Merge branches 'misc' and 'sa1111-base' into for-linus
[cascardo/linux.git] / arch / arm64 / kernel / probes / kprobes.c
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/ptrace.h>
28 #include <asm/cacheflush.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/system_misc.h>
31 #include <asm/insn.h>
32 #include <asm/uaccess.h>
33 #include <asm/irq.h>
34 #include <asm-generic/sections.h>
35
36 #include "decode-insn.h"
37
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40
41 static void __kprobes
42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
43
44 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
45 {
46         /* prepare insn slot */
47         p->ainsn.insn[0] = cpu_to_le32(p->opcode);
48
49         flush_icache_range((uintptr_t) (p->ainsn.insn),
50                            (uintptr_t) (p->ainsn.insn) +
51                            MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52
53         /*
54          * Needs restoring of return address after stepping xol.
55          */
56         p->ainsn.restore = (unsigned long) p->addr +
57           sizeof(kprobe_opcode_t);
58 }
59
60 static void __kprobes arch_prepare_simulate(struct kprobe *p)
61 {
62         /* This instructions is not executed xol. No need to adjust the PC */
63         p->ainsn.restore = 0;
64 }
65
66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
67 {
68         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
69
70         if (p->ainsn.handler)
71                 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
72
73         /* single step simulated, now go for post processing */
74         post_kprobe_handler(kcb, regs);
75 }
76
77 int __kprobes arch_prepare_kprobe(struct kprobe *p)
78 {
79         unsigned long probe_addr = (unsigned long)p->addr;
80         extern char __start_rodata[];
81         extern char __end_rodata[];
82
83         if (probe_addr & 0x3)
84                 return -EINVAL;
85
86         /* copy instruction */
87         p->opcode = le32_to_cpu(*p->addr);
88
89         if (in_exception_text(probe_addr))
90                 return -EINVAL;
91         if (probe_addr >= (unsigned long) __start_rodata &&
92             probe_addr <= (unsigned long) __end_rodata)
93                 return -EINVAL;
94
95         /* decode instruction */
96         switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
97         case INSN_REJECTED:     /* insn not supported */
98                 return -EINVAL;
99
100         case INSN_GOOD_NO_SLOT: /* insn need simulation */
101                 p->ainsn.insn = NULL;
102                 break;
103
104         case INSN_GOOD: /* instruction uses slot */
105                 p->ainsn.insn = get_insn_slot();
106                 if (!p->ainsn.insn)
107                         return -ENOMEM;
108                 break;
109         };
110
111         /* prepare the instruction */
112         if (p->ainsn.insn)
113                 arch_prepare_ss_slot(p);
114         else
115                 arch_prepare_simulate(p);
116
117         return 0;
118 }
119
120 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
121 {
122         void *addrs[1];
123         u32 insns[1];
124
125         addrs[0] = (void *)addr;
126         insns[0] = (u32)opcode;
127
128         return aarch64_insn_patch_text(addrs, insns, 1);
129 }
130
131 /* arm kprobe: install breakpoint in text */
132 void __kprobes arch_arm_kprobe(struct kprobe *p)
133 {
134         patch_text(p->addr, BRK64_OPCODE_KPROBES);
135 }
136
137 /* disarm kprobe: remove breakpoint from text */
138 void __kprobes arch_disarm_kprobe(struct kprobe *p)
139 {
140         patch_text(p->addr, p->opcode);
141 }
142
143 void __kprobes arch_remove_kprobe(struct kprobe *p)
144 {
145         if (p->ainsn.insn) {
146                 free_insn_slot(p->ainsn.insn, 0);
147                 p->ainsn.insn = NULL;
148         }
149 }
150
151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
152 {
153         kcb->prev_kprobe.kp = kprobe_running();
154         kcb->prev_kprobe.status = kcb->kprobe_status;
155 }
156
157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
158 {
159         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
160         kcb->kprobe_status = kcb->prev_kprobe.status;
161 }
162
163 static void __kprobes set_current_kprobe(struct kprobe *p)
164 {
165         __this_cpu_write(current_kprobe, p);
166 }
167
168 /*
169  * The D-flag (Debug mask) is set (masked) upon debug exception entry.
170  * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
171  * probe i.e. when probe hit from kprobe handler context upon
172  * executing the pre/post handlers. In this case we return with
173  * D-flag clear so that single-stepping can be carried-out.
174  *
175  * Leave D-flag set in all other cases.
176  */
177 static void __kprobes
178 spsr_set_debug_flag(struct pt_regs *regs, int mask)
179 {
180         unsigned long spsr = regs->pstate;
181
182         if (mask)
183                 spsr |= PSR_D_BIT;
184         else
185                 spsr &= ~PSR_D_BIT;
186
187         regs->pstate = spsr;
188 }
189
190 /*
191  * Interrupts need to be disabled before single-step mode is set, and not
192  * reenabled until after single-step mode ends.
193  * Without disabling interrupt on local CPU, there is a chance of
194  * interrupt occurrence in the period of exception return and  start of
195  * out-of-line single-step, that result in wrongly single stepping
196  * into the interrupt handler.
197  */
198 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
199                                                 struct pt_regs *regs)
200 {
201         kcb->saved_irqflag = regs->pstate;
202         regs->pstate |= PSR_I_BIT;
203 }
204
205 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
206                                                 struct pt_regs *regs)
207 {
208         if (kcb->saved_irqflag & PSR_I_BIT)
209                 regs->pstate |= PSR_I_BIT;
210         else
211                 regs->pstate &= ~PSR_I_BIT;
212 }
213
214 static void __kprobes
215 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
216 {
217         kcb->ss_ctx.ss_pending = true;
218         kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
219 }
220
221 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
222 {
223         kcb->ss_ctx.ss_pending = false;
224         kcb->ss_ctx.match_addr = 0;
225 }
226
227 static void __kprobes setup_singlestep(struct kprobe *p,
228                                        struct pt_regs *regs,
229                                        struct kprobe_ctlblk *kcb, int reenter)
230 {
231         unsigned long slot;
232
233         if (reenter) {
234                 save_previous_kprobe(kcb);
235                 set_current_kprobe(p);
236                 kcb->kprobe_status = KPROBE_REENTER;
237         } else {
238                 kcb->kprobe_status = KPROBE_HIT_SS;
239         }
240
241
242         if (p->ainsn.insn) {
243                 /* prepare for single stepping */
244                 slot = (unsigned long)p->ainsn.insn;
245
246                 set_ss_context(kcb, slot);      /* mark pending ss */
247
248                 if (kcb->kprobe_status == KPROBE_REENTER)
249                         spsr_set_debug_flag(regs, 0);
250                 else
251                         WARN_ON(regs->pstate & PSR_D_BIT);
252
253                 /* IRQs and single stepping do not mix well. */
254                 kprobes_save_local_irqflag(kcb, regs);
255                 kernel_enable_single_step(regs);
256                 instruction_pointer_set(regs, slot);
257         } else {
258                 /* insn simulation */
259                 arch_simulate_insn(p, regs);
260         }
261 }
262
263 static int __kprobes reenter_kprobe(struct kprobe *p,
264                                     struct pt_regs *regs,
265                                     struct kprobe_ctlblk *kcb)
266 {
267         switch (kcb->kprobe_status) {
268         case KPROBE_HIT_SSDONE:
269         case KPROBE_HIT_ACTIVE:
270                 kprobes_inc_nmissed_count(p);
271                 setup_singlestep(p, regs, kcb, 1);
272                 break;
273         case KPROBE_HIT_SS:
274         case KPROBE_REENTER:
275                 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
276                 dump_kprobe(p);
277                 BUG();
278                 break;
279         default:
280                 WARN_ON(1);
281                 return 0;
282         }
283
284         return 1;
285 }
286
287 static void __kprobes
288 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
289 {
290         struct kprobe *cur = kprobe_running();
291
292         if (!cur)
293                 return;
294
295         /* return addr restore if non-branching insn */
296         if (cur->ainsn.restore != 0)
297                 instruction_pointer_set(regs, cur->ainsn.restore);
298
299         /* restore back original saved kprobe variables and continue */
300         if (kcb->kprobe_status == KPROBE_REENTER) {
301                 restore_previous_kprobe(kcb);
302                 return;
303         }
304         /* call post handler */
305         kcb->kprobe_status = KPROBE_HIT_SSDONE;
306         if (cur->post_handler)  {
307                 /* post_handler can hit breakpoint and single step
308                  * again, so we enable D-flag for recursive exception.
309                  */
310                 cur->post_handler(cur, regs, 0);
311         }
312
313         reset_current_kprobe();
314 }
315
316 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
317 {
318         struct kprobe *cur = kprobe_running();
319         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321         switch (kcb->kprobe_status) {
322         case KPROBE_HIT_SS:
323         case KPROBE_REENTER:
324                 /*
325                  * We are here because the instruction being single
326                  * stepped caused a page fault. We reset the current
327                  * kprobe and the ip points back to the probe address
328                  * and allow the page fault handler to continue as a
329                  * normal page fault.
330                  */
331                 instruction_pointer_set(regs, (unsigned long) cur->addr);
332                 if (!instruction_pointer(regs))
333                         BUG();
334
335                 kernel_disable_single_step();
336                 if (kcb->kprobe_status == KPROBE_REENTER)
337                         spsr_set_debug_flag(regs, 1);
338
339                 if (kcb->kprobe_status == KPROBE_REENTER)
340                         restore_previous_kprobe(kcb);
341                 else
342                         reset_current_kprobe();
343
344                 break;
345         case KPROBE_HIT_ACTIVE:
346         case KPROBE_HIT_SSDONE:
347                 /*
348                  * We increment the nmissed count for accounting,
349                  * we can also use npre/npostfault count for accounting
350                  * these specific fault cases.
351                  */
352                 kprobes_inc_nmissed_count(cur);
353
354                 /*
355                  * We come here because instructions in the pre/post
356                  * handler caused the page_fault, this could happen
357                  * if handler tries to access user space by
358                  * copy_from_user(), get_user() etc. Let the
359                  * user-specified handler try to fix it first.
360                  */
361                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
362                         return 1;
363
364                 /*
365                  * In case the user-specified fault handler returned
366                  * zero, try to fix up.
367                  */
368                 if (fixup_exception(regs))
369                         return 1;
370         }
371         return 0;
372 }
373
374 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
375                                        unsigned long val, void *data)
376 {
377         return NOTIFY_DONE;
378 }
379
380 static void __kprobes kprobe_handler(struct pt_regs *regs)
381 {
382         struct kprobe *p, *cur_kprobe;
383         struct kprobe_ctlblk *kcb;
384         unsigned long addr = instruction_pointer(regs);
385
386         kcb = get_kprobe_ctlblk();
387         cur_kprobe = kprobe_running();
388
389         p = get_kprobe((kprobe_opcode_t *) addr);
390
391         if (p) {
392                 if (cur_kprobe) {
393                         if (reenter_kprobe(p, regs, kcb))
394                                 return;
395                 } else {
396                         /* Probe hit */
397                         set_current_kprobe(p);
398                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
399
400                         /*
401                          * If we have no pre-handler or it returned 0, we
402                          * continue with normal processing.  If we have a
403                          * pre-handler and it returned non-zero, it prepped
404                          * for calling the break_handler below on re-entry,
405                          * so get out doing nothing more here.
406                          *
407                          * pre_handler can hit a breakpoint and can step thru
408                          * before return, keep PSTATE D-flag enabled until
409                          * pre_handler return back.
410                          */
411                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
412                                 setup_singlestep(p, regs, kcb, 0);
413                                 return;
414                         }
415                 }
416         } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
417             BRK64_OPCODE_KPROBES) && cur_kprobe) {
418                 /* We probably hit a jprobe.  Call its break handler. */
419                 if (cur_kprobe->break_handler  &&
420                      cur_kprobe->break_handler(cur_kprobe, regs)) {
421                         setup_singlestep(cur_kprobe, regs, kcb, 0);
422                         return;
423                 }
424         }
425         /*
426          * The breakpoint instruction was removed right
427          * after we hit it.  Another cpu has removed
428          * either a probepoint or a debugger breakpoint
429          * at this address.  In either case, no further
430          * handling of this interrupt is appropriate.
431          * Return back to original instruction, and continue.
432          */
433 }
434
435 static int __kprobes
436 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
437 {
438         if ((kcb->ss_ctx.ss_pending)
439             && (kcb->ss_ctx.match_addr == addr)) {
440                 clear_ss_context(kcb);  /* clear pending ss */
441                 return DBG_HOOK_HANDLED;
442         }
443         /* not ours, kprobes should ignore it */
444         return DBG_HOOK_ERROR;
445 }
446
447 int __kprobes
448 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
449 {
450         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
451         int retval;
452
453         /* return error if this is not our step */
454         retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
455
456         if (retval == DBG_HOOK_HANDLED) {
457                 kprobes_restore_local_irqflag(kcb, regs);
458                 kernel_disable_single_step();
459
460                 if (kcb->kprobe_status == KPROBE_REENTER)
461                         spsr_set_debug_flag(regs, 1);
462
463                 post_kprobe_handler(kcb, regs);
464         }
465
466         return retval;
467 }
468
469 int __kprobes
470 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
471 {
472         kprobe_handler(regs);
473         return DBG_HOOK_HANDLED;
474 }
475
476 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
477 {
478         struct jprobe *jp = container_of(p, struct jprobe, kp);
479         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
480
481         kcb->jprobe_saved_regs = *regs;
482         /*
483          * Since we can't be sure where in the stack frame "stacked"
484          * pass-by-value arguments are stored we just don't try to
485          * duplicate any of the stack. Do not use jprobes on functions that
486          * use more than 64 bytes (after padding each to an 8 byte boundary)
487          * of arguments, or pass individual arguments larger than 16 bytes.
488          */
489
490         instruction_pointer_set(regs, (unsigned long) jp->entry);
491         preempt_disable();
492         pause_graph_tracing();
493         return 1;
494 }
495
496 void __kprobes jprobe_return(void)
497 {
498         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
499
500         /*
501          * Jprobe handler return by entering break exception,
502          * encoded same as kprobe, but with following conditions
503          * -a special PC to identify it from the other kprobes.
504          * -restore stack addr to original saved pt_regs
505          */
506         asm volatile("                          mov sp, %0      \n"
507                      "jprobe_return_break:      brk %1          \n"
508                      :
509                      : "r" (kcb->jprobe_saved_regs.sp),
510                        "I" (BRK64_ESR_KPROBES)
511                      : "memory");
512
513         unreachable();
514 }
515
516 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
517 {
518         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
519         long stack_addr = kcb->jprobe_saved_regs.sp;
520         long orig_sp = kernel_stack_pointer(regs);
521         struct jprobe *jp = container_of(p, struct jprobe, kp);
522         extern const char jprobe_return_break[];
523
524         if (instruction_pointer(regs) != (u64) jprobe_return_break)
525                 return 0;
526
527         if (orig_sp != stack_addr) {
528                 struct pt_regs *saved_regs =
529                     (struct pt_regs *)kcb->jprobe_saved_regs.sp;
530                 pr_err("current sp %lx does not match saved sp %lx\n",
531                        orig_sp, stack_addr);
532                 pr_err("Saved registers for jprobe %p\n", jp);
533                 show_regs(saved_regs);
534                 pr_err("Current registers\n");
535                 show_regs(regs);
536                 BUG();
537         }
538         unpause_graph_tracing();
539         *regs = kcb->jprobe_saved_regs;
540         preempt_enable_no_resched();
541         return 1;
542 }
543
544 bool arch_within_kprobe_blacklist(unsigned long addr)
545 {
546         extern char __idmap_text_start[], __idmap_text_end[];
547         extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
548
549         if ((addr >= (unsigned long)__kprobes_text_start &&
550             addr < (unsigned long)__kprobes_text_end) ||
551             (addr >= (unsigned long)__entry_text_start &&
552             addr < (unsigned long)__entry_text_end) ||
553             (addr >= (unsigned long)__idmap_text_start &&
554             addr < (unsigned long)__idmap_text_end) ||
555             !!search_exception_tables(addr))
556                 return true;
557
558         if (!is_kernel_in_hyp_mode()) {
559                 if ((addr >= (unsigned long)__hyp_text_start &&
560                     addr < (unsigned long)__hyp_text_end) ||
561                     (addr >= (unsigned long)__hyp_idmap_text_start &&
562                     addr < (unsigned long)__hyp_idmap_text_end))
563                         return true;
564         }
565
566         return false;
567 }
568
569 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
570 {
571         struct kretprobe_instance *ri = NULL;
572         struct hlist_head *head, empty_rp;
573         struct hlist_node *tmp;
574         unsigned long flags, orig_ret_address = 0;
575         unsigned long trampoline_address =
576                 (unsigned long)&kretprobe_trampoline;
577         kprobe_opcode_t *correct_ret_addr = NULL;
578
579         INIT_HLIST_HEAD(&empty_rp);
580         kretprobe_hash_lock(current, &head, &flags);
581
582         /*
583          * It is possible to have multiple instances associated with a given
584          * task either because multiple functions in the call path have
585          * return probes installed on them, and/or more than one
586          * return probe was registered for a target function.
587          *
588          * We can handle this because:
589          *     - instances are always pushed into the head of the list
590          *     - when multiple return probes are registered for the same
591          *       function, the (chronologically) first instance's ret_addr
592          *       will be the real return address, and all the rest will
593          *       point to kretprobe_trampoline.
594          */
595         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
596                 if (ri->task != current)
597                         /* another task is sharing our hash bucket */
598                         continue;
599
600                 orig_ret_address = (unsigned long)ri->ret_addr;
601
602                 if (orig_ret_address != trampoline_address)
603                         /*
604                          * This is the real return address. Any other
605                          * instances associated with this task are for
606                          * other calls deeper on the call stack
607                          */
608                         break;
609         }
610
611         kretprobe_assert(ri, orig_ret_address, trampoline_address);
612
613         correct_ret_addr = ri->ret_addr;
614         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
615                 if (ri->task != current)
616                         /* another task is sharing our hash bucket */
617                         continue;
618
619                 orig_ret_address = (unsigned long)ri->ret_addr;
620                 if (ri->rp && ri->rp->handler) {
621                         __this_cpu_write(current_kprobe, &ri->rp->kp);
622                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
623                         ri->ret_addr = correct_ret_addr;
624                         ri->rp->handler(ri, regs);
625                         __this_cpu_write(current_kprobe, NULL);
626                 }
627
628                 recycle_rp_inst(ri, &empty_rp);
629
630                 if (orig_ret_address != trampoline_address)
631                         /*
632                          * This is the real return address. Any other
633                          * instances associated with this task are for
634                          * other calls deeper on the call stack
635                          */
636                         break;
637         }
638
639         kretprobe_hash_unlock(current, &flags);
640
641         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
642                 hlist_del(&ri->hlist);
643                 kfree(ri);
644         }
645         return (void *)orig_ret_address;
646 }
647
648 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
649                                       struct pt_regs *regs)
650 {
651         ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
652
653         /* replace return addr (x30) with trampoline */
654         regs->regs[30] = (long)&kretprobe_trampoline;
655 }
656
657 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
658 {
659         return 0;
660 }
661
662 int __init arch_init_kprobes(void)
663 {
664         return 0;
665 }