gpio: stmpe: Add STMPE1600 support
[cascardo/linux.git] / arch / arm64 / kernel / probes / kprobes.c
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/ptrace.h>
28 #include <asm/cacheflush.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/system_misc.h>
31 #include <asm/insn.h>
32 #include <asm/uaccess.h>
33 #include <asm/irq.h>
34 #include <asm-generic/sections.h>
35
36 #include "decode-insn.h"
37
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40
41 static void __kprobes
42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
43
44 static inline unsigned long min_stack_size(unsigned long addr)
45 {
46         unsigned long size;
47
48         if (on_irq_stack(addr, raw_smp_processor_id()))
49                 size = IRQ_STACK_PTR(raw_smp_processor_id()) - addr;
50         else
51                 size = (unsigned long)current_thread_info() + THREAD_START_SP - addr;
52
53         return min(size, FIELD_SIZEOF(struct kprobe_ctlblk, jprobes_stack));
54 }
55
56 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
57 {
58         /* prepare insn slot */
59         p->ainsn.insn[0] = cpu_to_le32(p->opcode);
60
61         flush_icache_range((uintptr_t) (p->ainsn.insn),
62                            (uintptr_t) (p->ainsn.insn) +
63                            MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64
65         /*
66          * Needs restoring of return address after stepping xol.
67          */
68         p->ainsn.restore = (unsigned long) p->addr +
69           sizeof(kprobe_opcode_t);
70 }
71
72 static void __kprobes arch_prepare_simulate(struct kprobe *p)
73 {
74         /* This instructions is not executed xol. No need to adjust the PC */
75         p->ainsn.restore = 0;
76 }
77
78 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
79 {
80         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
81
82         if (p->ainsn.handler)
83                 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
84
85         /* single step simulated, now go for post processing */
86         post_kprobe_handler(kcb, regs);
87 }
88
89 int __kprobes arch_prepare_kprobe(struct kprobe *p)
90 {
91         unsigned long probe_addr = (unsigned long)p->addr;
92         extern char __start_rodata[];
93         extern char __end_rodata[];
94
95         if (probe_addr & 0x3)
96                 return -EINVAL;
97
98         /* copy instruction */
99         p->opcode = le32_to_cpu(*p->addr);
100
101         if (in_exception_text(probe_addr))
102                 return -EINVAL;
103         if (probe_addr >= (unsigned long) __start_rodata &&
104             probe_addr <= (unsigned long) __end_rodata)
105                 return -EINVAL;
106
107         /* decode instruction */
108         switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
109         case INSN_REJECTED:     /* insn not supported */
110                 return -EINVAL;
111
112         case INSN_GOOD_NO_SLOT: /* insn need simulation */
113                 p->ainsn.insn = NULL;
114                 break;
115
116         case INSN_GOOD: /* instruction uses slot */
117                 p->ainsn.insn = get_insn_slot();
118                 if (!p->ainsn.insn)
119                         return -ENOMEM;
120                 break;
121         };
122
123         /* prepare the instruction */
124         if (p->ainsn.insn)
125                 arch_prepare_ss_slot(p);
126         else
127                 arch_prepare_simulate(p);
128
129         return 0;
130 }
131
132 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
133 {
134         void *addrs[1];
135         u32 insns[1];
136
137         addrs[0] = (void *)addr;
138         insns[0] = (u32)opcode;
139
140         return aarch64_insn_patch_text(addrs, insns, 1);
141 }
142
143 /* arm kprobe: install breakpoint in text */
144 void __kprobes arch_arm_kprobe(struct kprobe *p)
145 {
146         patch_text(p->addr, BRK64_OPCODE_KPROBES);
147 }
148
149 /* disarm kprobe: remove breakpoint from text */
150 void __kprobes arch_disarm_kprobe(struct kprobe *p)
151 {
152         patch_text(p->addr, p->opcode);
153 }
154
155 void __kprobes arch_remove_kprobe(struct kprobe *p)
156 {
157         if (p->ainsn.insn) {
158                 free_insn_slot(p->ainsn.insn, 0);
159                 p->ainsn.insn = NULL;
160         }
161 }
162
163 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
164 {
165         kcb->prev_kprobe.kp = kprobe_running();
166         kcb->prev_kprobe.status = kcb->kprobe_status;
167 }
168
169 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
170 {
171         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
172         kcb->kprobe_status = kcb->prev_kprobe.status;
173 }
174
175 static void __kprobes set_current_kprobe(struct kprobe *p)
176 {
177         __this_cpu_write(current_kprobe, p);
178 }
179
180 /*
181  * The D-flag (Debug mask) is set (masked) upon debug exception entry.
182  * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
183  * probe i.e. when probe hit from kprobe handler context upon
184  * executing the pre/post handlers. In this case we return with
185  * D-flag clear so that single-stepping can be carried-out.
186  *
187  * Leave D-flag set in all other cases.
188  */
189 static void __kprobes
190 spsr_set_debug_flag(struct pt_regs *regs, int mask)
191 {
192         unsigned long spsr = regs->pstate;
193
194         if (mask)
195                 spsr |= PSR_D_BIT;
196         else
197                 spsr &= ~PSR_D_BIT;
198
199         regs->pstate = spsr;
200 }
201
202 /*
203  * Interrupts need to be disabled before single-step mode is set, and not
204  * reenabled until after single-step mode ends.
205  * Without disabling interrupt on local CPU, there is a chance of
206  * interrupt occurrence in the period of exception return and  start of
207  * out-of-line single-step, that result in wrongly single stepping
208  * into the interrupt handler.
209  */
210 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
211                                                 struct pt_regs *regs)
212 {
213         kcb->saved_irqflag = regs->pstate;
214         regs->pstate |= PSR_I_BIT;
215 }
216
217 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
218                                                 struct pt_regs *regs)
219 {
220         if (kcb->saved_irqflag & PSR_I_BIT)
221                 regs->pstate |= PSR_I_BIT;
222         else
223                 regs->pstate &= ~PSR_I_BIT;
224 }
225
226 static void __kprobes
227 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
228 {
229         kcb->ss_ctx.ss_pending = true;
230         kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
231 }
232
233 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
234 {
235         kcb->ss_ctx.ss_pending = false;
236         kcb->ss_ctx.match_addr = 0;
237 }
238
239 static void __kprobes setup_singlestep(struct kprobe *p,
240                                        struct pt_regs *regs,
241                                        struct kprobe_ctlblk *kcb, int reenter)
242 {
243         unsigned long slot;
244
245         if (reenter) {
246                 save_previous_kprobe(kcb);
247                 set_current_kprobe(p);
248                 kcb->kprobe_status = KPROBE_REENTER;
249         } else {
250                 kcb->kprobe_status = KPROBE_HIT_SS;
251         }
252
253
254         if (p->ainsn.insn) {
255                 /* prepare for single stepping */
256                 slot = (unsigned long)p->ainsn.insn;
257
258                 set_ss_context(kcb, slot);      /* mark pending ss */
259
260                 if (kcb->kprobe_status == KPROBE_REENTER)
261                         spsr_set_debug_flag(regs, 0);
262                 else
263                         WARN_ON(regs->pstate & PSR_D_BIT);
264
265                 /* IRQs and single stepping do not mix well. */
266                 kprobes_save_local_irqflag(kcb, regs);
267                 kernel_enable_single_step(regs);
268                 instruction_pointer_set(regs, slot);
269         } else {
270                 /* insn simulation */
271                 arch_simulate_insn(p, regs);
272         }
273 }
274
275 static int __kprobes reenter_kprobe(struct kprobe *p,
276                                     struct pt_regs *regs,
277                                     struct kprobe_ctlblk *kcb)
278 {
279         switch (kcb->kprobe_status) {
280         case KPROBE_HIT_SSDONE:
281         case KPROBE_HIT_ACTIVE:
282                 kprobes_inc_nmissed_count(p);
283                 setup_singlestep(p, regs, kcb, 1);
284                 break;
285         case KPROBE_HIT_SS:
286         case KPROBE_REENTER:
287                 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
288                 dump_kprobe(p);
289                 BUG();
290                 break;
291         default:
292                 WARN_ON(1);
293                 return 0;
294         }
295
296         return 1;
297 }
298
299 static void __kprobes
300 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
301 {
302         struct kprobe *cur = kprobe_running();
303
304         if (!cur)
305                 return;
306
307         /* return addr restore if non-branching insn */
308         if (cur->ainsn.restore != 0)
309                 instruction_pointer_set(regs, cur->ainsn.restore);
310
311         /* restore back original saved kprobe variables and continue */
312         if (kcb->kprobe_status == KPROBE_REENTER) {
313                 restore_previous_kprobe(kcb);
314                 return;
315         }
316         /* call post handler */
317         kcb->kprobe_status = KPROBE_HIT_SSDONE;
318         if (cur->post_handler)  {
319                 /* post_handler can hit breakpoint and single step
320                  * again, so we enable D-flag for recursive exception.
321                  */
322                 cur->post_handler(cur, regs, 0);
323         }
324
325         reset_current_kprobe();
326 }
327
328 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
329 {
330         struct kprobe *cur = kprobe_running();
331         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
332
333         switch (kcb->kprobe_status) {
334         case KPROBE_HIT_SS:
335         case KPROBE_REENTER:
336                 /*
337                  * We are here because the instruction being single
338                  * stepped caused a page fault. We reset the current
339                  * kprobe and the ip points back to the probe address
340                  * and allow the page fault handler to continue as a
341                  * normal page fault.
342                  */
343                 instruction_pointer_set(regs, (unsigned long) cur->addr);
344                 if (!instruction_pointer(regs))
345                         BUG();
346
347                 kernel_disable_single_step();
348                 if (kcb->kprobe_status == KPROBE_REENTER)
349                         spsr_set_debug_flag(regs, 1);
350
351                 if (kcb->kprobe_status == KPROBE_REENTER)
352                         restore_previous_kprobe(kcb);
353                 else
354                         reset_current_kprobe();
355
356                 break;
357         case KPROBE_HIT_ACTIVE:
358         case KPROBE_HIT_SSDONE:
359                 /*
360                  * We increment the nmissed count for accounting,
361                  * we can also use npre/npostfault count for accounting
362                  * these specific fault cases.
363                  */
364                 kprobes_inc_nmissed_count(cur);
365
366                 /*
367                  * We come here because instructions in the pre/post
368                  * handler caused the page_fault, this could happen
369                  * if handler tries to access user space by
370                  * copy_from_user(), get_user() etc. Let the
371                  * user-specified handler try to fix it first.
372                  */
373                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
374                         return 1;
375
376                 /*
377                  * In case the user-specified fault handler returned
378                  * zero, try to fix up.
379                  */
380                 if (fixup_exception(regs))
381                         return 1;
382         }
383         return 0;
384 }
385
386 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
387                                        unsigned long val, void *data)
388 {
389         return NOTIFY_DONE;
390 }
391
392 static void __kprobes kprobe_handler(struct pt_regs *regs)
393 {
394         struct kprobe *p, *cur_kprobe;
395         struct kprobe_ctlblk *kcb;
396         unsigned long addr = instruction_pointer(regs);
397
398         kcb = get_kprobe_ctlblk();
399         cur_kprobe = kprobe_running();
400
401         p = get_kprobe((kprobe_opcode_t *) addr);
402
403         if (p) {
404                 if (cur_kprobe) {
405                         if (reenter_kprobe(p, regs, kcb))
406                                 return;
407                 } else {
408                         /* Probe hit */
409                         set_current_kprobe(p);
410                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
411
412                         /*
413                          * If we have no pre-handler or it returned 0, we
414                          * continue with normal processing.  If we have a
415                          * pre-handler and it returned non-zero, it prepped
416                          * for calling the break_handler below on re-entry,
417                          * so get out doing nothing more here.
418                          *
419                          * pre_handler can hit a breakpoint and can step thru
420                          * before return, keep PSTATE D-flag enabled until
421                          * pre_handler return back.
422                          */
423                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
424                                 setup_singlestep(p, regs, kcb, 0);
425                                 return;
426                         }
427                 }
428         } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
429             BRK64_OPCODE_KPROBES) && cur_kprobe) {
430                 /* We probably hit a jprobe.  Call its break handler. */
431                 if (cur_kprobe->break_handler  &&
432                      cur_kprobe->break_handler(cur_kprobe, regs)) {
433                         setup_singlestep(cur_kprobe, regs, kcb, 0);
434                         return;
435                 }
436         }
437         /*
438          * The breakpoint instruction was removed right
439          * after we hit it.  Another cpu has removed
440          * either a probepoint or a debugger breakpoint
441          * at this address.  In either case, no further
442          * handling of this interrupt is appropriate.
443          * Return back to original instruction, and continue.
444          */
445 }
446
447 static int __kprobes
448 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
449 {
450         if ((kcb->ss_ctx.ss_pending)
451             && (kcb->ss_ctx.match_addr == addr)) {
452                 clear_ss_context(kcb);  /* clear pending ss */
453                 return DBG_HOOK_HANDLED;
454         }
455         /* not ours, kprobes should ignore it */
456         return DBG_HOOK_ERROR;
457 }
458
459 int __kprobes
460 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
461 {
462         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
463         int retval;
464
465         /* return error if this is not our step */
466         retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
467
468         if (retval == DBG_HOOK_HANDLED) {
469                 kprobes_restore_local_irqflag(kcb, regs);
470                 kernel_disable_single_step();
471
472                 if (kcb->kprobe_status == KPROBE_REENTER)
473                         spsr_set_debug_flag(regs, 1);
474
475                 post_kprobe_handler(kcb, regs);
476         }
477
478         return retval;
479 }
480
481 int __kprobes
482 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
483 {
484         kprobe_handler(regs);
485         return DBG_HOOK_HANDLED;
486 }
487
488 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
489 {
490         struct jprobe *jp = container_of(p, struct jprobe, kp);
491         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
492         long stack_ptr = kernel_stack_pointer(regs);
493
494         kcb->jprobe_saved_regs = *regs;
495         /*
496          * As Linus pointed out, gcc assumes that the callee
497          * owns the argument space and could overwrite it, e.g.
498          * tailcall optimization. So, to be absolutely safe
499          * we also save and restore enough stack bytes to cover
500          * the argument area.
501          */
502         kasan_disable_current();
503         memcpy(kcb->jprobes_stack, (void *)stack_ptr,
504                min_stack_size(stack_ptr));
505         kasan_enable_current();
506
507         instruction_pointer_set(regs, (unsigned long) jp->entry);
508         preempt_disable();
509         pause_graph_tracing();
510         return 1;
511 }
512
513 void __kprobes jprobe_return(void)
514 {
515         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
516
517         /*
518          * Jprobe handler return by entering break exception,
519          * encoded same as kprobe, but with following conditions
520          * -a special PC to identify it from the other kprobes.
521          * -restore stack addr to original saved pt_regs
522          */
523         asm volatile("                          mov sp, %0      \n"
524                      "jprobe_return_break:      brk %1          \n"
525                      :
526                      : "r" (kcb->jprobe_saved_regs.sp),
527                        "I" (BRK64_ESR_KPROBES)
528                      : "memory");
529
530         unreachable();
531 }
532
533 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
534 {
535         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536         long stack_addr = kcb->jprobe_saved_regs.sp;
537         long orig_sp = kernel_stack_pointer(regs);
538         struct jprobe *jp = container_of(p, struct jprobe, kp);
539         extern const char jprobe_return_break[];
540
541         if (instruction_pointer(regs) != (u64) jprobe_return_break)
542                 return 0;
543
544         if (orig_sp != stack_addr) {
545                 struct pt_regs *saved_regs =
546                     (struct pt_regs *)kcb->jprobe_saved_regs.sp;
547                 pr_err("current sp %lx does not match saved sp %lx\n",
548                        orig_sp, stack_addr);
549                 pr_err("Saved registers for jprobe %p\n", jp);
550                 show_regs(saved_regs);
551                 pr_err("Current registers\n");
552                 show_regs(regs);
553                 BUG();
554         }
555         unpause_graph_tracing();
556         *regs = kcb->jprobe_saved_regs;
557         kasan_disable_current();
558         memcpy((void *)stack_addr, kcb->jprobes_stack,
559                min_stack_size(stack_addr));
560         kasan_enable_current();
561         preempt_enable_no_resched();
562         return 1;
563 }
564
565 bool arch_within_kprobe_blacklist(unsigned long addr)
566 {
567         extern char __idmap_text_start[], __idmap_text_end[];
568         extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
569
570         if ((addr >= (unsigned long)__kprobes_text_start &&
571             addr < (unsigned long)__kprobes_text_end) ||
572             (addr >= (unsigned long)__entry_text_start &&
573             addr < (unsigned long)__entry_text_end) ||
574             (addr >= (unsigned long)__idmap_text_start &&
575             addr < (unsigned long)__idmap_text_end) ||
576             !!search_exception_tables(addr))
577                 return true;
578
579         if (!is_kernel_in_hyp_mode()) {
580                 if ((addr >= (unsigned long)__hyp_text_start &&
581                     addr < (unsigned long)__hyp_text_end) ||
582                     (addr >= (unsigned long)__hyp_idmap_text_start &&
583                     addr < (unsigned long)__hyp_idmap_text_end))
584                         return true;
585         }
586
587         return false;
588 }
589
590 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
591 {
592         struct kretprobe_instance *ri = NULL;
593         struct hlist_head *head, empty_rp;
594         struct hlist_node *tmp;
595         unsigned long flags, orig_ret_address = 0;
596         unsigned long trampoline_address =
597                 (unsigned long)&kretprobe_trampoline;
598         kprobe_opcode_t *correct_ret_addr = NULL;
599
600         INIT_HLIST_HEAD(&empty_rp);
601         kretprobe_hash_lock(current, &head, &flags);
602
603         /*
604          * It is possible to have multiple instances associated with a given
605          * task either because multiple functions in the call path have
606          * return probes installed on them, and/or more than one
607          * return probe was registered for a target function.
608          *
609          * We can handle this because:
610          *     - instances are always pushed into the head of the list
611          *     - when multiple return probes are registered for the same
612          *       function, the (chronologically) first instance's ret_addr
613          *       will be the real return address, and all the rest will
614          *       point to kretprobe_trampoline.
615          */
616         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
617                 if (ri->task != current)
618                         /* another task is sharing our hash bucket */
619                         continue;
620
621                 orig_ret_address = (unsigned long)ri->ret_addr;
622
623                 if (orig_ret_address != trampoline_address)
624                         /*
625                          * This is the real return address. Any other
626                          * instances associated with this task are for
627                          * other calls deeper on the call stack
628                          */
629                         break;
630         }
631
632         kretprobe_assert(ri, orig_ret_address, trampoline_address);
633
634         correct_ret_addr = ri->ret_addr;
635         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
636                 if (ri->task != current)
637                         /* another task is sharing our hash bucket */
638                         continue;
639
640                 orig_ret_address = (unsigned long)ri->ret_addr;
641                 if (ri->rp && ri->rp->handler) {
642                         __this_cpu_write(current_kprobe, &ri->rp->kp);
643                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
644                         ri->ret_addr = correct_ret_addr;
645                         ri->rp->handler(ri, regs);
646                         __this_cpu_write(current_kprobe, NULL);
647                 }
648
649                 recycle_rp_inst(ri, &empty_rp);
650
651                 if (orig_ret_address != trampoline_address)
652                         /*
653                          * This is the real return address. Any other
654                          * instances associated with this task are for
655                          * other calls deeper on the call stack
656                          */
657                         break;
658         }
659
660         kretprobe_hash_unlock(current, &flags);
661
662         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
663                 hlist_del(&ri->hlist);
664                 kfree(ri);
665         }
666         return (void *)orig_ret_address;
667 }
668
669 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
670                                       struct pt_regs *regs)
671 {
672         ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
673
674         /* replace return addr (x30) with trampoline */
675         regs->regs[30] = (long)&kretprobe_trampoline;
676 }
677
678 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
679 {
680         return 0;
681 }
682
683 int __init arch_init_kprobes(void)
684 {
685         return 0;
686 }