Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / arch / arm / include / asm / pgtable.h
1 /*
2  *  arch/arm/include/asm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12
13 #include <linux/const.h>
14 #include <asm/proc-fns.h>
15
16 #ifndef CONFIG_MMU
17
18 #include <asm-generic/4level-fixup.h>
19 #include <asm/pgtable-nommu.h>
20
21 #else
22
23 #include <asm-generic/pgtable-nopud.h>
24 #include <asm/memory.h>
25 #include <asm/pgtable-hwdef.h>
26
27
28 #include <asm/tlbflush.h>
29
30 #ifdef CONFIG_ARM_LPAE
31 #include <asm/pgtable-3level.h>
32 #else
33 #include <asm/pgtable-2level.h>
34 #endif
35
36 /*
37  * Just any arbitrary offset to the start of the vmalloc VM area: the
38  * current 8MB value just means that there will be a 8MB "hole" after the
39  * physical memory until the kernel virtual memory starts.  That means that
40  * any out-of-bounds memory accesses will hopefully be caught.
41  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
42  * area for the same reason. ;)
43  */
44 #define VMALLOC_OFFSET          (8*1024*1024)
45 #define VMALLOC_START           (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
46 #define VMALLOC_END             0xff800000UL
47
48 #define LIBRARY_TEXT_START      0x0c000000
49
50 #ifndef __ASSEMBLY__
51 extern void __pte_error(const char *file, int line, pte_t);
52 extern void __pmd_error(const char *file, int line, pmd_t);
53 extern void __pgd_error(const char *file, int line, pgd_t);
54
55 #define pte_ERROR(pte)          __pte_error(__FILE__, __LINE__, pte)
56 #define pmd_ERROR(pmd)          __pmd_error(__FILE__, __LINE__, pmd)
57 #define pgd_ERROR(pgd)          __pgd_error(__FILE__, __LINE__, pgd)
58
59 /*
60  * This is the lowest virtual address we can permit any user space
61  * mapping to be mapped at.  This is particularly important for
62  * non-high vector CPUs.
63  */
64 #define FIRST_USER_ADDRESS      (PAGE_SIZE * 2)
65
66 /*
67  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
68  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
69  * page shared between user and kernel).
70  */
71 #ifdef CONFIG_ARM_LPAE
72 #define USER_PGTABLES_CEILING   TASK_SIZE
73 #endif
74
75 /*
76  * The pgprot_* and protection_map entries will be fixed up in runtime
77  * to include the cachable and bufferable bits based on memory policy,
78  * as well as any architecture dependent bits like global/ASID and SMP
79  * shared mapping bits.
80  */
81 #define _L_PTE_DEFAULT  L_PTE_PRESENT | L_PTE_YOUNG
82
83 extern pgprot_t         pgprot_user;
84 extern pgprot_t         pgprot_kernel;
85 extern pgprot_t         pgprot_hyp_device;
86 extern pgprot_t         pgprot_s2;
87 extern pgprot_t         pgprot_s2_device;
88
89 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
90
91 #define PAGE_NONE               _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
92 #define PAGE_SHARED             _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
93 #define PAGE_SHARED_EXEC        _MOD_PROT(pgprot_user, L_PTE_USER)
94 #define PAGE_COPY               _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
95 #define PAGE_COPY_EXEC          _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
96 #define PAGE_READONLY           _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
97 #define PAGE_READONLY_EXEC      _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
98 #define PAGE_KERNEL             _MOD_PROT(pgprot_kernel, L_PTE_XN)
99 #define PAGE_KERNEL_EXEC        pgprot_kernel
100 #define PAGE_HYP                _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
101 #define PAGE_HYP_EXEC           _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
102 #define PAGE_HYP_RO             _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
103 #define PAGE_HYP_DEVICE         _MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
104 #define PAGE_S2                 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
105 #define PAGE_S2_DEVICE          _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
106
107 #define __PAGE_NONE             __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
108 #define __PAGE_SHARED           __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
109 #define __PAGE_SHARED_EXEC      __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
110 #define __PAGE_COPY             __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111 #define __PAGE_COPY_EXEC        __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112 #define __PAGE_READONLY         __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
113 #define __PAGE_READONLY_EXEC    __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
114
115 #define __pgprot_modify(prot,mask,bits)         \
116         __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
117
118 #define pgprot_noncached(prot) \
119         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
120
121 #define pgprot_writecombine(prot) \
122         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
123
124 #define pgprot_stronglyordered(prot) \
125         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
126
127 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
128 #define pgprot_dmacoherent(prot) \
129         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
130 #define __HAVE_PHYS_MEM_ACCESS_PROT
131 struct file;
132 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
133                                      unsigned long size, pgprot_t vma_prot);
134 #else
135 #define pgprot_dmacoherent(prot) \
136         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
137 #endif
138
139 #endif /* __ASSEMBLY__ */
140
141 /*
142  * The table below defines the page protection levels that we insert into our
143  * Linux page table version.  These get translated into the best that the
144  * architecture can perform.  Note that on most ARM hardware:
145  *  1) We cannot do execute protection
146  *  2) If we could do execute protection, then read is implied
147  *  3) write implies read permissions
148  */
149 #define __P000  __PAGE_NONE
150 #define __P001  __PAGE_READONLY
151 #define __P010  __PAGE_COPY
152 #define __P011  __PAGE_COPY
153 #define __P100  __PAGE_READONLY_EXEC
154 #define __P101  __PAGE_READONLY_EXEC
155 #define __P110  __PAGE_COPY_EXEC
156 #define __P111  __PAGE_COPY_EXEC
157
158 #define __S000  __PAGE_NONE
159 #define __S001  __PAGE_READONLY
160 #define __S010  __PAGE_SHARED
161 #define __S011  __PAGE_SHARED
162 #define __S100  __PAGE_READONLY_EXEC
163 #define __S101  __PAGE_READONLY_EXEC
164 #define __S110  __PAGE_SHARED_EXEC
165 #define __S111  __PAGE_SHARED_EXEC
166
167 #ifndef __ASSEMBLY__
168 /*
169  * ZERO_PAGE is a global shared page that is always zero: used
170  * for zero-mapped memory areas etc..
171  */
172 extern struct page *empty_zero_page;
173 #define ZERO_PAGE(vaddr)        (empty_zero_page)
174
175
176 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
177
178 /* to find an entry in a page-table-directory */
179 #define pgd_index(addr)         ((addr) >> PGDIR_SHIFT)
180
181 #define pgd_offset(mm, addr)    ((mm)->pgd + pgd_index(addr))
182
183 /* to find an entry in a kernel page-table-directory */
184 #define pgd_offset_k(addr)      pgd_offset(&init_mm, addr)
185
186 #define pmd_none(pmd)           (!pmd_val(pmd))
187
188 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
189 {
190         return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
191 }
192
193 #define pmd_page(pmd)           pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
194
195 #ifndef CONFIG_HIGHPTE
196 #define __pte_map(pmd)          pmd_page_vaddr(*(pmd))
197 #define __pte_unmap(pte)        do { } while (0)
198 #else
199 #define __pte_map(pmd)          (pte_t *)kmap_atomic(pmd_page(*(pmd)))
200 #define __pte_unmap(pte)        kunmap_atomic(pte)
201 #endif
202
203 #define pte_index(addr)         (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
204
205 #define pte_offset_kernel(pmd,addr)     (pmd_page_vaddr(*(pmd)) + pte_index(addr))
206
207 #define pte_offset_map(pmd,addr)        (__pte_map(pmd) + pte_index(addr))
208 #define pte_unmap(pte)                  __pte_unmap(pte)
209
210 #define pte_pfn(pte)            ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
211 #define pfn_pte(pfn,prot)       __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
212
213 #define pte_page(pte)           pfn_to_page(pte_pfn(pte))
214 #define mk_pte(page,prot)       pfn_pte(page_to_pfn(page), prot)
215
216 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
217
218 #define pte_isset(pte, val)     ((u32)(val) == (val) ? pte_val(pte) & (val) \
219                                                 : !!(pte_val(pte) & (val)))
220 #define pte_isclear(pte, val)   (!(pte_val(pte) & (val)))
221
222 #define pte_none(pte)           (!pte_val(pte))
223 #define pte_present(pte)        (pte_isset((pte), L_PTE_PRESENT))
224 #define pte_valid(pte)          (pte_isset((pte), L_PTE_VALID))
225 #define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
226 #define pte_write(pte)          (pte_isclear((pte), L_PTE_RDONLY))
227 #define pte_dirty(pte)          (pte_isset((pte), L_PTE_DIRTY))
228 #define pte_young(pte)          (pte_isset((pte), L_PTE_YOUNG))
229 #define pte_exec(pte)           (pte_isclear((pte), L_PTE_XN))
230
231 #define pte_valid_user(pte)     \
232         (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
233
234 #if __LINUX_ARM_ARCH__ < 6
235 static inline void __sync_icache_dcache(pte_t pteval)
236 {
237 }
238 #else
239 extern void __sync_icache_dcache(pte_t pteval);
240 #endif
241
242 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
243                               pte_t *ptep, pte_t pteval)
244 {
245         unsigned long ext = 0;
246
247         if (addr < TASK_SIZE && pte_valid_user(pteval)) {
248                 if (!pte_special(pteval))
249                         __sync_icache_dcache(pteval);
250                 ext |= PTE_EXT_NG;
251         }
252
253         set_pte_ext(ptep, pteval, ext);
254 }
255
256 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
257 {
258         pte_val(pte) &= ~pgprot_val(prot);
259         return pte;
260 }
261
262 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
263 {
264         pte_val(pte) |= pgprot_val(prot);
265         return pte;
266 }
267
268 static inline pte_t pte_wrprotect(pte_t pte)
269 {
270         return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
271 }
272
273 static inline pte_t pte_mkwrite(pte_t pte)
274 {
275         return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
276 }
277
278 static inline pte_t pte_mkclean(pte_t pte)
279 {
280         return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
281 }
282
283 static inline pte_t pte_mkdirty(pte_t pte)
284 {
285         return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
286 }
287
288 static inline pte_t pte_mkold(pte_t pte)
289 {
290         return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
291 }
292
293 static inline pte_t pte_mkyoung(pte_t pte)
294 {
295         return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
296 }
297
298 static inline pte_t pte_mkexec(pte_t pte)
299 {
300         return clear_pte_bit(pte, __pgprot(L_PTE_XN));
301 }
302
303 static inline pte_t pte_mknexec(pte_t pte)
304 {
305         return set_pte_bit(pte, __pgprot(L_PTE_XN));
306 }
307
308 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
309 {
310         const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
311                 L_PTE_NONE | L_PTE_VALID;
312         pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
313         return pte;
314 }
315
316 /*
317  * Encode and decode a swap entry.  Swap entries are stored in the Linux
318  * page tables as follows:
319  *
320  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
321  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
322  *   <--------------- offset ------------------------> < type -> 0 0
323  *
324  * This gives us up to 31 swap files and 128GB per swap file.  Note that
325  * the offset field is always non-zero.
326  */
327 #define __SWP_TYPE_SHIFT        2
328 #define __SWP_TYPE_BITS         5
329 #define __SWP_TYPE_MASK         ((1 << __SWP_TYPE_BITS) - 1)
330 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
331
332 #define __swp_type(x)           (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
333 #define __swp_offset(x)         ((x).val >> __SWP_OFFSET_SHIFT)
334 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
335
336 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
337 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
338
339 /*
340  * It is an error for the kernel to have more swap files than we can
341  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
342  * is increased beyond what we presently support.
343  */
344 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
345
346 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
347 /* FIXME: this is not correct */
348 #define kern_addr_valid(addr)   (1)
349
350 #include <asm-generic/pgtable.h>
351
352 /*
353  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
354  */
355 #define HAVE_ARCH_UNMAPPED_AREA
356 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
357
358 #define pgtable_cache_init() do { } while (0)
359
360 #endif /* !__ASSEMBLY__ */
361
362 #endif /* CONFIG_MMU */
363
364 #endif /* _ASMARM_PGTABLE_H */