplug_shift(port);
1518                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1519                         }
1520
1521                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1522                                          port_name(port),
1523                                          long_hpd ? "long" : "short");
1524                         /* for long HPD pulses we want to have the digital queue happen,
1525                            but we still want HPD storm detection to function. */
1526                         if (long_hpd) {
1527                                 dev_priv->long_hpd_port_mask |= (1 << port);
1528                                 dig_port_mask |= hpd[i];
1529                         } else {
1530                                 /* for short HPD just trigger the digital queue */
1531                                 dev_priv->short_hpd_port_mask |= (1 << port);
1532                                 hotplug_trigger &= ~hpd[i];
1533                         }
1534                         queue_dig = true;
1535                 }
1536         }
1537
1538         for (i = 1; i < HPD_NUM_PINS; i++) {
1539                 if (hpd[i] & hotplug_trigger &&
1540                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1541                         /*
1542                          * On GMCH platforms the interrupt mask bits only
1543                          * prevent irq generation, not the setting of the
1544                          * hotplug bits itself. So only WARN about unexpected
1545                          * interrupts on saner platforms.
1546                          */
1547                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1548                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1549                                   hotplug_trigger, i, hpd[i]);
1550
1551                         continue;
1552                 }
1553
1554                 if (!(hpd[i] & hotplug_trigger) ||
1555                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1556                         continue;
1557
1558                 if (!(dig_port_mask & hpd[i])) {
1559                         dev_priv->hpd_event_bits |= (1 << i);
1560                         queue_hp = true;
1561                 }
1562
1563                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1564                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1565                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1566                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1567                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1568                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1569                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1570                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1571                         dev_priv->hpd_event_bits &= ~(1 << i);
1572                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1573                         storm_detected = true;
1574                 } else {
1575                         dev_priv->hpd_stats[i].hpd_cnt++;
1576                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1577                                       dev_priv->hpd_stats[i].hpd_cnt);
1578                 }
1579         }
1580
1581         if (storm_detected)
1582                 dev_priv->display.hpd_irq_setup(dev);
1583         spin_unlock(&dev_priv->irq_lock);
1584
1585         /*
1586          * Our hotplug handler can grab modeset locks (by calling down into the
1587          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1588          * queue for otherwise the flush_work in the pageflip code will
1589          * deadlock.
1590          */
1591         if (queue_dig)
1592                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1593         if (queue_hp)
1594                 schedule_work(&dev_priv->hotplug_work);
1595 }
1596
1597 static void gmbus_irq_handler(struct drm_device *dev)
1598 {
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600
1601         wake_up_all(&dev_priv->gmbus_wait_queue);
1602 }
1603
1604 static void dp_aux_irq_handler(struct drm_device *dev)
1605 {
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607
1608         wake_up_all(&dev_priv->gmbus_wait_queue);
1609 }
1610
1611 #if defined(CONFIG_DEBUG_FS)
1612 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1613                                          uint32_t crc0, uint32_t crc1,
1614                                          uint32_t crc2, uint32_t crc3,
1615                                          uint32_t crc4)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1619         struct intel_pipe_crc_entry *entry;
1620         int head, tail;
1621
1622         spin_lock(&pipe_crc->lock);
1623
1624         if (!pipe_crc->entries) {
1625                 spin_unlock(&pipe_crc->lock);
1626                 DRM_ERROR("spurious interrupt\n");
1627                 return;
1628         }
1629
1630         head = pipe_crc->head;
1631         tail = pipe_crc->tail;
1632
1633         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1634                 spin_unlock(&pipe_crc->lock);
1635                 DRM_ERROR("CRC buffer overflowing\n");
1636                 return;
1637         }
1638
1639         entry = &pipe_crc->entries[head];
1640
1641         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1642         entry->crc[0] = crc0;
1643         entry->crc[1] = crc1;
1644         entry->crc[2] = crc2;
1645         entry->crc[3] = crc3;
1646         entry->crc[4] = crc4;
1647
1648         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1649         pipe_crc->head = head;
1650
1651         spin_unlock(&pipe_crc->lock);
1652
1653         wake_up_interruptible(&pipe_crc->wq);
1654 }
1655 #else
1656 static inline void
1657 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1658                              uint32_t crc0, uint32_t crc1,
1659                              uint32_t crc2, uint32_t crc3,
1660                              uint32_t crc4) {}
1661 #endif
1662
1663
1664 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1665 {
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668         display_pipe_crc_irq_handler(dev, pipe,
1669                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1670                                      0, 0, 0, 0);
1671 }
1672
1673 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         display_pipe_crc_irq_handler(dev, pipe,
1678                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1679                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1680                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1681                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1682                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1683 }
1684
1685 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1686 {
1687         struct drm_i915_private *dev_priv = dev->dev_private;
1688         uint32_t res1, res2;
1689
1690         if (INTEL_INFO(dev)->gen >= 3)
1691                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1692         else
1693                 res1 = 0;
1694
1695         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1696                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1697         else
1698                 res2 = 0;
1699
1700         display_pipe_crc_irq_handler(dev, pipe,
1701                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1702                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1703                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1704                                      res1, res2);
1705 }
1706
1707 /* The RPS events need forcewake, so we add them to a work queue and mask their
1708  * IMR bits until the work is done. Other interrupts can be processed without
1709  * the work queue. */
1710 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1711 {
1712         /* TODO: RPS on GEN9+ is not supported yet. */
1713         if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1714                       "GEN9+: unexpected RPS IRQ\n"))
1715                 return;
1716
1717         if (pm_iir & dev_priv->pm_rps_events) {
1718                 spin_lock(&dev_priv->irq_lock);
1719                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1720                 if (dev_priv->rps.interrupts_enabled) {
1721                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1722                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1723                 }
1724                 spin_unlock(&dev_priv->irq_lock);
1725         }
1726
1727         if (INTEL_INFO(dev_priv)->gen >= 8)
1728                 return;
1729
1730         if (HAS_VEBOX(dev_priv->dev)) {
1731                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1732                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1733
1734                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1735                         i915_handle_error(dev_priv->dev, false,
1736                                           "VEBOX CS error interrupt 0x%08x",
1737                                           pm_iir);
1738                 }
1739         }
1740 }
1741
1742 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1743 {
1744         if (!drm_handle_vblank(dev, pipe))
1745                 return false;
1746
1747         return true;
1748 }
1749
1750 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1751 {
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         u32 pipe_stats[I915_MAX_PIPES] = { };
1754         int pipe;
1755
1756         spin_lock(&dev_priv->irq_lock);
1757         for_each_pipe(dev_priv, pipe) {
1758                 int reg;
1759                 u32 mask, iir_bit = 0;
1760
1761                 /*
1762                  * PIPESTAT bits get signalled even when the interrupt is
1763                  * disabled with the mask bits, and some of the status bits do
1764                  * not generate interrupts at all (like the underrun bit). Hence
1765                  * we need to be careful that we only handle what we want to
1766                  * handle.
1767                  */
1768
1769                 /* fifo underruns are filterered in the underrun handler. */
1770                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1771
1772                 switch (pipe) {
1773                 case PIPE_A:
1774                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1775                         break;
1776                 case PIPE_B:
1777                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1778                         break;
1779                 case PIPE_C:
1780                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1781                         break;
1782                 }
1783                 if (iir & iir_bit)
1784                         mask |= dev_priv->pipestat_irq_mask[pipe];
1785
1786                 if (!mask)
1787                         continue;
1788
1789                 reg = PIPESTAT(pipe);
1790                 mask |= PIPESTAT_INT_ENABLE_MASK;
1791                 pipe_stats[pipe] = I915_READ(reg) & mask;
1792
1793                 /*
1794                  * Clear the PIPE*STAT regs before the IIR
1795                  */
1796                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1797                                         PIPESTAT_INT_STATUS_MASK))
1798                         I915_WRITE(reg, pipe_stats[pipe]);
1799         }
1800         spin_unlock(&dev_priv->irq_lock);
1801
1802         for_each_pipe(dev_priv, pipe) {
1803                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1804                     intel_pipe_handle_vblank(dev, pipe))
1805                         intel_check_page_flip(dev, pipe);
1806
1807                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1808                         intel_prepare_page_flip(dev, pipe);
1809                         intel_finish_page_flip(dev, pipe);
1810                 }
1811
1812                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1813                         i9xx_pipe_crc_irq_handler(dev, pipe);
1814
1815                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1816                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1817         }
1818
1819         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1820                 gmbus_irq_handler(dev);
1821 }
1822
1823 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1824 {
1825         struct drm_i915_private *dev_priv = dev->dev_private;
1826         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1827
1828         if (hotplug_status) {
1829                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1830                 /*
1831                  * Make sure hotplug status is cleared before we clear IIR, or else we
1832                  * may miss hotplug events.
1833                  */
1834                 POSTING_READ(PORT_HOTPLUG_STAT);
1835
1836                 if (IS_G4X(dev)) {
1837                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1838
1839                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1840                 } else {
1841                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1842
1843                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1844                 }
1845
1846                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1847                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1848                         dp_aux_irq_handler(dev);
1849         }
1850 }
1851
1852 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1853 {
1854         struct drm_device *dev = arg;
1855         struct drm_i915_private *dev_priv = dev->dev_private;
1856         u32 iir, gt_iir, pm_iir;
1857         irqreturn_t ret = IRQ_NONE;
1858
1859         while (true) {
1860                 /* Find, clear, then process each source of interrupt */
1861
1862                 gt_iir = I915_READ(GTIIR);
1863                 if (gt_iir)
1864                         I915_WRITE(GTIIR, gt_iir);
1865
1866                 pm_iir = I915_READ(GEN6_PMIIR);
1867                 if (pm_iir)
1868                         I915_WRITE(GEN6_PMIIR, pm_iir);
1869
1870                 iir = I915_READ(VLV_IIR);
1871                 if (iir) {
1872                         /* Consume port before clearing IIR or we'll miss events */
1873                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1874                                 i9xx_hpd_irq_handler(dev);
1875                         I915_WRITE(VLV_IIR, iir);
1876                 }
1877
1878                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879                         goto out;
1880
1881                 ret = IRQ_HANDLED;
1882
1883                 if (gt_iir)
1884                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1885                 if (pm_iir)
1886                         gen6_rps_irq_handler(dev_priv, pm_iir);
1887                 /* Call regardless, as some status bits might not be
1888                  * signalled in iir */
1889                 valleyview_pipestat_irq_handler(dev, iir);
1890         }
1891
1892 out:
1893         return ret;
1894 }
1895
1896 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1897 {
1898         struct drm_device *dev = arg;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         u32 master_ctl, iir;
1901         irqreturn_t ret = IRQ_NONE;
1902
1903         for (;;) {
1904                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1905                 iir = I915_READ(VLV_IIR);
1906
1907                 if (master_ctl == 0 && iir == 0)
1908                         break;
1909
1910                 ret = IRQ_HANDLED;
1911
1912                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1913
1914                 /* Find, clear, then process each source of interrupt */
1915
1916                 if (iir) {
1917                         /* Consume port before clearing IIR or we'll miss events */
1918                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1919                                 i9xx_hpd_irq_handler(dev);
1920                         I915_WRITE(VLV_IIR, iir);
1921                 }
1922
1923                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1924
1925                 /* Call regardless, as some status bits might not be
1926                  * signalled in iir */
1927                 valleyview_pipestat_irq_handler(dev, iir);
1928
1929                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1930                 POSTING_READ(GEN8_MASTER_IRQ);
1931         }
1932
1933         return ret;
1934 }
1935
1936 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1937 {
1938         struct drm_i915_private *dev_priv = dev->dev_private;
1939         int pipe;
1940         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1941         u32 dig_hotplug_reg;
1942
1943         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1944         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1945
1946         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1947
1948         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1949                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1950                                SDE_AUDIO_POWER_SHIFT);
1951                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1952                                  port_name(port));
1953         }
1954
1955         if (pch_iir & SDE_AUX_MASK)
1956                 dp_aux_irq_handler(dev);
1957
1958         if (pch_iir & SDE_GMBUS)
1959                 gmbus_irq_handler(dev);
1960
1961         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1962                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1963
1964         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1965                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1966
1967         if (pch_iir & SDE_POISON)
1968                 DRM_ERROR("PCH poison interrupt\n");
1969
1970         if (pch_iir & SDE_FDI_MASK)
1971                 for_each_pipe(dev_priv, pipe)
1972                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1973                                          pipe_name(pipe),
1974                                          I915_READ(FDI_RX_IIR(pipe)));
1975
1976         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1977                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1978
1979         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1980                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1981
1982         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1983                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1984
1985         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1986                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1987 }
1988
1989 static void ivb_err_int_handler(struct drm_device *dev)
1990 {
1991         struct drm_i915_private *dev_priv = dev->dev_private;
1992         u32 err_int = I915_READ(GEN7_ERR_INT);
1993         enum pipe pipe;
1994
1995         if (err_int & ERR_INT_POISON)
1996                 DRM_ERROR("Poison interrupt\n");
1997
1998         for_each_pipe(dev_priv, pipe) {
1999                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2000                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2001
2002                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2003                         if (IS_IVYBRIDGE(dev))
2004                                 ivb_pipe_crc_irq_handler(dev, pipe);
2005                         else
2006                                 hsw_pipe_crc_irq_handler(dev, pipe);
2007                 }
2008         }
2009
2010         I915_WRITE(GEN7_ERR_INT, err_int);
2011 }
2012
2013 static void cpt_serr_int_handler(struct drm_device *dev)
2014 {
2015         struct drm_i915_private *dev_priv = dev->dev_private;
2016         u32 serr_int = I915_READ(SERR_INT);
2017
2018         if (serr_int & SERR_INT_POISON)
2019                 DRM_ERROR("PCH poison interrupt\n");
2020
2021         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2022                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2023
2024         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2025                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2026
2027         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2028                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2029
2030         I915_WRITE(SERR_INT, serr_int);
2031 }
2032
2033 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2034 {
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         int pipe;
2037         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2038         u32 dig_hotplug_reg;
2039
2040         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2044
2045         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2046                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2047                                SDE_AUDIO_POWER_SHIFT_CPT);
2048                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2049                                  port_name(port));
2050         }
2051
2052         if (pch_iir & SDE_AUX_MASK_CPT)
2053                 dp_aux_irq_handler(dev);
2054
2055         if (pch_iir & SDE_GMBUS_CPT)
2056                 gmbus_irq_handler(dev);
2057
2058         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2059                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2060
2061         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2062                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2063
2064         if (pch_iir & SDE_FDI_MASK_CPT)
2065                 for_each_pipe(dev_priv, pipe)
2066                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2067                                          pipe_name(pipe),
2068                                          I915_READ(FDI_RX_IIR(pipe)));
2069
2070         if (pch_iir & SDE_ERROR_CPT)
2071                 cpt_serr_int_handler(dev);
2072 }
2073
2074 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2075 {
2076         struct drm_i915_private *dev_priv = dev->dev_private;
2077         enum pipe pipe;
2078
2079         if (de_iir & DE_AUX_CHANNEL_A)
2080                 dp_aux_irq_handler(dev);
2081
2082         if (de_iir & DE_GSE)
2083                 intel_opregion_asle_intr(dev);
2084
2085         if (de_iir & DE_POISON)
2086                 DRM_ERROR("Poison interrupt\n");
2087
2088         for_each_pipe(dev_priv, pipe) {
2089                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2090                     intel_pipe_handle_vblank(dev, pipe))
2091                         intel_check_page_flip(dev, pipe);
2092
2093                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2094                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2095
2096                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2097                         i9xx_pipe_crc_irq_handler(dev, pipe);
2098
2099                 /* plane/pipes map 1:1 on ilk+ */
2100                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2101                         intel_prepare_page_flip(dev, pipe);
2102                         intel_finish_page_flip_plane(dev, pipe);
2103                 }
2104         }
2105
2106         /* check event from PCH */
2107         if (de_iir & DE_PCH_EVENT) {
2108                 u32 pch_iir = I915_READ(SDEIIR);
2109
2110                 if (HAS_PCH_CPT(dev))
2111                         cpt_irq_handler(dev, pch_iir);
2112                 else
2113                         ibx_irq_handler(dev, pch_iir);
2114
2115                 /* should clear PCH hotplug event before clear CPU irq */
2116                 I915_WRITE(SDEIIR, pch_iir);
2117         }
2118
2119         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2120                 ironlake_rps_change_irq_handler(dev);
2121 }
2122
2123 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2124 {
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126         enum pipe pipe;
2127
2128         if (de_iir & DE_ERR_INT_IVB)
2129                 ivb_err_int_handler(dev);
2130
2131         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2132                 dp_aux_irq_handler(dev);
2133
2134         if (de_iir & DE_GSE_IVB)
2135                 intel_opregion_asle_intr(dev);
2136
2137         for_each_pipe(dev_priv, pipe) {
2138                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2139                     intel_pipe_handle_vblank(dev, pipe))
2140                         intel_check_page_flip(dev, pipe);
2141
2142                 /* plane/pipes map 1:1 on ilk+ */
2143                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2144                         intel_prepare_page_flip(dev, pipe);
2145                         intel_finish_page_flip_plane(dev, pipe);
2146                 }
2147         }
2148
2149         /* check event from PCH */
2150         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2151                 u32 pch_iir = I915_READ(SDEIIR);
2152
2153                 cpt_irq_handler(dev, pch_iir);
2154
2155                 /* clear PCH hotplug event before clear CPU irq */
2156                 I915_WRITE(SDEIIR, pch_iir);
2157         }
2158 }
2159
2160 /*
2161  * To handle irqs with the minimum potential races with fresh interrupts, we:
2162  * 1 - Disable Master Interrupt Control.
2163  * 2 - Find the source(s) of the interrupt.
2164  * 3 - Clear the Interrupt Identity bits (IIR).
2165  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2166  * 5 - Re-enable Master Interrupt Control.
2167  */
2168 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2169 {
2170         struct drm_device *dev = arg;
2171         struct drm_i915_private *dev_priv = dev->dev_private;
2172         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2173         irqreturn_t ret = IRQ_NONE;
2174
2175         /* We get interrupts on unclaimed registers, so check for this before we
2176          * do any I915_{READ,WRITE}. */
2177         intel_uncore_check_errors(dev);
2178
2179         /* disable master interrupt before clearing iir  */
2180         de_ier = I915_READ(DEIER);
2181         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2182         POSTING_READ(DEIER);
2183
2184         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2185          * interrupts will will be stored on its back queue, and then we'll be
2186          * able to process them after we restore SDEIER (as soon as we restore
2187          * it, we'll get an interrupt if SDEIIR still has something to process
2188          * due to its back queue). */
2189         if (!HAS_PCH_NOP(dev)) {
2190                 sde_ier = I915_READ(SDEIER);
2191                 I915_WRITE(SDEIER, 0);
2192                 POSTING_READ(SDEIER);
2193         }
2194
2195         /* Find, clear, then process each source of interrupt */
2196
2197         gt_iir = I915_READ(GTIIR);
2198         if (gt_iir) {
2199                 I915_WRITE(GTIIR, gt_iir);
2200                 ret = IRQ_HANDLED;
2201                 if (INTEL_INFO(dev)->gen >= 6)
2202                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2203                 else
2204                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2205         }
2206
2207         de_iir = I915_READ(DEIIR);
2208         if (de_iir) {
2209                 I915_WRITE(DEIIR, de_iir);
2210                 ret = IRQ_HANDLED;
2211                 if (INTEL_INFO(dev)->gen >= 7)
2212                         ivb_display_irq_handler(dev, de_iir);
2213                 else
2214                         ilk_display_irq_handler(dev, de_iir);
2215         }
2216
2217         if (INTEL_INFO(dev)->gen >= 6) {
2218                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2219                 if (pm_iir) {
2220                         I915_WRITE(GEN6_PMIIR, pm_iir);
2221                         ret = IRQ_HANDLED;
2222                         gen6_rps_irq_handler(dev_priv, pm_iir);
2223                 }
2224         }
2225
2226         I915_WRITE(DEIER, de_ier);
2227         POSTING_READ(DEIER);
2228         if (!HAS_PCH_NOP(dev)) {
2229                 I915_WRITE(SDEIER, sde_ier);
2230                 POSTING_READ(SDEIER);
2231         }
2232
2233         return ret;
2234 }
2235
2236 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2237 {
2238         struct drm_device *dev = arg;
2239         struct drm_i915_private *dev_priv = dev->dev_private;
2240         u32 master_ctl;
2241         irqreturn_t ret = IRQ_NONE;
2242         uint32_t tmp = 0;
2243         enum pipe pipe;
2244         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2245
2246         if (IS_GEN9(dev))
2247                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2248                         GEN9_AUX_CHANNEL_D;
2249
2250         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2251         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2252         if (!master_ctl)
2253                 return IRQ_NONE;
2254
2255         I915_WRITE(GEN8_MASTER_IRQ, 0);
2256         POSTING_READ(GEN8_MASTER_IRQ);
2257
2258         /* Find, clear, then process each source of interrupt */
2259
2260         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2261
2262         if (master_ctl & GEN8_DE_MISC_IRQ) {
2263                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2264                 if (tmp) {
2265                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2266                         ret = IRQ_HANDLED;
2267                         if (tmp & GEN8_DE_MISC_GSE)
2268                                 intel_opregion_asle_intr(dev);
2269                         else
2270                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2271                 }
2272                 else
2273                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2274         }
2275
2276         if (master_ctl & GEN8_DE_PORT_IRQ) {
2277                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2278                 if (tmp) {
2279                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2280                         ret = IRQ_HANDLED;
2281
2282                         if (tmp & aux_mask)
2283                                 dp_aux_irq_handler(dev);
2284                         else
2285                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2286                 }
2287                 else
2288                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2289         }
2290
2291         for_each_pipe(dev_priv, pipe) {
2292                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2293
2294                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2295                         continue;
2296
2297                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2298                 if (pipe_iir) {
2299                         ret = IRQ_HANDLED;
2300                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2301
2302                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2303                             intel_pipe_handle_vblank(dev, pipe))
2304                                 intel_check_page_flip(dev, pipe);
2305
2306                         if (IS_GEN9(dev))
2307                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2308                         else
2309                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2310
2311                         if (flip_done) {
2312                                 intel_prepare_page_flip(dev, pipe);
2313                                 intel_finish_page_flip_plane(dev, pipe);
2314                         }
2315
2316                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2317                                 hsw_pipe_crc_irq_handler(dev, pipe);
2318
2319                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2320                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2321                                                                     pipe);
2322
2323
2324                         if (IS_GEN9(dev))
2325                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2326                         else
2327                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2328
2329                         if (fault_errors)
2330                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2331                                           pipe_name(pipe),
2332                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2333                 } else
2334                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2335         }
2336
2337         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2338                 /*
2339                  * FIXME(BDW): Assume for now that the new interrupt handling
2340                  * scheme also closed the SDE interrupt handling race we've seen
2341                  * on older pch-split platforms. But this needs testing.
2342                  */
2343                 u32 pch_iir = I915_READ(SDEIIR);
2344                 if (pch_iir) {
2345                         I915_WRITE(SDEIIR, pch_iir);
2346                         ret = IRQ_HANDLED;
2347                         cpt_irq_handler(dev, pch_iir);
2348                 } else
2349                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2350
2351         }
2352
2353         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2354         POSTING_READ(GEN8_MASTER_IRQ);
2355
2356         return ret;
2357 }
2358
2359 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2360                                bool reset_completed)
2361 {
2362         struct intel_engine_cs *ring;
2363         int i;
2364
2365         /*
2366          * Notify all waiters for GPU completion events that reset state has
2367          * been changed, and that they need to restart their wait after
2368          * checking for potential errors (and bail out to drop locks if there is
2369          * a gpu reset pending so that i915_error_work_func can acquire them).
2370          */
2371
2372         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2373         for_each_ring(ring, dev_priv, i)
2374                 wake_up_all(&ring->irq_queue);
2375
2376         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2377         wake_up_all(&dev_priv->pending_flip_queue);
2378
2379         /*
2380          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2381          * reset state is cleared.
2382          */
2383         if (reset_completed)
2384                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2385 }
2386
2387 /**
2388  * i915_error_work_func - do process context error handling work
2389  * @work: work struct
2390  *
2391  * Fire an error uevent so userspace can see that a hang or error
2392  * was detected.
2393  */
2394 static void i915_error_work_func(struct work_struct *work)
2395 {
2396         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2397                                                     work);
2398         struct drm_i915_private *dev_priv =
2399                 container_of(error, struct drm_i915_private, gpu_error);
2400         struct drm_device *dev = dev_priv->dev;
2401         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2402         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2403         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2404         int ret;
2405
2406         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2407
2408         /*
2409          * Note that there's only one work item which does gpu resets, so we
2410          * need not worry about concurrent gpu resets potentially incrementing
2411          * error->reset_counter twice. We only need to take care of another
2412          * racing irq/hangcheck declaring the gpu dead for a second time. A
2413          * quick check for that is good enough: schedule_work ensures the
2414          * correct ordering between hang detection and this work item, and since
2415          * the reset in-progress bit is only ever set by code outside of this
2416          * work we don't need to worry about any other races.
2417          */
2418         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2419                 DRM_DEBUG_DRIVER("resetting chip\n");
2420                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2421                                    reset_event);
2422
2423                 /*
2424                  * In most cases it's guaranteed that we get here with an RPM
2425                  * reference held, for example because there is a pending GPU
2426                  * request that won't finish until the reset is done. This
2427                  * isn't the case at least when we get here by doing a
2428                  * simulated reset via debugs, so get an RPM reference.
2429                  */
2430                 intel_runtime_pm_get(dev_priv);
2431                 /*
2432                  * All state reset _must_ be completed before we update the
2433                  * reset counter, for otherwise waiters might miss the reset
2434                  * pending state and not properly drop locks, resulting in
2435                  * deadlocks with the reset work.
2436                  */
2437                 ret = i915_reset(dev);
2438
2439                 intel_display_handle_reset(dev);
2440
2441                 intel_runtime_pm_put(dev_priv);
2442
2443                 if (ret == 0) {
2444                         /*
2445                          * After all the gem state is reset, increment the reset
2446                          * counter and wake up everyone waiting for the reset to
2447                          * complete.
2448                          *
2449                          * Since unlock operations are a one-sided barrier only,
2450                          * we need to insert a barrier here to order any seqno
2451                          * updates before
2452                          * the counter increment.
2453                          */
2454                         smp_mb__before_atomic();
2455                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2456
2457                         kobject_uevent_env(&dev->primary->kdev->kobj,
2458                                            KOBJ_CHANGE, reset_done_event);
2459                 } else {
2460                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2461                 }
2462
2463                 /*
2464                  * Note: The wake_up also serves as a memory barrier so that
2465                  * waiters see the update value of the reset counter atomic_t.
2466                  */
2467                 i915_error_wake_up(dev_priv, true);
2468         }
2469 }
2470
2471 static void i915_report_and_clear_eir(struct drm_device *dev)
2472 {
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         uint32_t instdone[I915_NUM_INSTDONE_REG];
2475         u32 eir = I915_READ(EIR);
2476         int pipe, i;
2477
2478         if (!eir)
2479                 return;
2480
2481         pr_err("render error detected, EIR: 0x%08x\n", eir);
2482
2483         i915_get_extra_instdone(dev, instdone);
2484
2485         if (IS_G4X(dev)) {
2486                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2487                         u32 ipeir = I915_READ(IPEIR_I965);
2488
2489                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2490                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2491                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2492                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2493                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2494                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2495                         I915_WRITE(IPEIR_I965, ipeir);
2496                         POSTING_READ(IPEIR_I965);
2497                 }
2498                 if (eir & GM45_ERROR_PAGE_TABLE) {
2499                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2500                         pr_err("page table error\n");
2501                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2502                         I915_WRITE(PGTBL_ER, pgtbl_err);
2503                         POSTING_READ(PGTBL_ER);
2504                 }
2505         }
2506
2507         if (!IS_GEN2(dev)) {
2508                 if (eir & I915_ERROR_PAGE_TABLE) {
2509                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2510                         pr_err("page table error\n");
2511                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2512                         I915_WRITE(PGTBL_ER, pgtbl_err);
2513                         POSTING_READ(PGTBL_ER);
2514                 }
2515         }
2516
2517         if (eir & I915_ERROR_MEMORY_REFRESH) {
2518                 pr_err("memory refresh error:\n");
2519                 for_each_pipe(dev_priv, pipe)
2520                         pr_err("pipe %c stat: 0x%08x\n",
2521                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2522                 /* pipestat has already been acked */
2523         }
2524         if (eir & I915_ERROR_INSTRUCTION) {
2525                 pr_err("instruction error\n");
2526                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2527                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2528                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2529                 if (INTEL_INFO(dev)->gen < 4) {
2530                         u32 ipeir = I915_READ(IPEIR);
2531
2532                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2533                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2534                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2535                         I915_WRITE(IPEIR, ipeir);
2536                         POSTING_READ(IPEIR);
2537                 } else {
2538                         u32 ipeir = I915_READ(IPEIR_I965);
2539
2540                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2541                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2542                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2543                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2544                         I915_WRITE(IPEIR_I965, ipeir);
2545                         POSTING_READ(IPEIR_I965);
2546                 }
2547         }
2548
2549         I915_WRITE(EIR, eir);
2550         POSTING_READ(EIR);
2551         eir = I915_READ(EIR);
2552         if (eir) {
2553                 /*
2554                  * some errors might have become stuck,
2555                  * mask them.
2556                  */
2557                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2558                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2559                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2560         }
2561 }
2562
2563 /**
2564  * i915_handle_error - handle an error interrupt
2565  * @dev: drm device
2566  *
2567  * Do some basic checking of regsiter state at error interrupt time and
2568  * dump it to the syslog.  Also call i915_capture_error_state() to make
2569  * sure we get a record and make it available in debugfs.  Fire a uevent
2570  * so userspace knows something bad happened (should trigger collection
2571  * of a ring dump etc.).
2572  */
2573 void i915_handle_error(struct drm_device *dev, bool wedged,
2574                        const char *fmt, ...)
2575 {
2576         struct drm_i915_private *dev_priv = dev->dev_private;
2577         va_list args;
2578         char error_msg[80];
2579
2580         va_start(args, fmt);
2581         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2582         va_end(args);
2583
2584         i915_capture_error_state(dev, wedged, error_msg);
2585         i915_report_and_clear_eir(dev);
2586
2587         if (wedged) {
2588                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2589                                 &dev_priv->gpu_error.reset_counter);
2590
2591                 /*
2592                  * Wakeup waiting processes so that the reset work function
2593                  * i915_error_work_func doesn't deadlock trying to grab various
2594                  * locks. By bumping the reset counter first, the woken
2595                  * processes will see a reset in progress and back off,
2596                  * releasing their locks and then wait for the reset completion.
2597                  * We must do this for _all_ gpu waiters that might hold locks
2598                  * that the reset work needs to acquire.
2599                  *
2600                  * Note: The wake_up serves as the required memory barrier to
2601                  * ensure that the waiters see the updated value of the reset
2602                  * counter atomic_t.
2603                  */
2604                 i915_error_wake_up(dev_priv, false);
2605         }
2606
2607         /*
2608          * Our reset work can grab modeset locks (since it needs to reset the
2609          * state of outstanding pagelips). Hence it must not be run on our own
2610          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2611          * code will deadlock.
2612          */
2613         schedule_work(&dev_priv->gpu_error.work);
2614 }
2615
2616 /* Called from drm generic code, passed 'crtc' which
2617  * we use as a pipe index
2618  */
2619 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2620 {
2621         struct drm_i915_private *dev_priv = dev->dev_private;
2622         unsigned long irqflags;
2623
2624         if (!i915_pipe_enabled(dev, pipe))
2625                 return -EINVAL;
2626
2627         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2628         if (INTEL_INFO(dev)->gen >= 4)
2629                 i915_enable_pipestat(dev_priv, pipe,
2630                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2631         else
2632                 i915_enable_pipestat(dev_priv, pipe,
2633                                      PIPE_VBLANK_INTERRUPT_STATUS);
2634         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2635
2636         return 0;
2637 }
2638
2639 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2640 {
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         unsigned long irqflags;
2643         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2644                                                      DE_PIPE_VBLANK(pipe);
2645
2646         if (!i915_pipe_enabled(dev, pipe))
2647                 return -EINVAL;
2648
2649         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2650         ironlake_enable_display_irq(dev_priv, bit);
2651         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2652
2653         return 0;
2654 }
2655
2656 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2657 {
2658         struct drm_i915_private *dev_priv = dev->dev_private;
2659         unsigned long irqflags;
2660
2661         if (!i915_pipe_enabled(dev, pipe))
2662                 return -EINVAL;
2663
2664         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665         i915_enable_pipestat(dev_priv, pipe,
2666                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2667         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2668
2669         return 0;
2670 }
2671
2672 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2673 {
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         unsigned long irqflags;
2676
2677         if (!i915_pipe_enabled(dev, pipe))
2678                 return -EINVAL;
2679
2680         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2681         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2682         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2683         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2684         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2685         return 0;
2686 }
2687
2688 /* Called from drm generic code, passed 'crtc' which
2689  * we use as a pipe index
2690  */
2691 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2692 {
2693         struct drm_i915_private *dev_priv = dev->dev_private;
2694         unsigned long irqflags;
2695
2696         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2697         i915_disable_pipestat(dev_priv, pipe,
2698                               PIPE_VBLANK_INTERRUPT_STATUS |
2699                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2700         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2701 }
2702
2703 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2704 {
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         unsigned long irqflags;
2707         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2708                                                      DE_PIPE_VBLANK(pipe);
2709
2710         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2711         ironlake_disable_display_irq(dev_priv, bit);
2712         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2713 }
2714
2715 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2716 {
2717         struct drm_i915_private *dev_priv = dev->dev_private;
2718         unsigned long irqflags;
2719
2720         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2721         i915_disable_pipestat(dev_priv, pipe,
2722                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2723         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2724 }
2725
2726 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2727 {
2728         struct drm_i915_private *dev_priv = dev->dev_private;
2729         unsigned long irqflags;
2730
2731         if (!i915_pipe_enabled(dev, pipe))
2732                 return;
2733
2734         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2735         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2736         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2737         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2738         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2739 }
2740
2741 static u32
2742 ring_last_seqno(struct intel_engine_cs *ring)
2743 {
2744         return list_entry(ring->request_list.prev,
2745                           struct drm_i915_gem_request, list)->seqno;
2746 }
2747
2748 static bool
2749 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2750 {
2751         return (list_empty(&ring->request_list) ||
2752                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2753 }
2754
2755 static bool
2756 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2757 {
2758         if (INTEL_INFO(dev)->gen >= 8) {
2759                 return (ipehr >> 23) == 0x1c;
2760         } else {
2761                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2762                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2763                                  MI_SEMAPHORE_REGISTER);
2764         }
2765 }
2766
2767 static struct intel_engine_cs *
2768 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2769 {
2770         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2771         struct intel_engine_cs *signaller;
2772         int i;
2773
2774         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2775                 for_each_ring(signaller, dev_priv, i) {
2776                         if (ring == signaller)
2777                                 continue;
2778
2779                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2780                                 return signaller;
2781                 }
2782         } else {
2783                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2784
2785                 for_each_ring(signaller, dev_priv, i) {
2786                         if(ring == signaller)
2787                                 continue;
2788
2789                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2790                                 return signaller;
2791                 }
2792         }
2793
2794         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2795                   ring->id, ipehr, offset);
2796
2797         return NULL;
2798 }
2799
2800 static struct intel_engine_cs *
2801 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2802 {
2803         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2804         u32 cmd, ipehr, head;
2805         u64 offset = 0;
2806         int i, backwards;
2807
2808         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2809         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2810                 return NULL;
2811
2812         /*
2813          * HEAD is likely pointing to the dword after the actual command,
2814          * so scan backwards until we find the MBOX. But limit it to just 3
2815          * or 4 dwords depending on the semaphore wait command size.
2816          * Note that we don't care about ACTHD here since that might
2817          * point at at batch, and semaphores are always emitted into the
2818          * ringbuffer itself.
2819          */
2820         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2821         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2822
2823         for (i = backwards; i; --i) {
2824                 /*
2825                  * Be paranoid and presume the hw has gone off into the wild -
2826                  * our ring is smaller than what the hardware (and hence
2827                  * HEAD_ADDR) allows. Also handles wrap-around.
2828                  */
2829                 head &= ring->buffer->size - 1;
2830
2831                 /* This here seems to blow up */
2832                 cmd = ioread32(ring->buffer->virtual_start + head);
2833                 if (cmd == ipehr)
2834                         break;
2835
2836                 head -= 4;
2837         }
2838
2839         if (!i)
2840                 return NULL;
2841
2842         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2843         if (INTEL_INFO(ring->dev)->gen >= 8) {
2844                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2845                 offset <<= 32;
2846                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2847         }
2848         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2849 }
2850
2851 static int semaphore_passed(struct intel_engine_cs *ring)
2852 {
2853         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2854         struct intel_engine_cs *signaller;
2855         u32 seqno;
2856
2857         ring->hangcheck.deadlock++;
2858
2859         signaller = semaphore_waits_for(ring, &seqno);
2860         if (signaller == NULL)
2861                 return -1;
2862
2863         /* Prevent pathological recursion due to driver bugs */
2864         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2865                 return -1;
2866
2867         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2868                 return 1;
2869
2870         /* cursory check for an unkickable deadlock */
2871         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2872             semaphore_passed(signaller) < 0)
2873                 return -1;
2874
2875         return 0;
2876 }
2877
2878 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2879 {
2880         struct intel_engine_cs *ring;
2881         int i;
2882
2883         for_each_ring(ring, dev_priv, i)
2884                 ring->hangcheck.deadlock = 0;
2885 }
2886
2887 static enum intel_ring_hangcheck_action
2888 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2889 {
2890         struct drm_device *dev = ring->dev;
2891         struct drm_i915_private *dev_priv = dev->dev_private;
2892         u32 tmp;
2893
2894         if (acthd != ring->hangcheck.acthd) {
2895                 if (acthd > ring->hangcheck.max_acthd) {
2896                         ring->hangcheck.max_acthd = acthd;
2897                         return HANGCHECK_ACTIVE;
2898                 }
2899
2900                 return HANGCHECK_ACTIVE_LOOP;
2901         }
2902
2903         if (IS_GEN2(dev))
2904                 return HANGCHECK_HUNG;
2905
2906         /* Is the chip hanging on a WAIT_FOR_EVENT?
2907          * If so we can simply poke the RB_WAIT bit
2908          * and break the hang. This should work on
2909          * all but the second generation chipsets.
2910          */
2911         tmp = I915_READ_CTL(ring);
2912         if (tmp & RING_WAIT) {
2913                 i915_handle_error(dev, false,
2914                                   "Kicking stuck wait on %s",
2915                                   ring->name);
2916                 I915_WRITE_CTL(ring, tmp);
2917                 return HANGCHECK_KICK;
2918         }
2919
2920         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2921                 switch (semaphore_passed(ring)) {
2922                 default:
2923                         return HANGCHECK_HUNG;
2924                 case 1:
2925                         i915_handle_error(dev, false,
2926                                           "Kicking stuck semaphore on %s",
2927                                           ring->name);
2928                         I915_WRITE_CTL(ring, tmp);
2929                         return HANGCHECK_KICK;
2930                 case 0:
2931                         return HANGCHECK_WAIT;
2932                 }
2933         }
2934
2935         return HANGCHECK_HUNG;
2936 }
2937
2938 /**
2939  * This is called when the chip hasn't reported back with completed
2940  * batchbuffers in a long time. We keep track per ring seqno progress and
2941  * if there are no progress, hangcheck score for that ring is increased.
2942  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2943  * we kick the ring. If we see no progress on three subsequent calls
2944  * we assume chip is wedged and try to fix it by resetting the chip.
2945  */
2946 static void i915_hangcheck_elapsed(unsigned long data)
2947 {
2948         struct drm_device *dev = (struct drm_device *)data;
2949         struct drm_i915_private *dev_priv = dev->dev_private;
2950         struct intel_engine_cs *ring;
2951         int i;
2952         int busy_count = 0, rings_hung = 0;
2953         bool stuck[I915_NUM_RINGS] = { 0 };
2954 #define BUSY 1
2955 #define KICK 5
2956 #define HUNG 20
2957
2958         if (!i915.enable_hangcheck)
2959                 return;
2960
2961         for_each_ring(ring, dev_priv, i) {
2962                 u64 acthd;
2963                 u32 seqno;
2964                 bool busy = true;
2965
2966                 semaphore_clear_deadlocks(dev_priv);
2967
2968                 seqno = ring->get_seqno(ring, false);
2969                 acthd = intel_ring_get_active_head(ring);
2970
2971                 if (ring->hangcheck.seqno == seqno) {
2972                         if (ring_idle(ring, seqno)) {
2973                                 ring->hangcheck.action = HANGCHECK_IDLE;
2974
2975                                 if (waitqueue_active(&ring->irq_queue)) {
2976                                         /* Issue a wake-up to catch stuck h/w. */
2977                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2978                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2979                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2980                                                                   ring->name);
2981                                                 else
2982                                                         DRM_INFO("Fake missed irq on %s\n",
2983                                                                  ring->name);
2984                                                 wake_up_all(&ring->irq_queue);
2985                                         }
2986                                         /* Safeguard against driver failure */
2987                                         ring->hangcheck.score += BUSY;
2988                                 } else
2989                                         busy = false;
2990                         } else {
2991                                 /* We always increment the hangcheck score
2992                                  * if the ring is busy and still processing
2993                                  * the same request, so that no single request
2994                                  * can run indefinitely (such as a chain of
2995                                  * batches). The only time we do not increment
2996                                  * the hangcheck score on this ring, if this
2997                                  * ring is in a legitimate wait for another
2998                                  * ring. In that case the waiting ring is a
2999                                  * victim and we want to be sure we catch the
3000                                  * right culprit. Then every time we do kick
3001                                  * the ring, add a small increment to the
3002                                  * score so that we can catch a batch that is
3003                                  * being repeatedly kicked and so responsible
3004                                  * for stalling the machine.
3005                                  */
3006                                 ring->hangcheck.action = ring_stuck(ring,
3007                                                                     acthd);
3008
3009                                 switch (ring->hangcheck.action) {
3010                                 case HANGCHECK_IDLE:
3011                                 case HANGCHECK_WAIT:
3012                                 case HANGCHECK_ACTIVE:
3013                                         break;
3014                                 case HANGCHECK_ACTIVE_LOOP:
3015                                         ring->hangcheck.score += BUSY;
3016                                         break;
3017                                 case HANGCHECK_KICK:
3018                                         ring->hangcheck.score += KICK;
3019                                         break;
3020                                 case HANGCHECK_HUNG:
3021                                         ring->hangcheck.score += HUNG;
3022                                         stuck[i] = true;
3023                                         break;
3024                                 }
3025                         }
3026                 } else {
3027                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3028
3029                         /* Gradually reduce the count so that we catch DoS
3030                          * attempts across multiple batches.
3031                          */
3032                         if (ring->hangcheck.score > 0)
3033                                 ring->hangcheck.score--;
3034
3035                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3036                 }
3037
3038                 ring->hangcheck.seqno = seqno;
3039                 ring->hangcheck.acthd = acthd;
3040                 busy_count += busy;
3041         }
3042
3043         for_each_ring(ring, dev_priv, i) {
3044                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3045                         DRM_INFO("%s on %s\n",
3046                                  stuck[i] ? "stuck" : "no progress",
3047                                  ring->name);
3048                         rings_hung++;
3049                 }
3050         }
3051
3052         if (rings_hung)
3053                 return i915_handle_error(dev, true, "Ring hung");
3054
3055         if (busy_count)
3056                 /* Reset timer case chip hangs without another request
3057                  * being added */
3058                 i915_queue_hangcheck(dev);
3059 }
3060
3061 void i915_queue_hangcheck(struct drm_device *dev)
3062 {
3063         struct drm_i915_private *dev_priv = dev->dev_private;
3064         struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3065
3066         if (!i915.enable_hangcheck)
3067                 return;
3068
3069         /* Don't continually defer the hangcheck, but make sure it is active */
3070         if (!timer_pending(timer))
3071                 timer->expires = round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
3072         mod_timer(timer, timer->expires);
3073 }
3074
3075 static void ibx_irq_reset(struct drm_device *dev)
3076 {
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078
3079         if (HAS_PCH_NOP(dev))
3080                 return;
3081
3082         GEN5_IRQ_RESET(SDE);
3083
3084         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3085                 I915_WRITE(SERR_INT, 0xffffffff);
3086 }
3087
3088 /*
3089  * SDEIER is also touched by the interrupt handler to work around missed PCH
3090  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3091  * instead we unconditionally enable all PCH interrupt sources here, but then
3092  * only unmask them as needed with SDEIMR.
3093  *
3094  * This function needs to be called before interrupts are enabled.
3095  */
3096 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3097 {
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099
3100         if (HAS_PCH_NOP(dev))
3101                 return;
3102
3103         WARN_ON(I915_READ(SDEIER) != 0);
3104         I915_WRITE(SDEIER, 0xffffffff);
3105         POSTING_READ(SDEIER);
3106 }
3107
3108 static void gen5_gt_irq_reset(struct drm_device *dev)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         GEN5_IRQ_RESET(GT);
3113         if (INTEL_INFO(dev)->gen >= 6)
3114                 GEN5_IRQ_RESET(GEN6_PM);
3115 }
3116
3117 /* drm_dma.h hooks
3118 */
3119 static void ironlake_irq_reset(struct drm_device *dev)
3120 {
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122
3123         I915_WRITE(HWSTAM, 0xffffffff);
3124
3125         GEN5_IRQ_RESET(DE);
3126         if (IS_GEN7(dev))
3127                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3128
3129         gen5_gt_irq_reset(dev);
3130
3131         ibx_irq_reset(dev);
3132 }
3133
3134 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3135 {
3136         enum pipe pipe;
3137
3138         I915_WRITE(PORT_HOTPLUG_EN, 0);
3139         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3140
3141         for_each_pipe(dev_priv, pipe)
3142                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3143
3144         GEN5_IRQ_RESET(VLV_);
3145 }
3146
3147 static void valleyview_irq_preinstall(struct drm_device *dev)
3148 {
3149         struct drm_i915_private *dev_priv = dev->dev_private;
3150
3151         /* VLV magic */
3152         I915_WRITE(VLV_IMR, 0);
3153         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3154         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3155         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3156
3157         gen5_gt_irq_reset(dev);
3158
3159         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3160
3161         vlv_display_irq_reset(dev_priv);
3162 }
3163
3164 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3165 {
3166         GEN8_IRQ_RESET_NDX(GT, 0);
3167         GEN8_IRQ_RESET_NDX(GT, 1);
3168         GEN8_IRQ_RESET_NDX(GT, 2);
3169         GEN8_IRQ_RESET_NDX(GT, 3);
3170 }
3171
3172 static void gen8_irq_reset(struct drm_device *dev)
3173 {
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         int pipe;
3176
3177         I915_WRITE(GEN8_MASTER_IRQ, 0);
3178         POSTING_READ(GEN8_MASTER_IRQ);
3179
3180         gen8_gt_irq_reset(dev_priv);
3181
3182         for_each_pipe(dev_priv, pipe)
3183                 if (intel_display_power_is_enabled(dev_priv,
3184                                                    POWER_DOMAIN_PIPE(pipe)))
3185                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3186
3187         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3188         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3189         GEN5_IRQ_RESET(GEN8_PCU_);
3190
3191         ibx_irq_reset(dev);
3192 }
3193
3194 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3195 {
3196         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3197
3198         spin_lock_irq(&dev_priv->irq_lock);
3199         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3200                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3201         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3202                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3203         spin_unlock_irq(&dev_priv->irq_lock);
3204 }
3205
3206 static void cherryview_irq_preinstall(struct drm_device *dev)
3207 {
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209
3210         I915_WRITE(GEN8_MASTER_IRQ, 0);
3211         POSTING_READ(GEN8_MASTER_IRQ);
3212
3213         gen8_gt_irq_reset(dev_priv);
3214
3215         GEN5_IRQ_RESET(GEN8_PCU_);
3216
3217         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3218
3219         vlv_display_irq_reset(dev_priv);
3220 }
3221
3222 static void ibx_hpd_irq_setup(struct drm_device *dev)
3223 {
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         struct intel_encoder *intel_encoder;
3226         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3227
3228         if (HAS_PCH_IBX(dev)) {
3229                 hotplug_irqs = SDE_HOTPLUG_MASK;
3230                 for_each_intel_encoder(dev, intel_encoder)
3231                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3232                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3233         } else {
3234                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3235                 for_each_intel_encoder(dev, intel_encoder)
3236                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3237                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3238         }
3239
3240         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3241
3242         /*
3243          * Enable digital hotplug on the PCH, and configure the DP short pulse
3244          * duration to 2ms (which is the minimum in the Display Port spec)
3245          *
3246          * This register is the same on all known PCH chips.
3247          */
3248         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3249         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3250         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3251         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3252         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3253         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3254 }
3255
3256 static void ibx_irq_postinstall(struct drm_device *dev)
3257 {
3258         struct drm_i915_private *dev_priv = dev->dev_private;
3259         u32 mask;
3260
3261         if (HAS_PCH_NOP(dev))
3262                 return;
3263
3264         if (HAS_PCH_IBX(dev))
3265                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3266         else
3267                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3268
3269         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3270         I915_WRITE(SDEIMR, ~mask);
3271 }
3272
3273 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3274 {
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         u32 pm_irqs, gt_irqs;
3277
3278         pm_irqs = gt_irqs = 0;
3279
3280         dev_priv->gt_irq_mask = ~0;
3281         if (HAS_L3_DPF(dev)) {
3282                 /* L3 parity interrupt is always unmasked. */
3283                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3284                 gt_irqs |= GT_PARITY_ERROR(dev);
3285         }
3286
3287         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3288         if (IS_GEN5(dev)) {
3289                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3290                            ILK_BSD_USER_INTERRUPT;
3291         } else {
3292                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3293         }
3294
3295         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3296
3297         if (INTEL_INFO(dev)->gen >= 6) {
3298                 pm_irqs |= dev_priv->pm_rps_events;
3299
3300                 if (HAS_VEBOX(dev))
3301                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3302
3303                 dev_priv->pm_irq_mask = 0xffffffff;
3304                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3305         }
3306 }
3307
3308 static int ironlake_irq_postinstall(struct drm_device *dev)
3309 {
3310         struct drm_i915_private *dev_priv = dev->dev_private;
3311         u32 display_mask, extra_mask;
3312
3313         if (INTEL_INFO(dev)->gen >= 7) {
3314                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3315                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3316                                 DE_PLANEB_FLIP_DONE_IVB |
3317                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3318                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3319                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3320         } else {
3321                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3322                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3323                                 DE_AUX_CHANNEL_A |
3324                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3325                                 DE_POISON);
3326                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3327                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3328         }
3329
3330         dev_priv->irq_mask = ~display_mask;
3331
3332         I915_WRITE(HWSTAM, 0xeffe);
3333
3334         ibx_irq_pre_postinstall(dev);
3335
3336         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3337
3338         gen5_gt_irq_postinstall(dev);
3339
3340         ibx_irq_postinstall(dev);
3341
3342         if (IS_IRONLAKE_M(dev)) {
3343                 /* Enable PCU event interrupts
3344                  *
3345                  * spinlocking not required here for correctness since interrupt
3346                  * setup is guaranteed to run in single-threaded context. But we
3347                  * need it to make the assert_spin_locked happy. */
3348                 spin_lock_irq(&dev_priv->irq_lock);
3349                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3350                 spin_unlock_irq(&dev_priv->irq_lock);
3351         }
3352
3353         return 0;
3354 }
3355
3356 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3357 {
3358         u32 pipestat_mask;
3359         u32 iir_mask;
3360         enum pipe pipe;
3361
3362         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3363                         PIPE_FIFO_UNDERRUN_STATUS;
3364
3365         for_each_pipe(dev_priv, pipe)
3366                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3367         POSTING_READ(PIPESTAT(PIPE_A));
3368
3369         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3370                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3371
3372         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3373         for_each_pipe(dev_priv, pipe)
3374                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3375
3376         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3377                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3378                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3379         if (IS_CHERRYVIEW(dev_priv))
3380                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3381         dev_priv->irq_mask &= ~iir_mask;
3382
3383         I915_WRITE(VLV_IIR, iir_mask);
3384         I915_WRITE(VLV_IIR, iir_mask);
3385         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3386         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3387         POSTING_READ(VLV_IMR);
3388 }
3389
3390 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3391 {
3392         u32 pipestat_mask;
3393         u32 iir_mask;
3394         enum pipe pipe;
3395
3396         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3397                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3398                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3399         if (IS_CHERRYVIEW(dev_priv))
3400                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3401
3402         dev_priv->irq_mask |= iir_mask;
3403         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3404         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3405         I915_WRITE(VLV_IIR, iir_mask);
3406         I915_WRITE(VLV_IIR, iir_mask);
3407         POSTING_READ(VLV_IIR);
3408
3409         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3410                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3411
3412         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3413         for_each_pipe(dev_priv, pipe)
3414                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3415
3416         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3417                         PIPE_FIFO_UNDERRUN_STATUS;
3418
3419         for_each_pipe(dev_priv, pipe)
3420                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3421         POSTING_READ(PIPESTAT(PIPE_A));
3422 }
3423
3424 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3425 {
3426         assert_spin_locked(&dev_priv->irq_lock);
3427
3428         if (dev_priv->display_irqs_enabled)
3429                 return;
3430
3431         dev_priv->display_irqs_enabled = true;
3432
3433         if (intel_irqs_enabled(dev_priv))
3434                 valleyview_display_irqs_install(dev_priv);
3435 }
3436
3437 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3438 {
3439         assert_spin_locked(&dev_priv->irq_lock);
3440
3441         if (!dev_priv->display_irqs_enabled)
3442                 return;
3443
3444         dev_priv->display_irqs_enabled = false;
3445
3446         if (intel_irqs_enabled(dev_priv))
3447                 valleyview_display_irqs_uninstall(dev_priv);
3448 }
3449
3450 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3451 {
3452         dev_priv->irq_mask = ~0;
3453
3454         I915_WRITE(PORT_HOTPLUG_EN, 0);
3455         POSTING_READ(PORT_HOTPLUG_EN);
3456
3457         I915_WRITE(VLV_IIR, 0xffffffff);
3458         I915_WRITE(VLV_IIR, 0xffffffff);
3459         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3460         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3461         POSTING_READ(VLV_IMR);
3462
3463         /* Interrupt setup is already guaranteed to be single-threaded, this is
3464          * just to make the assert_spin_locked check happy. */
3465         spin_lock_irq(&dev_priv->irq_lock);
3466         if (dev_priv->display_irqs_enabled)
3467                 valleyview_display_irqs_install(dev_priv);
3468         spin_unlock_irq(&dev_priv->irq_lock);
3469 }
3470
3471 static int valleyview_irq_postinstall(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474
3475         vlv_display_irq_postinstall(dev_priv);
3476
3477         gen5_gt_irq_postinstall(dev);
3478
3479         /* ack & enable invalid PTE error interrupts */
3480 #if 0 /* FIXME: add support to irq handler for checking these bits */
3481         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3482         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3483 #endif
3484
3485         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3486
3487         return 0;
3488 }
3489
3490 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3491 {
3492         /* These are interrupts we'll toggle with the ring mask register */
3493         uint32_t gt_interrupts[] = {
3494                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3495                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3496                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3497                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3498                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3499                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3500                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3501                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3502                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3503                 0,
3504                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3505                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3506                 };
3507
3508         dev_priv->pm_irq_mask = 0xffffffff;
3509         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3510         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3511         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3512         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3513 }
3514
3515 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3516 {
3517         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3518         uint32_t de_pipe_enables;
3519         int pipe;
3520         u32 aux_en = GEN8_AUX_CHANNEL_A;
3521
3522         if (IS_GEN9(dev_priv)) {
3523                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3524                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3525                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3526                         GEN9_AUX_CHANNEL_D;
3527         } else
3528                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3529                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3530
3531         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3532                                            GEN8_PIPE_FIFO_UNDERRUN;
3533
3534         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3535         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3536         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3537
3538         for_each_pipe(dev_priv, pipe)
3539                 if (intel_display_power_is_enabled(dev_priv,
3540                                 POWER_DOMAIN_PIPE(pipe)))
3541                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3542                                           dev_priv->de_irq_mask[pipe],
3543                                           de_pipe_enables);
3544
3545         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3546 }
3547
3548 static int gen8_irq_postinstall(struct drm_device *dev)
3549 {
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551
3552         ibx_irq_pre_postinstall(dev);
3553
3554         gen8_gt_irq_postinstall(dev_priv);
3555         gen8_de_irq_postinstall(dev_priv);
3556
3557         ibx_irq_postinstall(dev);
3558
3559         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3560         POSTING_READ(GEN8_MASTER_IRQ);
3561
3562         return 0;
3563 }
3564
3565 static int cherryview_irq_postinstall(struct drm_device *dev)
3566 {
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568
3569         vlv_display_irq_postinstall(dev_priv);
3570
3571         gen8_gt_irq_postinstall(dev_priv);
3572
3573         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3574         POSTING_READ(GEN8_MASTER_IRQ);
3575
3576         return 0;
3577 }
3578
3579 static void gen8_irq_uninstall(struct drm_device *dev)
3580 {
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582
3583         if (!dev_priv)
3584                 return;
3585
3586         gen8_irq_reset(dev);
3587 }
3588
3589 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3590 {
3591         /* Interrupt setup is already guaranteed to be single-threaded, this is
3592          * just to make the assert_spin_locked check happy. */
3593         spin_lock_irq(&dev_priv->irq_lock);
3594         if (dev_priv->display_irqs_enabled)
3595                 valleyview_display_irqs_uninstall(dev_priv);
3596         spin_unlock_irq(&dev_priv->irq_lock);
3597
3598         vlv_display_irq_reset(dev_priv);
3599
3600         dev_priv->irq_mask = 0;
3601 }
3602
3603 static void valleyview_irq_uninstall(struct drm_device *dev)
3604 {
3605         struct drm_i915_private *dev_priv = dev->dev_private;
3606
3607         if (!dev_priv)
3608                 return;
3609
3610         I915_WRITE(VLV_MASTER_IER, 0);
3611
3612         gen5_gt_irq_reset(dev);
3613
3614         I915_WRITE(HWSTAM, 0xffffffff);
3615
3616         vlv_display_irq_uninstall(dev_priv);
3617 }
3618
3619 static void cherryview_irq_uninstall(struct drm_device *dev)
3620 {
3621         struct drm_i915_private *dev_priv = dev->dev_private;
3622
3623         if (!dev_priv)
3624                 return;
3625
3626         I915_WRITE(GEN8_MASTER_IRQ, 0);
3627         POSTING_READ(GEN8_MASTER_IRQ);
3628
3629         gen8_gt_irq_reset(dev_priv);
3630
3631         GEN5_IRQ_RESET(GEN8_PCU_);
3632
3633         vlv_display_irq_uninstall(dev_priv);
3634 }
3635
3636 static void ironlake_irq_uninstall(struct drm_device *dev)
3637 {
3638         struct drm_i915_private *dev_priv = dev->dev_private;
3639
3640         if (!dev_priv)
3641                 return;
3642
3643         ironlake_irq_reset(dev);
3644 }
3645
3646 static void i8xx_irq_preinstall(struct drm_device * dev)
3647 {
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         int pipe;
3650
3651         for_each_pipe(dev_priv, pipe)
3652                 I915_WRITE(PIPESTAT(pipe), 0);
3653         I915_WRITE16(IMR, 0xffff);
3654         I915_WRITE16(IER, 0x0);
3655         POSTING_READ16(IER);
3656 }
3657
3658 static int i8xx_irq_postinstall(struct drm_device *dev)
3659 {
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661
3662         I915_WRITE16(EMR,
3663                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3664
3665         /* Unmask the interrupts that we always want on. */
3666         dev_priv->irq_mask =
3667                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3668                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3669                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3670                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3671                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3672         I915_WRITE16(IMR, dev_priv->irq_mask);
3673
3674         I915_WRITE16(IER,
3675                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3677                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3678                      I915_USER_INTERRUPT);
3679         POSTING_READ16(IER);
3680
3681         /* Interrupt setup is already guaranteed to be single-threaded, this is
3682          * just to make the assert_spin_locked check happy. */
3683         spin_lock_irq(&dev_priv->irq_lock);
3684         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3685         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3686         spin_unlock_irq(&dev_priv->irq_lock);
3687
3688         return 0;
3689 }
3690
3691 /*
3692  * Returns true when a page flip has completed.
3693  */
3694 static bool i8xx_handle_vblank(struct drm_device *dev,
3695                                int plane, int pipe, u32 iir)
3696 {
3697         struct drm_i915_private *dev_priv = dev->dev_private;
3698         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3699
3700         if (!intel_pipe_handle_vblank(dev, pipe))
3701                 return false;
3702
3703         if ((iir & flip_pending) == 0)
3704                 goto check_page_flip;
3705
3706         intel_prepare_page_flip(dev, plane);
3707
3708         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3709          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3710          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3711          * the flip is completed (no longer pending). Since this doesn't raise
3712          * an interrupt per se, we watch for the change at vblank.
3713          */
3714         if (I915_READ16(ISR) & flip_pending)
3715                 goto check_page_flip;
3716
3717         intel_finish_page_flip(dev, pipe);
3718         return true;
3719
3720 check_page_flip:
3721         intel_check_page_flip(dev, pipe);
3722         return false;
3723 }
3724
3725 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3726 {
3727         struct drm_device *dev = arg;
3728         struct drm_i915_private *dev_priv = dev->dev_private;
3729         u16 iir, new_iir;
3730         u32 pipe_stats[2];
3731         int pipe;
3732         u16 flip_mask =
3733                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3734                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3735
3736         iir = I915_READ16(IIR);
3737         if (iir == 0)
3738                 return IRQ_NONE;
3739
3740         while (iir & ~flip_mask) {
3741                 /* Can't rely on pipestat interrupt bit in iir as it might
3742                  * have been cleared after the pipestat interrupt was received.
3743                  * It doesn't set the bit in iir again, but it still produces
3744                  * interrupts (for non-MSI).
3745                  */
3746                 spin_lock(&dev_priv->irq_lock);
3747                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3748                         i915_handle_error(dev, false,
3749                                           "Command parser error, iir 0x%08x",
3750                                           iir);
3751
3752                 for_each_pipe(dev_priv, pipe) {
3753                         int reg = PIPESTAT(pipe);
3754                         pipe_stats[pipe] = I915_READ(reg);
3755
3756                         /*
3757                          * Clear the PIPE*STAT regs before the IIR
3758                          */
3759                         if (pipe_stats[pipe] & 0x8000ffff)
3760                                 I915_WRITE(reg, pipe_stats[pipe]);
3761                 }
3762                 spin_unlock(&dev_priv->irq_lock);
3763
3764                 I915_WRITE16(IIR, iir & ~flip_mask);
3765                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3766
3767                 i915_update_dri1_breadcrumb(dev);
3768
3769                 if (iir & I915_USER_INTERRUPT)
3770                         notify_ring(dev, &dev_priv->ring[RCS]);
3771
3772                 for_each_pipe(dev_priv, pipe) {
3773                         int plane = pipe;
3774                         if (HAS_FBC(dev))
3775                                 plane = !plane;
3776
3777                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3778                             i8xx_handle_vblank(dev, plane, pipe, iir))
3779                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3780
3781                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3782                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3783
3784                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3785                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3786                                                                     pipe);
3787                 }
3788
3789                 iir = new_iir;
3790         }
3791
3792         return IRQ_HANDLED;
3793 }
3794
3795 static void i8xx_irq_uninstall(struct drm_device * dev)
3796 {
3797         struct drm_i915_private *dev_priv = dev->dev_private;
3798         int pipe;
3799
3800         for_each_pipe(dev_priv, pipe) {
3801                 /* Clear enable bits; then clear status bits */
3802                 I915_WRITE(PIPESTAT(pipe), 0);
3803                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3804         }
3805         I915_WRITE16(IMR, 0xffff);
3806         I915_WRITE16(IER, 0x0);
3807         I915_WRITE16(IIR, I915_READ16(IIR));
3808 }
3809
3810 static void i915_irq_preinstall(struct drm_device * dev)
3811 {
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         int pipe;
3814
3815         if (I915_HAS_HOTPLUG(dev)) {
3816                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3817                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3818         }
3819
3820         I915_WRITE16(HWSTAM, 0xeffe);
3821         for_each_pipe(dev_priv, pipe)
3822                 I915_WRITE(PIPESTAT(pipe), 0);
3823         I915_WRITE(IMR, 0xffffffff);
3824         I915_WRITE(IER, 0x0);
3825         POSTING_READ(IER);
3826 }
3827
3828 static int i915_irq_postinstall(struct drm_device *dev)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         u32 enable_mask;
3832
3833         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3834
3835         /* Unmask the interrupts that we always want on. */
3836         dev_priv->irq_mask =
3837                 ~(I915_ASLE_INTERRUPT |
3838                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3839                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3840                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3841                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3842                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3843
3844         enable_mask =
3845                 I915_ASLE_INTERRUPT |
3846                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3847                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3848                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3849                 I915_USER_INTERRUPT;
3850
3851         if (I915_HAS_HOTPLUG(dev)) {
3852                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3853                 POSTING_READ(PORT_HOTPLUG_EN);
3854
3855                 /* Enable in IER... */
3856                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3857                 /* and unmask in IMR */
3858                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3859         }
3860
3861         I915_WRITE(IMR, dev_priv->irq_mask);
3862         I915_WRITE(IER, enable_mask);
3863         POSTING_READ(IER);
3864
3865         i915_enable_asle_pipestat(dev);
3866
3867         /* Interrupt setup is already guaranteed to be single-threaded, this is
3868          * just to make the assert_spin_locked check happy. */
3869         spin_lock_irq(&dev_priv->irq_lock);
3870         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3871         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3872         spin_unlock_irq(&dev_priv->irq_lock);
3873
3874         return 0;
3875 }
3876
3877 /*
3878  * Returns true when a page flip has completed.
3879  */
3880 static bool i915_handle_vblank(struct drm_device *dev,
3881                                int plane, int pipe, u32 iir)
3882 {
3883         struct drm_i915_private *dev_priv = dev->dev_private;
3884         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3885
3886         if (!intel_pipe_handle_vblank(dev, pipe))
3887                 return false;
3888
3889         if ((iir & flip_pending) == 0)
3890                 goto check_page_flip;
3891
3892         intel_prepare_page_flip(dev, plane);
3893
3894         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3895          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3896          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3897          * the flip is completed (no longer pending). Since this doesn't raise
3898          * an interrupt per se, we watch for the change at vblank.
3899          */
3900         if (I915_READ(ISR) & flip_pending)
3901                 goto check_page_flip;
3902
3903         intel_finish_page_flip(dev, pipe);
3904         return true;
3905
3906 check_page_flip:
3907         intel_check_page_flip(dev, pipe);
3908         return false;
3909 }
3910
3911 static irqreturn_t i915_irq_handler(int irq, void *arg)
3912 {
3913         struct drm_device *dev = arg;
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3916         u32 flip_mask =
3917                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3918                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3919         int pipe, ret = IRQ_NONE;
3920
3921         iir = I915_READ(IIR);
3922         do {
3923                 bool irq_received = (iir & ~flip_mask) != 0;
3924                 bool blc_event = false;
3925
3926                 /* Can't rely on pipestat interrupt bit in iir as it might
3927                  * have been cleared after the pipestat interrupt was received.
3928                  * It doesn't set the bit in iir again, but it still produces
3929                  * interrupts (for non-MSI).
3930                  */
3931                 spin_lock(&dev_priv->irq_lock);
3932                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3933                         i915_handle_error(dev, false,
3934                                           "Command parser error, iir 0x%08x",
3935                                           iir);
3936
3937                 for_each_pipe(dev_priv, pipe) {
3938                         int reg = PIPESTAT(pipe);
3939                         pipe_stats[pipe] = I915_READ(reg);
3940
3941                         /* Clear the PIPE*STAT regs before the IIR */
3942                         if (pipe_stats[pipe] & 0x8000ffff) {
3943                                 I915_WRITE(reg, pipe_stats[pipe]);
3944                                 irq_received = true;
3945                         }
3946                 }
3947                 spin_unlock(&dev_priv->irq_lock);
3948
3949                 if (!irq_received)
3950                         break;
3951
3952                 /* Consume port.  Then clear IIR or we'll miss events */
3953                 if (I915_HAS_HOTPLUG(dev) &&
3954                     iir & I915_DISPLAY_PORT_INTERRUPT)
3955                         i9xx_hpd_irq_handler(dev);
3956
3957                 I915_WRITE(IIR, iir & ~flip_mask);
3958                 new_iir = I915_READ(IIR); /* Flush posted writes */
3959
3960                 if (iir & I915_USER_INTERRUPT)
3961                         notify_ring(dev, &dev_priv->ring[RCS]);
3962
3963                 for_each_pipe(dev_priv, pipe) {
3964                         int plane = pipe;
3965                         if (HAS_FBC(dev))
3966                                 plane = !plane;
3967
3968                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3969                             i915_handle_vblank(dev, plane, pipe, iir))
3970                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3971
3972                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3973                                 blc_event = true;
3974
3975                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3976                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3977
3978                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3979                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3980                                                                     pipe);
3981                 }
3982
3983                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3984                         intel_opregion_asle_intr(dev);
3985
3986                 /* With MSI, interrupts are only generated when iir
3987                  * transitions from zero to nonzero.  If another bit got
3988                  * set while we were handling the existing iir bits, then
3989                  * we would never get another interrupt.
3990                  *
3991                  * This is fine on non-MSI as well, as if we hit this path
3992                  * we avoid exiting the interrupt handler only to generate
3993                  * another one.
3994                  *
3995                  * Note that for MSI this could cause a stray interrupt report
3996                  * if an interrupt landed in the time between writing IIR and
3997                  * the posting read.  This should be rare enough to never
3998                  * trigger the 99% of 100,000 interrupts test for disabling
3999                  * stray interrupts.
4000                  */
4001                 ret = IRQ_HANDLED;
4002                 iir = new_iir;
4003         } while (iir & ~flip_mask);
4004
4005         i915_update_dri1_breadcrumb(dev);
4006
4007         return ret;
4008 }
4009
4010 static void i915_irq_uninstall(struct drm_device * dev)
4011 {
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         int pipe;
4014
4015         if (I915_HAS_HOTPLUG(dev)) {
4016                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4017                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4018         }
4019
4020         I915_WRITE16(HWSTAM, 0xffff);
4021         for_each_pipe(dev_priv, pipe) {
4022                 /* Clear enable bits; then clear status bits */
4023                 I915_WRITE(PIPESTAT(pipe), 0);
4024                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4025         }
4026         I915_WRITE(IMR, 0xffffffff);
4027         I915_WRITE(IER, 0x0);
4028
4029         I915_WRITE(IIR, I915_READ(IIR));
4030 }
4031
4032 static void i965_irq_preinstall(struct drm_device * dev)
4033 {
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         int pipe;
4036
4037         I915_WRITE(PORT_HOTPLUG_EN, 0);
4038         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039
4040         I915_WRITE(HWSTAM, 0xeffe);
4041         for_each_pipe(dev_priv, pipe)
4042                 I915_WRITE(PIPESTAT(pipe), 0);
4043         I915_WRITE(IMR, 0xffffffff);
4044         I915_WRITE(IER, 0x0);
4045         POSTING_READ(IER);
4046 }
4047
4048 static int i965_irq_postinstall(struct drm_device *dev)
4049 {
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         u32 enable_mask;
4052         u32 error_mask;
4053
4054         /* Unmask the interrupts that we always want on. */
4055         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4056                                I915_DISPLAY_PORT_INTERRUPT |
4057                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4058                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4059                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4060                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4061                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4062
4063         enable_mask = ~dev_priv->irq_mask;
4064         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4065                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4066         enable_mask |= I915_USER_INTERRUPT;
4067
4068         if (IS_G4X(dev))
4069                 enable_mask |= I915_BSD_USER_INTERRUPT;
4070
4071         /* Interrupt setup is already guaranteed to be single-threaded, this is
4072          * just to make the assert_spin_locked check happy. */
4073         spin_lock_irq(&dev_priv->irq_lock);
4074         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4075         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4076         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4077         spin_unlock_irq(&dev_priv->irq_lock);
4078
4079         /*
4080          * Enable some error detection, note the instruction error mask
4081          * bit is reserved, so we leave it masked.
4082          */
4083         if (IS_G4X(dev)) {
4084                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4085                                GM45_ERROR_MEM_PRIV |
4086                                GM45_ERROR_CP_PRIV |
4087                                I915_ERROR_MEMORY_REFRESH);
4088         } else {
4089                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4090                                I915_ERROR_MEMORY_REFRESH);
4091         }
4092         I915_WRITE(EMR, error_mask);
4093
4094         I915_WRITE(IMR, dev_priv->irq_mask);
4095         I915_WRITE(IER, enable_mask);
4096         POSTING_READ(IER);
4097
4098         I915_WRITE(PORT_HOTPLUG_EN, 0);
4099         POSTING_READ(PORT_HOTPLUG_EN);
4100
4101         i915_enable_asle_pipestat(dev);
4102
4103         return 0;
4104 }
4105
4106 static void i915_hpd_irq_setup(struct drm_device *dev)
4107 {
4108         struct drm_i915_private *dev_priv = dev->dev_private;
4109         struct intel_encoder *intel_encoder;
4110         u32 hotplug_en;
4111
4112         assert_spin_locked(&dev_priv->irq_lock);
4113
4114         if (I915_HAS_HOTPLUG(dev)) {
4115                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4116                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4117                 /* Note HDMI and DP share hotplug bits */
4118                 /* enable bits are the same for all generations */
4119                 for_each_intel_encoder(dev, intel_encoder)
4120                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4121                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4122                 /* Programming the CRT detection parameters tends
4123                    to generate a spurious hotplug event about three
4124                    seconds later.  So just do it once.
4125                 */
4126                 if (IS_G4X(dev))
4127                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4128                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4129                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4130
4131                 /* Ignore TV since it's buggy */
4132                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4133         }
4134 }
4135
4136 static irqreturn_t i965_irq_handler(int irq, void *arg)
4137 {
4138         struct drm_device *dev = arg;
4139         struct drm_i915_private *dev_priv = dev->dev_private;
4140         u32 iir, new_iir;
4141         u32 pipe_stats[I915_MAX_PIPES];
4142         int ret = IRQ_NONE, pipe;
4143         u32 flip_mask =
4144                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4145                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4146
4147         iir = I915_READ(IIR);
4148
4149         for (;;) {
4150                 bool irq_received = (iir & ~flip_mask) != 0;
4151                 bool blc_event = false;
4152
4153                 /* Can't rely on pipestat interrupt bit in iir as it might
4154                  * have been cleared after the pipestat interrupt was received.
4155                  * It doesn't set the bit in iir again, but it still produces
4156                  * interrupts (for non-MSI).
4157                  */
4158                 spin_lock(&dev_priv->irq_lock);
4159                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4160                         i915_handle_error(dev, false,
4161                                           "Command parser error, iir 0x%08x",
4162                                           iir);
4163
4164                 for_each_pipe(dev_priv, pipe) {
4165                         int reg = PIPESTAT(pipe);
4166                         pipe_stats[pipe] = I915_READ(reg);
4167
4168                         /*
4169                          * Clear the PIPE*STAT regs before the IIR
4170                          */
4171                         if (pipe_stats[pipe] & 0x8000ffff) {
4172                                 I915_WRITE(reg, pipe_stats[pipe]);
4173                                 irq_received = true;
4174                         }
4175                 }
4176                 spin_unlock(&dev_priv->irq_lock);
4177
4178                 if (!irq_received)
4179                         break;
4180
4181                 ret = IRQ_HANDLED;
4182
4183                 /* Consume port.  Then clear IIR or we'll miss events */
4184                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4185                         i9xx_hpd_irq_handler(dev);
4186
4187                 I915_WRITE(IIR, iir & ~flip_mask);
4188                 new_iir = I915_READ(IIR); /* Flush posted writes */
4189
4190                 if (iir & I915_USER_INTERRUPT)
4191                         notify_ring(dev, &dev_priv->ring[RCS]);
4192                 if (iir & I915_BSD_USER_INTERRUPT)
4193                         notify_ring(dev, &dev_priv->ring[VCS]);
4194
4195                 for_each_pipe(dev_priv, pipe) {
4196                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4197                             i915_handle_vblank(dev, pipe, pipe, iir))
4198                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4199
4200                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4201                                 blc_event = true;
4202
4203                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4204                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4205
4206                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4207                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4208                 }
4209
4210                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4211                         intel_opregion_asle_intr(dev);
4212
4213                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4214                         gmbus_irq_handler(dev);
4215
4216                 /* With MSI, interrupts are only generated when iir
4217                  * transitions from zero to nonzero.  If another bit got
4218                  * set while we were handling the existing iir bits, then
4219                  * we would never get another interrupt.
4220                  *
4221                  * This is fine on non-MSI as well, as if we hit this path
4222                  * we avoid exiting the interrupt handler only to generate
4223                  * another one.
4224                  *
4225                  * Note that for MSI this could cause a stray interrupt report
4226                  * if an interrupt landed in the time between writing IIR and
4227                  * the posting read.  This should be rare enough to never
4228                  * trigger the 99% of 100,000 interrupts test for disabling
4229                  * stray interrupts.
4230                  */
4231                 iir = new_iir;
4232         }
4233
4234         i915_update_dri1_breadcrumb(dev);
4235
4236         return ret;
4237 }
4238
4239 static void i965_irq_uninstall(struct drm_device * dev)
4240 {
4241         struct drm_i915_private *dev_priv = dev->dev_private;
4242         int pipe;
4243
4244         if (!dev_priv)
4245                 return;
4246
4247         I915_WRITE(PORT_HOTPLUG_EN, 0);
4248         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4249
4250         I915_WRITE(HWSTAM, 0xffffffff);
4251         for_each_pipe(dev_priv, pipe)
4252                 I915_WRITE(PIPESTAT(pipe), 0);
4253         I915_WRITE(IMR, 0xffffffff);
4254         I915_WRITE(IER, 0x0);
4255
4256         for_each_pipe(dev_priv, pipe)
4257                 I915_WRITE(PIPESTAT(pipe),
4258                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4259         I915_WRITE(IIR, I915_READ(IIR));
4260 }
4261
4262 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4263 {
4264         struct drm_i915_private *dev_priv =
4265                 container_of(work, typeof(*dev_priv),
4266                              hotplug_reenable_work.work);
4267         struct drm_device *dev = dev_priv->dev;
4268         struct drm_mode_config *mode_config = &dev->mode_config;
4269         int i;
4270
4271         intel_runtime_pm_get(dev_priv);
4272
4273         spin_lock_irq(&dev_priv->irq_lock);
4274         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4275                 struct drm_connector *connector;
4276
4277                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4278                         continue;
4279
4280                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4281
4282                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4283                         struct intel_connector *intel_connector = to_intel_connector(connector);
4284
4285                         if (intel_connector->encoder->hpd_pin == i) {
4286                                 if (connector->polled != intel_connector->polled)
4287                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4288                                                          connector->name);
4289                                 connector->polled = intel_connector->polled;
4290                                 if (!connector->polled)
4291                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4292                         }
4293                 }
4294         }
4295         if (dev_priv->display.hpd_irq_setup)
4296                 dev_priv->display.hpd_irq_setup(dev);
4297         spin_unlock_irq(&dev_priv->irq_lock);
4298
4299         intel_runtime_pm_put(dev_priv);
4300 }
4301
4302 /**
4303  * intel_irq_init - initializes irq support
4304  * @dev_priv: i915 device instance
4305  *
4306  * This function initializes all the irq support including work items, timers
4307  * and all the vtables. It does not setup the interrupt itself though.
4308  */
4309 void intel_irq_init(struct drm_i915_private *dev_priv)
4310 {
4311         struct drm_device *dev = dev_priv->dev;
4312
4313         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4314         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4315         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4316         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4317         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4318
4319         /* Let's track the enabled rps events */
4320         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4321                 /* WaGsvRC0ResidencyMethod:vlv */
4322                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4323         else
4324                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4325
4326         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4327                     i915_hangcheck_elapsed,
4328                     (unsigned long) dev);
4329         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4330                           intel_hpd_irq_reenable_work);
4331
4332         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4333
4334         if (IS_GEN2(dev_priv)) {
4335                 dev->max_vblank_count = 0;
4336                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4337         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4338                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4339                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4340         } else {
4341                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4342                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4343         }
4344
4345         /*
4346          * Opt out of the vblank disable timer on everything except gen2.
4347          * Gen2 doesn't have a hardware frame counter and so depends on
4348          * vblank interrupts to produce sane vblank seuquence numbers.
4349          */
4350         if (!IS_GEN2(dev_priv))
4351                 dev->vblank_disable_immediate = true;
4352
4353         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4354                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4355                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4356         }
4357
4358         if (IS_CHERRYVIEW(dev_priv)) {
4359                 dev->driver->irq_handler = cherryview_irq_handler;
4360                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363                 dev->driver->enable_vblank = valleyview_enable_vblank;
4364                 dev->driver->disable_vblank = valleyview_disable_vblank;
4365                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4366         } else if (IS_VALLEYVIEW(dev_priv)) {
4367                 dev->driver->irq_handler = valleyview_irq_handler;
4368                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4370                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371                 dev->driver->enable_vblank = valleyview_enable_vblank;
4372                 dev->driver->disable_vblank = valleyview_disable_vblank;
4373                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4375                 dev->driver->irq_handler = gen8_irq_handler;
4376                 dev->driver->irq_preinstall = gen8_irq_reset;
4377                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4378                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4379                 dev->driver->enable_vblank = gen8_enable_vblank;
4380                 dev->driver->disable_vblank = gen8_disable_vblank;
4381                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4382         } else if (HAS_PCH_SPLIT(dev)) {
4383                 dev->driver->irq_handler = ironlake_irq_handler;
4384                 dev->driver->irq_preinstall = ironlake_irq_reset;
4385                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4386                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4387                 dev->driver->enable_vblank = ironlake_enable_vblank;
4388                 dev->driver->disable_vblank = ironlake_disable_vblank;
4389                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390         } else {
4391                 if (INTEL_INFO(dev_priv)->gen == 2) {
4392                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4393                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4394                         dev->driver->irq_handler = i8xx_irq_handler;
4395                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4396                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4397                         dev->driver->irq_preinstall = i915_irq_preinstall;
4398                         dev->driver->irq_postinstall = i915_irq_postinstall;
4399                         dev->driver->irq_uninstall = i915_irq_uninstall;
4400                         dev->driver->irq_handler = i915_irq_handler;
4401                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402                 } else {
4403                         dev->driver->irq_preinstall = i965_irq_preinstall;
4404                         dev->driver->irq_postinstall = i965_irq_postinstall;
4405                         dev->driver->irq_uninstall = i965_irq_uninstall;
4406                         dev->driver->irq_handler = i965_irq_handler;
4407                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408                 }
4409                 dev->driver->enable_vblank = i915_enable_vblank;
4410                 dev->driver->disable_vblank = i915_disable_vblank;
4411         }
4412 }
4413
4414 /**
4415  * intel_hpd_init - initializes and enables hpd support
4416  * @dev_priv: i915 device instance
4417  *
4418  * This function enables the hotplug support. It requires that interrupts have
4419  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4420  * poll request can run concurrently to other code, so locking rules must be
4421  * obeyed.
4422  *
4423  * This is a separate step from interrupt enabling to simplify the locking rules
4424  * in the driver load and resume code.
4425  */
4426 void intel_hpd_init(struct drm_i915_private *dev_priv)
4427 {
4428         struct drm_device *dev = dev_priv->dev;
4429         struct drm_mode_config *mode_config = &dev->mode_config;
4430         struct drm_connector *connector;
4431         int i;
4432
4433         for (i = 1; i < HPD_NUM_PINS; i++) {
4434                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4435                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4436         }
4437         list_for_each_entry(connector, &mode_config->connector_list, head) {
4438                 struct intel_connector *intel_connector = to_intel_connector(connector);
4439                 connector->polled = intel_connector->polled;
4440                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4441                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4442                 if (intel_connector->mst_port)
4443                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4444         }
4445
4446         /* Interrupt setup is already guaranteed to be single-threaded, this is
4447          * just to make the assert_spin_locked checks happy. */
4448         spin_lock_irq(&dev_priv->irq_lock);
4449         if (dev_priv->display.hpd_irq_setup)
4450                 dev_priv->display.hpd_irq_setup(dev);
4451         spin_unlock_irq(&dev_priv->irq_lock);
4452 }
4453
4454 /**
4455  * intel_irq_install - enables the hardware interrupt
4456  * @dev_priv: i915 device instance
4457  *
4458  * This function enables the hardware interrupt handling, but leaves the hotplug
4459  * handling still disabled. It is called after intel_irq_init().
4460  *
4461  * In the driver load and resume code we need working interrupts in a few places
4462  * but don't want to deal with the hassle of concurrent probe and hotplug
4463  * workers. Hence the split into this two-stage approach.
4464  */
4465 int intel_irq_install(struct drm_i915_private *dev_priv)
4466 {
4467         /*
4468          * We enable some interrupt sources in our postinstall hooks, so mark
4469          * interrupts as enabled _before_ actually enabling them to avoid
4470          * special cases in our ordering checks.
4471          */
4472         dev_priv->pm.irqs_enabled = true;
4473
4474         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4475 }
4476
4477 /**
4478  * intel_irq_uninstall - finilizes all irq handling
4479  * @dev_priv: i915 device instance
4480  *
4481  * This stops interrupt and hotplug handling and unregisters and frees all
4482  * resources acquired in the init functions.
4483  */
4484 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4485 {
4486         drm_irq_uninstall(dev_priv->dev);
4487         intel_hpd_cancel_work(dev_priv);
4488         dev_priv->pm.irqs_enabled = false;
4489 }
4490
4491 /**
4492  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4493  * @dev_priv: i915 device instance
4494  *
4495  * This function is used to disable interrupts at runtime, both in the runtime
4496  * pm and the system suspend/resume code.
4497  */
4498 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4499 {
4500         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4501         dev_priv->pm.irqs_enabled = false;
4502 }
4503
4504 /**
4505  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4506  * @dev_priv: i915 device instance
4507  *
4508  * This function is used to enable interrupts at runtime, both in the runtime
4509  * pm and the system suspend/resume code.
4510  */
4511 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4512 {
4513         dev_priv->pm.irqs_enabled = true;
4514         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4515         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4516 }