Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/mmu_context.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
32 #include <asm/virt.h>
33
34 unsigned long elf_hwcap __read_mostly;
35 EXPORT_SYMBOL_GPL(elf_hwcap);
36
37 #ifdef CONFIG_COMPAT
38 #define COMPAT_ELF_HWCAP_DEFAULT        \
39                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
40                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
41                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
42                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
43                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
44                                  COMPAT_HWCAP_LPAE)
45 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
46 unsigned int compat_elf_hwcap2 __read_mostly;
47 #endif
48
49 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
50
51 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcap_keys);
53
54 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
55         {                                               \
56                 .sign = SIGNED,                         \
57                 .strict = STRICT,                       \
58                 .type = TYPE,                           \
59                 .shift = SHIFT,                         \
60                 .width = WIDTH,                         \
61                 .safe_val = SAFE_VAL,                   \
62         }
63
64 /* Define a feature with unsigned values */
65 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
66         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
67
68 /* Define a feature with a signed value */
69 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71
72 #define ARM64_FTR_END                                   \
73         {                                               \
74                 .width = 0,                             \
75         }
76
77 /* meta feature for alternatives */
78 static bool __maybe_unused
79 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
80
81
82 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
83         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
92         ARM64_FTR_END,
93 };
94
95 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
99         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
100         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
101         /* Linux doesn't care about the EL3 */
102         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
106         ARM64_FTR_END,
107 };
108
109 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
111         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
112         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
114         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
115         /* Linux shouldn't care about secure memory */
116         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
117         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
119         /*
120          * Differing PARange is fine as long as all peripherals and memory are mapped
121          * within the minimum PARange of all CPUs
122          */
123         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
124         ARM64_FTR_END,
125 };
126
127 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
135         ARM64_FTR_END,
136 };
137
138 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
144         ARM64_FTR_END,
145 };
146
147 static const struct arm64_ftr_bits ftr_ctr[] = {
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
150         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
151         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
152         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
153         /*
154          * Linux can handle differing I-cache policies. Userspace JITs will
155          * make use of *minLine.
156          * If we have differing I-cache policies, report it as the weakest - AIVIVT.
157          */
158         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT),  /* L1Ip */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
161         ARM64_FTR_END,
162 };
163
164 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
165         .name           = "SYS_CTR_EL0",
166         .ftr_bits       = ftr_ctr
167 };
168
169 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
170         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
172         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
173         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
174         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
175         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
178         ARM64_FTR_END,
179 };
180
181 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
183         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
186         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
189         ARM64_FTR_END,
190 };
191
192 static const struct arm64_ftr_bits ftr_mvfr2[] = {
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
196         ARM64_FTR_END,
197 };
198
199 static const struct arm64_ftr_bits ftr_dczid[] = {
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
202         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
203         ARM64_FTR_END,
204 };
205
206
207 static const struct arm64_ftr_bits ftr_id_isar5[] = {
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
215         ARM64_FTR_END,
216 };
217
218 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
219         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
220         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
221         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
222         ARM64_FTR_END,
223 };
224
225 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
226         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
227         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
228         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
229         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
230         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
231         ARM64_FTR_END,
232 };
233
234 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
235         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
236         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
237         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
238         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
239         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
240         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
241         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
242         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
243         ARM64_FTR_END,
244 };
245
246 /*
247  * Common ftr bits for a 32bit register with all hidden, strict
248  * attributes, with 4bit feature fields and a default safe value of
249  * 0. Covers the following 32bit registers:
250  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
251  */
252 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
253         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
254         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
255         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
256         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
257         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
258         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
259         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
260         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
261         ARM64_FTR_END,
262 };
263
264 static const struct arm64_ftr_bits ftr_generic[] = {
265         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
266         ARM64_FTR_END,
267 };
268
269 static const struct arm64_ftr_bits ftr_generic32[] = {
270         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
271         ARM64_FTR_END,
272 };
273
274 static const struct arm64_ftr_bits ftr_aa64raz[] = {
275         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
276         ARM64_FTR_END,
277 };
278
279 #define ARM64_FTR_REG(id, table) {              \
280         .sys_id = id,                           \
281         .reg =  &(struct arm64_ftr_reg){        \
282                 .name = #id,                    \
283                 .ftr_bits = &((table)[0]),      \
284         }}
285
286 static const struct __ftr_reg_entry {
287         u32                     sys_id;
288         struct arm64_ftr_reg    *reg;
289 } arm64_ftr_regs[] = {
290
291         /* Op1 = 0, CRn = 0, CRm = 1 */
292         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
299
300         /* Op1 = 0, CRn = 0, CRm = 2 */
301         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
308
309         /* Op1 = 0, CRn = 0, CRm = 3 */
310         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
313
314         /* Op1 = 0, CRn = 0, CRm = 4 */
315         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
317
318         /* Op1 = 0, CRn = 0, CRm = 5 */
319         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
321
322         /* Op1 = 0, CRn = 0, CRm = 6 */
323         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
325
326         /* Op1 = 0, CRn = 0, CRm = 7 */
327         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
330
331         /* Op1 = 3, CRn = 0, CRm = 0 */
332         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
334
335         /* Op1 = 3, CRn = 14, CRm = 0 */
336         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
337 };
338
339 static int search_cmp_ftr_reg(const void *id, const void *regp)
340 {
341         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
342 }
343
344 /*
345  * get_arm64_ftr_reg - Lookup a feature register entry using its
346  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347  * ascending order of sys_id , we use binary search to find a matching
348  * entry.
349  *
350  * returns - Upon success,  matching ftr_reg entry for id.
351  *         - NULL on failure. It is upto the caller to decide
352  *           the impact of a failure.
353  */
354 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
355 {
356         const struct __ftr_reg_entry *ret;
357
358         ret = bsearch((const void *)(unsigned long)sys_id,
359                         arm64_ftr_regs,
360                         ARRAY_SIZE(arm64_ftr_regs),
361                         sizeof(arm64_ftr_regs[0]),
362                         search_cmp_ftr_reg);
363         if (ret)
364                 return ret->reg;
365         return NULL;
366 }
367
368 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369                                s64 ftr_val)
370 {
371         u64 mask = arm64_ftr_mask(ftrp);
372
373         reg &= ~mask;
374         reg |= (ftr_val << ftrp->shift) & mask;
375         return reg;
376 }
377
378 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379                                 s64 cur)
380 {
381         s64 ret = 0;
382
383         switch (ftrp->type) {
384         case FTR_EXACT:
385                 ret = ftrp->safe_val;
386                 break;
387         case FTR_LOWER_SAFE:
388                 ret = new < cur ? new : cur;
389                 break;
390         case FTR_HIGHER_SAFE:
391                 ret = new > cur ? new : cur;
392                 break;
393         default:
394                 BUG();
395         }
396
397         return ret;
398 }
399
400 static void __init sort_ftr_regs(void)
401 {
402         int i;
403
404         /* Check that the array is sorted so that we can do the binary search */
405         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
407 }
408
409 /*
410  * Initialise the CPU feature register from Boot CPU values.
411  * Also initiliases the strict_mask for the register.
412  */
413 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
414 {
415         u64 val = 0;
416         u64 strict_mask = ~0x0ULL;
417         const struct arm64_ftr_bits *ftrp;
418         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
419
420         BUG_ON(!reg);
421
422         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
423                 s64 ftr_new = arm64_ftr_value(ftrp, new);
424
425                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
426                 if (!ftrp->strict)
427                         strict_mask &= ~arm64_ftr_mask(ftrp);
428         }
429         reg->sys_val = val;
430         reg->strict_mask = strict_mask;
431 }
432
433 void __init init_cpu_features(struct cpuinfo_arm64 *info)
434 {
435         /* Before we start using the tables, make sure it is sorted */
436         sort_ftr_regs();
437
438         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
439         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
440         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
441         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
442         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
443         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
444         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
445         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
446         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
447         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
448         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
449         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
450
451         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
452                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
453                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
454                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
455                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
456                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
457                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
458                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
459                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
460                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
461                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
462                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
463                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
464                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
465                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
466                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
467                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
468         }
469
470 }
471
472 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
473 {
474         const struct arm64_ftr_bits *ftrp;
475
476         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
477                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
478                 s64 ftr_new = arm64_ftr_value(ftrp, new);
479
480                 if (ftr_cur == ftr_new)
481                         continue;
482                 /* Find a safe value */
483                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
484                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
485         }
486
487 }
488
489 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
490 {
491         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
492
493         BUG_ON(!regp);
494         update_cpu_ftr_reg(regp, val);
495         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
496                 return 0;
497         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
498                         regp->name, boot, cpu, val);
499         return 1;
500 }
501
502 /*
503  * Update system wide CPU feature registers with the values from a
504  * non-boot CPU. Also performs SANITY checks to make sure that there
505  * aren't any insane variations from that of the boot CPU.
506  */
507 void update_cpu_features(int cpu,
508                          struct cpuinfo_arm64 *info,
509                          struct cpuinfo_arm64 *boot)
510 {
511         int taint = 0;
512
513         /*
514          * The kernel can handle differing I-cache policies, but otherwise
515          * caches should look identical. Userspace JITs will make use of
516          * *minLine.
517          */
518         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
519                                       info->reg_ctr, boot->reg_ctr);
520
521         /*
522          * Userspace may perform DC ZVA instructions. Mismatched block sizes
523          * could result in too much or too little memory being zeroed if a
524          * process is preempted and migrated between CPUs.
525          */
526         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
527                                       info->reg_dczid, boot->reg_dczid);
528
529         /* If different, timekeeping will be broken (especially with KVM) */
530         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
531                                       info->reg_cntfrq, boot->reg_cntfrq);
532
533         /*
534          * The kernel uses self-hosted debug features and expects CPUs to
535          * support identical debug features. We presently need CTX_CMPs, WRPs,
536          * and BRPs to be identical.
537          * ID_AA64DFR1 is currently RES0.
538          */
539         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
540                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
541         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
542                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
543         /*
544          * Even in big.LITTLE, processors should be identical instruction-set
545          * wise.
546          */
547         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
548                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
549         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
550                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
551
552         /*
553          * Differing PARange support is fine as long as all peripherals and
554          * memory are mapped within the minimum PARange of all CPUs.
555          * Linux should not care about secure memory.
556          */
557         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
558                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
559         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
560                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
561         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
562                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
563
564         /*
565          * EL3 is not our concern.
566          * ID_AA64PFR1 is currently RES0.
567          */
568         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
569                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
570         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
571                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
572
573         /*
574          * If we have AArch32, we care about 32-bit features for compat.
575          * If the system doesn't support AArch32, don't update them.
576          */
577         if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
578                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
579
580                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
581                                         info->reg_id_dfr0, boot->reg_id_dfr0);
582                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
583                                         info->reg_id_isar0, boot->reg_id_isar0);
584                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
585                                         info->reg_id_isar1, boot->reg_id_isar1);
586                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
587                                         info->reg_id_isar2, boot->reg_id_isar2);
588                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
589                                         info->reg_id_isar3, boot->reg_id_isar3);
590                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
591                                         info->reg_id_isar4, boot->reg_id_isar4);
592                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
593                                         info->reg_id_isar5, boot->reg_id_isar5);
594
595                 /*
596                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
597                  * ACTLR formats could differ across CPUs and therefore would have to
598                  * be trapped for virtualization anyway.
599                  */
600                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
601                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
602                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
603                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
604                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
605                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
606                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
607                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
608                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
609                                         info->reg_id_pfr0, boot->reg_id_pfr0);
610                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
611                                         info->reg_id_pfr1, boot->reg_id_pfr1);
612                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
613                                         info->reg_mvfr0, boot->reg_mvfr0);
614                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
615                                         info->reg_mvfr1, boot->reg_mvfr1);
616                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
617                                         info->reg_mvfr2, boot->reg_mvfr2);
618         }
619
620         /*
621          * Mismatched CPU features are a recipe for disaster. Don't even
622          * pretend to support them.
623          */
624         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
625                         "Unsupported CPU feature variation.\n");
626 }
627
628 u64 read_system_reg(u32 id)
629 {
630         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
631
632         /* We shouldn't get a request for an unsupported register */
633         BUG_ON(!regp);
634         return regp->sys_val;
635 }
636
637 /*
638  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
639  * Read the system register on the current CPU
640  */
641 static u64 __raw_read_system_reg(u32 sys_id)
642 {
643         switch (sys_id) {
644         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
645         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
646         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
647         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
648         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
649         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
650         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
651         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
652         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
653         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
654         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
655         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
656         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
657         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
658         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
659         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
660
661         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
662         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
663         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
664         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
665         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
666         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
667         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
668         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
669         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
670
671         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
672         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
673         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
674         default:
675                 BUG();
676                 return 0;
677         }
678 }
679
680 #include <linux/irqchip/arm-gic-v3.h>
681
682 static bool
683 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
684 {
685         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
686
687         return val >= entry->min_field_value;
688 }
689
690 static bool
691 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
692 {
693         u64 val;
694
695         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
696         if (scope == SCOPE_SYSTEM)
697                 val = read_system_reg(entry->sys_reg);
698         else
699                 val = __raw_read_system_reg(entry->sys_reg);
700
701         return feature_matches(val, entry);
702 }
703
704 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
705 {
706         bool has_sre;
707
708         if (!has_cpuid_feature(entry, scope))
709                 return false;
710
711         has_sre = gic_enable_sre();
712         if (!has_sre)
713                 pr_warn_once("%s present but disabled by higher exception level\n",
714                              entry->desc);
715
716         return has_sre;
717 }
718
719 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
720 {
721         u32 midr = read_cpuid_id();
722         u32 rv_min, rv_max;
723
724         /* Cavium ThunderX pass 1.x and 2.x */
725         rv_min = 0;
726         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
727
728         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
729 }
730
731 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
732 {
733         return is_kernel_in_hyp_mode();
734 }
735
736 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
737                            int __unused)
738 {
739         phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
740
741         /*
742          * Activate the lower HYP offset only if:
743          * - the idmap doesn't clash with it,
744          * - the kernel is not running at EL2.
745          */
746         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
747 }
748
749 static const struct arm64_cpu_capabilities arm64_features[] = {
750         {
751                 .desc = "GIC system register CPU interface",
752                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
753                 .def_scope = SCOPE_SYSTEM,
754                 .matches = has_useable_gicv3_cpuif,
755                 .sys_reg = SYS_ID_AA64PFR0_EL1,
756                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
757                 .sign = FTR_UNSIGNED,
758                 .min_field_value = 1,
759         },
760 #ifdef CONFIG_ARM64_PAN
761         {
762                 .desc = "Privileged Access Never",
763                 .capability = ARM64_HAS_PAN,
764                 .def_scope = SCOPE_SYSTEM,
765                 .matches = has_cpuid_feature,
766                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
767                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
768                 .sign = FTR_UNSIGNED,
769                 .min_field_value = 1,
770                 .enable = cpu_enable_pan,
771         },
772 #endif /* CONFIG_ARM64_PAN */
773 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
774         {
775                 .desc = "LSE atomic instructions",
776                 .capability = ARM64_HAS_LSE_ATOMICS,
777                 .def_scope = SCOPE_SYSTEM,
778                 .matches = has_cpuid_feature,
779                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
780                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
781                 .sign = FTR_UNSIGNED,
782                 .min_field_value = 2,
783         },
784 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
785         {
786                 .desc = "Software prefetching using PRFM",
787                 .capability = ARM64_HAS_NO_HW_PREFETCH,
788                 .def_scope = SCOPE_SYSTEM,
789                 .matches = has_no_hw_prefetch,
790         },
791 #ifdef CONFIG_ARM64_UAO
792         {
793                 .desc = "User Access Override",
794                 .capability = ARM64_HAS_UAO,
795                 .def_scope = SCOPE_SYSTEM,
796                 .matches = has_cpuid_feature,
797                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
798                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
799                 .min_field_value = 1,
800                 .enable = cpu_enable_uao,
801         },
802 #endif /* CONFIG_ARM64_UAO */
803 #ifdef CONFIG_ARM64_PAN
804         {
805                 .capability = ARM64_ALT_PAN_NOT_UAO,
806                 .def_scope = SCOPE_SYSTEM,
807                 .matches = cpufeature_pan_not_uao,
808         },
809 #endif /* CONFIG_ARM64_PAN */
810         {
811                 .desc = "Virtualization Host Extensions",
812                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
813                 .def_scope = SCOPE_SYSTEM,
814                 .matches = runs_at_el2,
815         },
816         {
817                 .desc = "32-bit EL0 Support",
818                 .capability = ARM64_HAS_32BIT_EL0,
819                 .def_scope = SCOPE_SYSTEM,
820                 .matches = has_cpuid_feature,
821                 .sys_reg = SYS_ID_AA64PFR0_EL1,
822                 .sign = FTR_UNSIGNED,
823                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
824                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
825         },
826         {
827                 .desc = "Reduced HYP mapping offset",
828                 .capability = ARM64_HYP_OFFSET_LOW,
829                 .def_scope = SCOPE_SYSTEM,
830                 .matches = hyp_offset_low,
831         },
832         {},
833 };
834
835 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
836         {                                                       \
837                 .desc = #cap,                                   \
838                 .def_scope = SCOPE_SYSTEM,                      \
839                 .matches = has_cpuid_feature,                   \
840                 .sys_reg = reg,                                 \
841                 .field_pos = field,                             \
842                 .sign = s,                                      \
843                 .min_field_value = min_value,                   \
844                 .hwcap_type = type,                             \
845                 .hwcap = cap,                                   \
846         }
847
848 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
849         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
850         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
851         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
852         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
853         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
854         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
855         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
856         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
857         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
858         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
859         {},
860 };
861
862 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
863 #ifdef CONFIG_COMPAT
864         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
865         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
866         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
867         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
868         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
869 #endif
870         {},
871 };
872
873 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
874 {
875         switch (cap->hwcap_type) {
876         case CAP_HWCAP:
877                 elf_hwcap |= cap->hwcap;
878                 break;
879 #ifdef CONFIG_COMPAT
880         case CAP_COMPAT_HWCAP:
881                 compat_elf_hwcap |= (u32)cap->hwcap;
882                 break;
883         case CAP_COMPAT_HWCAP2:
884                 compat_elf_hwcap2 |= (u32)cap->hwcap;
885                 break;
886 #endif
887         default:
888                 WARN_ON(1);
889                 break;
890         }
891 }
892
893 /* Check if we have a particular HWCAP enabled */
894 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
895 {
896         bool rc;
897
898         switch (cap->hwcap_type) {
899         case CAP_HWCAP:
900                 rc = (elf_hwcap & cap->hwcap) != 0;
901                 break;
902 #ifdef CONFIG_COMPAT
903         case CAP_COMPAT_HWCAP:
904                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
905                 break;
906         case CAP_COMPAT_HWCAP2:
907                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
908                 break;
909 #endif
910         default:
911                 WARN_ON(1);
912                 rc = false;
913         }
914
915         return rc;
916 }
917
918 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
919 {
920         for (; hwcaps->matches; hwcaps++)
921                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
922                         cap_set_elf_hwcap(hwcaps);
923 }
924
925 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
926                             const char *info)
927 {
928         for (; caps->matches; caps++) {
929                 if (!caps->matches(caps, caps->def_scope))
930                         continue;
931
932                 if (!cpus_have_cap(caps->capability) && caps->desc)
933                         pr_info("%s %s\n", info, caps->desc);
934                 cpus_set_cap(caps->capability);
935         }
936 }
937
938 /*
939  * Run through the enabled capabilities and enable() it on all active
940  * CPUs
941  */
942 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
943 {
944         for (; caps->matches; caps++)
945                 if (caps->enable && cpus_have_cap(caps->capability))
946                         /*
947                          * Use stop_machine() as it schedules the work allowing
948                          * us to modify PSTATE, instead of on_each_cpu() which
949                          * uses an IPI, giving us a PSTATE that disappears when
950                          * we return.
951                          */
952                         stop_machine(caps->enable, NULL, cpu_online_mask);
953 }
954
955 /*
956  * Flag to indicate if we have computed the system wide
957  * capabilities based on the boot time active CPUs. This
958  * will be used to determine if a new booting CPU should
959  * go through the verification process to make sure that it
960  * supports the system capabilities, without using a hotplug
961  * notifier.
962  */
963 static bool sys_caps_initialised;
964
965 static inline void set_sys_caps_initialised(void)
966 {
967         sys_caps_initialised = true;
968 }
969
970 /*
971  * Check for CPU features that are used in early boot
972  * based on the Boot CPU value.
973  */
974 static void check_early_cpu_features(void)
975 {
976         verify_cpu_run_el();
977         verify_cpu_asid_bits();
978 }
979
980 static void
981 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
982 {
983
984         for (; caps->matches; caps++)
985                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
986                         pr_crit("CPU%d: missing HWCAP: %s\n",
987                                         smp_processor_id(), caps->desc);
988                         cpu_die_early();
989                 }
990 }
991
992 static void
993 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
994 {
995         for (; caps->matches; caps++) {
996                 if (!cpus_have_cap(caps->capability))
997                         continue;
998                 /*
999                  * If the new CPU misses an advertised feature, we cannot proceed
1000                  * further, park the cpu.
1001                  */
1002                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1003                         pr_crit("CPU%d: missing feature: %s\n",
1004                                         smp_processor_id(), caps->desc);
1005                         cpu_die_early();
1006                 }
1007                 if (caps->enable)
1008                         caps->enable(NULL);
1009         }
1010 }
1011
1012 /*
1013  * Run through the enabled system capabilities and enable() it on this CPU.
1014  * The capabilities were decided based on the available CPUs at the boot time.
1015  * Any new CPU should match the system wide status of the capability. If the
1016  * new CPU doesn't have a capability which the system now has enabled, we
1017  * cannot do anything to fix it up and could cause unexpected failures. So
1018  * we park the CPU.
1019  */
1020 static void verify_local_cpu_capabilities(void)
1021 {
1022         verify_local_cpu_errata_workarounds();
1023         verify_local_cpu_features(arm64_features);
1024         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1025         if (system_supports_32bit_el0())
1026                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1027 }
1028
1029 void check_local_cpu_capabilities(void)
1030 {
1031         /*
1032          * All secondary CPUs should conform to the early CPU features
1033          * in use by the kernel based on boot CPU.
1034          */
1035         check_early_cpu_features();
1036
1037         /*
1038          * If we haven't finalised the system capabilities, this CPU gets
1039          * a chance to update the errata work arounds.
1040          * Otherwise, this CPU should verify that it has all the system
1041          * advertised capabilities.
1042          */
1043         if (!sys_caps_initialised)
1044                 update_cpu_errata_workarounds();
1045         else
1046                 verify_local_cpu_capabilities();
1047 }
1048
1049 static void __init setup_feature_capabilities(void)
1050 {
1051         update_cpu_capabilities(arm64_features, "detected feature:");
1052         enable_cpu_capabilities(arm64_features);
1053 }
1054
1055 /*
1056  * Check if the current CPU has a given feature capability.
1057  * Should be called from non-preemptible context.
1058  */
1059 bool this_cpu_has_cap(unsigned int cap)
1060 {
1061         const struct arm64_cpu_capabilities *caps;
1062
1063         if (WARN_ON(preemptible()))
1064                 return false;
1065
1066         for (caps = arm64_features; caps->desc; caps++)
1067                 if (caps->capability == cap && caps->matches)
1068                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1069
1070         return false;
1071 }
1072
1073 void __init setup_cpu_features(void)
1074 {
1075         u32 cwg;
1076         int cls;
1077
1078         /* Set the CPU feature capabilies */
1079         setup_feature_capabilities();
1080         enable_errata_workarounds();
1081         setup_elf_hwcaps(arm64_elf_hwcaps);
1082
1083         if (system_supports_32bit_el0())
1084                 setup_elf_hwcaps(compat_elf_hwcaps);
1085
1086         /* Advertise that we have computed the system capabilities */
1087         set_sys_caps_initialised();
1088
1089         /*
1090          * Check for sane CTR_EL0.CWG value.
1091          */
1092         cwg = cache_type_cwg();
1093         cls = cache_line_size();
1094         if (!cwg)
1095                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1096                         cls);
1097         if (L1_CACHE_BYTES < cls)
1098                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1099                         L1_CACHE_BYTES, cls);
1100 }
1101
1102 static bool __maybe_unused
1103 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1104 {
1105         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1106 }