Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret = 0;
118
119         if (type)
120                 return -EINVAL;
121
122         ret = kvm_alloc_stage2_pgd(kvm);
123         if (ret)
124                 goto out_fail_alloc;
125
126         ret = create_hyp_mappings(kvm, kvm + 1);
127         if (ret)
128                 goto out_free_stage2_pgd;
129
130         kvm_timer_init(kvm);
131
132         /* Mark the initial VMID generation invalid */
133         kvm->arch.vmid_gen = 0;
134
135         return ret;
136 out_free_stage2_pgd:
137         kvm_free_stage2_pgd(kvm);
138 out_fail_alloc:
139         return ret;
140 }
141
142 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
143 {
144         return VM_FAULT_SIGBUS;
145 }
146
147
148 /**
149  * kvm_arch_destroy_vm - destroy the VM data structure
150  * @kvm:        pointer to the KVM struct
151  */
152 void kvm_arch_destroy_vm(struct kvm *kvm)
153 {
154         int i;
155
156         kvm_free_stage2_pgd(kvm);
157
158         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159                 if (kvm->vcpus[i]) {
160                         kvm_arch_vcpu_free(kvm->vcpus[i]);
161                         kvm->vcpus[i] = NULL;
162                 }
163         }
164
165         kvm_vgic_destroy(kvm);
166 }
167
168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 {
170         int r;
171         switch (ext) {
172         case KVM_CAP_IRQCHIP:
173                 r = vgic_present;
174                 break;
175         case KVM_CAP_DEVICE_CTRL:
176         case KVM_CAP_USER_MEMORY:
177         case KVM_CAP_SYNC_MMU:
178         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179         case KVM_CAP_ONE_REG:
180         case KVM_CAP_ARM_PSCI:
181         case KVM_CAP_ARM_PSCI_0_2:
182         case KVM_CAP_READONLY_MEM:
183                 r = 1;
184                 break;
185         case KVM_CAP_COALESCED_MMIO:
186                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187                 break;
188         case KVM_CAP_ARM_SET_DEVICE_ADDR:
189                 r = 1;
190                 break;
191         case KVM_CAP_NR_VCPUS:
192                 r = num_online_cpus();
193                 break;
194         case KVM_CAP_MAX_VCPUS:
195                 r = KVM_MAX_VCPUS;
196                 break;
197         default:
198                 r = kvm_arch_dev_ioctl_check_extension(ext);
199                 break;
200         }
201         return r;
202 }
203
204 long kvm_arch_dev_ioctl(struct file *filp,
205                         unsigned int ioctl, unsigned long arg)
206 {
207         return -EINVAL;
208 }
209
210
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213         int err;
214         struct kvm_vcpu *vcpu;
215
216         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217                 err = -EBUSY;
218                 goto out;
219         }
220
221         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
222         if (!vcpu) {
223                 err = -ENOMEM;
224                 goto out;
225         }
226
227         err = kvm_vcpu_init(vcpu, kvm, id);
228         if (err)
229                 goto free_vcpu;
230
231         err = create_hyp_mappings(vcpu, vcpu + 1);
232         if (err)
233                 goto vcpu_uninit;
234
235         return vcpu;
236 vcpu_uninit:
237         kvm_vcpu_uninit(vcpu);
238 free_vcpu:
239         kmem_cache_free(kvm_vcpu_cache, vcpu);
240 out:
241         return ERR_PTR(err);
242 }
243
244 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
245 {
246         return 0;
247 }
248
249 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
250 {
251         kvm_mmu_free_memory_caches(vcpu);
252         kvm_timer_vcpu_terminate(vcpu);
253         kvm_vgic_vcpu_destroy(vcpu);
254         kmem_cache_free(kvm_vcpu_cache, vcpu);
255 }
256
257 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
258 {
259         kvm_arch_vcpu_free(vcpu);
260 }
261
262 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
263 {
264         return 0;
265 }
266
267 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
268 {
269         /* Force users to call KVM_ARM_VCPU_INIT */
270         vcpu->arch.target = -1;
271         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272
273         /* Set up the timer */
274         kvm_timer_vcpu_init(vcpu);
275
276         return 0;
277 }
278
279 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
280 {
281         vcpu->cpu = cpu;
282         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
283
284         /*
285          * Check whether this vcpu requires the cache to be flushed on
286          * this physical CPU. This is a consequence of doing dcache
287          * operations by set/way on this vcpu. We do it here to be in
288          * a non-preemptible section.
289          */
290         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
291                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
292
293         kvm_arm_set_running_vcpu(vcpu);
294 }
295
296 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
297 {
298         /*
299          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
300          * if the vcpu is no longer assigned to a cpu.  This is used for the
301          * optimized make_all_cpus_request path.
302          */
303         vcpu->cpu = -1;
304
305         kvm_arm_set_running_vcpu(NULL);
306 }
307
308 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
309                                         struct kvm_guest_debug *dbg)
310 {
311         return -EINVAL;
312 }
313
314
315 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
316                                     struct kvm_mp_state *mp_state)
317 {
318         return -EINVAL;
319 }
320
321 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
322                                     struct kvm_mp_state *mp_state)
323 {
324         return -EINVAL;
325 }
326
327 /**
328  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
329  * @v:          The VCPU pointer
330  *
331  * If the guest CPU is not waiting for interrupts or an interrupt line is
332  * asserted, the CPU is by definition runnable.
333  */
334 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
335 {
336         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
337 }
338
339 /* Just ensure a guest exit from a particular CPU */
340 static void exit_vm_noop(void *info)
341 {
342 }
343
344 void force_vm_exit(const cpumask_t *mask)
345 {
346         smp_call_function_many(mask, exit_vm_noop, NULL, true);
347 }
348
349 /**
350  * need_new_vmid_gen - check that the VMID is still valid
351  * @kvm: The VM's VMID to checkt
352  *
353  * return true if there is a new generation of VMIDs being used
354  *
355  * The hardware supports only 256 values with the value zero reserved for the
356  * host, so we check if an assigned value belongs to a previous generation,
357  * which which requires us to assign a new value. If we're the first to use a
358  * VMID for the new generation, we must flush necessary caches and TLBs on all
359  * CPUs.
360  */
361 static bool need_new_vmid_gen(struct kvm *kvm)
362 {
363         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
364 }
365
366 /**
367  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
368  * @kvm The guest that we are about to run
369  *
370  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
371  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
372  * caches and TLBs.
373  */
374 static void update_vttbr(struct kvm *kvm)
375 {
376         phys_addr_t pgd_phys;
377         u64 vmid;
378
379         if (!need_new_vmid_gen(kvm))
380                 return;
381
382         spin_lock(&kvm_vmid_lock);
383
384         /*
385          * We need to re-check the vmid_gen here to ensure that if another vcpu
386          * already allocated a valid vmid for this vm, then this vcpu should
387          * use the same vmid.
388          */
389         if (!need_new_vmid_gen(kvm)) {
390                 spin_unlock(&kvm_vmid_lock);
391                 return;
392         }
393
394         /* First user of a new VMID generation? */
395         if (unlikely(kvm_next_vmid == 0)) {
396                 atomic64_inc(&kvm_vmid_gen);
397                 kvm_next_vmid = 1;
398
399                 /*
400                  * On SMP we know no other CPUs can use this CPU's or each
401                  * other's VMID after force_vm_exit returns since the
402                  * kvm_vmid_lock blocks them from reentry to the guest.
403                  */
404                 force_vm_exit(cpu_all_mask);
405                 /*
406                  * Now broadcast TLB + ICACHE invalidation over the inner
407                  * shareable domain to make sure all data structures are
408                  * clean.
409                  */
410                 kvm_call_hyp(__kvm_flush_vm_context);
411         }
412
413         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
414         kvm->arch.vmid = kvm_next_vmid;
415         kvm_next_vmid++;
416
417         /* update vttbr to be used with the new vmid */
418         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
419         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
420         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
421         kvm->arch.vttbr = pgd_phys | vmid;
422
423         spin_unlock(&kvm_vmid_lock);
424 }
425
426 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
427 {
428         struct kvm *kvm = vcpu->kvm;
429         int ret;
430
431         if (likely(vcpu->arch.has_run_once))
432                 return 0;
433
434         vcpu->arch.has_run_once = true;
435
436         /*
437          * Map the VGIC hardware resources before running a vcpu the first
438          * time on this VM.
439          */
440         if (unlikely(!vgic_ready(kvm))) {
441                 ret = kvm_vgic_map_resources(kvm);
442                 if (ret)
443                         return ret;
444         }
445
446         /*
447          * Enable the arch timers only if we have an in-kernel VGIC
448          * and it has been properly initialized, since we cannot handle
449          * interrupts from the virtual timer with a userspace gic.
450          */
451         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
452                 kvm_timer_enable(kvm);
453
454         return 0;
455 }
456
457 static void vcpu_pause(struct kvm_vcpu *vcpu)
458 {
459         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
460
461         wait_event_interruptible(*wq, !vcpu->arch.pause);
462 }
463
464 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
465 {
466         return vcpu->arch.target >= 0;
467 }
468
469 /**
470  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
471  * @vcpu:       The VCPU pointer
472  * @run:        The kvm_run structure pointer used for userspace state exchange
473  *
474  * This function is called through the VCPU_RUN ioctl called from user space. It
475  * will execute VM code in a loop until the time slice for the process is used
476  * or some emulation is needed from user space in which case the function will
477  * return with return value 0 and with the kvm_run structure filled in with the
478  * required data for the requested emulation.
479  */
480 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
481 {
482         int ret;
483         sigset_t sigsaved;
484
485         if (unlikely(!kvm_vcpu_initialized(vcpu)))
486                 return -ENOEXEC;
487
488         ret = kvm_vcpu_first_run_init(vcpu);
489         if (ret)
490                 return ret;
491
492         if (run->exit_reason == KVM_EXIT_MMIO) {
493                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
494                 if (ret)
495                         return ret;
496         }
497
498         if (vcpu->sigset_active)
499                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
500
501         ret = 1;
502         run->exit_reason = KVM_EXIT_UNKNOWN;
503         while (ret > 0) {
504                 /*
505                  * Check conditions before entering the guest
506                  */
507                 cond_resched();
508
509                 update_vttbr(vcpu->kvm);
510
511                 if (vcpu->arch.pause)
512                         vcpu_pause(vcpu);
513
514                 kvm_vgic_flush_hwstate(vcpu);
515                 kvm_timer_flush_hwstate(vcpu);
516
517                 local_irq_disable();
518
519                 /*
520                  * Re-check atomic conditions
521                  */
522                 if (signal_pending(current)) {
523                         ret = -EINTR;
524                         run->exit_reason = KVM_EXIT_INTR;
525                 }
526
527                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
528                         local_irq_enable();
529                         kvm_timer_sync_hwstate(vcpu);
530                         kvm_vgic_sync_hwstate(vcpu);
531                         continue;
532                 }
533
534                 /**************************************************************
535                  * Enter the guest
536                  */
537                 trace_kvm_entry(*vcpu_pc(vcpu));
538                 kvm_guest_enter();
539                 vcpu->mode = IN_GUEST_MODE;
540
541                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
542
543                 vcpu->mode = OUTSIDE_GUEST_MODE;
544                 vcpu->arch.last_pcpu = smp_processor_id();
545                 kvm_guest_exit();
546                 trace_kvm_exit(*vcpu_pc(vcpu));
547                 /*
548                  * We may have taken a host interrupt in HYP mode (ie
549                  * while executing the guest). This interrupt is still
550                  * pending, as we haven't serviced it yet!
551                  *
552                  * We're now back in SVC mode, with interrupts
553                  * disabled.  Enabling the interrupts now will have
554                  * the effect of taking the interrupt again, in SVC
555                  * mode this time.
556                  */
557                 local_irq_enable();
558
559                 /*
560                  * Back from guest
561                  *************************************************************/
562
563                 kvm_timer_sync_hwstate(vcpu);
564                 kvm_vgic_sync_hwstate(vcpu);
565
566                 ret = handle_exit(vcpu, run, ret);
567         }
568
569         if (vcpu->sigset_active)
570                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
571         return ret;
572 }
573
574 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
575 {
576         int bit_index;
577         bool set;
578         unsigned long *ptr;
579
580         if (number == KVM_ARM_IRQ_CPU_IRQ)
581                 bit_index = __ffs(HCR_VI);
582         else /* KVM_ARM_IRQ_CPU_FIQ */
583                 bit_index = __ffs(HCR_VF);
584
585         ptr = (unsigned long *)&vcpu->arch.irq_lines;
586         if (level)
587                 set = test_and_set_bit(bit_index, ptr);
588         else
589                 set = test_and_clear_bit(bit_index, ptr);
590
591         /*
592          * If we didn't change anything, no need to wake up or kick other CPUs
593          */
594         if (set == level)
595                 return 0;
596
597         /*
598          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
599          * trigger a world-switch round on the running physical CPU to set the
600          * virtual IRQ/FIQ fields in the HCR appropriately.
601          */
602         kvm_vcpu_kick(vcpu);
603
604         return 0;
605 }
606
607 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
608                           bool line_status)
609 {
610         u32 irq = irq_level->irq;
611         unsigned int irq_type, vcpu_idx, irq_num;
612         int nrcpus = atomic_read(&kvm->online_vcpus);
613         struct kvm_vcpu *vcpu = NULL;
614         bool level = irq_level->level;
615
616         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
617         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
618         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
619
620         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
621
622         switch (irq_type) {
623         case KVM_ARM_IRQ_TYPE_CPU:
624                 if (irqchip_in_kernel(kvm))
625                         return -ENXIO;
626
627                 if (vcpu_idx >= nrcpus)
628                         return -EINVAL;
629
630                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
631                 if (!vcpu)
632                         return -EINVAL;
633
634                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
635                         return -EINVAL;
636
637                 return vcpu_interrupt_line(vcpu, irq_num, level);
638         case KVM_ARM_IRQ_TYPE_PPI:
639                 if (!irqchip_in_kernel(kvm))
640                         return -ENXIO;
641
642                 if (vcpu_idx >= nrcpus)
643                         return -EINVAL;
644
645                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
646                 if (!vcpu)
647                         return -EINVAL;
648
649                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
650                         return -EINVAL;
651
652                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
653         case KVM_ARM_IRQ_TYPE_SPI:
654                 if (!irqchip_in_kernel(kvm))
655                         return -ENXIO;
656
657                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
658                     irq_num > KVM_ARM_IRQ_GIC_MAX)
659                         return -EINVAL;
660
661                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
662         }
663
664         return -EINVAL;
665 }
666
667 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
668                                const struct kvm_vcpu_init *init)
669 {
670         unsigned int i;
671         int phys_target = kvm_target_cpu();
672
673         if (init->target != phys_target)
674                 return -EINVAL;
675
676         /*
677          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
678          * use the same target.
679          */
680         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
681                 return -EINVAL;
682
683         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
684         for (i = 0; i < sizeof(init->features) * 8; i++) {
685                 bool set = (init->features[i / 32] & (1 << (i % 32)));
686
687                 if (set && i >= KVM_VCPU_MAX_FEATURES)
688                         return -ENOENT;
689
690                 /*
691                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
692                  * use the same feature set.
693                  */
694                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
695                     test_bit(i, vcpu->arch.features) != set)
696                         return -EINVAL;
697
698                 if (set)
699                         set_bit(i, vcpu->arch.features);
700         }
701
702         vcpu->arch.target = phys_target;
703
704         /* Now we know what it is, we can reset it. */
705         return kvm_reset_vcpu(vcpu);
706 }
707
708
709 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
710                                          struct kvm_vcpu_init *init)
711 {
712         int ret;
713
714         ret = kvm_vcpu_set_target(vcpu, init);
715         if (ret)
716                 return ret;
717
718         /*
719          * Ensure a rebooted VM will fault in RAM pages and detect if the
720          * guest MMU is turned off and flush the caches as needed.
721          */
722         if (vcpu->arch.has_run_once)
723                 stage2_unmap_vm(vcpu->kvm);
724
725         vcpu_reset_hcr(vcpu);
726
727         /*
728          * Handle the "start in power-off" case by marking the VCPU as paused.
729          */
730         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
731                 vcpu->arch.pause = true;
732         else
733                 vcpu->arch.pause = false;
734
735         return 0;
736 }
737
738 long kvm_arch_vcpu_ioctl(struct file *filp,
739                          unsigned int ioctl, unsigned long arg)
740 {
741         struct kvm_vcpu *vcpu = filp->private_data;
742         void __user *argp = (void __user *)arg;
743
744         switch (ioctl) {
745         case KVM_ARM_VCPU_INIT: {
746                 struct kvm_vcpu_init init;
747
748                 if (copy_from_user(&init, argp, sizeof(init)))
749                         return -EFAULT;
750
751                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
752         }
753         case KVM_SET_ONE_REG:
754         case KVM_GET_ONE_REG: {
755                 struct kvm_one_reg reg;
756
757                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
758                         return -ENOEXEC;
759
760                 if (copy_from_user(&reg, argp, sizeof(reg)))
761                         return -EFAULT;
762                 if (ioctl == KVM_SET_ONE_REG)
763                         return kvm_arm_set_reg(vcpu, &reg);
764                 else
765                         return kvm_arm_get_reg(vcpu, &reg);
766         }
767         case KVM_GET_REG_LIST: {
768                 struct kvm_reg_list __user *user_list = argp;
769                 struct kvm_reg_list reg_list;
770                 unsigned n;
771
772                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
773                         return -ENOEXEC;
774
775                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
776                         return -EFAULT;
777                 n = reg_list.n;
778                 reg_list.n = kvm_arm_num_regs(vcpu);
779                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
780                         return -EFAULT;
781                 if (n < reg_list.n)
782                         return -E2BIG;
783                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
784         }
785         default:
786                 return -EINVAL;
787         }
788 }
789
790 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
791 {
792         return -EINVAL;
793 }
794
795 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
796                                         struct kvm_arm_device_addr *dev_addr)
797 {
798         unsigned long dev_id, type;
799
800         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
801                 KVM_ARM_DEVICE_ID_SHIFT;
802         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
803                 KVM_ARM_DEVICE_TYPE_SHIFT;
804
805         switch (dev_id) {
806         case KVM_ARM_DEVICE_VGIC_V2:
807                 if (!vgic_present)
808                         return -ENXIO;
809                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
810         default:
811                 return -ENODEV;
812         }
813 }
814
815 long kvm_arch_vm_ioctl(struct file *filp,
816                        unsigned int ioctl, unsigned long arg)
817 {
818         struct kvm *kvm = filp->private_data;
819         void __user *argp = (void __user *)arg;
820
821         switch (ioctl) {
822         case KVM_CREATE_IRQCHIP: {
823                 if (vgic_present)
824                         return kvm_vgic_create(kvm);
825                 else
826                         return -ENXIO;
827         }
828         case KVM_ARM_SET_DEVICE_ADDR: {
829                 struct kvm_arm_device_addr dev_addr;
830
831                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
832                         return -EFAULT;
833                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
834         }
835         case KVM_ARM_PREFERRED_TARGET: {
836                 int err;
837                 struct kvm_vcpu_init init;
838
839                 err = kvm_vcpu_preferred_target(&init);
840                 if (err)
841                         return err;
842
843                 if (copy_to_user(argp, &init, sizeof(init)))
844                         return -EFAULT;
845
846                 return 0;
847         }
848         default:
849                 return -EINVAL;
850         }
851 }
852
853 static void cpu_init_hyp_mode(void *dummy)
854 {
855         phys_addr_t boot_pgd_ptr;
856         phys_addr_t pgd_ptr;
857         unsigned long hyp_stack_ptr;
858         unsigned long stack_page;
859         unsigned long vector_ptr;
860
861         /* Switch from the HYP stub to our own HYP init vector */
862         __hyp_set_vectors(kvm_get_idmap_vector());
863
864         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
865         pgd_ptr = kvm_mmu_get_httbr();
866         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
867         hyp_stack_ptr = stack_page + PAGE_SIZE;
868         vector_ptr = (unsigned long)__kvm_hyp_vector;
869
870         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
871 }
872
873 static int hyp_init_cpu_notify(struct notifier_block *self,
874                                unsigned long action, void *cpu)
875 {
876         switch (action) {
877         case CPU_STARTING:
878         case CPU_STARTING_FROZEN:
879                 if (__hyp_get_vectors() == hyp_default_vectors)
880                         cpu_init_hyp_mode(NULL);
881                 break;
882         }
883
884         return NOTIFY_OK;
885 }
886
887 static struct notifier_block hyp_init_cpu_nb = {
888         .notifier_call = hyp_init_cpu_notify,
889 };
890
891 #ifdef CONFIG_CPU_PM
892 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
893                                     unsigned long cmd,
894                                     void *v)
895 {
896         if (cmd == CPU_PM_EXIT &&
897             __hyp_get_vectors() == hyp_default_vectors) {
898                 cpu_init_hyp_mode(NULL);
899                 return NOTIFY_OK;
900         }
901
902         return NOTIFY_DONE;
903 }
904
905 static struct notifier_block hyp_init_cpu_pm_nb = {
906         .notifier_call = hyp_init_cpu_pm_notifier,
907 };
908
909 static void __init hyp_cpu_pm_init(void)
910 {
911         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
912 }
913 #else
914 static inline void hyp_cpu_pm_init(void)
915 {
916 }
917 #endif
918
919 /**
920  * Inits Hyp-mode on all online CPUs
921  */
922 static int init_hyp_mode(void)
923 {
924         int cpu;
925         int err = 0;
926
927         /*
928          * Allocate Hyp PGD and setup Hyp identity mapping
929          */
930         err = kvm_mmu_init();
931         if (err)
932                 goto out_err;
933
934         /*
935          * It is probably enough to obtain the default on one
936          * CPU. It's unlikely to be different on the others.
937          */
938         hyp_default_vectors = __hyp_get_vectors();
939
940         /*
941          * Allocate stack pages for Hypervisor-mode
942          */
943         for_each_possible_cpu(cpu) {
944                 unsigned long stack_page;
945
946                 stack_page = __get_free_page(GFP_KERNEL);
947                 if (!stack_page) {
948                         err = -ENOMEM;
949                         goto out_free_stack_pages;
950                 }
951
952                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
953         }
954
955         /*
956          * Map the Hyp-code called directly from the host
957          */
958         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
959         if (err) {
960                 kvm_err("Cannot map world-switch code\n");
961                 goto out_free_mappings;
962         }
963
964         /*
965          * Map the Hyp stack pages
966          */
967         for_each_possible_cpu(cpu) {
968                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
969                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
970
971                 if (err) {
972                         kvm_err("Cannot map hyp stack\n");
973                         goto out_free_mappings;
974                 }
975         }
976
977         /*
978          * Map the host CPU structures
979          */
980         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
981         if (!kvm_host_cpu_state) {
982                 err = -ENOMEM;
983                 kvm_err("Cannot allocate host CPU state\n");
984                 goto out_free_mappings;
985         }
986
987         for_each_possible_cpu(cpu) {
988                 kvm_cpu_context_t *cpu_ctxt;
989
990                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
991                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
992
993                 if (err) {
994                         kvm_err("Cannot map host CPU state: %d\n", err);
995                         goto out_free_context;
996                 }
997         }
998
999         /*
1000          * Execute the init code on each CPU.
1001          */
1002         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1003
1004         /*
1005          * Init HYP view of VGIC
1006          */
1007         err = kvm_vgic_hyp_init();
1008         if (err)
1009                 goto out_free_context;
1010
1011 #ifdef CONFIG_KVM_ARM_VGIC
1012                 vgic_present = true;
1013 #endif
1014
1015         /*
1016          * Init HYP architected timer support
1017          */
1018         err = kvm_timer_hyp_init();
1019         if (err)
1020                 goto out_free_mappings;
1021
1022 #ifndef CONFIG_HOTPLUG_CPU
1023         free_boot_hyp_pgd();
1024 #endif
1025
1026         kvm_perf_init();
1027
1028         kvm_info("Hyp mode initialized successfully\n");
1029
1030         return 0;
1031 out_free_context:
1032         free_percpu(kvm_host_cpu_state);
1033 out_free_mappings:
1034         free_hyp_pgds();
1035 out_free_stack_pages:
1036         for_each_possible_cpu(cpu)
1037                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1038 out_err:
1039         kvm_err("error initializing Hyp mode: %d\n", err);
1040         return err;
1041 }
1042
1043 static void check_kvm_target_cpu(void *ret)
1044 {
1045         *(int *)ret = kvm_target_cpu();
1046 }
1047
1048 /**
1049  * Initialize Hyp-mode and memory mappings on all CPUs.
1050  */
1051 int kvm_arch_init(void *opaque)
1052 {
1053         int err;
1054         int ret, cpu;
1055
1056         if (!is_hyp_mode_available()) {
1057                 kvm_err("HYP mode not available\n");
1058                 return -ENODEV;
1059         }
1060
1061         for_each_online_cpu(cpu) {
1062                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1063                 if (ret < 0) {
1064                         kvm_err("Error, CPU %d not supported!\n", cpu);
1065                         return -ENODEV;
1066                 }
1067         }
1068
1069         cpu_notifier_register_begin();
1070
1071         err = init_hyp_mode();
1072         if (err)
1073                 goto out_err;
1074
1075         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1076         if (err) {
1077                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1078                 goto out_err;
1079         }
1080
1081         cpu_notifier_register_done();
1082
1083         hyp_cpu_pm_init();
1084
1085         kvm_coproc_table_init();
1086         return 0;
1087 out_err:
1088         cpu_notifier_register_done();
1089         return err;
1090 }
1091
1092 /* NOP: Compiling as a module not supported */
1093 void kvm_arch_exit(void)
1094 {
1095         kvm_perf_teardown();
1096 }
1097
1098 static int arm_init(void)
1099 {
1100         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1101         return rc;
1102 }
1103
1104 module_init(arm_init);