Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into HEAD
[cascardo/linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x)        (pmd_huge(_x) || pmd_trans_huge(_x))
48
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
50 {
51         /*
52          * This function also gets called when dealing with HYP page
53          * tables. As HYP doesn't have an associated struct kvm (and
54          * the HYP page tables are fairly static), we don't do
55          * anything there.
56          */
57         if (kvm)
58                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
59 }
60
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
62                                   int min, int max)
63 {
64         void *page;
65
66         BUG_ON(max > KVM_NR_MEM_OBJS);
67         if (cache->nobjs >= min)
68                 return 0;
69         while (cache->nobjs < max) {
70                 page = (void *)__get_free_page(PGALLOC_GFP);
71                 if (!page)
72                         return -ENOMEM;
73                 cache->objects[cache->nobjs++] = page;
74         }
75         return 0;
76 }
77
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
79 {
80         while (mc->nobjs)
81                 free_page((unsigned long)mc->objects[--mc->nobjs]);
82 }
83
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
85 {
86         void *p;
87
88         BUG_ON(!mc || !mc->nobjs);
89         p = mc->objects[--mc->nobjs];
90         return p;
91 }
92
93 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
94 {
95         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
96         pgd_clear(pgd);
97         kvm_tlb_flush_vmid_ipa(kvm, addr);
98         pud_free(NULL, pud_table);
99         put_page(virt_to_page(pgd));
100 }
101
102 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
103 {
104         pmd_t *pmd_table = pmd_offset(pud, 0);
105         VM_BUG_ON(pud_huge(*pud));
106         pud_clear(pud);
107         kvm_tlb_flush_vmid_ipa(kvm, addr);
108         pmd_free(NULL, pmd_table);
109         put_page(virt_to_page(pud));
110 }
111
112 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
113 {
114         pte_t *pte_table = pte_offset_kernel(pmd, 0);
115         VM_BUG_ON(kvm_pmd_huge(*pmd));
116         pmd_clear(pmd);
117         kvm_tlb_flush_vmid_ipa(kvm, addr);
118         pte_free_kernel(NULL, pte_table);
119         put_page(virt_to_page(pmd));
120 }
121
122 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
123                        phys_addr_t addr, phys_addr_t end)
124 {
125         phys_addr_t start_addr = addr;
126         pte_t *pte, *start_pte;
127
128         start_pte = pte = pte_offset_kernel(pmd, addr);
129         do {
130                 if (!pte_none(*pte)) {
131                         kvm_set_pte(pte, __pte(0));
132                         put_page(virt_to_page(pte));
133                         kvm_tlb_flush_vmid_ipa(kvm, addr);
134                 }
135         } while (pte++, addr += PAGE_SIZE, addr != end);
136
137         if (kvm_pte_table_empty(kvm, start_pte))
138                 clear_pmd_entry(kvm, pmd, start_addr);
139 }
140
141 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
142                        phys_addr_t addr, phys_addr_t end)
143 {
144         phys_addr_t next, start_addr = addr;
145         pmd_t *pmd, *start_pmd;
146
147         start_pmd = pmd = pmd_offset(pud, addr);
148         do {
149                 next = kvm_pmd_addr_end(addr, end);
150                 if (!pmd_none(*pmd)) {
151                         if (kvm_pmd_huge(*pmd)) {
152                                 pmd_clear(pmd);
153                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
154                                 put_page(virt_to_page(pmd));
155                         } else {
156                                 unmap_ptes(kvm, pmd, addr, next);
157                         }
158                 }
159         } while (pmd++, addr = next, addr != end);
160
161         if (kvm_pmd_table_empty(kvm, start_pmd))
162                 clear_pud_entry(kvm, pud, start_addr);
163 }
164
165 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
166                        phys_addr_t addr, phys_addr_t end)
167 {
168         phys_addr_t next, start_addr = addr;
169         pud_t *pud, *start_pud;
170
171         start_pud = pud = pud_offset(pgd, addr);
172         do {
173                 next = kvm_pud_addr_end(addr, end);
174                 if (!pud_none(*pud)) {
175                         if (pud_huge(*pud)) {
176                                 pud_clear(pud);
177                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
178                                 put_page(virt_to_page(pud));
179                         } else {
180                                 unmap_pmds(kvm, pud, addr, next);
181                         }
182                 }
183         } while (pud++, addr = next, addr != end);
184
185         if (kvm_pud_table_empty(kvm, start_pud))
186                 clear_pgd_entry(kvm, pgd, start_addr);
187 }
188
189
190 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
191                         phys_addr_t start, u64 size)
192 {
193         pgd_t *pgd;
194         phys_addr_t addr = start, end = start + size;
195         phys_addr_t next;
196
197         pgd = pgdp + pgd_index(addr);
198         do {
199                 next = kvm_pgd_addr_end(addr, end);
200                 unmap_puds(kvm, pgd, addr, next);
201         } while (pgd++, addr = next, addr != end);
202 }
203
204 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
205                               phys_addr_t addr, phys_addr_t end)
206 {
207         pte_t *pte;
208
209         pte = pte_offset_kernel(pmd, addr);
210         do {
211                 if (!pte_none(*pte)) {
212                         hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
213                         kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
214                 }
215         } while (pte++, addr += PAGE_SIZE, addr != end);
216 }
217
218 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
219                               phys_addr_t addr, phys_addr_t end)
220 {
221         pmd_t *pmd;
222         phys_addr_t next;
223
224         pmd = pmd_offset(pud, addr);
225         do {
226                 next = kvm_pmd_addr_end(addr, end);
227                 if (!pmd_none(*pmd)) {
228                         if (kvm_pmd_huge(*pmd)) {
229                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
230                                 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
231                         } else {
232                                 stage2_flush_ptes(kvm, pmd, addr, next);
233                         }
234                 }
235         } while (pmd++, addr = next, addr != end);
236 }
237
238 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
239                               phys_addr_t addr, phys_addr_t end)
240 {
241         pud_t *pud;
242         phys_addr_t next;
243
244         pud = pud_offset(pgd, addr);
245         do {
246                 next = kvm_pud_addr_end(addr, end);
247                 if (!pud_none(*pud)) {
248                         if (pud_huge(*pud)) {
249                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
250                                 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
251                         } else {
252                                 stage2_flush_pmds(kvm, pud, addr, next);
253                         }
254                 }
255         } while (pud++, addr = next, addr != end);
256 }
257
258 static void stage2_flush_memslot(struct kvm *kvm,
259                                  struct kvm_memory_slot *memslot)
260 {
261         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
262         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
263         phys_addr_t next;
264         pgd_t *pgd;
265
266         pgd = kvm->arch.pgd + pgd_index(addr);
267         do {
268                 next = kvm_pgd_addr_end(addr, end);
269                 stage2_flush_puds(kvm, pgd, addr, next);
270         } while (pgd++, addr = next, addr != end);
271 }
272
273 /**
274  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
275  * @kvm: The struct kvm pointer
276  *
277  * Go through the stage 2 page tables and invalidate any cache lines
278  * backing memory already mapped to the VM.
279  */
280 void stage2_flush_vm(struct kvm *kvm)
281 {
282         struct kvm_memslots *slots;
283         struct kvm_memory_slot *memslot;
284         int idx;
285
286         idx = srcu_read_lock(&kvm->srcu);
287         spin_lock(&kvm->mmu_lock);
288
289         slots = kvm_memslots(kvm);
290         kvm_for_each_memslot(memslot, slots)
291                 stage2_flush_memslot(kvm, memslot);
292
293         spin_unlock(&kvm->mmu_lock);
294         srcu_read_unlock(&kvm->srcu, idx);
295 }
296
297 /**
298  * free_boot_hyp_pgd - free HYP boot page tables
299  *
300  * Free the HYP boot page tables. The bounce page is also freed.
301  */
302 void free_boot_hyp_pgd(void)
303 {
304         mutex_lock(&kvm_hyp_pgd_mutex);
305
306         if (boot_hyp_pgd) {
307                 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
308                 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
310                 boot_hyp_pgd = NULL;
311         }
312
313         if (hyp_pgd)
314                 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
315
316         free_page((unsigned long)init_bounce_page);
317         init_bounce_page = NULL;
318
319         mutex_unlock(&kvm_hyp_pgd_mutex);
320 }
321
322 /**
323  * free_hyp_pgds - free Hyp-mode page tables
324  *
325  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
326  * therefore contains either mappings in the kernel memory area (above
327  * PAGE_OFFSET), or device mappings in the vmalloc range (from
328  * VMALLOC_START to VMALLOC_END).
329  *
330  * boot_hyp_pgd should only map two pages for the init code.
331  */
332 void free_hyp_pgds(void)
333 {
334         unsigned long addr;
335
336         free_boot_hyp_pgd();
337
338         mutex_lock(&kvm_hyp_pgd_mutex);
339
340         if (hyp_pgd) {
341                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
345
346                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
347                 hyp_pgd = NULL;
348         }
349
350         mutex_unlock(&kvm_hyp_pgd_mutex);
351 }
352
353 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354                                     unsigned long end, unsigned long pfn,
355                                     pgprot_t prot)
356 {
357         pte_t *pte;
358         unsigned long addr;
359
360         addr = start;
361         do {
362                 pte = pte_offset_kernel(pmd, addr);
363                 kvm_set_pte(pte, pfn_pte(pfn, prot));
364                 get_page(virt_to_page(pte));
365                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
366                 pfn++;
367         } while (addr += PAGE_SIZE, addr != end);
368 }
369
370 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371                                    unsigned long end, unsigned long pfn,
372                                    pgprot_t prot)
373 {
374         pmd_t *pmd;
375         pte_t *pte;
376         unsigned long addr, next;
377
378         addr = start;
379         do {
380                 pmd = pmd_offset(pud, addr);
381
382                 BUG_ON(pmd_sect(*pmd));
383
384                 if (pmd_none(*pmd)) {
385                         pte = pte_alloc_one_kernel(NULL, addr);
386                         if (!pte) {
387                                 kvm_err("Cannot allocate Hyp pte\n");
388                                 return -ENOMEM;
389                         }
390                         pmd_populate_kernel(NULL, pmd, pte);
391                         get_page(virt_to_page(pmd));
392                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
393                 }
394
395                 next = pmd_addr_end(addr, end);
396
397                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
398                 pfn += (next - addr) >> PAGE_SHIFT;
399         } while (addr = next, addr != end);
400
401         return 0;
402 }
403
404 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
405                                    unsigned long end, unsigned long pfn,
406                                    pgprot_t prot)
407 {
408         pud_t *pud;
409         pmd_t *pmd;
410         unsigned long addr, next;
411         int ret;
412
413         addr = start;
414         do {
415                 pud = pud_offset(pgd, addr);
416
417                 if (pud_none_or_clear_bad(pud)) {
418                         pmd = pmd_alloc_one(NULL, addr);
419                         if (!pmd) {
420                                 kvm_err("Cannot allocate Hyp pmd\n");
421                                 return -ENOMEM;
422                         }
423                         pud_populate(NULL, pud, pmd);
424                         get_page(virt_to_page(pud));
425                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
426                 }
427
428                 next = pud_addr_end(addr, end);
429                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
430                 if (ret)
431                         return ret;
432                 pfn += (next - addr) >> PAGE_SHIFT;
433         } while (addr = next, addr != end);
434
435         return 0;
436 }
437
438 static int __create_hyp_mappings(pgd_t *pgdp,
439                                  unsigned long start, unsigned long end,
440                                  unsigned long pfn, pgprot_t prot)
441 {
442         pgd_t *pgd;
443         pud_t *pud;
444         unsigned long addr, next;
445         int err = 0;
446
447         mutex_lock(&kvm_hyp_pgd_mutex);
448         addr = start & PAGE_MASK;
449         end = PAGE_ALIGN(end);
450         do {
451                 pgd = pgdp + pgd_index(addr);
452
453                 if (pgd_none(*pgd)) {
454                         pud = pud_alloc_one(NULL, addr);
455                         if (!pud) {
456                                 kvm_err("Cannot allocate Hyp pud\n");
457                                 err = -ENOMEM;
458                                 goto out;
459                         }
460                         pgd_populate(NULL, pgd, pud);
461                         get_page(virt_to_page(pgd));
462                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
463                 }
464
465                 next = pgd_addr_end(addr, end);
466                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
467                 if (err)
468                         goto out;
469                 pfn += (next - addr) >> PAGE_SHIFT;
470         } while (addr = next, addr != end);
471 out:
472         mutex_unlock(&kvm_hyp_pgd_mutex);
473         return err;
474 }
475
476 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
477 {
478         if (!is_vmalloc_addr(kaddr)) {
479                 BUG_ON(!virt_addr_valid(kaddr));
480                 return __pa(kaddr);
481         } else {
482                 return page_to_phys(vmalloc_to_page(kaddr)) +
483                        offset_in_page(kaddr);
484         }
485 }
486
487 /**
488  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
489  * @from:       The virtual kernel start address of the range
490  * @to:         The virtual kernel end address of the range (exclusive)
491  *
492  * The same virtual address as the kernel virtual address is also used
493  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
494  * physical pages.
495  */
496 int create_hyp_mappings(void *from, void *to)
497 {
498         phys_addr_t phys_addr;
499         unsigned long virt_addr;
500         unsigned long start = KERN_TO_HYP((unsigned long)from);
501         unsigned long end = KERN_TO_HYP((unsigned long)to);
502
503         start = start & PAGE_MASK;
504         end = PAGE_ALIGN(end);
505
506         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
507                 int err;
508
509                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
510                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
511                                             virt_addr + PAGE_SIZE,
512                                             __phys_to_pfn(phys_addr),
513                                             PAGE_HYP);
514                 if (err)
515                         return err;
516         }
517
518         return 0;
519 }
520
521 /**
522  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
523  * @from:       The kernel start VA of the range
524  * @to:         The kernel end VA of the range (exclusive)
525  * @phys_addr:  The physical start address which gets mapped
526  *
527  * The resulting HYP VA is the same as the kernel VA, modulo
528  * HYP_PAGE_OFFSET.
529  */
530 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
531 {
532         unsigned long start = KERN_TO_HYP((unsigned long)from);
533         unsigned long end = KERN_TO_HYP((unsigned long)to);
534
535         /* Check for a valid kernel IO mapping */
536         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
537                 return -EINVAL;
538
539         return __create_hyp_mappings(hyp_pgd, start, end,
540                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
541 }
542
543 /**
544  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
545  * @kvm:        The KVM struct pointer for the VM.
546  *
547  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
548  * support either full 40-bit input addresses or limited to 32-bit input
549  * addresses). Clears the allocated pages.
550  *
551  * Note we don't need locking here as this is only called when the VM is
552  * created, which can only be done once.
553  */
554 int kvm_alloc_stage2_pgd(struct kvm *kvm)
555 {
556         int ret;
557         pgd_t *pgd;
558
559         if (kvm->arch.pgd != NULL) {
560                 kvm_err("kvm_arch already initialized?\n");
561                 return -EINVAL;
562         }
563
564         if (KVM_PREALLOC_LEVEL > 0) {
565                 /*
566                  * Allocate fake pgd for the page table manipulation macros to
567                  * work.  This is not used by the hardware and we have no
568                  * alignment requirement for this allocation.
569                  */
570                 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
571                                        GFP_KERNEL | __GFP_ZERO);
572         } else {
573                 /*
574                  * Allocate actual first-level Stage-2 page table used by the
575                  * hardware for Stage-2 page table walks.
576                  */
577                 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
578         }
579
580         if (!pgd)
581                 return -ENOMEM;
582
583         ret = kvm_prealloc_hwpgd(kvm, pgd);
584         if (ret)
585                 goto out_err;
586
587         kvm_clean_pgd(pgd);
588         kvm->arch.pgd = pgd;
589         return 0;
590 out_err:
591         if (KVM_PREALLOC_LEVEL > 0)
592                 kfree(pgd);
593         else
594                 free_pages((unsigned long)pgd, S2_PGD_ORDER);
595         return ret;
596 }
597
598 /**
599  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
600  * @kvm:   The VM pointer
601  * @start: The intermediate physical base address of the range to unmap
602  * @size:  The size of the area to unmap
603  *
604  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
605  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
606  * destroying the VM), otherwise another faulting VCPU may come in and mess
607  * with things behind our backs.
608  */
609 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
610 {
611         unmap_range(kvm, kvm->arch.pgd, start, size);
612 }
613
614 static void stage2_unmap_memslot(struct kvm *kvm,
615                                  struct kvm_memory_slot *memslot)
616 {
617         hva_t hva = memslot->userspace_addr;
618         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
619         phys_addr_t size = PAGE_SIZE * memslot->npages;
620         hva_t reg_end = hva + size;
621
622         /*
623          * A memory region could potentially cover multiple VMAs, and any holes
624          * between them, so iterate over all of them to find out if we should
625          * unmap any of them.
626          *
627          *     +--------------------------------------------+
628          * +---------------+----------------+   +----------------+
629          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
630          * +---------------+----------------+   +----------------+
631          *     |               memory region                |
632          *     +--------------------------------------------+
633          */
634         do {
635                 struct vm_area_struct *vma = find_vma(current->mm, hva);
636                 hva_t vm_start, vm_end;
637
638                 if (!vma || vma->vm_start >= reg_end)
639                         break;
640
641                 /*
642                  * Take the intersection of this VMA with the memory region
643                  */
644                 vm_start = max(hva, vma->vm_start);
645                 vm_end = min(reg_end, vma->vm_end);
646
647                 if (!(vma->vm_flags & VM_PFNMAP)) {
648                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
649                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
650                 }
651                 hva = vm_end;
652         } while (hva < reg_end);
653 }
654
655 /**
656  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
657  * @kvm: The struct kvm pointer
658  *
659  * Go through the memregions and unmap any reguler RAM
660  * backing memory already mapped to the VM.
661  */
662 void stage2_unmap_vm(struct kvm *kvm)
663 {
664         struct kvm_memslots *slots;
665         struct kvm_memory_slot *memslot;
666         int idx;
667
668         idx = srcu_read_lock(&kvm->srcu);
669         spin_lock(&kvm->mmu_lock);
670
671         slots = kvm_memslots(kvm);
672         kvm_for_each_memslot(memslot, slots)
673                 stage2_unmap_memslot(kvm, memslot);
674
675         spin_unlock(&kvm->mmu_lock);
676         srcu_read_unlock(&kvm->srcu, idx);
677 }
678
679 /**
680  * kvm_free_stage2_pgd - free all stage-2 tables
681  * @kvm:        The KVM struct pointer for the VM.
682  *
683  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
684  * underlying level-2 and level-3 tables before freeing the actual level-1 table
685  * and setting the struct pointer to NULL.
686  *
687  * Note we don't need locking here as this is only called when the VM is
688  * destroyed, which can only be done once.
689  */
690 void kvm_free_stage2_pgd(struct kvm *kvm)
691 {
692         if (kvm->arch.pgd == NULL)
693                 return;
694
695         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
696         kvm_free_hwpgd(kvm);
697         if (KVM_PREALLOC_LEVEL > 0)
698                 kfree(kvm->arch.pgd);
699         else
700                 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
701         kvm->arch.pgd = NULL;
702 }
703
704 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
705                              phys_addr_t addr)
706 {
707         pgd_t *pgd;
708         pud_t *pud;
709
710         pgd = kvm->arch.pgd + pgd_index(addr);
711         if (WARN_ON(pgd_none(*pgd))) {
712                 if (!cache)
713                         return NULL;
714                 pud = mmu_memory_cache_alloc(cache);
715                 pgd_populate(NULL, pgd, pud);
716                 get_page(virt_to_page(pgd));
717         }
718
719         return pud_offset(pgd, addr);
720 }
721
722 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
723                              phys_addr_t addr)
724 {
725         pud_t *pud;
726         pmd_t *pmd;
727
728         pud = stage2_get_pud(kvm, cache, addr);
729         if (pud_none(*pud)) {
730                 if (!cache)
731                         return NULL;
732                 pmd = mmu_memory_cache_alloc(cache);
733                 pud_populate(NULL, pud, pmd);
734                 get_page(virt_to_page(pud));
735         }
736
737         return pmd_offset(pud, addr);
738 }
739
740 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
741                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
742 {
743         pmd_t *pmd, old_pmd;
744
745         pmd = stage2_get_pmd(kvm, cache, addr);
746         VM_BUG_ON(!pmd);
747
748         /*
749          * Mapping in huge pages should only happen through a fault.  If a
750          * page is merged into a transparent huge page, the individual
751          * subpages of that huge page should be unmapped through MMU
752          * notifiers before we get here.
753          *
754          * Merging of CompoundPages is not supported; they should become
755          * splitting first, unmapped, merged, and mapped back in on-demand.
756          */
757         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
758
759         old_pmd = *pmd;
760         kvm_set_pmd(pmd, *new_pmd);
761         if (pmd_present(old_pmd))
762                 kvm_tlb_flush_vmid_ipa(kvm, addr);
763         else
764                 get_page(virt_to_page(pmd));
765         return 0;
766 }
767
768 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
769                           phys_addr_t addr, const pte_t *new_pte, bool iomap)
770 {
771         pmd_t *pmd;
772         pte_t *pte, old_pte;
773
774         /* Create stage-2 page table mapping - Levels 0 and 1 */
775         pmd = stage2_get_pmd(kvm, cache, addr);
776         if (!pmd) {
777                 /*
778                  * Ignore calls from kvm_set_spte_hva for unallocated
779                  * address ranges.
780                  */
781                 return 0;
782         }
783
784         /* Create stage-2 page mappings - Level 2 */
785         if (pmd_none(*pmd)) {
786                 if (!cache)
787                         return 0; /* ignore calls from kvm_set_spte_hva */
788                 pte = mmu_memory_cache_alloc(cache);
789                 kvm_clean_pte(pte);
790                 pmd_populate_kernel(NULL, pmd, pte);
791                 get_page(virt_to_page(pmd));
792         }
793
794         pte = pte_offset_kernel(pmd, addr);
795
796         if (iomap && pte_present(*pte))
797                 return -EFAULT;
798
799         /* Create 2nd stage page table mapping - Level 3 */
800         old_pte = *pte;
801         kvm_set_pte(pte, *new_pte);
802         if (pte_present(old_pte))
803                 kvm_tlb_flush_vmid_ipa(kvm, addr);
804         else
805                 get_page(virt_to_page(pte));
806
807         return 0;
808 }
809
810 /**
811  * kvm_phys_addr_ioremap - map a device range to guest IPA
812  *
813  * @kvm:        The KVM pointer
814  * @guest_ipa:  The IPA at which to insert the mapping
815  * @pa:         The physical address of the device
816  * @size:       The size of the mapping
817  */
818 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
819                           phys_addr_t pa, unsigned long size, bool writable)
820 {
821         phys_addr_t addr, end;
822         int ret = 0;
823         unsigned long pfn;
824         struct kvm_mmu_memory_cache cache = { 0, };
825
826         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
827         pfn = __phys_to_pfn(pa);
828
829         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
830                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
831
832                 if (writable)
833                         kvm_set_s2pte_writable(&pte);
834
835                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
836                                                 KVM_NR_MEM_OBJS);
837                 if (ret)
838                         goto out;
839                 spin_lock(&kvm->mmu_lock);
840                 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
841                 spin_unlock(&kvm->mmu_lock);
842                 if (ret)
843                         goto out;
844
845                 pfn++;
846         }
847
848 out:
849         mmu_free_memory_cache(&cache);
850         return ret;
851 }
852
853 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
854 {
855         pfn_t pfn = *pfnp;
856         gfn_t gfn = *ipap >> PAGE_SHIFT;
857
858         if (PageTransCompound(pfn_to_page(pfn))) {
859                 unsigned long mask;
860                 /*
861                  * The address we faulted on is backed by a transparent huge
862                  * page.  However, because we map the compound huge page and
863                  * not the individual tail page, we need to transfer the
864                  * refcount to the head page.  We have to be careful that the
865                  * THP doesn't start to split while we are adjusting the
866                  * refcounts.
867                  *
868                  * We are sure this doesn't happen, because mmu_notifier_retry
869                  * was successful and we are holding the mmu_lock, so if this
870                  * THP is trying to split, it will be blocked in the mmu
871                  * notifier before touching any of the pages, specifically
872                  * before being able to call __split_huge_page_refcount().
873                  *
874                  * We can therefore safely transfer the refcount from PG_tail
875                  * to PG_head and switch the pfn from a tail page to the head
876                  * page accordingly.
877                  */
878                 mask = PTRS_PER_PMD - 1;
879                 VM_BUG_ON((gfn & mask) != (pfn & mask));
880                 if (pfn & mask) {
881                         *ipap &= PMD_MASK;
882                         kvm_release_pfn_clean(pfn);
883                         pfn &= ~mask;
884                         kvm_get_pfn(pfn);
885                         *pfnp = pfn;
886                 }
887
888                 return true;
889         }
890
891         return false;
892 }
893
894 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
895 {
896         if (kvm_vcpu_trap_is_iabt(vcpu))
897                 return false;
898
899         return kvm_vcpu_dabt_iswrite(vcpu);
900 }
901
902 static bool kvm_is_device_pfn(unsigned long pfn)
903 {
904         return !pfn_valid(pfn);
905 }
906
907 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
908                           struct kvm_memory_slot *memslot, unsigned long hva,
909                           unsigned long fault_status)
910 {
911         int ret;
912         bool write_fault, writable, hugetlb = false, force_pte = false;
913         unsigned long mmu_seq;
914         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
915         struct kvm *kvm = vcpu->kvm;
916         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
917         struct vm_area_struct *vma;
918         pfn_t pfn;
919         pgprot_t mem_type = PAGE_S2;
920         bool fault_ipa_uncached;
921
922         write_fault = kvm_is_write_fault(vcpu);
923         if (fault_status == FSC_PERM && !write_fault) {
924                 kvm_err("Unexpected L2 read permission error\n");
925                 return -EFAULT;
926         }
927
928         /* Let's check if we will get back a huge page backed by hugetlbfs */
929         down_read(&current->mm->mmap_sem);
930         vma = find_vma_intersection(current->mm, hva, hva + 1);
931         if (unlikely(!vma)) {
932                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
933                 up_read(&current->mm->mmap_sem);
934                 return -EFAULT;
935         }
936
937         if (is_vm_hugetlb_page(vma)) {
938                 hugetlb = true;
939                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
940         } else {
941                 /*
942                  * Pages belonging to memslots that don't have the same
943                  * alignment for userspace and IPA cannot be mapped using
944                  * block descriptors even if the pages belong to a THP for
945                  * the process, because the stage-2 block descriptor will
946                  * cover more than a single THP and we loose atomicity for
947                  * unmapping, updates, and splits of the THP or other pages
948                  * in the stage-2 block range.
949                  */
950                 if ((memslot->userspace_addr & ~PMD_MASK) !=
951                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
952                         force_pte = true;
953         }
954         up_read(&current->mm->mmap_sem);
955
956         /* We need minimum second+third level pages */
957         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
958                                      KVM_NR_MEM_OBJS);
959         if (ret)
960                 return ret;
961
962         mmu_seq = vcpu->kvm->mmu_notifier_seq;
963         /*
964          * Ensure the read of mmu_notifier_seq happens before we call
965          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
966          * the page we just got a reference to gets unmapped before we have a
967          * chance to grab the mmu_lock, which ensure that if the page gets
968          * unmapped afterwards, the call to kvm_unmap_hva will take it away
969          * from us again properly. This smp_rmb() interacts with the smp_wmb()
970          * in kvm_mmu_notifier_invalidate_<page|range_end>.
971          */
972         smp_rmb();
973
974         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
975         if (is_error_pfn(pfn))
976                 return -EFAULT;
977
978         if (kvm_is_device_pfn(pfn))
979                 mem_type = PAGE_S2_DEVICE;
980
981         spin_lock(&kvm->mmu_lock);
982         if (mmu_notifier_retry(kvm, mmu_seq))
983                 goto out_unlock;
984         if (!hugetlb && !force_pte)
985                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
986
987         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
988
989         if (hugetlb) {
990                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
991                 new_pmd = pmd_mkhuge(new_pmd);
992                 if (writable) {
993                         kvm_set_s2pmd_writable(&new_pmd);
994                         kvm_set_pfn_dirty(pfn);
995                 }
996                 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE,
997                                           fault_ipa_uncached);
998                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
999         } else {
1000                 pte_t new_pte = pfn_pte(pfn, mem_type);
1001                 if (writable) {
1002                         kvm_set_s2pte_writable(&new_pte);
1003                         kvm_set_pfn_dirty(pfn);
1004                 }
1005                 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
1006                                           fault_ipa_uncached);
1007                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
1008                         pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE));
1009         }
1010
1011
1012 out_unlock:
1013         spin_unlock(&kvm->mmu_lock);
1014         kvm_release_pfn_clean(pfn);
1015         return ret;
1016 }
1017
1018 /**
1019  * kvm_handle_guest_abort - handles all 2nd stage aborts
1020  * @vcpu:       the VCPU pointer
1021  * @run:        the kvm_run structure
1022  *
1023  * Any abort that gets to the host is almost guaranteed to be caused by a
1024  * missing second stage translation table entry, which can mean that either the
1025  * guest simply needs more memory and we must allocate an appropriate page or it
1026  * can mean that the guest tried to access I/O memory, which is emulated by user
1027  * space. The distinction is based on the IPA causing the fault and whether this
1028  * memory region has been registered as standard RAM by user space.
1029  */
1030 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1031 {
1032         unsigned long fault_status;
1033         phys_addr_t fault_ipa;
1034         struct kvm_memory_slot *memslot;
1035         unsigned long hva;
1036         bool is_iabt, write_fault, writable;
1037         gfn_t gfn;
1038         int ret, idx;
1039
1040         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1041         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1042
1043         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1044                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1045
1046         /* Check the stage-2 fault is trans. fault or write fault */
1047         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1048         if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
1049                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1050                         kvm_vcpu_trap_get_class(vcpu),
1051                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1052                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1053                 return -EFAULT;
1054         }
1055
1056         idx = srcu_read_lock(&vcpu->kvm->srcu);
1057
1058         gfn = fault_ipa >> PAGE_SHIFT;
1059         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1060         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1061         write_fault = kvm_is_write_fault(vcpu);
1062         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1063                 if (is_iabt) {
1064                         /* Prefetch Abort on I/O address */
1065                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1066                         ret = 1;
1067                         goto out_unlock;
1068                 }
1069
1070                 /*
1071                  * The IPA is reported as [MAX:12], so we need to
1072                  * complement it with the bottom 12 bits from the
1073                  * faulting VA. This is always 12 bits, irrespective
1074                  * of the page size.
1075                  */
1076                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1077                 ret = io_mem_abort(vcpu, run, fault_ipa);
1078                 goto out_unlock;
1079         }
1080
1081         /* Userspace should not be able to register out-of-bounds IPAs */
1082         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1083
1084         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1085         if (ret == 0)
1086                 ret = 1;
1087 out_unlock:
1088         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1089         return ret;
1090 }
1091
1092 static void handle_hva_to_gpa(struct kvm *kvm,
1093                               unsigned long start,
1094                               unsigned long end,
1095                               void (*handler)(struct kvm *kvm,
1096                                               gpa_t gpa, void *data),
1097                               void *data)
1098 {
1099         struct kvm_memslots *slots;
1100         struct kvm_memory_slot *memslot;
1101
1102         slots = kvm_memslots(kvm);
1103
1104         /* we only care about the pages that the guest sees */
1105         kvm_for_each_memslot(memslot, slots) {
1106                 unsigned long hva_start, hva_end;
1107                 gfn_t gfn, gfn_end;
1108
1109                 hva_start = max(start, memslot->userspace_addr);
1110                 hva_end = min(end, memslot->userspace_addr +
1111                                         (memslot->npages << PAGE_SHIFT));
1112                 if (hva_start >= hva_end)
1113                         continue;
1114
1115                 /*
1116                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1117                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1118                  */
1119                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1120                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1121
1122                 for (; gfn < gfn_end; ++gfn) {
1123                         gpa_t gpa = gfn << PAGE_SHIFT;
1124                         handler(kvm, gpa, data);
1125                 }
1126         }
1127 }
1128
1129 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1130 {
1131         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1132 }
1133
1134 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1135 {
1136         unsigned long end = hva + PAGE_SIZE;
1137
1138         if (!kvm->arch.pgd)
1139                 return 0;
1140
1141         trace_kvm_unmap_hva(hva);
1142         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1143         return 0;
1144 }
1145
1146 int kvm_unmap_hva_range(struct kvm *kvm,
1147                         unsigned long start, unsigned long end)
1148 {
1149         if (!kvm->arch.pgd)
1150                 return 0;
1151
1152         trace_kvm_unmap_hva_range(start, end);
1153         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1154         return 0;
1155 }
1156
1157 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1158 {
1159         pte_t *pte = (pte_t *)data;
1160
1161         stage2_set_pte(kvm, NULL, gpa, pte, false);
1162 }
1163
1164
1165 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1166 {
1167         unsigned long end = hva + PAGE_SIZE;
1168         pte_t stage2_pte;
1169
1170         if (!kvm->arch.pgd)
1171                 return;
1172
1173         trace_kvm_set_spte_hva(hva);
1174         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1175         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1176 }
1177
1178 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1179 {
1180         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1181 }
1182
1183 phys_addr_t kvm_mmu_get_httbr(void)
1184 {
1185         return virt_to_phys(hyp_pgd);
1186 }
1187
1188 phys_addr_t kvm_mmu_get_boot_httbr(void)
1189 {
1190         return virt_to_phys(boot_hyp_pgd);
1191 }
1192
1193 phys_addr_t kvm_get_idmap_vector(void)
1194 {
1195         return hyp_idmap_vector;
1196 }
1197
1198 int kvm_mmu_init(void)
1199 {
1200         int err;
1201
1202         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1203         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1204         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1205
1206         if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1207                 /*
1208                  * Our init code is crossing a page boundary. Allocate
1209                  * a bounce page, copy the code over and use that.
1210                  */
1211                 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1212                 phys_addr_t phys_base;
1213
1214                 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1215                 if (!init_bounce_page) {
1216                         kvm_err("Couldn't allocate HYP init bounce page\n");
1217                         err = -ENOMEM;
1218                         goto out;
1219                 }
1220
1221                 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1222                 /*
1223                  * Warning: the code we just copied to the bounce page
1224                  * must be flushed to the point of coherency.
1225                  * Otherwise, the data may be sitting in L2, and HYP
1226                  * mode won't be able to observe it as it runs with
1227                  * caches off at that point.
1228                  */
1229                 kvm_flush_dcache_to_poc(init_bounce_page, len);
1230
1231                 phys_base = kvm_virt_to_phys(init_bounce_page);
1232                 hyp_idmap_vector += phys_base - hyp_idmap_start;
1233                 hyp_idmap_start = phys_base;
1234                 hyp_idmap_end = phys_base + len;
1235
1236                 kvm_info("Using HYP init bounce page @%lx\n",
1237                          (unsigned long)phys_base);
1238         }
1239
1240         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1241         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1242
1243         if (!hyp_pgd || !boot_hyp_pgd) {
1244                 kvm_err("Hyp mode PGD not allocated\n");
1245                 err = -ENOMEM;
1246                 goto out;
1247         }
1248
1249         /* Create the idmap in the boot page tables */
1250         err =   __create_hyp_mappings(boot_hyp_pgd,
1251                                       hyp_idmap_start, hyp_idmap_end,
1252                                       __phys_to_pfn(hyp_idmap_start),
1253                                       PAGE_HYP);
1254
1255         if (err) {
1256                 kvm_err("Failed to idmap %lx-%lx\n",
1257                         hyp_idmap_start, hyp_idmap_end);
1258                 goto out;
1259         }
1260
1261         /* Map the very same page at the trampoline VA */
1262         err =   __create_hyp_mappings(boot_hyp_pgd,
1263                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1264                                       __phys_to_pfn(hyp_idmap_start),
1265                                       PAGE_HYP);
1266         if (err) {
1267                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1268                         TRAMPOLINE_VA);
1269                 goto out;
1270         }
1271
1272         /* Map the same page again into the runtime page tables */
1273         err =   __create_hyp_mappings(hyp_pgd,
1274                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1275                                       __phys_to_pfn(hyp_idmap_start),
1276                                       PAGE_HYP);
1277         if (err) {
1278                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1279                         TRAMPOLINE_VA);
1280                 goto out;
1281         }
1282
1283         return 0;
1284 out:
1285         free_hyp_pgds();
1286         return err;
1287 }
1288
1289 void kvm_arch_commit_memory_region(struct kvm *kvm,
1290                                    struct kvm_userspace_memory_region *mem,
1291                                    const struct kvm_memory_slot *old,
1292                                    enum kvm_mr_change change)
1293 {
1294 }
1295
1296 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1297                                    struct kvm_memory_slot *memslot,
1298                                    struct kvm_userspace_memory_region *mem,
1299                                    enum kvm_mr_change change)
1300 {
1301         hva_t hva = mem->userspace_addr;
1302         hva_t reg_end = hva + mem->memory_size;
1303         bool writable = !(mem->flags & KVM_MEM_READONLY);
1304         int ret = 0;
1305
1306         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE)
1307                 return 0;
1308
1309         /*
1310          * Prevent userspace from creating a memory region outside of the IPA
1311          * space addressable by the KVM guest IPA space.
1312          */
1313         if (memslot->base_gfn + memslot->npages >=
1314             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1315                 return -EFAULT;
1316
1317         /*
1318          * A memory region could potentially cover multiple VMAs, and any holes
1319          * between them, so iterate over all of them to find out if we can map
1320          * any of them right now.
1321          *
1322          *     +--------------------------------------------+
1323          * +---------------+----------------+   +----------------+
1324          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1325          * +---------------+----------------+   +----------------+
1326          *     |               memory region                |
1327          *     +--------------------------------------------+
1328          */
1329         do {
1330                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1331                 hva_t vm_start, vm_end;
1332
1333                 if (!vma || vma->vm_start >= reg_end)
1334                         break;
1335
1336                 /*
1337                  * Mapping a read-only VMA is only allowed if the
1338                  * memory region is configured as read-only.
1339                  */
1340                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1341                         ret = -EPERM;
1342                         break;
1343                 }
1344
1345                 /*
1346                  * Take the intersection of this VMA with the memory region
1347                  */
1348                 vm_start = max(hva, vma->vm_start);
1349                 vm_end = min(reg_end, vma->vm_end);
1350
1351                 if (vma->vm_flags & VM_PFNMAP) {
1352                         gpa_t gpa = mem->guest_phys_addr +
1353                                     (vm_start - mem->userspace_addr);
1354                         phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1355                                          vm_start - vma->vm_start;
1356
1357                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1358                                                     vm_end - vm_start,
1359                                                     writable);
1360                         if (ret)
1361                                 break;
1362                 }
1363                 hva = vm_end;
1364         } while (hva < reg_end);
1365
1366         spin_lock(&kvm->mmu_lock);
1367         if (ret)
1368                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1369         else
1370                 stage2_flush_memslot(kvm, memslot);
1371         spin_unlock(&kvm->mmu_lock);
1372         return ret;
1373 }
1374
1375 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1376                            struct kvm_memory_slot *dont)
1377 {
1378 }
1379
1380 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1381                             unsigned long npages)
1382 {
1383         /*
1384          * Readonly memslots are not incoherent with the caches by definition,
1385          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1386          * that the guest may consider devices and hence map as uncached.
1387          * To prevent incoherency issues in these cases, tag all readonly
1388          * regions as incoherent.
1389          */
1390         if (slot->flags & KVM_MEM_READONLY)
1391                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1392         return 0;
1393 }
1394
1395 void kvm_arch_memslots_updated(struct kvm *kvm)
1396 {
1397 }
1398
1399 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1400 {
1401 }
1402
1403 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1404                                    struct kvm_memory_slot *slot)
1405 {
1406         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1407         phys_addr_t size = slot->npages << PAGE_SHIFT;
1408
1409         spin_lock(&kvm->mmu_lock);
1410         unmap_stage2_range(kvm, gpa, size);
1411         spin_unlock(&kvm->mmu_lock);
1412 }