Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / mips / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35
36 #include "probes-common.h"
37
38 static const union mips_instruction breakpoint_insn = {
39         .b_format = {
40                 .opcode = spec_op,
41                 .code = BRK_KPROBE_BP,
42                 .func = break_op
43         }
44 };
45
46 static const union mips_instruction breakpoint2_insn = {
47         .b_format = {
48                 .opcode = spec_op,
49                 .code = BRK_KPROBE_SSTEPBP,
50                 .func = break_op
51         }
52 };
53
54 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
55 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
56
57 static int __kprobes insn_has_delayslot(union mips_instruction insn)
58 {
59         return __insn_has_delay_slot(insn);
60 }
61
62 /*
63  * insn_has_ll_or_sc function checks whether instruction is ll or sc
64  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
65  * so we need to prevent it and refuse kprobes insertion for such
66  * instructions; cannot do much about breakpoint in the middle of
67  * ll/sc pair; it is upto user to avoid those places
68  */
69 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
70 {
71         int ret = 0;
72
73         switch (insn.i_format.opcode) {
74         case ll_op:
75         case lld_op:
76         case sc_op:
77         case scd_op:
78                 ret = 1;
79                 break;
80         default:
81                 break;
82         }
83         return ret;
84 }
85
86 int __kprobes arch_prepare_kprobe(struct kprobe *p)
87 {
88         union mips_instruction insn;
89         union mips_instruction prev_insn;
90         int ret = 0;
91
92         insn = p->addr[0];
93
94         if (insn_has_ll_or_sc(insn)) {
95                 pr_notice("Kprobes for ll and sc instructions are not"
96                           "supported\n");
97                 ret = -EINVAL;
98                 goto out;
99         }
100
101         if ((probe_kernel_read(&prev_insn, p->addr - 1,
102                                 sizeof(mips_instruction)) == 0) &&
103                                 insn_has_delayslot(prev_insn)) {
104                 pr_notice("Kprobes for branch delayslot are not supported\n");
105                 ret = -EINVAL;
106                 goto out;
107         }
108
109         if (__insn_is_compact_branch(insn)) {
110                 pr_notice("Kprobes for compact branches are not supported\n");
111                 ret = -EINVAL;
112                 goto out;
113         }
114
115         /* insn: must be on special executable page on mips. */
116         p->ainsn.insn = get_insn_slot();
117         if (!p->ainsn.insn) {
118                 ret = -ENOMEM;
119                 goto out;
120         }
121
122         /*
123          * In the kprobe->ainsn.insn[] array we store the original
124          * instruction at index zero and a break trap instruction at
125          * index one.
126          *
127          * On MIPS arch if the instruction at probed address is a
128          * branch instruction, we need to execute the instruction at
129          * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130          * doesn't have single stepping support, the BD instruction can
131          * not be executed in-line and it would be executed on SSOL slot
132          * using a normal breakpoint instruction in the next slot.
133          * So, read the instruction and save it for later execution.
134          */
135         if (insn_has_delayslot(insn))
136                 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137         else
138                 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
140         p->ainsn.insn[1] = breakpoint2_insn;
141         p->opcode = *p->addr;
142
143 out:
144         return ret;
145 }
146
147 void __kprobes arch_arm_kprobe(struct kprobe *p)
148 {
149         *p->addr = breakpoint_insn;
150         flush_insn_slot(p);
151 }
152
153 void __kprobes arch_disarm_kprobe(struct kprobe *p)
154 {
155         *p->addr = p->opcode;
156         flush_insn_slot(p);
157 }
158
159 void __kprobes arch_remove_kprobe(struct kprobe *p)
160 {
161         if (p->ainsn.insn) {
162                 free_insn_slot(p->ainsn.insn, 0);
163                 p->ainsn.insn = NULL;
164         }
165 }
166
167 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168 {
169         kcb->prev_kprobe.kp = kprobe_running();
170         kcb->prev_kprobe.status = kcb->kprobe_status;
171         kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172         kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173         kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174 }
175
176 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177 {
178         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179         kcb->kprobe_status = kcb->prev_kprobe.status;
180         kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181         kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182         kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183 }
184
185 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186                                struct kprobe_ctlblk *kcb)
187 {
188         __this_cpu_write(current_kprobe, p);
189         kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190         kcb->kprobe_saved_epc = regs->cp0_epc;
191 }
192
193 /**
194  * evaluate_branch_instrucion -
195  *
196  * Evaluate the branch instruction at probed address during probe hit. The
197  * result of evaluation would be the updated epc. The insturction in delayslot
198  * would actually be single stepped using a normal breakpoint) on SSOL slot.
199  *
200  * The result is also saved in the kprobe control block for later use,
201  * in case we need to execute the delayslot instruction. The latter will be
202  * false for NOP instruction in dealyslot and the branch-likely instructions
203  * when the branch is taken. And for those cases we set a flag as
204  * SKIP_DELAYSLOT in the kprobe control block
205  */
206 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207                                         struct kprobe_ctlblk *kcb)
208 {
209         union mips_instruction insn = p->opcode;
210         long epc;
211         int ret = 0;
212
213         epc = regs->cp0_epc;
214         if (epc & 3)
215                 goto unaligned;
216
217         if (p->ainsn.insn->word == 0)
218                 kcb->flags |= SKIP_DELAYSLOT;
219         else
220                 kcb->flags &= ~SKIP_DELAYSLOT;
221
222         ret = __compute_return_epc_for_insn(regs, insn);
223         if (ret < 0)
224                 return ret;
225
226         if (ret == BRANCH_LIKELY_TAKEN)
227                 kcb->flags |= SKIP_DELAYSLOT;
228
229         kcb->target_epc = regs->cp0_epc;
230
231         return 0;
232
233 unaligned:
234         pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235         force_sig(SIGBUS, current);
236         return -EFAULT;
237
238 }
239
240 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241                                                 struct kprobe_ctlblk *kcb)
242 {
243         int ret = 0;
244
245         regs->cp0_status &= ~ST0_IE;
246
247         /* single step inline if the instruction is a break */
248         if (p->opcode.word == breakpoint_insn.word ||
249             p->opcode.word == breakpoint2_insn.word)
250                 regs->cp0_epc = (unsigned long)p->addr;
251         else if (insn_has_delayslot(p->opcode)) {
252                 ret = evaluate_branch_instruction(p, regs, kcb);
253                 if (ret < 0) {
254                         pr_notice("Kprobes: Error in evaluating branch\n");
255                         return;
256                 }
257         }
258         regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259 }
260
261 /*
262  * Called after single-stepping.  p->addr is the address of the
263  * instruction whose first byte has been replaced by the "break 0"
264  * instruction.  To avoid the SMP problems that can occur when we
265  * temporarily put back the original opcode to single-step, we
266  * single-stepped a copy of the instruction.  The address of this
267  * copy is p->ainsn.insn.
268  *
269  * This function prepares to return from the post-single-step
270  * breakpoint trap. In case of branch instructions, the target
271  * epc to be restored.
272  */
273 static void __kprobes resume_execution(struct kprobe *p,
274                                        struct pt_regs *regs,
275                                        struct kprobe_ctlblk *kcb)
276 {
277         if (insn_has_delayslot(p->opcode))
278                 regs->cp0_epc = kcb->target_epc;
279         else {
280                 unsigned long orig_epc = kcb->kprobe_saved_epc;
281                 regs->cp0_epc = orig_epc + 4;
282         }
283 }
284
285 static int __kprobes kprobe_handler(struct pt_regs *regs)
286 {
287         struct kprobe *p;
288         int ret = 0;
289         kprobe_opcode_t *addr;
290         struct kprobe_ctlblk *kcb;
291
292         addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294         /*
295          * We don't want to be preempted for the entire
296          * duration of kprobe processing
297          */
298         preempt_disable();
299         kcb = get_kprobe_ctlblk();
300
301         /* Check we're not actually recursing */
302         if (kprobe_running()) {
303                 p = get_kprobe(addr);
304                 if (p) {
305                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
306                             p->ainsn.insn->word == breakpoint_insn.word) {
307                                 regs->cp0_status &= ~ST0_IE;
308                                 regs->cp0_status |= kcb->kprobe_saved_SR;
309                                 goto no_kprobe;
310                         }
311                         /*
312                          * We have reentered the kprobe_handler(), since
313                          * another probe was hit while within the handler.
314                          * We here save the original kprobes variables and
315                          * just single step on the instruction of the new probe
316                          * without calling any user handlers.
317                          */
318                         save_previous_kprobe(kcb);
319                         set_current_kprobe(p, regs, kcb);
320                         kprobes_inc_nmissed_count(p);
321                         prepare_singlestep(p, regs, kcb);
322                         kcb->kprobe_status = KPROBE_REENTER;
323                         if (kcb->flags & SKIP_DELAYSLOT) {
324                                 resume_execution(p, regs, kcb);
325                                 restore_previous_kprobe(kcb);
326                                 preempt_enable_no_resched();
327                         }
328                         return 1;
329                 } else {
330                         if (addr->word != breakpoint_insn.word) {
331                                 /*
332                                  * The breakpoint instruction was removed by
333                                  * another cpu right after we hit, no further
334                                  * handling of this interrupt is appropriate
335                                  */
336                                 ret = 1;
337                                 goto no_kprobe;
338                         }
339                         p = __this_cpu_read(current_kprobe);
340                         if (p->break_handler && p->break_handler(p, regs))
341                                 goto ss_probe;
342                 }
343                 goto no_kprobe;
344         }
345
346         p = get_kprobe(addr);
347         if (!p) {
348                 if (addr->word != breakpoint_insn.word) {
349                         /*
350                          * The breakpoint instruction was removed right
351                          * after we hit it.  Another cpu has removed
352                          * either a probepoint or a debugger breakpoint
353                          * at this address.  In either case, no further
354                          * handling of this interrupt is appropriate.
355                          */
356                         ret = 1;
357                 }
358                 /* Not one of ours: let kernel handle it */
359                 goto no_kprobe;
360         }
361
362         set_current_kprobe(p, regs, kcb);
363         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365         if (p->pre_handler && p->pre_handler(p, regs)) {
366                 /* handler has already set things up, so skip ss setup */
367                 return 1;
368         }
369
370 ss_probe:
371         prepare_singlestep(p, regs, kcb);
372         if (kcb->flags & SKIP_DELAYSLOT) {
373                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
374                 if (p->post_handler)
375                         p->post_handler(p, regs, 0);
376                 resume_execution(p, regs, kcb);
377                 preempt_enable_no_resched();
378         } else
379                 kcb->kprobe_status = KPROBE_HIT_SS;
380
381         return 1;
382
383 no_kprobe:
384         preempt_enable_no_resched();
385         return ret;
386
387 }
388
389 static inline int post_kprobe_handler(struct pt_regs *regs)
390 {
391         struct kprobe *cur = kprobe_running();
392         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394         if (!cur)
395                 return 0;
396
397         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
399                 cur->post_handler(cur, regs, 0);
400         }
401
402         resume_execution(cur, regs, kcb);
403
404         regs->cp0_status |= kcb->kprobe_saved_SR;
405
406         /* Restore back the original saved kprobes variables and continue. */
407         if (kcb->kprobe_status == KPROBE_REENTER) {
408                 restore_previous_kprobe(kcb);
409                 goto out;
410         }
411         reset_current_kprobe();
412 out:
413         preempt_enable_no_resched();
414
415         return 1;
416 }
417
418 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419 {
420         struct kprobe *cur = kprobe_running();
421         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422
423         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424                 return 1;
425
426         if (kcb->kprobe_status & KPROBE_HIT_SS) {
427                 resume_execution(cur, regs, kcb);
428                 regs->cp0_status |= kcb->kprobe_old_SR;
429
430                 reset_current_kprobe();
431                 preempt_enable_no_resched();
432         }
433         return 0;
434 }
435
436 /*
437  * Wrapper routine for handling exceptions.
438  */
439 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440                                        unsigned long val, void *data)
441 {
442
443         struct die_args *args = (struct die_args *)data;
444         int ret = NOTIFY_DONE;
445
446         switch (val) {
447         case DIE_BREAK:
448                 if (kprobe_handler(args->regs))
449                         ret = NOTIFY_STOP;
450                 break;
451         case DIE_SSTEPBP:
452                 if (post_kprobe_handler(args->regs))
453                         ret = NOTIFY_STOP;
454                 break;
455
456         case DIE_PAGE_FAULT:
457                 /* kprobe_running() needs smp_processor_id() */
458                 preempt_disable();
459
460                 if (kprobe_running()
461                     && kprobe_fault_handler(args->regs, args->trapnr))
462                         ret = NOTIFY_STOP;
463                 preempt_enable();
464                 break;
465         default:
466                 break;
467         }
468         return ret;
469 }
470
471 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472 {
473         struct jprobe *jp = container_of(p, struct jprobe, kp);
474         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475
476         kcb->jprobe_saved_regs = *regs;
477         kcb->jprobe_saved_sp = regs->regs[29];
478
479         memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480                MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481
482         regs->cp0_epc = (unsigned long)(jp->entry);
483
484         return 1;
485 }
486
487 /* Defined in the inline asm below. */
488 void jprobe_return_end(void);
489
490 void __kprobes jprobe_return(void)
491 {
492         /* Assembler quirk necessitates this '0,code' business.  */
493         asm volatile(
494                 "break 0,%0\n\t"
495                 ".globl jprobe_return_end\n"
496                 "jprobe_return_end:\n"
497                 : : "n" (BRK_KPROBE_BP) : "memory");
498 }
499
500 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501 {
502         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504         if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505             regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506                 *regs = kcb->jprobe_saved_regs;
507                 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508                        MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509                 preempt_enable_no_resched();
510
511                 return 1;
512         }
513         return 0;
514 }
515
516 /*
517  * Function return probe trampoline:
518  *      - init_kprobes() establishes a probepoint here
519  *      - When the probed function returns, this probe causes the
520  *        handlers to fire
521  */
522 static void __used kretprobe_trampoline_holder(void)
523 {
524         asm volatile(
525                 ".set push\n\t"
526                 /* Keep the assembler from reordering and placing JR here. */
527                 ".set noreorder\n\t"
528                 "nop\n\t"
529                 ".global kretprobe_trampoline\n"
530                 "kretprobe_trampoline:\n\t"
531                 "nop\n\t"
532                 ".set pop"
533                 : : : "memory");
534 }
535
536 void kretprobe_trampoline(void);
537
538 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539                                       struct pt_regs *regs)
540 {
541         ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542
543         /* Replace the return addr with trampoline addr */
544         regs->regs[31] = (unsigned long)kretprobe_trampoline;
545 }
546
547 /*
548  * Called when the probe at kretprobe trampoline is hit
549  */
550 static int __kprobes trampoline_probe_handler(struct kprobe *p,
551                                                 struct pt_regs *regs)
552 {
553         struct kretprobe_instance *ri = NULL;
554         struct hlist_head *head, empty_rp;
555         struct hlist_node *tmp;
556         unsigned long flags, orig_ret_address = 0;
557         unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558
559         INIT_HLIST_HEAD(&empty_rp);
560         kretprobe_hash_lock(current, &head, &flags);
561
562         /*
563          * It is possible to have multiple instances associated with a given
564          * task either because an multiple functions in the call path
565          * have a return probe installed on them, and/or more than one return
566          * return probe was registered for a target function.
567          *
568          * We can handle this because:
569          *     - instances are always inserted at the head of the list
570          *     - when multiple return probes are registered for the same
571          *       function, the first instance's ret_addr will point to the
572          *       real return address, and all the rest will point to
573          *       kretprobe_trampoline
574          */
575         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576                 if (ri->task != current)
577                         /* another task is sharing our hash bucket */
578                         continue;
579
580                 if (ri->rp && ri->rp->handler)
581                         ri->rp->handler(ri, regs);
582
583                 orig_ret_address = (unsigned long)ri->ret_addr;
584                 recycle_rp_inst(ri, &empty_rp);
585
586                 if (orig_ret_address != trampoline_address)
587                         /*
588                          * This is the real return address. Any other
589                          * instances associated with this task are for
590                          * other calls deeper on the call stack
591                          */
592                         break;
593         }
594
595         kretprobe_assert(ri, orig_ret_address, trampoline_address);
596         instruction_pointer(regs) = orig_ret_address;
597
598         reset_current_kprobe();
599         kretprobe_hash_unlock(current, &flags);
600         preempt_enable_no_resched();
601
602         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603                 hlist_del(&ri->hlist);
604                 kfree(ri);
605         }
606         /*
607          * By returning a non-zero value, we are telling
608          * kprobe_handler() that we don't want the post_handler
609          * to run (and have re-enabled preemption)
610          */
611         return 1;
612 }
613
614 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615 {
616         if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617                 return 1;
618
619         return 0;
620 }
621
622 static struct kprobe trampoline_p = {
623         .addr = (kprobe_opcode_t *)kretprobe_trampoline,
624         .pre_handler = trampoline_probe_handler
625 };
626
627 int __init arch_init_kprobes(void)
628 {
629         return register_kprobe(&trampoline_p);
630 }