Merge remote-tracking branches 'regulator/topic/can-change', 'regulator/topic/constra...
[cascardo/linux.git] / arch / arm / kvm / coproc.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Authors: Rusty Russell <rusty@rustcorp.com.au>
4  *          Christoffer Dall <c.dall@virtualopensystems.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18  */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #include "trace.h"
36 #include "coproc.h"
37
38
39 /******************************************************************************
40  * Co-processor emulation
41  *****************************************************************************/
42
43 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44 static u32 cache_levels;
45
46 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47 #define CSSELR_MAX 12
48
49 /*
50  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51  * of cp15 registers can be viewed either as couple of two u32 registers
52  * or one u64 register. Current u64 register encoding is that least
53  * significant u32 word is followed by most significant u32 word.
54  */
55 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
56                                        const struct coproc_reg *r,
57                                        u64 val)
58 {
59         vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
60         vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
61 }
62
63 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
64                                       const struct coproc_reg *r)
65 {
66         u64 val;
67
68         val = vcpu_cp15(vcpu, r->reg + 1);
69         val = val << 32;
70         val = val | vcpu_cp15(vcpu, r->reg);
71         return val;
72 }
73
74 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
75 {
76         kvm_inject_undefined(vcpu);
77         return 1;
78 }
79
80 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
81 {
82         /*
83          * We can get here, if the host has been built without VFPv3 support,
84          * but the guest attempted a floating point operation.
85          */
86         kvm_inject_undefined(vcpu);
87         return 1;
88 }
89
90 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
91 {
92         kvm_inject_undefined(vcpu);
93         return 1;
94 }
95
96 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
97 {
98         kvm_inject_undefined(vcpu);
99         return 1;
100 }
101
102 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
103 {
104         /*
105          * Compute guest MPIDR. We build a virtual cluster out of the
106          * vcpu_id, but we read the 'U' bit from the underlying
107          * hardware directly.
108          */
109         vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
110                                      ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
111                                      (vcpu->vcpu_id & 3));
112 }
113
114 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
115 static bool access_actlr(struct kvm_vcpu *vcpu,
116                          const struct coproc_params *p,
117                          const struct coproc_reg *r)
118 {
119         if (p->is_write)
120                 return ignore_write(vcpu, p);
121
122         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
123         return true;
124 }
125
126 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
127 static bool access_cbar(struct kvm_vcpu *vcpu,
128                         const struct coproc_params *p,
129                         const struct coproc_reg *r)
130 {
131         if (p->is_write)
132                 return write_to_read_only(vcpu, p);
133         return read_zero(vcpu, p);
134 }
135
136 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
137 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
138                           const struct coproc_params *p,
139                           const struct coproc_reg *r)
140 {
141         if (p->is_write)
142                 return ignore_write(vcpu, p);
143
144         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
145         return true;
146 }
147
148 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
149 {
150         u32 l2ctlr, ncores;
151
152         asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
153         l2ctlr &= ~(3 << 24);
154         ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
155         /* How many cores in the current cluster and the next ones */
156         ncores -= (vcpu->vcpu_id & ~3);
157         /* Cap it to the maximum number of cores in a single cluster */
158         ncores = min(ncores, 3U);
159         l2ctlr |= (ncores & 3) << 24;
160
161         vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
162 }
163
164 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
165 {
166         u32 actlr;
167
168         /* ACTLR contains SMP bit: make sure you create all cpus first! */
169         asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
170         /* Make the SMP bit consistent with the guest configuration */
171         if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
172                 actlr |= 1U << 6;
173         else
174                 actlr &= ~(1U << 6);
175
176         vcpu_cp15(vcpu, c1_ACTLR) = actlr;
177 }
178
179 /*
180  * TRM entries: A7:4.3.50, A15:4.3.49
181  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
182  */
183 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
184                            const struct coproc_params *p,
185                            const struct coproc_reg *r)
186 {
187         if (p->is_write)
188                 return ignore_write(vcpu, p);
189
190         *vcpu_reg(vcpu, p->Rt1) = 0;
191         return true;
192 }
193
194 /*
195  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196  */
197 static bool access_dcsw(struct kvm_vcpu *vcpu,
198                         const struct coproc_params *p,
199                         const struct coproc_reg *r)
200 {
201         if (!p->is_write)
202                 return read_from_write_only(vcpu, p);
203
204         kvm_set_way_flush(vcpu);
205         return true;
206 }
207
208 /*
209  * Generic accessor for VM registers. Only called as long as HCR_TVM
210  * is set.  If the guest enables the MMU, we stop trapping the VM
211  * sys_regs and leave it in complete control of the caches.
212  *
213  * Used by the cpu-specific code.
214  */
215 bool access_vm_reg(struct kvm_vcpu *vcpu,
216                    const struct coproc_params *p,
217                    const struct coproc_reg *r)
218 {
219         bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
221         BUG_ON(!p->is_write);
222
223         vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
224         if (p->is_64bit)
225                 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
226
227         kvm_toggle_cache(vcpu, was_enabled);
228         return true;
229 }
230
231 /*
232  * We could trap ID_DFR0 and tell the guest we don't support performance
233  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
234  * NAKed, so it will read the PMCR anyway.
235  *
236  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
237  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
238  * all PM registers, which doesn't crash the guest kernel at least.
239  */
240 static bool pm_fake(struct kvm_vcpu *vcpu,
241                     const struct coproc_params *p,
242                     const struct coproc_reg *r)
243 {
244         if (p->is_write)
245                 return ignore_write(vcpu, p);
246         else
247                 return read_zero(vcpu, p);
248 }
249
250 #define access_pmcr pm_fake
251 #define access_pmcntenset pm_fake
252 #define access_pmcntenclr pm_fake
253 #define access_pmovsr pm_fake
254 #define access_pmselr pm_fake
255 #define access_pmceid0 pm_fake
256 #define access_pmceid1 pm_fake
257 #define access_pmccntr pm_fake
258 #define access_pmxevtyper pm_fake
259 #define access_pmxevcntr pm_fake
260 #define access_pmuserenr pm_fake
261 #define access_pmintenset pm_fake
262 #define access_pmintenclr pm_fake
263
264 /* Architected CP15 registers.
265  * CRn denotes the primary register number, but is copied to the CRm in the
266  * user space API for 64-bit register access in line with the terminology used
267  * in the ARM ARM.
268  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
269  *            registers preceding 32-bit ones.
270  */
271 static const struct coproc_reg cp15_regs[] = {
272         /* MPIDR: we use VMPIDR for guest access. */
273         { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
274                         NULL, reset_mpidr, c0_MPIDR },
275
276         /* CSSELR: swapped by interrupt.S. */
277         { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
278                         NULL, reset_unknown, c0_CSSELR },
279
280         /* ACTLR: trapped by HCR.TAC bit. */
281         { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
282                         access_actlr, reset_actlr, c1_ACTLR },
283
284         /* CPACR: swapped by interrupt.S. */
285         { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
286                         NULL, reset_val, c1_CPACR, 0x00000000 },
287
288         /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
289         { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
290         { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
291                         access_vm_reg, reset_unknown, c2_TTBR0 },
292         { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
293                         access_vm_reg, reset_unknown, c2_TTBR1 },
294         { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
295                         access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
296         { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
297
298
299         /* DACR: swapped by interrupt.S. */
300         { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
301                         access_vm_reg, reset_unknown, c3_DACR },
302
303         /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
304         { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
305                         access_vm_reg, reset_unknown, c5_DFSR },
306         { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
307                         access_vm_reg, reset_unknown, c5_IFSR },
308         { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
309                         access_vm_reg, reset_unknown, c5_ADFSR },
310         { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
311                         access_vm_reg, reset_unknown, c5_AIFSR },
312
313         /* DFAR/IFAR: swapped by interrupt.S. */
314         { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
315                         access_vm_reg, reset_unknown, c6_DFAR },
316         { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
317                         access_vm_reg, reset_unknown, c6_IFAR },
318
319         /* PAR swapped by interrupt.S */
320         { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
321
322         /*
323          * DC{C,I,CI}SW operations:
324          */
325         { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
326         { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
327         { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
328         /*
329          * L2CTLR access (guest wants to know #CPUs).
330          */
331         { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
332                         access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
333         { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
334
335         /*
336          * Dummy performance monitor implementation.
337          */
338         { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
339         { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
340         { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
341         { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
342         { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
343         { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
344         { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
345         { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
346         { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
347         { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
348         { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
349         { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
350         { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
351
352         /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
353         { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
354                         access_vm_reg, reset_unknown, c10_PRRR},
355         { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
356                         access_vm_reg, reset_unknown, c10_NMRR},
357
358         /* AMAIR0/AMAIR1: swapped by interrupt.S. */
359         { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
360                         access_vm_reg, reset_unknown, c10_AMAIR0},
361         { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
362                         access_vm_reg, reset_unknown, c10_AMAIR1},
363
364         /* VBAR: swapped by interrupt.S. */
365         { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
366                         NULL, reset_val, c12_VBAR, 0x00000000 },
367
368         /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
369         { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
370                         access_vm_reg, reset_val, c13_CID, 0x00000000 },
371         { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
372                         NULL, reset_unknown, c13_TID_URW },
373         { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
374                         NULL, reset_unknown, c13_TID_URO },
375         { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
376                         NULL, reset_unknown, c13_TID_PRIV },
377
378         /* CNTKCTL: swapped by interrupt.S. */
379         { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
380                         NULL, reset_val, c14_CNTKCTL, 0x00000000 },
381
382         /* The Configuration Base Address Register. */
383         { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
384 };
385
386 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
387 {
388         unsigned int i;
389
390         for (i = 1; i < n; i++) {
391                 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
392                         kvm_err("reg table %p out of order (%d)\n", table, i - 1);
393                         return 1;
394                 }
395         }
396
397         return 0;
398 }
399
400 /* Target specific emulation tables */
401 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
402
403 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
404 {
405         BUG_ON(check_reg_table(table->table, table->num));
406         target_tables[table->target] = table;
407 }
408
409 /* Get specific register table for this target. */
410 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
411 {
412         struct kvm_coproc_target_table *table;
413
414         table = target_tables[target];
415         *num = table->num;
416         return table->table;
417 }
418
419 #define reg_to_match_value(x)                                           \
420         ({                                                              \
421                 unsigned long val;                                      \
422                 val  = (x)->CRn << 11;                                  \
423                 val |= (x)->CRm << 7;                                   \
424                 val |= (x)->Op1 << 4;                                   \
425                 val |= (x)->Op2 << 1;                                   \
426                 val |= !(x)->is_64bit;                                  \
427                 val;                                                    \
428          })
429
430 static int match_reg(const void *key, const void *elt)
431 {
432         const unsigned long pval = (unsigned long)key;
433         const struct coproc_reg *r = elt;
434
435         return pval - reg_to_match_value(r);
436 }
437
438 static const struct coproc_reg *find_reg(const struct coproc_params *params,
439                                          const struct coproc_reg table[],
440                                          unsigned int num)
441 {
442         unsigned long pval = reg_to_match_value(params);
443
444         return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
445 }
446
447 static int emulate_cp15(struct kvm_vcpu *vcpu,
448                         const struct coproc_params *params)
449 {
450         size_t num;
451         const struct coproc_reg *table, *r;
452
453         trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
454                                    params->CRm, params->Op2, params->is_write);
455
456         table = get_target_table(vcpu->arch.target, &num);
457
458         /* Search target-specific then generic table. */
459         r = find_reg(params, table, num);
460         if (!r)
461                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
462
463         if (likely(r)) {
464                 /* If we don't have an accessor, we should never get here! */
465                 BUG_ON(!r->access);
466
467                 if (likely(r->access(vcpu, params, r))) {
468                         /* Skip instruction, since it was emulated */
469                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
470                         return 1;
471                 }
472                 /* If access function fails, it should complain. */
473         } else {
474                 kvm_err("Unsupported guest CP15 access at: %08lx\n",
475                         *vcpu_pc(vcpu));
476                 print_cp_instr(params);
477         }
478         kvm_inject_undefined(vcpu);
479         return 1;
480 }
481
482 /**
483  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
484  * @vcpu: The VCPU pointer
485  * @run:  The kvm_run struct
486  */
487 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
488 {
489         struct coproc_params params;
490
491         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
492         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
493         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
494         params.is_64bit = true;
495
496         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
497         params.Op2 = 0;
498         params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
499         params.CRm = 0;
500
501         return emulate_cp15(vcpu, &params);
502 }
503
504 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
505                               const struct coproc_reg *table, size_t num)
506 {
507         unsigned long i;
508
509         for (i = 0; i < num; i++)
510                 if (table[i].reset)
511                         table[i].reset(vcpu, &table[i]);
512 }
513
514 /**
515  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
516  * @vcpu: The VCPU pointer
517  * @run:  The kvm_run struct
518  */
519 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
520 {
521         struct coproc_params params;
522
523         params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
524         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
525         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
526         params.is_64bit = false;
527
528         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
529         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
530         params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
531         params.Rt2 = 0;
532
533         return emulate_cp15(vcpu, &params);
534 }
535
536 /******************************************************************************
537  * Userspace API
538  *****************************************************************************/
539
540 static bool index_to_params(u64 id, struct coproc_params *params)
541 {
542         switch (id & KVM_REG_SIZE_MASK) {
543         case KVM_REG_SIZE_U32:
544                 /* Any unused index bits means it's not valid. */
545                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
546                            | KVM_REG_ARM_COPROC_MASK
547                            | KVM_REG_ARM_32_CRN_MASK
548                            | KVM_REG_ARM_CRM_MASK
549                            | KVM_REG_ARM_OPC1_MASK
550                            | KVM_REG_ARM_32_OPC2_MASK))
551                         return false;
552
553                 params->is_64bit = false;
554                 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
555                                >> KVM_REG_ARM_32_CRN_SHIFT);
556                 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
557                                >> KVM_REG_ARM_CRM_SHIFT);
558                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
559                                >> KVM_REG_ARM_OPC1_SHIFT);
560                 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
561                                >> KVM_REG_ARM_32_OPC2_SHIFT);
562                 return true;
563         case KVM_REG_SIZE_U64:
564                 /* Any unused index bits means it's not valid. */
565                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
566                               | KVM_REG_ARM_COPROC_MASK
567                               | KVM_REG_ARM_CRM_MASK
568                               | KVM_REG_ARM_OPC1_MASK))
569                         return false;
570                 params->is_64bit = true;
571                 /* CRm to CRn: see cp15_to_index for details */
572                 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
573                                >> KVM_REG_ARM_CRM_SHIFT);
574                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
575                                >> KVM_REG_ARM_OPC1_SHIFT);
576                 params->Op2 = 0;
577                 params->CRm = 0;
578                 return true;
579         default:
580                 return false;
581         }
582 }
583
584 /* Decode an index value, and find the cp15 coproc_reg entry. */
585 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
586                                                     u64 id)
587 {
588         size_t num;
589         const struct coproc_reg *table, *r;
590         struct coproc_params params;
591
592         /* We only do cp15 for now. */
593         if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
594                 return NULL;
595
596         if (!index_to_params(id, &params))
597                 return NULL;
598
599         table = get_target_table(vcpu->arch.target, &num);
600         r = find_reg(&params, table, num);
601         if (!r)
602                 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
603
604         /* Not saved in the cp15 array? */
605         if (r && !r->reg)
606                 r = NULL;
607
608         return r;
609 }
610
611 /*
612  * These are the invariant cp15 registers: we let the guest see the host
613  * versions of these, so they're part of the guest state.
614  *
615  * A future CPU may provide a mechanism to present different values to
616  * the guest, or a future kvm may trap them.
617  */
618 /* Unfortunately, there's no register-argument for mrc, so generate. */
619 #define FUNCTION_FOR32(crn, crm, op1, op2, name)                        \
620         static void get_##name(struct kvm_vcpu *v,                      \
621                                const struct coproc_reg *r)              \
622         {                                                               \
623                 u32 val;                                                \
624                                                                         \
625                 asm volatile("mrc p15, " __stringify(op1)               \
626                              ", %0, c" __stringify(crn)                 \
627                              ", c" __stringify(crm)                     \
628                              ", " __stringify(op2) "\n" : "=r" (val));  \
629                 ((struct coproc_reg *)r)->val = val;                    \
630         }
631
632 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
633 FUNCTION_FOR32(0, 0, 0, 1, CTR)
634 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
635 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
636 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
637 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
638 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
639 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
640 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
641 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
642 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
643 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
644 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
645 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
646 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
647 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
648 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
649 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
650 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
651 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
652 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
653
654 /* ->val is filled in by kvm_invariant_coproc_table_init() */
655 static struct coproc_reg invariant_cp15[] = {
656         { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
657         { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
658         { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
659         { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
660         { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
661
662         { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
663         { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
664
665         { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
666         { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
667         { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
668         { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
669         { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
670         { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
671         { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
672         { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
673
674         { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
675         { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
676         { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
677         { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
678         { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
679         { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
680 };
681
682 /*
683  * Reads a register value from a userspace address to a kernel
684  * variable. Make sure that register size matches sizeof(*__val).
685  */
686 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
687 {
688         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
689                 return -EFAULT;
690         return 0;
691 }
692
693 /*
694  * Writes a register value to a userspace address from a kernel variable.
695  * Make sure that register size matches sizeof(*__val).
696  */
697 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
698 {
699         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
700                 return -EFAULT;
701         return 0;
702 }
703
704 static int get_invariant_cp15(u64 id, void __user *uaddr)
705 {
706         struct coproc_params params;
707         const struct coproc_reg *r;
708         int ret;
709
710         if (!index_to_params(id, &params))
711                 return -ENOENT;
712
713         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
714         if (!r)
715                 return -ENOENT;
716
717         ret = -ENOENT;
718         if (KVM_REG_SIZE(id) == 4) {
719                 u32 val = r->val;
720
721                 ret = reg_to_user(uaddr, &val, id);
722         } else if (KVM_REG_SIZE(id) == 8) {
723                 ret = reg_to_user(uaddr, &r->val, id);
724         }
725         return ret;
726 }
727
728 static int set_invariant_cp15(u64 id, void __user *uaddr)
729 {
730         struct coproc_params params;
731         const struct coproc_reg *r;
732         int err;
733         u64 val;
734
735         if (!index_to_params(id, &params))
736                 return -ENOENT;
737         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
738         if (!r)
739                 return -ENOENT;
740
741         err = -ENOENT;
742         if (KVM_REG_SIZE(id) == 4) {
743                 u32 val32;
744
745                 err = reg_from_user(&val32, uaddr, id);
746                 if (!err)
747                         val = val32;
748         } else if (KVM_REG_SIZE(id) == 8) {
749                 err = reg_from_user(&val, uaddr, id);
750         }
751         if (err)
752                 return err;
753
754         /* This is what we mean by invariant: you can't change it. */
755         if (r->val != val)
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static bool is_valid_cache(u32 val)
762 {
763         u32 level, ctype;
764
765         if (val >= CSSELR_MAX)
766                 return false;
767
768         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
769         level = (val >> 1);
770         ctype = (cache_levels >> (level * 3)) & 7;
771
772         switch (ctype) {
773         case 0: /* No cache */
774                 return false;
775         case 1: /* Instruction cache only */
776                 return (val & 1);
777         case 2: /* Data cache only */
778         case 4: /* Unified cache */
779                 return !(val & 1);
780         case 3: /* Separate instruction and data caches */
781                 return true;
782         default: /* Reserved: we can't know instruction or data. */
783                 return false;
784         }
785 }
786
787 /* Which cache CCSIDR represents depends on CSSELR value. */
788 static u32 get_ccsidr(u32 csselr)
789 {
790         u32 ccsidr;
791
792         /* Make sure noone else changes CSSELR during this! */
793         local_irq_disable();
794         /* Put value into CSSELR */
795         asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
796         isb();
797         /* Read result out of CCSIDR */
798         asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
799         local_irq_enable();
800
801         return ccsidr;
802 }
803
804 static int demux_c15_get(u64 id, void __user *uaddr)
805 {
806         u32 val;
807         u32 __user *uval = uaddr;
808
809         /* Fail if we have unknown bits set. */
810         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
811                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
812                 return -ENOENT;
813
814         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
815         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
816                 if (KVM_REG_SIZE(id) != 4)
817                         return -ENOENT;
818                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
819                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
820                 if (!is_valid_cache(val))
821                         return -ENOENT;
822
823                 return put_user(get_ccsidr(val), uval);
824         default:
825                 return -ENOENT;
826         }
827 }
828
829 static int demux_c15_set(u64 id, void __user *uaddr)
830 {
831         u32 val, newval;
832         u32 __user *uval = uaddr;
833
834         /* Fail if we have unknown bits set. */
835         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
836                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
837                 return -ENOENT;
838
839         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
840         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
841                 if (KVM_REG_SIZE(id) != 4)
842                         return -ENOENT;
843                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
844                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
845                 if (!is_valid_cache(val))
846                         return -ENOENT;
847
848                 if (get_user(newval, uval))
849                         return -EFAULT;
850
851                 /* This is also invariant: you can't change it. */
852                 if (newval != get_ccsidr(val))
853                         return -EINVAL;
854                 return 0;
855         default:
856                 return -ENOENT;
857         }
858 }
859
860 #ifdef CONFIG_VFPv3
861 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
862                                    KVM_REG_ARM_VFP_FPSCR,
863                                    KVM_REG_ARM_VFP_FPINST,
864                                    KVM_REG_ARM_VFP_FPINST2,
865                                    KVM_REG_ARM_VFP_MVFR0,
866                                    KVM_REG_ARM_VFP_MVFR1,
867                                    KVM_REG_ARM_VFP_FPSID };
868
869 static unsigned int num_fp_regs(void)
870 {
871         if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
872                 return 32;
873         else
874                 return 16;
875 }
876
877 static unsigned int num_vfp_regs(void)
878 {
879         /* Normal FP regs + control regs. */
880         return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
881 }
882
883 static int copy_vfp_regids(u64 __user *uindices)
884 {
885         unsigned int i;
886         const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
887         const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
888
889         for (i = 0; i < num_fp_regs(); i++) {
890                 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
891                              uindices))
892                         return -EFAULT;
893                 uindices++;
894         }
895
896         for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
897                 if (put_user(u32reg | vfp_sysregs[i], uindices))
898                         return -EFAULT;
899                 uindices++;
900         }
901
902         return num_vfp_regs();
903 }
904
905 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
906 {
907         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
908         u32 val;
909
910         /* Fail if we have unknown bits set. */
911         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
912                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
913                 return -ENOENT;
914
915         if (vfpid < num_fp_regs()) {
916                 if (KVM_REG_SIZE(id) != 8)
917                         return -ENOENT;
918                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
919                                    id);
920         }
921
922         /* FP control registers are all 32 bit. */
923         if (KVM_REG_SIZE(id) != 4)
924                 return -ENOENT;
925
926         switch (vfpid) {
927         case KVM_REG_ARM_VFP_FPEXC:
928                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
929         case KVM_REG_ARM_VFP_FPSCR:
930                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
931         case KVM_REG_ARM_VFP_FPINST:
932                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
933         case KVM_REG_ARM_VFP_FPINST2:
934                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
935         case KVM_REG_ARM_VFP_MVFR0:
936                 val = fmrx(MVFR0);
937                 return reg_to_user(uaddr, &val, id);
938         case KVM_REG_ARM_VFP_MVFR1:
939                 val = fmrx(MVFR1);
940                 return reg_to_user(uaddr, &val, id);
941         case KVM_REG_ARM_VFP_FPSID:
942                 val = fmrx(FPSID);
943                 return reg_to_user(uaddr, &val, id);
944         default:
945                 return -ENOENT;
946         }
947 }
948
949 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
950 {
951         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
952         u32 val;
953
954         /* Fail if we have unknown bits set. */
955         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
956                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
957                 return -ENOENT;
958
959         if (vfpid < num_fp_regs()) {
960                 if (KVM_REG_SIZE(id) != 8)
961                         return -ENOENT;
962                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
963                                      uaddr, id);
964         }
965
966         /* FP control registers are all 32 bit. */
967         if (KVM_REG_SIZE(id) != 4)
968                 return -ENOENT;
969
970         switch (vfpid) {
971         case KVM_REG_ARM_VFP_FPEXC:
972                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
973         case KVM_REG_ARM_VFP_FPSCR:
974                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
975         case KVM_REG_ARM_VFP_FPINST:
976                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
977         case KVM_REG_ARM_VFP_FPINST2:
978                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
979         /* These are invariant. */
980         case KVM_REG_ARM_VFP_MVFR0:
981                 if (reg_from_user(&val, uaddr, id))
982                         return -EFAULT;
983                 if (val != fmrx(MVFR0))
984                         return -EINVAL;
985                 return 0;
986         case KVM_REG_ARM_VFP_MVFR1:
987                 if (reg_from_user(&val, uaddr, id))
988                         return -EFAULT;
989                 if (val != fmrx(MVFR1))
990                         return -EINVAL;
991                 return 0;
992         case KVM_REG_ARM_VFP_FPSID:
993                 if (reg_from_user(&val, uaddr, id))
994                         return -EFAULT;
995                 if (val != fmrx(FPSID))
996                         return -EINVAL;
997                 return 0;
998         default:
999                 return -ENOENT;
1000         }
1001 }
1002 #else /* !CONFIG_VFPv3 */
1003 static unsigned int num_vfp_regs(void)
1004 {
1005         return 0;
1006 }
1007
1008 static int copy_vfp_regids(u64 __user *uindices)
1009 {
1010         return 0;
1011 }
1012
1013 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1014 {
1015         return -ENOENT;
1016 }
1017
1018 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1019 {
1020         return -ENOENT;
1021 }
1022 #endif /* !CONFIG_VFPv3 */
1023
1024 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1025 {
1026         const struct coproc_reg *r;
1027         void __user *uaddr = (void __user *)(long)reg->addr;
1028         int ret;
1029
1030         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1031                 return demux_c15_get(reg->id, uaddr);
1032
1033         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1034                 return vfp_get_reg(vcpu, reg->id, uaddr);
1035
1036         r = index_to_coproc_reg(vcpu, reg->id);
1037         if (!r)
1038                 return get_invariant_cp15(reg->id, uaddr);
1039
1040         ret = -ENOENT;
1041         if (KVM_REG_SIZE(reg->id) == 8) {
1042                 u64 val;
1043
1044                 val = vcpu_cp15_reg64_get(vcpu, r);
1045                 ret = reg_to_user(uaddr, &val, reg->id);
1046         } else if (KVM_REG_SIZE(reg->id) == 4) {
1047                 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1048         }
1049
1050         return ret;
1051 }
1052
1053 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1054 {
1055         const struct coproc_reg *r;
1056         void __user *uaddr = (void __user *)(long)reg->addr;
1057         int ret;
1058
1059         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1060                 return demux_c15_set(reg->id, uaddr);
1061
1062         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1063                 return vfp_set_reg(vcpu, reg->id, uaddr);
1064
1065         r = index_to_coproc_reg(vcpu, reg->id);
1066         if (!r)
1067                 return set_invariant_cp15(reg->id, uaddr);
1068
1069         ret = -ENOENT;
1070         if (KVM_REG_SIZE(reg->id) == 8) {
1071                 u64 val;
1072
1073                 ret = reg_from_user(&val, uaddr, reg->id);
1074                 if (!ret)
1075                         vcpu_cp15_reg64_set(vcpu, r, val);
1076         } else if (KVM_REG_SIZE(reg->id) == 4) {
1077                 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1078         }
1079
1080         return ret;
1081 }
1082
1083 static unsigned int num_demux_regs(void)
1084 {
1085         unsigned int i, count = 0;
1086
1087         for (i = 0; i < CSSELR_MAX; i++)
1088                 if (is_valid_cache(i))
1089                         count++;
1090
1091         return count;
1092 }
1093
1094 static int write_demux_regids(u64 __user *uindices)
1095 {
1096         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1097         unsigned int i;
1098
1099         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1100         for (i = 0; i < CSSELR_MAX; i++) {
1101                 if (!is_valid_cache(i))
1102                         continue;
1103                 if (put_user(val | i, uindices))
1104                         return -EFAULT;
1105                 uindices++;
1106         }
1107         return 0;
1108 }
1109
1110 static u64 cp15_to_index(const struct coproc_reg *reg)
1111 {
1112         u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1113         if (reg->is_64bit) {
1114                 val |= KVM_REG_SIZE_U64;
1115                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1116                 /*
1117                  * CRn always denotes the primary coproc. reg. nr. for the
1118                  * in-kernel representation, but the user space API uses the
1119                  * CRm for the encoding, because it is modelled after the
1120                  * MRRC/MCRR instructions: see the ARM ARM rev. c page
1121                  * B3-1445
1122                  */
1123                 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1124         } else {
1125                 val |= KVM_REG_SIZE_U32;
1126                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1127                 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1128                 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1129                 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1130         }
1131         return val;
1132 }
1133
1134 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1135 {
1136         if (!*uind)
1137                 return true;
1138
1139         if (put_user(cp15_to_index(reg), *uind))
1140                 return false;
1141
1142         (*uind)++;
1143         return true;
1144 }
1145
1146 /* Assumed ordered tables, see kvm_coproc_table_init. */
1147 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1148 {
1149         const struct coproc_reg *i1, *i2, *end1, *end2;
1150         unsigned int total = 0;
1151         size_t num;
1152
1153         /* We check for duplicates here, to allow arch-specific overrides. */
1154         i1 = get_target_table(vcpu->arch.target, &num);
1155         end1 = i1 + num;
1156         i2 = cp15_regs;
1157         end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1158
1159         BUG_ON(i1 == end1 || i2 == end2);
1160
1161         /* Walk carefully, as both tables may refer to the same register. */
1162         while (i1 || i2) {
1163                 int cmp = cmp_reg(i1, i2);
1164                 /* target-specific overrides generic entry. */
1165                 if (cmp <= 0) {
1166                         /* Ignore registers we trap but don't save. */
1167                         if (i1->reg) {
1168                                 if (!copy_reg_to_user(i1, &uind))
1169                                         return -EFAULT;
1170                                 total++;
1171                         }
1172                 } else {
1173                         /* Ignore registers we trap but don't save. */
1174                         if (i2->reg) {
1175                                 if (!copy_reg_to_user(i2, &uind))
1176                                         return -EFAULT;
1177                                 total++;
1178                         }
1179                 }
1180
1181                 if (cmp <= 0 && ++i1 == end1)
1182                         i1 = NULL;
1183                 if (cmp >= 0 && ++i2 == end2)
1184                         i2 = NULL;
1185         }
1186         return total;
1187 }
1188
1189 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1190 {
1191         return ARRAY_SIZE(invariant_cp15)
1192                 + num_demux_regs()
1193                 + num_vfp_regs()
1194                 + walk_cp15(vcpu, (u64 __user *)NULL);
1195 }
1196
1197 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1198 {
1199         unsigned int i;
1200         int err;
1201
1202         /* Then give them all the invariant registers' indices. */
1203         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1204                 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1205                         return -EFAULT;
1206                 uindices++;
1207         }
1208
1209         err = walk_cp15(vcpu, uindices);
1210         if (err < 0)
1211                 return err;
1212         uindices += err;
1213
1214         err = copy_vfp_regids(uindices);
1215         if (err < 0)
1216                 return err;
1217         uindices += err;
1218
1219         return write_demux_regids(uindices);
1220 }
1221
1222 void kvm_coproc_table_init(void)
1223 {
1224         unsigned int i;
1225
1226         /* Make sure tables are unique and in order. */
1227         BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1228         BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1229
1230         /* We abuse the reset function to overwrite the table itself. */
1231         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1232                 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1233
1234         /*
1235          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1236          *
1237          *   If software reads the Cache Type fields from Ctype1
1238          *   upwards, once it has seen a value of 0b000, no caches
1239          *   exist at further-out levels of the hierarchy. So, for
1240          *   example, if Ctype3 is the first Cache Type field with a
1241          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1242          *   ignored.
1243          */
1244         asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1245         for (i = 0; i < 7; i++)
1246                 if (((cache_levels >> (i*3)) & 7) == 0)
1247                         break;
1248         /* Clear all higher bits. */
1249         cache_levels &= (1 << (i*3))-1;
1250 }
1251
1252 /**
1253  * kvm_reset_coprocs - sets cp15 registers to reset value
1254  * @vcpu: The VCPU pointer
1255  *
1256  * This function finds the right table above and sets the registers on the
1257  * virtual CPU struct to their architecturally defined reset values.
1258  */
1259 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1260 {
1261         size_t num;
1262         const struct coproc_reg *table;
1263
1264         /* Catch someone adding a register without putting in reset entry. */
1265         memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1266
1267         /* Generic chip reset first (so target could override). */
1268         reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1269
1270         table = get_target_table(vcpu->arch.target, &num);
1271         reset_coproc_regs(vcpu, table, num);
1272
1273         for (num = 1; num < NR_CP15_REGS; num++)
1274                 if (vcpu_cp15(vcpu, num) == 0x42424242)
1275                         panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1276 }