x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / Documentation / target / tcmu-design.txt
1 Contents:
2
3 1) TCM Userspace Design
4   a) Background
5   b) Benefits
6   c) Design constraints
7   d) Implementation overview
8      i. Mailbox
9      ii. Command ring
10      iii. Data Area
11   e) Device discovery
12   f) Device events
13   g) Other contingencies
14 2) Writing a user pass-through handler
15   a) Discovering and configuring TCMU uio devices
16   b) Waiting for events on the device(s)
17   c) Managing the command ring
18 3) A final note
19
20
21 TCM Userspace Design
22 --------------------
23
24 TCM is another name for LIO, an in-kernel iSCSI target (server).
25 Existing TCM targets run in the kernel.  TCMU (TCM in Userspace)
26 allows userspace programs to be written which act as iSCSI targets.
27 This document describes the design.
28
29 The existing kernel provides modules for different SCSI transport
30 protocols.  TCM also modularizes the data storage.  There are existing
31 modules for file, block device, RAM or using another SCSI device as
32 storage.  These are called "backstores" or "storage engines".  These
33 built-in modules are implemented entirely as kernel code.
34
35 Background:
36
37 In addition to modularizing the transport protocol used for carrying
38 SCSI commands ("fabrics"), the Linux kernel target, LIO, also modularizes
39 the actual data storage as well. These are referred to as "backstores"
40 or "storage engines". The target comes with backstores that allow a
41 file, a block device, RAM, or another SCSI device to be used for the
42 local storage needed for the exported SCSI LUN. Like the rest of LIO,
43 these are implemented entirely as kernel code.
44
45 These backstores cover the most common use cases, but not all. One new
46 use case that other non-kernel target solutions, such as tgt, are able
47 to support is using Gluster's GLFS or Ceph's RBD as a backstore. The
48 target then serves as a translator, allowing initiators to store data
49 in these non-traditional networked storage systems, while still only
50 using standard protocols themselves.
51
52 If the target is a userspace process, supporting these is easy. tgt,
53 for example, needs only a small adapter module for each, because the
54 modules just use the available userspace libraries for RBD and GLFS.
55
56 Adding support for these backstores in LIO is considerably more
57 difficult, because LIO is entirely kernel code. Instead of undertaking
58 the significant work to port the GLFS or RBD APIs and protocols to the
59 kernel, another approach is to create a userspace pass-through
60 backstore for LIO, "TCMU".
61
62
63 Benefits:
64
65 In addition to allowing relatively easy support for RBD and GLFS, TCMU
66 will also allow easier development of new backstores. TCMU combines
67 with the LIO loopback fabric to become something similar to FUSE
68 (Filesystem in Userspace), but at the SCSI layer instead of the
69 filesystem layer. A SUSE, if you will.
70
71 The disadvantage is there are more distinct components to configure, and
72 potentially to malfunction. This is unavoidable, but hopefully not
73 fatal if we're careful to keep things as simple as possible.
74
75 Design constraints:
76
77 - Good performance: high throughput, low latency
78 - Cleanly handle if userspace:
79    1) never attaches
80    2) hangs
81    3) dies
82    4) misbehaves
83 - Allow future flexibility in user & kernel implementations
84 - Be reasonably memory-efficient
85 - Simple to configure & run
86 - Simple to write a userspace backend
87
88
89 Implementation overview:
90
91 The core of the TCMU interface is a memory region that is shared
92 between kernel and userspace. Within this region is: a control area
93 (mailbox); a lockless producer/consumer circular buffer for commands
94 to be passed up, and status returned; and an in/out data buffer area.
95
96 TCMU uses the pre-existing UIO subsystem. UIO allows device driver
97 development in userspace, and this is conceptually very close to the
98 TCMU use case, except instead of a physical device, TCMU implements a
99 memory-mapped layout designed for SCSI commands. Using UIO also
100 benefits TCMU by handling device introspection (e.g. a way for
101 userspace to determine how large the shared region is) and signaling
102 mechanisms in both directions.
103
104 There are no embedded pointers in the memory region. Everything is
105 expressed as an offset from the region's starting address. This allows
106 the ring to still work if the user process dies and is restarted with
107 the region mapped at a different virtual address.
108
109 See target_core_user.h for the struct definitions.
110
111 The Mailbox:
112
113 The mailbox is always at the start of the shared memory region, and
114 contains a version, details about the starting offset and size of the
115 command ring, and head and tail pointers to be used by the kernel and
116 userspace (respectively) to put commands on the ring, and indicate
117 when the commands are completed.
118
119 version - 1 (userspace should abort if otherwise)
120 flags:
121 - TCMU_MAILBOX_FLAG_CAP_OOOC: indicates out-of-order completion is
122   supported.  See "The Command Ring" for details.
123 cmdr_off - The offset of the start of the command ring from the start
124 of the memory region, to account for the mailbox size.
125 cmdr_size - The size of the command ring. This does *not* need to be a
126 power of two.
127 cmd_head - Modified by the kernel to indicate when a command has been
128 placed on the ring.
129 cmd_tail - Modified by userspace to indicate when it has completed
130 processing of a command.
131
132 The Command Ring:
133
134 Commands are placed on the ring by the kernel incrementing
135 mailbox.cmd_head by the size of the command, modulo cmdr_size, and
136 then signaling userspace via uio_event_notify(). Once the command is
137 completed, userspace updates mailbox.cmd_tail in the same way and
138 signals the kernel via a 4-byte write(). When cmd_head equals
139 cmd_tail, the ring is empty -- no commands are currently waiting to be
140 processed by userspace.
141
142 TCMU commands are 8-byte aligned. They start with a common header
143 containing "len_op", a 32-bit value that stores the length, as well as
144 the opcode in the lowest unused bits. It also contains cmd_id and
145 flags fields for setting by the kernel (kflags) and userspace
146 (uflags).
147
148 Currently only two opcodes are defined, TCMU_OP_CMD and TCMU_OP_PAD.
149
150 When the opcode is CMD, the entry in the command ring is a struct
151 tcmu_cmd_entry. Userspace finds the SCSI CDB (Command Data Block) via
152 tcmu_cmd_entry.req.cdb_off. This is an offset from the start of the
153 overall shared memory region, not the entry. The data in/out buffers
154 are accessible via tht req.iov[] array. iov_cnt contains the number of
155 entries in iov[] needed to describe either the Data-In or Data-Out
156 buffers. For bidirectional commands, iov_cnt specifies how many iovec
157 entries cover the Data-Out area, and iov_bidi_cnt specifies how many
158 iovec entries immediately after that in iov[] cover the Data-In
159 area. Just like other fields, iov.iov_base is an offset from the start
160 of the region.
161
162 When completing a command, userspace sets rsp.scsi_status, and
163 rsp.sense_buffer if necessary. Userspace then increments
164 mailbox.cmd_tail by entry.hdr.length (mod cmdr_size) and signals the
165 kernel via the UIO method, a 4-byte write to the file descriptor.
166
167 If TCMU_MAILBOX_FLAG_CAP_OOOC is set for mailbox->flags, kernel is
168 capable of handling out-of-order completions. In this case, userspace can
169 handle command in different order other than original. Since kernel would
170 still process the commands in the same order it appeared in the command
171 ring, userspace need to update the cmd->id when completing the
172 command(a.k.a steal the original command's entry).
173
174 When the opcode is PAD, userspace only updates cmd_tail as above --
175 it's a no-op. (The kernel inserts PAD entries to ensure each CMD entry
176 is contiguous within the command ring.)
177
178 More opcodes may be added in the future. If userspace encounters an
179 opcode it does not handle, it must set UNKNOWN_OP bit (bit 0) in
180 hdr.uflags, update cmd_tail, and proceed with processing additional
181 commands, if any.
182
183 The Data Area:
184
185 This is shared-memory space after the command ring. The organization
186 of this area is not defined in the TCMU interface, and userspace
187 should access only the parts referenced by pending iovs.
188
189
190 Device Discovery:
191
192 Other devices may be using UIO besides TCMU. Unrelated user processes
193 may also be handling different sets of TCMU devices. TCMU userspace
194 processes must find their devices by scanning sysfs
195 class/uio/uio*/name. For TCMU devices, these names will be of the
196 format:
197
198 tcm-user/<hba_num>/<device_name>/<subtype>/<path>
199
200 where "tcm-user" is common for all TCMU-backed UIO devices. <hba_num>
201 and <device_name> allow userspace to find the device's path in the
202 kernel target's configfs tree. Assuming the usual mount point, it is
203 found at:
204
205 /sys/kernel/config/target/core/user_<hba_num>/<device_name>
206
207 This location contains attributes such as "hw_block_size", that
208 userspace needs to know for correct operation.
209
210 <subtype> will be a userspace-process-unique string to identify the
211 TCMU device as expecting to be backed by a certain handler, and <path>
212 will be an additional handler-specific string for the user process to
213 configure the device, if needed. The name cannot contain ':', due to
214 LIO limitations.
215
216 For all devices so discovered, the user handler opens /dev/uioX and
217 calls mmap():
218
219 mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
220
221 where size must be equal to the value read from
222 /sys/class/uio/uioX/maps/map0/size.
223
224
225 Device Events:
226
227 If a new device is added or removed, a notification will be broadcast
228 over netlink, using a generic netlink family name of "TCM-USER" and a
229 multicast group named "config". This will include the UIO name as
230 described in the previous section, as well as the UIO minor
231 number. This should allow userspace to identify both the UIO device and
232 the LIO device, so that after determining the device is supported
233 (based on subtype) it can take the appropriate action.
234
235
236 Other contingencies:
237
238 Userspace handler process never attaches:
239
240 - TCMU will post commands, and then abort them after a timeout period
241   (30 seconds.)
242
243 Userspace handler process is killed:
244
245 - It is still possible to restart and re-connect to TCMU
246   devices. Command ring is preserved. However, after the timeout period,
247   the kernel will abort pending tasks.
248
249 Userspace handler process hangs:
250
251 - The kernel will abort pending tasks after a timeout period.
252
253 Userspace handler process is malicious:
254
255 - The process can trivially break the handling of devices it controls,
256   but should not be able to access kernel memory outside its shared
257   memory areas.
258
259
260 Writing a user pass-through handler (with example code)
261 -------------------------------------------------------
262
263 A user process handing a TCMU device must support the following:
264
265 a) Discovering and configuring TCMU uio devices
266 b) Waiting for events on the device(s)
267 c) Managing the command ring: Parsing operations and commands,
268    performing work as needed, setting response fields (scsi_status and
269    possibly sense_buffer), updating cmd_tail, and notifying the kernel
270    that work has been finished
271
272 First, consider instead writing a plugin for tcmu-runner. tcmu-runner
273 implements all of this, and provides a higher-level API for plugin
274 authors.
275
276 TCMU is designed so that multiple unrelated processes can manage TCMU
277 devices separately. All handlers should make sure to only open their
278 devices, based opon a known subtype string.
279
280 a) Discovering and configuring TCMU UIO devices:
281
282 (error checking omitted for brevity)
283
284 int fd, dev_fd;
285 char buf[256];
286 unsigned long long map_len;
287 void *map;
288
289 fd = open("/sys/class/uio/uio0/name", O_RDONLY);
290 ret = read(fd, buf, sizeof(buf));
291 close(fd);
292 buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
293
294 /* we only want uio devices whose name is a format we expect */
295 if (strncmp(buf, "tcm-user", 8))
296         exit(-1);
297
298 /* Further checking for subtype also needed here */
299
300 fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
301 ret = read(fd, buf, sizeof(buf));
302 close(fd);
303 str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
304
305 map_len = strtoull(buf, NULL, 0);
306
307 dev_fd = open("/dev/uio0", O_RDWR);
308 map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
309
310
311 b) Waiting for events on the device(s)
312
313 while (1) {
314   char buf[4];
315
316   int ret = read(dev_fd, buf, 4); /* will block */
317
318   handle_device_events(dev_fd, map);
319 }
320
321
322 c) Managing the command ring
323
324 #include <linux/target_core_user.h>
325
326 int handle_device_events(int fd, void *map)
327 {
328   struct tcmu_mailbox *mb = map;
329   struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
330   int did_some_work = 0;
331
332   /* Process events from cmd ring until we catch up with cmd_head */
333   while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
334
335     if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
336       uint8_t *cdb = (void *)mb + ent->req.cdb_off;
337       bool success = true;
338
339       /* Handle command here. */
340       printf("SCSI opcode: 0x%x\n", cdb[0]);
341
342       /* Set response fields */
343       if (success)
344         ent->rsp.scsi_status = SCSI_NO_SENSE;
345       else {
346         /* Also fill in rsp->sense_buffer here */
347         ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
348       }
349     }
350     else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
351       /* Tell the kernel we didn't handle unknown opcodes */
352       ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
353     }
354     else {
355       /* Do nothing for PAD entries except update cmd_tail */
356     }
357
358     /* update cmd_tail */
359     mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
360     ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
361     did_some_work = 1;
362   }
363
364   /* Notify the kernel that work has been finished */
365   if (did_some_work) {
366     uint32_t buf = 0;
367
368     write(fd, &buf, 4);
369   }
370
371   return 0;
372 }
373
374
375 A final note
376 ------------
377
378 Please be careful to return codes as defined by the SCSI
379 specifications. These are different than some values defined in the
380 scsi/scsi.h include file. For example, CHECK CONDITION's status code
381 is 2, not 1.