cb16fcc5f8f05228c3cf94a1593800749f6534fa
[cascardo/linux.git] / arch / mips / cavium-octeon / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>       /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-rst-defs.h>
44
45 /*
46  * TRUE for devices having registers with little-endian byte
47  * order, FALSE for registers with native-endian byte order.
48  * PCI mandates little-endian, USB and SATA are configuraable,
49  * but we chose little-endian for these.
50  */
51 const bool octeon_should_swizzle_table[256] = {
52         [0x00] = true,  /* bootbus/CF */
53         [0x1b] = true,  /* PCI mmio window */
54         [0x1c] = true,  /* PCI mmio window */
55         [0x1d] = true,  /* PCI mmio window */
56         [0x1e] = true,  /* PCI mmio window */
57         [0x68] = true,  /* OCTEON III USB */
58         [0x69] = true,  /* OCTEON III USB */
59         [0x6c] = true,  /* OCTEON III SATA */
60         [0x6f] = true,  /* OCTEON II USB */
61 };
62 EXPORT_SYMBOL(octeon_should_swizzle_table);
63
64 #ifdef CONFIG_PCI
65 extern void pci_console_init(const char *arg);
66 #endif
67
68 static unsigned long long MAX_MEMORY = 512ull << 20;
69
70 DEFINE_SEMAPHORE(octeon_bootbus_sem);
71 EXPORT_SYMBOL(octeon_bootbus_sem);
72
73 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
74
75 struct cvmx_bootinfo *octeon_bootinfo;
76 EXPORT_SYMBOL(octeon_bootinfo);
77
78 static unsigned long long RESERVE_LOW_MEM = 0ull;
79 #ifdef CONFIG_KEXEC
80 #ifdef CONFIG_SMP
81 /*
82  * Wait for relocation code is prepared and send
83  * secondary CPUs to spin until kernel is relocated.
84  */
85 static void octeon_kexec_smp_down(void *ignored)
86 {
87         int cpu = smp_processor_id();
88
89         local_irq_disable();
90         set_cpu_online(cpu, false);
91         while (!atomic_read(&kexec_ready_to_reboot))
92                 cpu_relax();
93
94         asm volatile (
95         "       sync                                            \n"
96         "       synci   ($0)                                    \n");
97
98         relocated_kexec_smp_wait(NULL);
99 }
100 #endif
101
102 #define OCTEON_DDR0_BASE    (0x0ULL)
103 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
104 #define OCTEON_DDR1_BASE    (0x410000000ULL)
105 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
106 #define OCTEON_DDR2_BASE    (0x020000000ULL)
107 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
108 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
109
110 static struct kimage *kimage_ptr;
111
112 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
113 {
114         int64_t addr;
115         struct cvmx_bootmem_desc *bootmem_desc;
116
117         bootmem_desc = cvmx_bootmem_get_desc();
118
119         if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
120                 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
121                 pr_err("Error: requested memory too large,"
122                        "truncating to maximum size\n");
123         }
124
125         bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
126         bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
127
128         addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
129         bootmem_desc->head_addr = 0;
130
131         if (mem_size <= OCTEON_DDR0_SIZE) {
132                 __cvmx_bootmem_phy_free(addr,
133                                 mem_size - RESERVE_LOW_MEM -
134                                 low_reserved_bytes, 0);
135                 return;
136         }
137
138         __cvmx_bootmem_phy_free(addr,
139                         OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
140                         low_reserved_bytes, 0);
141
142         mem_size -= OCTEON_DDR0_SIZE;
143
144         if (mem_size > OCTEON_DDR1_SIZE) {
145                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
146                 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
147                                 mem_size - OCTEON_DDR1_SIZE, 0);
148         } else
149                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
150 }
151
152 static int octeon_kexec_prepare(struct kimage *image)
153 {
154         int i;
155         char *bootloader = "kexec";
156
157         octeon_boot_desc_ptr->argc = 0;
158         for (i = 0; i < image->nr_segments; i++) {
159                 if (!strncmp(bootloader, (char *)image->segment[i].buf,
160                                 strlen(bootloader))) {
161                         /*
162                          * convert command line string to array
163                          * of parameters (as bootloader does).
164                          */
165                         int argc = 0, offt;
166                         char *str = (char *)image->segment[i].buf;
167                         char *ptr = strchr(str, ' ');
168                         while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
169                                 *ptr = '\0';
170                                 if (ptr[1] != ' ') {
171                                         offt = (int)(ptr - str + 1);
172                                         octeon_boot_desc_ptr->argv[argc] =
173                                                 image->segment[i].mem + offt;
174                                         argc++;
175                                 }
176                                 ptr = strchr(ptr + 1, ' ');
177                         }
178                         octeon_boot_desc_ptr->argc = argc;
179                         break;
180                 }
181         }
182
183         /*
184          * Information about segments will be needed during pre-boot memory
185          * initialization.
186          */
187         kimage_ptr = image;
188         return 0;
189 }
190
191 static void octeon_generic_shutdown(void)
192 {
193         int i;
194 #ifdef CONFIG_SMP
195         int cpu;
196 #endif
197         struct cvmx_bootmem_desc *bootmem_desc;
198         void *named_block_array_ptr;
199
200         bootmem_desc = cvmx_bootmem_get_desc();
201         named_block_array_ptr =
202                 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
203
204 #ifdef CONFIG_SMP
205         /* disable watchdogs */
206         for_each_online_cpu(cpu)
207                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
208 #else
209         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
210 #endif
211         if (kimage_ptr != kexec_crash_image) {
212                 memset(named_block_array_ptr,
213                         0x0,
214                         CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
215                         sizeof(struct cvmx_bootmem_named_block_desc));
216                 /*
217                  * Mark all memory (except low 0x100000 bytes) as free.
218                  * It is the same thing that bootloader does.
219                  */
220                 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
221                                 0x100000);
222                 /*
223                  * Allocate all segments to avoid their corruption during boot.
224                  */
225                 for (i = 0; i < kimage_ptr->nr_segments; i++)
226                         cvmx_bootmem_alloc_address(
227                                 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
228                                 kimage_ptr->segment[i].mem - PAGE_SIZE,
229                                 PAGE_SIZE);
230         } else {
231                 /*
232                  * Do not mark all memory as free. Free only named sections
233                  * leaving the rest of memory unchanged.
234                  */
235                 struct cvmx_bootmem_named_block_desc *ptr =
236                         (struct cvmx_bootmem_named_block_desc *)
237                         named_block_array_ptr;
238
239                 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
240                         if (ptr[i].size)
241                                 cvmx_bootmem_free_named(ptr[i].name);
242         }
243         kexec_args[2] = 1UL; /* running on octeon_main_processor */
244         kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
245 #ifdef CONFIG_SMP
246         secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
247         secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #endif
249 }
250
251 static void octeon_shutdown(void)
252 {
253         octeon_generic_shutdown();
254 #ifdef CONFIG_SMP
255         smp_call_function(octeon_kexec_smp_down, NULL, 0);
256         smp_wmb();
257         while (num_online_cpus() > 1) {
258                 cpu_relax();
259                 mdelay(1);
260         }
261 #endif
262 }
263
264 static void octeon_crash_shutdown(struct pt_regs *regs)
265 {
266         octeon_generic_shutdown();
267         default_machine_crash_shutdown(regs);
268 }
269
270 #endif /* CONFIG_KEXEC */
271
272 #ifdef CONFIG_CAVIUM_RESERVE32
273 uint64_t octeon_reserve32_memory;
274 EXPORT_SYMBOL(octeon_reserve32_memory);
275 #endif
276
277 #ifdef CONFIG_KEXEC
278 /* crashkernel cmdline parameter is parsed _after_ memory setup
279  * we also parse it here (workaround for EHB5200) */
280 static uint64_t crashk_size, crashk_base;
281 #endif
282
283 static int octeon_uart;
284
285 extern asmlinkage void handle_int(void);
286
287 /**
288  * Return non zero if we are currently running in the Octeon simulator
289  *
290  * Returns
291  */
292 int octeon_is_simulation(void)
293 {
294         return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
295 }
296 EXPORT_SYMBOL(octeon_is_simulation);
297
298 /**
299  * Return true if Octeon is in PCI Host mode. This means
300  * Linux can control the PCI bus.
301  *
302  * Returns Non zero if Octeon in host mode.
303  */
304 int octeon_is_pci_host(void)
305 {
306 #ifdef CONFIG_PCI
307         return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
308 #else
309         return 0;
310 #endif
311 }
312
313 /**
314  * Get the clock rate of Octeon
315  *
316  * Returns Clock rate in HZ
317  */
318 uint64_t octeon_get_clock_rate(void)
319 {
320         struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
321
322         return sysinfo->cpu_clock_hz;
323 }
324 EXPORT_SYMBOL(octeon_get_clock_rate);
325
326 static u64 octeon_io_clock_rate;
327
328 u64 octeon_get_io_clock_rate(void)
329 {
330         return octeon_io_clock_rate;
331 }
332 EXPORT_SYMBOL(octeon_get_io_clock_rate);
333
334
335 /**
336  * Write to the LCD display connected to the bootbus. This display
337  * exists on most Cavium evaluation boards. If it doesn't exist, then
338  * this function doesn't do anything.
339  *
340  * @s:      String to write
341  */
342 void octeon_write_lcd(const char *s)
343 {
344         if (octeon_bootinfo->led_display_base_addr) {
345                 void __iomem *lcd_address =
346                         ioremap_nocache(octeon_bootinfo->led_display_base_addr,
347                                         8);
348                 int i;
349                 for (i = 0; i < 8; i++, s++) {
350                         if (*s)
351                                 iowrite8(*s, lcd_address + i);
352                         else
353                                 iowrite8(' ', lcd_address + i);
354                 }
355                 iounmap(lcd_address);
356         }
357 }
358
359 /**
360  * Return the console uart passed by the bootloader
361  *
362  * Returns uart   (0 or 1)
363  */
364 int octeon_get_boot_uart(void)
365 {
366         int uart;
367 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
368         uart = 1;
369 #else
370         uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
371                 1 : 0;
372 #endif
373         return uart;
374 }
375
376 /**
377  * Get the coremask Linux was booted on.
378  *
379  * Returns Core mask
380  */
381 int octeon_get_boot_coremask(void)
382 {
383         return octeon_boot_desc_ptr->core_mask;
384 }
385
386 /**
387  * Check the hardware BIST results for a CPU
388  */
389 void octeon_check_cpu_bist(void)
390 {
391         const int coreid = cvmx_get_core_num();
392         unsigned long long mask;
393         unsigned long long bist_val;
394
395         /* Check BIST results for COP0 registers */
396         mask = 0x1f00000000ull;
397         bist_val = read_octeon_c0_icacheerr();
398         if (bist_val & mask)
399                 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
400                        coreid, bist_val);
401
402         bist_val = read_octeon_c0_dcacheerr();
403         if (bist_val & 1)
404                 pr_err("Core%d L1 Dcache parity error: "
405                        "CacheErr(dcache) = 0x%llx\n",
406                        coreid, bist_val);
407
408         mask = 0xfc00000000000000ull;
409         bist_val = read_c0_cvmmemctl();
410         if (bist_val & mask)
411                 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
412                        coreid, bist_val);
413
414         write_octeon_c0_dcacheerr(0);
415 }
416
417 /**
418  * Reboot Octeon
419  *
420  * @command: Command to pass to the bootloader. Currently ignored.
421  */
422 static void octeon_restart(char *command)
423 {
424         /* Disable all watchdogs before soft reset. They don't get cleared */
425 #ifdef CONFIG_SMP
426         int cpu;
427         for_each_online_cpu(cpu)
428                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
429 #else
430         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
431 #endif
432
433         mb();
434         while (1)
435                 if (OCTEON_IS_OCTEON3())
436                         cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
437                 else
438                         cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
439 }
440
441
442 /**
443  * Permanently stop a core.
444  *
445  * @arg: Ignored.
446  */
447 static void octeon_kill_core(void *arg)
448 {
449         if (octeon_is_simulation())
450                 /* A break instruction causes the simulator stop a core */
451                 asm volatile ("break" ::: "memory");
452
453         local_irq_disable();
454         /* Disable watchdog on this core. */
455         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
456         /* Spin in a low power mode. */
457         while (true)
458                 asm volatile ("wait" ::: "memory");
459 }
460
461
462 /**
463  * Halt the system
464  */
465 static void octeon_halt(void)
466 {
467         smp_call_function(octeon_kill_core, NULL, 0);
468
469         switch (octeon_bootinfo->board_type) {
470         case CVMX_BOARD_TYPE_NAO38:
471                 /* Driving a 1 to GPIO 12 shuts off this board */
472                 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
473                 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
474                 break;
475         default:
476                 octeon_write_lcd("PowerOff");
477                 break;
478         }
479
480         octeon_kill_core(NULL);
481 }
482
483 static char __read_mostly octeon_system_type[80];
484
485 static void __init init_octeon_system_type(void)
486 {
487         char const *board_type;
488
489         board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
490         if (board_type == NULL) {
491                 struct device_node *root;
492                 int ret;
493
494                 root = of_find_node_by_path("/");
495                 ret = of_property_read_string(root, "model", &board_type);
496                 of_node_put(root);
497                 if (ret)
498                         board_type = "Unsupported Board";
499         }
500
501         snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
502                  board_type, octeon_model_get_string(read_c0_prid()));
503 }
504
505 /**
506  * Return a string representing the system type
507  *
508  * Returns
509  */
510 const char *octeon_board_type_string(void)
511 {
512         return octeon_system_type;
513 }
514
515 const char *get_system_type(void)
516         __attribute__ ((alias("octeon_board_type_string")));
517
518 void octeon_user_io_init(void)
519 {
520         union octeon_cvmemctl cvmmemctl;
521
522         /* Get the current settings for CP0_CVMMEMCTL_REG */
523         cvmmemctl.u64 = read_c0_cvmmemctl();
524         /* R/W If set, marked write-buffer entries time out the same
525          * as as other entries; if clear, marked write-buffer entries
526          * use the maximum timeout. */
527         cvmmemctl.s.dismarkwblongto = 1;
528         /* R/W If set, a merged store does not clear the write-buffer
529          * entry timeout state. */
530         cvmmemctl.s.dismrgclrwbto = 0;
531         /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
532          * word location for an IOBDMA. The other 8 bits come from the
533          * SCRADDR field of the IOBDMA. */
534         cvmmemctl.s.iobdmascrmsb = 0;
535         /* R/W If set, SYNCWS and SYNCS only order marked stores; if
536          * clear, SYNCWS and SYNCS only order unmarked
537          * stores. SYNCWSMARKED has no effect when DISSYNCWS is
538          * set. */
539         cvmmemctl.s.syncwsmarked = 0;
540         /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
541         cvmmemctl.s.dissyncws = 0;
542         /* R/W If set, no stall happens on write buffer full. */
543         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
544                 cvmmemctl.s.diswbfst = 1;
545         else
546                 cvmmemctl.s.diswbfst = 0;
547         /* R/W If set (and SX set), supervisor-level loads/stores can
548          * use XKPHYS addresses with <48>==0 */
549         cvmmemctl.s.xkmemenas = 0;
550
551         /* R/W If set (and UX set), user-level loads/stores can use
552          * XKPHYS addresses with VA<48>==0 */
553         cvmmemctl.s.xkmemenau = 0;
554
555         /* R/W If set (and SX set), supervisor-level loads/stores can
556          * use XKPHYS addresses with VA<48>==1 */
557         cvmmemctl.s.xkioenas = 0;
558
559         /* R/W If set (and UX set), user-level loads/stores can use
560          * XKPHYS addresses with VA<48>==1 */
561         cvmmemctl.s.xkioenau = 0;
562
563         /* R/W If set, all stores act as SYNCW (NOMERGE must be set
564          * when this is set) RW, reset to 0. */
565         cvmmemctl.s.allsyncw = 0;
566
567         /* R/W If set, no stores merge, and all stores reach the
568          * coherent bus in order. */
569         cvmmemctl.s.nomerge = 0;
570         /* R/W Selects the bit in the counter used for DID time-outs 0
571          * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
572          * between 1x and 2x this interval. For example, with
573          * DIDTTO=3, expiration interval is between 16K and 32K. */
574         cvmmemctl.s.didtto = 0;
575         /* R/W If set, the (mem) CSR clock never turns off. */
576         cvmmemctl.s.csrckalwys = 0;
577         /* R/W If set, mclk never turns off. */
578         cvmmemctl.s.mclkalwys = 0;
579         /* R/W Selects the bit in the counter used for write buffer
580          * flush time-outs (WBFLT+11) is the bit position in an
581          * internal counter used to determine expiration. The write
582          * buffer expires between 1x and 2x this interval. For
583          * example, with WBFLT = 0, a write buffer expires between 2K
584          * and 4K cycles after the write buffer entry is allocated. */
585         cvmmemctl.s.wbfltime = 0;
586         /* R/W If set, do not put Istream in the L2 cache. */
587         cvmmemctl.s.istrnol2 = 0;
588
589         /*
590          * R/W The write buffer threshold. As per erratum Core-14752
591          * for CN63XX, a sc/scd might fail if the write buffer is
592          * full.  Lowering WBTHRESH greatly lowers the chances of the
593          * write buffer ever being full and triggering the erratum.
594          */
595         if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
596                 cvmmemctl.s.wbthresh = 4;
597         else
598                 cvmmemctl.s.wbthresh = 10;
599
600         /* R/W If set, CVMSEG is available for loads/stores in
601          * kernel/debug mode. */
602 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
603         cvmmemctl.s.cvmsegenak = 1;
604 #else
605         cvmmemctl.s.cvmsegenak = 0;
606 #endif
607         /* R/W If set, CVMSEG is available for loads/stores in
608          * supervisor mode. */
609         cvmmemctl.s.cvmsegenas = 0;
610         /* R/W If set, CVMSEG is available for loads/stores in user
611          * mode. */
612         cvmmemctl.s.cvmsegenau = 0;
613
614         write_c0_cvmmemctl(cvmmemctl.u64);
615
616         /* Setup of CVMSEG is done in kernel-entry-init.h */
617         if (smp_processor_id() == 0)
618                 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
619                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
620                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
621
622         if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
623                 union cvmx_iob_fau_timeout fau_timeout;
624
625                 /* Set a default for the hardware timeouts */
626                 fau_timeout.u64 = 0;
627                 fau_timeout.s.tout_val = 0xfff;
628                 /* Disable tagwait FAU timeout */
629                 fau_timeout.s.tout_enb = 0;
630                 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
631         }
632
633         if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
634              !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
635             OCTEON_IS_MODEL(OCTEON_CN70XX)) {
636                 union cvmx_pow_nw_tim nm_tim;
637
638                 nm_tim.u64 = 0;
639                 /* 4096 cycles */
640                 nm_tim.s.nw_tim = 3;
641                 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
642         }
643
644         write_octeon_c0_icacheerr(0);
645         write_c0_derraddr1(0);
646 }
647
648 /**
649  * Early entry point for arch setup
650  */
651 void __init prom_init(void)
652 {
653         struct cvmx_sysinfo *sysinfo;
654         const char *arg;
655         char *p;
656         int i;
657         u64 t;
658         int argc;
659 #ifdef CONFIG_CAVIUM_RESERVE32
660         int64_t addr = -1;
661 #endif
662         /*
663          * The bootloader passes a pointer to the boot descriptor in
664          * $a3, this is available as fw_arg3.
665          */
666         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
667         octeon_bootinfo =
668                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
669         cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
670
671         sysinfo = cvmx_sysinfo_get();
672         memset(sysinfo, 0, sizeof(*sysinfo));
673         sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
674         sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
675
676         if ((octeon_bootinfo->major_version > 1) ||
677             (octeon_bootinfo->major_version == 1 &&
678              octeon_bootinfo->minor_version >= 4))
679                 cvmx_coremask_copy(&sysinfo->core_mask,
680                                    &octeon_bootinfo->ext_core_mask);
681         else
682                 cvmx_coremask_set64(&sysinfo->core_mask,
683                                     octeon_bootinfo->core_mask);
684
685         /* Some broken u-boot pass garbage in upper bits, clear them out */
686         if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
687                 for (i = 512; i < 1024; i++)
688                         cvmx_coremask_clear_core(&sysinfo->core_mask, i);
689
690         sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
691         sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
692         sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
693         sysinfo->board_type = octeon_bootinfo->board_type;
694         sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
695         sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
696         memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
697                sizeof(sysinfo->mac_addr_base));
698         sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
699         memcpy(sysinfo->board_serial_number,
700                octeon_bootinfo->board_serial_number,
701                sizeof(sysinfo->board_serial_number));
702         sysinfo->compact_flash_common_base_addr =
703                 octeon_bootinfo->compact_flash_common_base_addr;
704         sysinfo->compact_flash_attribute_base_addr =
705                 octeon_bootinfo->compact_flash_attribute_base_addr;
706         sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
707         sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
708         sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
709
710         if (OCTEON_IS_OCTEON2()) {
711                 /* I/O clock runs at a different rate than the CPU. */
712                 union cvmx_mio_rst_boot rst_boot;
713                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
714                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
715         } else if (OCTEON_IS_OCTEON3()) {
716                 /* I/O clock runs at a different rate than the CPU. */
717                 union cvmx_rst_boot rst_boot;
718                 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
719                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720         } else {
721                 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
722         }
723
724         t = read_c0_cvmctl();
725         if ((t & (1ull << 27)) == 0) {
726                 /*
727                  * Setup the multiplier save/restore code if
728                  * CvmCtl[NOMUL] clear.
729                  */
730                 void *save;
731                 void *save_end;
732                 void *restore;
733                 void *restore_end;
734                 int save_len;
735                 int restore_len;
736                 int save_max = (char *)octeon_mult_save_end -
737                         (char *)octeon_mult_save;
738                 int restore_max = (char *)octeon_mult_restore_end -
739                         (char *)octeon_mult_restore;
740                 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
741                         save = octeon_mult_save3;
742                         save_end = octeon_mult_save3_end;
743                         restore = octeon_mult_restore3;
744                         restore_end = octeon_mult_restore3_end;
745                 } else {
746                         save = octeon_mult_save2;
747                         save_end = octeon_mult_save2_end;
748                         restore = octeon_mult_restore2;
749                         restore_end = octeon_mult_restore2_end;
750                 }
751                 save_len = (char *)save_end - (char *)save;
752                 restore_len = (char *)restore_end - (char *)restore;
753                 if (!WARN_ON(save_len > save_max ||
754                                 restore_len > restore_max)) {
755                         memcpy(octeon_mult_save, save, save_len);
756                         memcpy(octeon_mult_restore, restore, restore_len);
757                 }
758         }
759
760         /*
761          * Only enable the LED controller if we're running on a CN38XX, CN58XX,
762          * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
763          */
764         if (!octeon_is_simulation() &&
765             octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
766                 cvmx_write_csr(CVMX_LED_EN, 0);
767                 cvmx_write_csr(CVMX_LED_PRT, 0);
768                 cvmx_write_csr(CVMX_LED_DBG, 0);
769                 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
770                 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
771                 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
772                 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
773                 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
774                 cvmx_write_csr(CVMX_LED_EN, 1);
775         }
776 #ifdef CONFIG_CAVIUM_RESERVE32
777         /*
778          * We need to temporarily allocate all memory in the reserve32
779          * region. This makes sure the kernel doesn't allocate this
780          * memory when it is getting memory from the
781          * bootloader. Later, after the memory allocations are
782          * complete, the reserve32 will be freed.
783          *
784          * Allocate memory for RESERVED32 aligned on 2MB boundary. This
785          * is in case we later use hugetlb entries with it.
786          */
787         addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
788                                                 0, 0, 2 << 20,
789                                                 "CAVIUM_RESERVE32", 0);
790         if (addr < 0)
791                 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
792         else
793                 octeon_reserve32_memory = addr;
794 #endif
795
796 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
797         if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
798                 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
799         } else {
800                 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
801 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
802                 /* TLB refill */
803                 cvmx_l2c_lock_mem_region(ebase, 0x100);
804 #endif
805 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
806                 /* General exception */
807                 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
808 #endif
809 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
810                 /* Interrupt handler */
811                 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
812 #endif
813 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
814                 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
815                 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
816 #endif
817 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
818                 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
819 #endif
820         }
821 #endif
822
823         octeon_check_cpu_bist();
824
825         octeon_uart = octeon_get_boot_uart();
826
827 #ifdef CONFIG_SMP
828         octeon_write_lcd("LinuxSMP");
829 #else
830         octeon_write_lcd("Linux");
831 #endif
832
833         octeon_setup_delays();
834
835         /*
836          * BIST should always be enabled when doing a soft reset. L2
837          * Cache locking for instance is not cleared unless BIST is
838          * enabled.  Unfortunately due to a chip errata G-200 for
839          * Cn38XX and CN31XX, BIST msut be disabled on these parts.
840          */
841         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
842             OCTEON_IS_MODEL(OCTEON_CN31XX))
843                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
844         else
845                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
846
847         /* Default to 64MB in the simulator to speed things up */
848         if (octeon_is_simulation())
849                 MAX_MEMORY = 64ull << 20;
850
851         arg = strstr(arcs_cmdline, "mem=");
852         if (arg) {
853                 MAX_MEMORY = memparse(arg + 4, &p);
854                 if (MAX_MEMORY == 0)
855                         MAX_MEMORY = 32ull << 30;
856                 if (*p == '@')
857                         RESERVE_LOW_MEM = memparse(p + 1, &p);
858         }
859
860         arcs_cmdline[0] = 0;
861         argc = octeon_boot_desc_ptr->argc;
862         for (i = 0; i < argc; i++) {
863                 const char *arg =
864                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
865                 if ((strncmp(arg, "MEM=", 4) == 0) ||
866                     (strncmp(arg, "mem=", 4) == 0)) {
867                         MAX_MEMORY = memparse(arg + 4, &p);
868                         if (MAX_MEMORY == 0)
869                                 MAX_MEMORY = 32ull << 30;
870                         if (*p == '@')
871                                 RESERVE_LOW_MEM = memparse(p + 1, &p);
872 #ifdef CONFIG_KEXEC
873                 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
874                         crashk_size = memparse(arg+12, &p);
875                         if (*p == '@')
876                                 crashk_base = memparse(p+1, &p);
877                         strcat(arcs_cmdline, " ");
878                         strcat(arcs_cmdline, arg);
879                         /*
880                          * To do: switch parsing to new style, something like:
881                          * parse_crashkernel(arg, sysinfo->system_dram_size,
882                          *                &crashk_size, &crashk_base);
883                          */
884 #endif
885                 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
886                            sizeof(arcs_cmdline) - 1) {
887                         strcat(arcs_cmdline, " ");
888                         strcat(arcs_cmdline, arg);
889                 }
890         }
891
892         if (strstr(arcs_cmdline, "console=") == NULL) {
893 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
894                 strcat(arcs_cmdline, " console=ttyS0,115200");
895 #else
896                 if (octeon_uart == 1)
897                         strcat(arcs_cmdline, " console=ttyS1,115200");
898                 else
899                         strcat(arcs_cmdline, " console=ttyS0,115200");
900 #endif
901         }
902
903         mips_hpt_frequency = octeon_get_clock_rate();
904
905         octeon_init_cvmcount();
906
907         _machine_restart = octeon_restart;
908         _machine_halt = octeon_halt;
909
910 #ifdef CONFIG_KEXEC
911         _machine_kexec_shutdown = octeon_shutdown;
912         _machine_crash_shutdown = octeon_crash_shutdown;
913         _machine_kexec_prepare = octeon_kexec_prepare;
914 #endif
915
916         octeon_user_io_init();
917         octeon_setup_smp();
918 }
919
920 /* Exclude a single page from the regions obtained in plat_mem_setup. */
921 #ifndef CONFIG_CRASH_DUMP
922 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
923 {
924         if (addr > *mem && addr < *mem + *size) {
925                 u64 inc = addr - *mem;
926                 add_memory_region(*mem, inc, BOOT_MEM_RAM);
927                 *mem += inc;
928                 *size -= inc;
929         }
930
931         if (addr == *mem && *size > PAGE_SIZE) {
932                 *mem += PAGE_SIZE;
933                 *size -= PAGE_SIZE;
934         }
935 }
936 #endif /* CONFIG_CRASH_DUMP */
937
938 void __init plat_mem_setup(void)
939 {
940         uint64_t mem_alloc_size;
941         uint64_t total;
942         uint64_t crashk_end;
943 #ifndef CONFIG_CRASH_DUMP
944         int64_t memory;
945         uint64_t kernel_start;
946         uint64_t kernel_size;
947 #endif
948
949         total = 0;
950         crashk_end = 0;
951
952         /*
953          * The Mips memory init uses the first memory location for
954          * some memory vectors. When SPARSEMEM is in use, it doesn't
955          * verify that the size is big enough for the final
956          * vectors. Making the smallest chuck 4MB seems to be enough
957          * to consistently work.
958          */
959         mem_alloc_size = 4 << 20;
960         if (mem_alloc_size > MAX_MEMORY)
961                 mem_alloc_size = MAX_MEMORY;
962
963 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
964 #ifdef CONFIG_CRASH_DUMP
965         add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
966         total += MAX_MEMORY;
967 #else
968 #ifdef CONFIG_KEXEC
969         if (crashk_size > 0) {
970                 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
971                 crashk_end = crashk_base + crashk_size;
972         }
973 #endif
974         /*
975          * When allocating memory, we want incrementing addresses from
976          * bootmem_alloc so the code in add_memory_region can merge
977          * regions next to each other.
978          */
979         cvmx_bootmem_lock();
980         while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
981                 && (total < MAX_MEMORY)) {
982                 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
983                                                 __pa_symbol(&_end), -1,
984                                                 0x100000,
985                                                 CVMX_BOOTMEM_FLAG_NO_LOCKING);
986                 if (memory >= 0) {
987                         u64 size = mem_alloc_size;
988 #ifdef CONFIG_KEXEC
989                         uint64_t end;
990 #endif
991
992                         /*
993                          * exclude a page at the beginning and end of
994                          * the 256MB PCIe 'hole' so the kernel will not
995                          * try to allocate multi-page buffers that
996                          * span the discontinuity.
997                          */
998                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
999                                             &memory, &size);
1000                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1001                                             CVMX_PCIE_BAR1_PHYS_SIZE,
1002                                             &memory, &size);
1003 #ifdef CONFIG_KEXEC
1004                         end = memory + mem_alloc_size;
1005
1006                         /*
1007                          * This function automatically merges address regions
1008                          * next to each other if they are received in
1009                          * incrementing order
1010                          */
1011                         if (memory < crashk_base && end >  crashk_end) {
1012                                 /* region is fully in */
1013                                 add_memory_region(memory,
1014                                                   crashk_base - memory,
1015                                                   BOOT_MEM_RAM);
1016                                 total += crashk_base - memory;
1017                                 add_memory_region(crashk_end,
1018                                                   end - crashk_end,
1019                                                   BOOT_MEM_RAM);
1020                                 total += end - crashk_end;
1021                                 continue;
1022                         }
1023
1024                         if (memory >= crashk_base && end <= crashk_end)
1025                                 /*
1026                                  * Entire memory region is within the new
1027                                  *  kernel's memory, ignore it.
1028                                  */
1029                                 continue;
1030
1031                         if (memory > crashk_base && memory < crashk_end &&
1032                             end > crashk_end) {
1033                                 /*
1034                                  * Overlap with the beginning of the region,
1035                                  * reserve the beginning.
1036                                   */
1037                                 mem_alloc_size -= crashk_end - memory;
1038                                 memory = crashk_end;
1039                         } else if (memory < crashk_base && end > crashk_base &&
1040                                    end < crashk_end)
1041                                 /*
1042                                  * Overlap with the beginning of the region,
1043                                  * chop of end.
1044                                  */
1045                                 mem_alloc_size -= end - crashk_base;
1046 #endif
1047                         add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1048                         total += mem_alloc_size;
1049                         /* Recovering mem_alloc_size */
1050                         mem_alloc_size = 4 << 20;
1051                 } else {
1052                         break;
1053                 }
1054         }
1055         cvmx_bootmem_unlock();
1056         /* Add the memory region for the kernel. */
1057         kernel_start = (unsigned long) _text;
1058         kernel_size = _end - _text;
1059
1060         /* Adjust for physical offset. */
1061         kernel_start &= ~0xffffffff80000000ULL;
1062         add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1063 #endif /* CONFIG_CRASH_DUMP */
1064
1065 #ifdef CONFIG_CAVIUM_RESERVE32
1066         /*
1067          * Now that we've allocated the kernel memory it is safe to
1068          * free the reserved region. We free it here so that builtin
1069          * drivers can use the memory.
1070          */
1071         if (octeon_reserve32_memory)
1072                 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1073 #endif /* CONFIG_CAVIUM_RESERVE32 */
1074
1075         if (total == 0)
1076                 panic("Unable to allocate memory from "
1077                       "cvmx_bootmem_phy_alloc");
1078 }
1079
1080 /*
1081  * Emit one character to the boot UART.  Exported for use by the
1082  * watchdog timer.
1083  */
1084 int prom_putchar(char c)
1085 {
1086         uint64_t lsrval;
1087
1088         /* Spin until there is room */
1089         do {
1090                 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1091         } while ((lsrval & 0x20) == 0);
1092
1093         /* Write the byte */
1094         cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1095         return 1;
1096 }
1097 EXPORT_SYMBOL(prom_putchar);
1098
1099 void __init prom_free_prom_memory(void)
1100 {
1101         if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1102                 /* Check for presence of Core-14449 fix.  */
1103                 u32 insn;
1104                 u32 *foo;
1105
1106                 foo = &insn;
1107
1108                 asm volatile("# before" : : : "memory");
1109                 prefetch(foo);
1110                 asm volatile(
1111                         ".set push\n\t"
1112                         ".set noreorder\n\t"
1113                         "bal 1f\n\t"
1114                         "nop\n"
1115                         "1:\tlw %0,-12($31)\n\t"
1116                         ".set pop\n\t"
1117                         : "=r" (insn) : : "$31", "memory");
1118
1119                 if ((insn >> 26) != 0x33)
1120                         panic("No PREF instruction at Core-14449 probe point.");
1121
1122                 if (((insn >> 16) & 0x1f) != 28)
1123                         panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1124                               "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1125                               insn);
1126         }
1127 }
1128
1129 void __init octeon_fill_mac_addresses(void);
1130 int octeon_prune_device_tree(void);
1131
1132 extern const char __appended_dtb;
1133 extern const char __dtb_octeon_3xxx_begin;
1134 extern const char __dtb_octeon_68xx_begin;
1135 void __init device_tree_init(void)
1136 {
1137         const void *fdt;
1138         bool do_prune;
1139         bool fill_mac;
1140
1141 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1142         if (!fdt_check_header(&__appended_dtb)) {
1143                 fdt = &__appended_dtb;
1144                 do_prune = false;
1145                 fill_mac = true;
1146                 pr_info("Using appended Device Tree.\n");
1147         } else
1148 #endif
1149         if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1150                 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1151                 if (fdt_check_header(fdt))
1152                         panic("Corrupt Device Tree passed to kernel.");
1153                 do_prune = false;
1154                 fill_mac = false;
1155                 pr_info("Using passed Device Tree.\n");
1156         } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1157                 fdt = &__dtb_octeon_68xx_begin;
1158                 do_prune = true;
1159                 fill_mac = true;
1160         } else {
1161                 fdt = &__dtb_octeon_3xxx_begin;
1162                 do_prune = true;
1163                 fill_mac = true;
1164         }
1165
1166         initial_boot_params = (void *)fdt;
1167
1168         if (do_prune) {
1169                 octeon_prune_device_tree();
1170                 pr_info("Using internal Device Tree.\n");
1171         }
1172         if (fill_mac)
1173                 octeon_fill_mac_addresses();
1174         unflatten_and_copy_device_tree();
1175         init_octeon_system_type();
1176 }
1177
1178 static int __initdata disable_octeon_edac_p;
1179
1180 static int __init disable_octeon_edac(char *str)
1181 {
1182         disable_octeon_edac_p = 1;
1183         return 0;
1184 }
1185 early_param("disable_octeon_edac", disable_octeon_edac);
1186
1187 static char *edac_device_names[] = {
1188         "octeon_l2c_edac",
1189         "octeon_pc_edac",
1190 };
1191
1192 static int __init edac_devinit(void)
1193 {
1194         struct platform_device *dev;
1195         int i, err = 0;
1196         int num_lmc;
1197         char *name;
1198
1199         if (disable_octeon_edac_p)
1200                 return 0;
1201
1202         for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1203                 name = edac_device_names[i];
1204                 dev = platform_device_register_simple(name, -1, NULL, 0);
1205                 if (IS_ERR(dev)) {
1206                         pr_err("Registration of %s failed!\n", name);
1207                         err = PTR_ERR(dev);
1208                 }
1209         }
1210
1211         num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1212                 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1213         for (i = 0; i < num_lmc; i++) {
1214                 dev = platform_device_register_simple("octeon_lmc_edac",
1215                                                       i, NULL, 0);
1216                 if (IS_ERR(dev)) {
1217                         pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1218                         err = PTR_ERR(dev);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224 device_initcall(edac_devinit);
1225
1226 static void __initdata *octeon_dummy_iospace;
1227
1228 static int __init octeon_no_pci_init(void)
1229 {
1230         /*
1231          * Initially assume there is no PCI. The PCI/PCIe platform code will
1232          * later re-initialize these to correct values if they are present.
1233          */
1234         octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1235         set_io_port_base((unsigned long)octeon_dummy_iospace);
1236         ioport_resource.start = MAX_RESOURCE;
1237         ioport_resource.end = 0;
1238         return 0;
1239 }
1240 core_initcall(octeon_no_pci_init);
1241
1242 static int __init octeon_no_pci_release(void)
1243 {
1244         /*
1245          * Release the allocated memory if a real IO space is there.
1246          */
1247         if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1248                 vfree(octeon_dummy_iospace);
1249         return 0;
1250 }
1251 late_initcall(octeon_no_pci_release);