Merge tag 'pm+acpi-3.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[cascardo/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34 struct cpu_hw_events {
35         /* Array of events on this cpu. */
36         struct perf_event       *events[MIPS_MAX_HWEVENTS];
37
38         /*
39          * Set the bit (indexed by the counter number) when the counter
40          * is used for an event.
41          */
42         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44         /*
45          * Software copy of the control register for each performance counter.
46          * MIPS CPUs vary in performance counters. They use this differently,
47          * and even may not use it.
48          */
49         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52         .saved_ctrl = {0},
53 };
54
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57         unsigned int event_id;
58         /*
59          * MIPS performance counters are indexed starting from 0.
60          * CNTR_EVEN indicates the indexes of the counters to be used are
61          * even numbers.
62          */
63         unsigned int cntr_mask;
64         #define CNTR_EVEN       0x55555555
65         #define CNTR_ODD        0xaaaaaaaa
66         #define CNTR_ALL        0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68         enum {
69                 T  = 0,
70                 V  = 1,
71                 P  = 2,
72         } range;
73 #else
74         #define T
75         #define V
76         #define P
77 #endif
78 };
79
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 struct mips_pmu {
86         u64             max_period;
87         u64             valid_count;
88         u64             overflow;
89         const char      *name;
90         int             irq;
91         u64             (*read_counter)(unsigned int idx);
92         void            (*write_counter)(unsigned int idx, u64 val);
93         const struct mips_perf_event *(*map_raw_event)(u64 config);
94         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95         const struct mips_perf_event (*cache_event_map)
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99         unsigned int    num_counters;
100 };
101
102 static struct mips_pmu mipspmu;
103
104 #define M_CONFIG1_PC    (1 << 4)
105
106 #define M_PERFCTL_EXL                   (1      <<  0)
107 #define M_PERFCTL_KERNEL                (1      <<  1)
108 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
109 #define M_PERFCTL_USER                  (1      <<  3)
110 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
111 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
112 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
113
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter)         0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119
120 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
121 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
122 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
124 #define M_PERFCTL_WIDE                  (1      << 30)
125 #define M_PERFCTL_MORE                  (1      << 31)
126 #define M_PERFCTL_TC                    (1      << 30)
127
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
129                                         M_PERFCTL_KERNEL |              \
130                                         M_PERFCTL_USER |                \
131                                         M_PERFCTL_SUPERVISOR |          \
132                                         M_PERFCTL_INTERRUPT_ENABLE)
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK           0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK            0xfe0
140
141
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144
145 static DEFINE_RWLOCK(pmuint_rwlock);
146
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
149                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
156                          0 : smp_processor_id())
157 #endif
158
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162         if (num_possible_cpus() > 1)
163                 return 1;
164
165         return 0;
166 }
167
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170         return counters >> vpe_shift();
171 }
172
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id()        0
175
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185         if (vpe_id() == 1)
186                 idx = (idx + 2) & 3;
187         return idx;
188 }
189
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192         idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194         switch (idx) {
195         case 0:
196                 /*
197                  * The counters are unsigned, we must cast to truncate
198                  * off the high bits.
199                  */
200                 return (u32)read_c0_perfcntr0();
201         case 1:
202                 return (u32)read_c0_perfcntr1();
203         case 2:
204                 return (u32)read_c0_perfcntr2();
205         case 3:
206                 return (u32)read_c0_perfcntr3();
207         default:
208                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209                 return 0;
210         }
211 }
212
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215         idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217         switch (idx) {
218         case 0:
219                 return read_c0_perfcntr0_64();
220         case 1:
221                 return read_c0_perfcntr1_64();
222         case 2:
223                 return read_c0_perfcntr2_64();
224         case 3:
225                 return read_c0_perfcntr3_64();
226         default:
227                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228                 return 0;
229         }
230 }
231
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234         idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236         switch (idx) {
237         case 0:
238                 write_c0_perfcntr0(val);
239                 return;
240         case 1:
241                 write_c0_perfcntr1(val);
242                 return;
243         case 2:
244                 write_c0_perfcntr2(val);
245                 return;
246         case 3:
247                 write_c0_perfcntr3(val);
248                 return;
249         }
250 }
251
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254         idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256         switch (idx) {
257         case 0:
258                 write_c0_perfcntr0_64(val);
259                 return;
260         case 1:
261                 write_c0_perfcntr1_64(val);
262                 return;
263         case 2:
264                 write_c0_perfcntr2_64(val);
265                 return;
266         case 3:
267                 write_c0_perfcntr3_64(val);
268                 return;
269         }
270 }
271
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274         idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276         switch (idx) {
277         case 0:
278                 return read_c0_perfctrl0();
279         case 1:
280                 return read_c0_perfctrl1();
281         case 2:
282                 return read_c0_perfctrl2();
283         case 3:
284                 return read_c0_perfctrl3();
285         default:
286                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287                 return 0;
288         }
289 }
290
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293         idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295         switch (idx) {
296         case 0:
297                 write_c0_perfctrl0(val);
298                 return;
299         case 1:
300                 write_c0_perfctrl1(val);
301                 return;
302         case 2:
303                 write_c0_perfctrl2(val);
304                 return;
305         case 3:
306                 write_c0_perfctrl3(val);
307                 return;
308         }
309 }
310
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312                                     struct hw_perf_event *hwc)
313 {
314         int i;
315
316         /*
317          * We only need to care the counter mask. The range has been
318          * checked definitely.
319          */
320         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323                 /*
324                  * Note that some MIPS perf events can be counted by both
325                  * even and odd counters, wheresas many other are only by
326                  * even _or_ odd counters. This introduces an issue that
327                  * when the former kind of event takes the counter the
328                  * latter kind of event wants to use, then the "counter
329                  * allocation" for the latter event will fail. In fact if
330                  * they can be dynamically swapped, they both feel happy.
331                  * But here we leave this issue alone for now.
332                  */
333                 if (test_bit(i, &cntr_mask) &&
334                         !test_and_set_bit(i, cpuc->used_mask))
335                         return i;
336         }
337
338         return -EAGAIN;
339 }
340
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344
345         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349                 /* Make sure interrupt enabled. */
350                 M_PERFCTL_INTERRUPT_ENABLE;
351         if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352                 /* enable the counter for the calling thread */
353                 cpuc->saved_ctrl[idx] |=
354                         (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356         /*
357          * We do not actually let the counter run. Leave it until start().
358          */
359 }
360
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364         unsigned long flags;
365
366         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368         local_irq_save(flags);
369         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372         local_irq_restore(flags);
373 }
374
375 static int mipspmu_event_set_period(struct perf_event *event,
376                                     struct hw_perf_event *hwc,
377                                     int idx)
378 {
379         u64 left = local64_read(&hwc->period_left);
380         u64 period = hwc->sample_period;
381         int ret = 0;
382
383         if (unlikely((left + period) & (1ULL << 63))) {
384                 /* left underflowed by more than period. */
385                 left = period;
386                 local64_set(&hwc->period_left, left);
387                 hwc->last_period = period;
388                 ret = 1;
389         } else  if (unlikely((left + period) <= period)) {
390                 /* left underflowed by less than period. */
391                 left += period;
392                 local64_set(&hwc->period_left, left);
393                 hwc->last_period = period;
394                 ret = 1;
395         }
396
397         if (left > mipspmu.max_period) {
398                 left = mipspmu.max_period;
399                 local64_set(&hwc->period_left, left);
400         }
401
402         local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404         mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406         perf_event_update_userpage(event);
407
408         return ret;
409 }
410
411 static void mipspmu_event_update(struct perf_event *event,
412                                  struct hw_perf_event *hwc,
413                                  int idx)
414 {
415         u64 prev_raw_count, new_raw_count;
416         u64 delta;
417
418 again:
419         prev_raw_count = local64_read(&hwc->prev_count);
420         new_raw_count = mipspmu.read_counter(idx);
421
422         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423                                 new_raw_count) != prev_raw_count)
424                 goto again;
425
426         delta = new_raw_count - prev_raw_count;
427
428         local64_add(delta, &event->count);
429         local64_sub(delta, &hwc->period_left);
430 }
431
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434         struct hw_perf_event *hwc = &event->hw;
435
436         if (flags & PERF_EF_RELOAD)
437                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439         hwc->state = 0;
440
441         /* Set the period for the event. */
442         mipspmu_event_set_period(event, hwc, hwc->idx);
443
444         /* Enable the event. */
445         mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450         struct hw_perf_event *hwc = &event->hw;
451
452         if (!(hwc->state & PERF_HES_STOPPED)) {
453                 /* We are working on a local event. */
454                 mipsxx_pmu_disable_event(hwc->idx);
455                 barrier();
456                 mipspmu_event_update(event, hwc, hwc->idx);
457                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458         }
459 }
460
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464         struct hw_perf_event *hwc = &event->hw;
465         int idx;
466         int err = 0;
467
468         perf_pmu_disable(event->pmu);
469
470         /* To look for a free counter for this event. */
471         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472         if (idx < 0) {
473                 err = idx;
474                 goto out;
475         }
476
477         /*
478          * If there is an event in the counter we are going to use then
479          * make sure it is disabled.
480          */
481         event->hw.idx = idx;
482         mipsxx_pmu_disable_event(idx);
483         cpuc->events[idx] = event;
484
485         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486         if (flags & PERF_EF_START)
487                 mipspmu_start(event, PERF_EF_RELOAD);
488
489         /* Propagate our changes to the userspace mapping. */
490         perf_event_update_userpage(event);
491
492 out:
493         perf_pmu_enable(event->pmu);
494         return err;
495 }
496
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500         struct hw_perf_event *hwc = &event->hw;
501         int idx = hwc->idx;
502
503         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505         mipspmu_stop(event, PERF_EF_UPDATE);
506         cpuc->events[idx] = NULL;
507         clear_bit(idx, cpuc->used_mask);
508
509         perf_event_update_userpage(event);
510 }
511
512 static void mipspmu_read(struct perf_event *event)
513 {
514         struct hw_perf_event *hwc = &event->hw;
515
516         /* Don't read disabled counters! */
517         if (hwc->idx < 0)
518                 return;
519
520         mipspmu_event_update(event, hwc, hwc->idx);
521 }
522
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526         write_unlock(&pmuint_rwlock);
527 #endif
528         resume_local_counters();
529 }
530
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544         pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546         write_lock(&pmuint_rwlock);
547 #endif
548 }
549
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553
554 static int mipspmu_get_irq(void)
555 {
556         int err;
557
558         if (mipspmu.irq >= 0) {
559                 /* Request my own irq handler. */
560                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561                         IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD,
562                         "mips_perf_pmu", NULL);
563                 if (err) {
564                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
565                                 mipspmu.irq);
566                 }
567         } else if (cp0_perfcount_irq < 0) {
568                 /*
569                  * We are sharing the irq number with the timer interrupt.
570                  */
571                 save_perf_irq = perf_irq;
572                 perf_irq = mipsxx_pmu_handle_shared_irq;
573                 err = 0;
574         } else {
575                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
576                 err = -ENOENT;
577         }
578
579         return err;
580 }
581
582 static void mipspmu_free_irq(void)
583 {
584         if (mipspmu.irq >= 0)
585                 free_irq(mipspmu.irq, NULL);
586         else if (cp0_perfcount_irq < 0)
587                 perf_irq = save_perf_irq;
588 }
589
590 /*
591  * mipsxx/rm9000/loongson2 have different performance counters, they have
592  * specific low-level init routines.
593  */
594 static void reset_counters(void *arg);
595 static int __hw_perf_event_init(struct perf_event *event);
596
597 static void hw_perf_event_destroy(struct perf_event *event)
598 {
599         if (atomic_dec_and_mutex_lock(&active_events,
600                                 &pmu_reserve_mutex)) {
601                 /*
602                  * We must not call the destroy function with interrupts
603                  * disabled.
604                  */
605                 on_each_cpu(reset_counters,
606                         (void *)(long)mipspmu.num_counters, 1);
607                 mipspmu_free_irq();
608                 mutex_unlock(&pmu_reserve_mutex);
609         }
610 }
611
612 static int mipspmu_event_init(struct perf_event *event)
613 {
614         int err = 0;
615
616         /* does not support taken branch sampling */
617         if (has_branch_stack(event))
618                 return -EOPNOTSUPP;
619
620         switch (event->attr.type) {
621         case PERF_TYPE_RAW:
622         case PERF_TYPE_HARDWARE:
623         case PERF_TYPE_HW_CACHE:
624                 break;
625
626         default:
627                 return -ENOENT;
628         }
629
630         if (event->cpu >= nr_cpumask_bits ||
631             (event->cpu >= 0 && !cpu_online(event->cpu)))
632                 return -ENODEV;
633
634         if (!atomic_inc_not_zero(&active_events)) {
635                 mutex_lock(&pmu_reserve_mutex);
636                 if (atomic_read(&active_events) == 0)
637                         err = mipspmu_get_irq();
638
639                 if (!err)
640                         atomic_inc(&active_events);
641                 mutex_unlock(&pmu_reserve_mutex);
642         }
643
644         if (err)
645                 return err;
646
647         return __hw_perf_event_init(event);
648 }
649
650 static struct pmu pmu = {
651         .pmu_enable     = mipspmu_enable,
652         .pmu_disable    = mipspmu_disable,
653         .event_init     = mipspmu_event_init,
654         .add            = mipspmu_add,
655         .del            = mipspmu_del,
656         .start          = mipspmu_start,
657         .stop           = mipspmu_stop,
658         .read           = mipspmu_read,
659 };
660
661 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
662 {
663 /*
664  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
665  * event_id.
666  */
667 #ifdef CONFIG_MIPS_MT_SMP
668         return ((unsigned int)pev->range << 24) |
669                 (pev->cntr_mask & 0xffff00) |
670                 (pev->event_id & 0xff);
671 #else
672         return (pev->cntr_mask & 0xffff00) |
673                 (pev->event_id & 0xff);
674 #endif
675 }
676
677 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
678 {
679
680         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
681                 return ERR_PTR(-EOPNOTSUPP);
682         return &(*mipspmu.general_event_map)[idx];
683 }
684
685 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
686 {
687         unsigned int cache_type, cache_op, cache_result;
688         const struct mips_perf_event *pev;
689
690         cache_type = (config >> 0) & 0xff;
691         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
692                 return ERR_PTR(-EINVAL);
693
694         cache_op = (config >> 8) & 0xff;
695         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
696                 return ERR_PTR(-EINVAL);
697
698         cache_result = (config >> 16) & 0xff;
699         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
700                 return ERR_PTR(-EINVAL);
701
702         pev = &((*mipspmu.cache_event_map)
703                                         [cache_type]
704                                         [cache_op]
705                                         [cache_result]);
706
707         if (pev->cntr_mask == 0)
708                 return ERR_PTR(-EOPNOTSUPP);
709
710         return pev;
711
712 }
713
714 static int validate_group(struct perf_event *event)
715 {
716         struct perf_event *sibling, *leader = event->group_leader;
717         struct cpu_hw_events fake_cpuc;
718
719         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
720
721         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
722                 return -EINVAL;
723
724         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
725                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
726                         return -EINVAL;
727         }
728
729         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
730                 return -EINVAL;
731
732         return 0;
733 }
734
735 /* This is needed by specific irq handlers in perf_event_*.c */
736 static void handle_associated_event(struct cpu_hw_events *cpuc,
737                                     int idx, struct perf_sample_data *data,
738                                     struct pt_regs *regs)
739 {
740         struct perf_event *event = cpuc->events[idx];
741         struct hw_perf_event *hwc = &event->hw;
742
743         mipspmu_event_update(event, hwc, idx);
744         data->period = event->hw.last_period;
745         if (!mipspmu_event_set_period(event, hwc, idx))
746                 return;
747
748         if (perf_event_overflow(event, data, regs))
749                 mipsxx_pmu_disable_event(idx);
750 }
751
752
753 static int __n_counters(void)
754 {
755         if (!(read_c0_config1() & M_CONFIG1_PC))
756                 return 0;
757         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
758                 return 1;
759         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
760                 return 2;
761         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
762                 return 3;
763
764         return 4;
765 }
766
767 static int n_counters(void)
768 {
769         int counters;
770
771         switch (current_cpu_type()) {
772         case CPU_R10000:
773                 counters = 2;
774                 break;
775
776         case CPU_R12000:
777         case CPU_R14000:
778                 counters = 4;
779                 break;
780
781         default:
782                 counters = __n_counters();
783         }
784
785         return counters;
786 }
787
788 static void reset_counters(void *arg)
789 {
790         int counters = (int)(long)arg;
791         switch (counters) {
792         case 4:
793                 mipsxx_pmu_write_control(3, 0);
794                 mipspmu.write_counter(3, 0);
795         case 3:
796                 mipsxx_pmu_write_control(2, 0);
797                 mipspmu.write_counter(2, 0);
798         case 2:
799                 mipsxx_pmu_write_control(1, 0);
800                 mipspmu.write_counter(1, 0);
801         case 1:
802                 mipsxx_pmu_write_control(0, 0);
803                 mipspmu.write_counter(0, 0);
804         }
805 }
806
807 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
808 static const struct mips_perf_event mipsxxcore_event_map
809                                 [PERF_COUNT_HW_MAX] = {
810         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
811         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
812         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
813         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
814 };
815
816 /* 74K/proAptiv core has different branch event code. */
817 static const struct mips_perf_event mipsxxcore_event_map2
818                                 [PERF_COUNT_HW_MAX] = {
819         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
820         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
821         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
822         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
823 };
824
825 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
826         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
827         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
828         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
829         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
830         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
831         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
832         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
833 };
834
835 static const struct mips_perf_event bmips5000_event_map
836                                 [PERF_COUNT_HW_MAX] = {
837         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
838         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
839         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
840 };
841
842 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
843         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
844         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
845         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
846         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
847         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
848         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
849 };
850
851 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
852 static const struct mips_perf_event mipsxxcore_cache_map
853                                 [PERF_COUNT_HW_CACHE_MAX]
854                                 [PERF_COUNT_HW_CACHE_OP_MAX]
855                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
856 [C(L1D)] = {
857         /*
858          * Like some other architectures (e.g. ARM), the performance
859          * counters don't differentiate between read and write
860          * accesses/misses, so this isn't strictly correct, but it's the
861          * best we can do. Writes and reads get combined.
862          */
863         [C(OP_READ)] = {
864                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
865                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
866         },
867         [C(OP_WRITE)] = {
868                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
869                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
870         },
871 },
872 [C(L1I)] = {
873         [C(OP_READ)] = {
874                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
875                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
876         },
877         [C(OP_WRITE)] = {
878                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
879                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
880         },
881         [C(OP_PREFETCH)] = {
882                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
883                 /*
884                  * Note that MIPS has only "hit" events countable for
885                  * the prefetch operation.
886                  */
887         },
888 },
889 [C(LL)] = {
890         [C(OP_READ)] = {
891                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
892                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
893         },
894         [C(OP_WRITE)] = {
895                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
896                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
897         },
898 },
899 [C(DTLB)] = {
900         [C(OP_READ)] = {
901                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
902                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
903         },
904         [C(OP_WRITE)] = {
905                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
906                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
907         },
908 },
909 [C(ITLB)] = {
910         [C(OP_READ)] = {
911                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
912                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
913         },
914         [C(OP_WRITE)] = {
915                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
916                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
917         },
918 },
919 [C(BPU)] = {
920         /* Using the same code for *HW_BRANCH* */
921         [C(OP_READ)] = {
922                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
923                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
924         },
925         [C(OP_WRITE)] = {
926                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
927                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
928         },
929 },
930 };
931
932 /* 74K/proAptiv core has completely different cache event map. */
933 static const struct mips_perf_event mipsxxcore_cache_map2
934                                 [PERF_COUNT_HW_CACHE_MAX]
935                                 [PERF_COUNT_HW_CACHE_OP_MAX]
936                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
937 [C(L1D)] = {
938         /*
939          * Like some other architectures (e.g. ARM), the performance
940          * counters don't differentiate between read and write
941          * accesses/misses, so this isn't strictly correct, but it's the
942          * best we can do. Writes and reads get combined.
943          */
944         [C(OP_READ)] = {
945                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
946                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
947         },
948         [C(OP_WRITE)] = {
949                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
950                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
951         },
952 },
953 [C(L1I)] = {
954         [C(OP_READ)] = {
955                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
956                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
957         },
958         [C(OP_WRITE)] = {
959                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
960                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
961         },
962         [C(OP_PREFETCH)] = {
963                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
964                 /*
965                  * Note that MIPS has only "hit" events countable for
966                  * the prefetch operation.
967                  */
968         },
969 },
970 [C(LL)] = {
971         [C(OP_READ)] = {
972                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
973                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
974         },
975         [C(OP_WRITE)] = {
976                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
977                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
978         },
979 },
980 /*
981  * 74K core does not have specific DTLB events. proAptiv core has
982  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
983  * not included here. One can use raw events if really needed.
984  */
985 [C(ITLB)] = {
986         [C(OP_READ)] = {
987                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
988                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
989         },
990         [C(OP_WRITE)] = {
991                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
992                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
993         },
994 },
995 [C(BPU)] = {
996         /* Using the same code for *HW_BRANCH* */
997         [C(OP_READ)] = {
998                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
999                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1000         },
1001         [C(OP_WRITE)] = {
1002                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1003                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1004         },
1005 },
1006 };
1007
1008 /* BMIPS5000 */
1009 static const struct mips_perf_event bmips5000_cache_map
1010                                 [PERF_COUNT_HW_CACHE_MAX]
1011                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1012                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1013 [C(L1D)] = {
1014         /*
1015          * Like some other architectures (e.g. ARM), the performance
1016          * counters don't differentiate between read and write
1017          * accesses/misses, so this isn't strictly correct, but it's the
1018          * best we can do. Writes and reads get combined.
1019          */
1020         [C(OP_READ)] = {
1021                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1022                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1023         },
1024         [C(OP_WRITE)] = {
1025                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1026                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1027         },
1028 },
1029 [C(L1I)] = {
1030         [C(OP_READ)] = {
1031                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1032                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1033         },
1034         [C(OP_WRITE)] = {
1035                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1036                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1037         },
1038         [C(OP_PREFETCH)] = {
1039                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1040                 /*
1041                  * Note that MIPS has only "hit" events countable for
1042                  * the prefetch operation.
1043                  */
1044         },
1045 },
1046 [C(LL)] = {
1047         [C(OP_READ)] = {
1048                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1049                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1050         },
1051         [C(OP_WRITE)] = {
1052                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1053                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1054         },
1055 },
1056 [C(BPU)] = {
1057         /* Using the same code for *HW_BRANCH* */
1058         [C(OP_READ)] = {
1059                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1060         },
1061         [C(OP_WRITE)] = {
1062                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1063         },
1064 },
1065 };
1066
1067
1068 static const struct mips_perf_event octeon_cache_map
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1072 [C(L1D)] = {
1073         [C(OP_READ)] = {
1074                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1075                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1076         },
1077         [C(OP_WRITE)] = {
1078                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1079         },
1080 },
1081 [C(L1I)] = {
1082         [C(OP_READ)] = {
1083                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1084         },
1085         [C(OP_PREFETCH)] = {
1086                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1087         },
1088 },
1089 [C(DTLB)] = {
1090         /*
1091          * Only general DTLB misses are counted use the same event for
1092          * read and write.
1093          */
1094         [C(OP_READ)] = {
1095                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1096         },
1097         [C(OP_WRITE)] = {
1098                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1099         },
1100 },
1101 [C(ITLB)] = {
1102         [C(OP_READ)] = {
1103                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1104         },
1105 },
1106 };
1107
1108 static const struct mips_perf_event xlp_cache_map
1109                                 [PERF_COUNT_HW_CACHE_MAX]
1110                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1111                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1112 [C(L1D)] = {
1113         [C(OP_READ)] = {
1114                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1115                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1116         },
1117         [C(OP_WRITE)] = {
1118                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1119                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1120         },
1121 },
1122 [C(L1I)] = {
1123         [C(OP_READ)] = {
1124                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1125                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1126         },
1127 },
1128 [C(LL)] = {
1129         [C(OP_READ)] = {
1130                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1131                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1132         },
1133         [C(OP_WRITE)] = {
1134                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1135                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1136         },
1137 },
1138 [C(DTLB)] = {
1139         /*
1140          * Only general DTLB misses are counted use the same event for
1141          * read and write.
1142          */
1143         [C(OP_READ)] = {
1144                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1145         },
1146         [C(OP_WRITE)] = {
1147                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1148         },
1149 },
1150 [C(ITLB)] = {
1151         [C(OP_READ)] = {
1152                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1153         },
1154         [C(OP_WRITE)] = {
1155                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1156         },
1157 },
1158 [C(BPU)] = {
1159         [C(OP_READ)] = {
1160                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1161         },
1162 },
1163 };
1164
1165 #ifdef CONFIG_MIPS_MT_SMP
1166 static void check_and_calc_range(struct perf_event *event,
1167                                  const struct mips_perf_event *pev)
1168 {
1169         struct hw_perf_event *hwc = &event->hw;
1170
1171         if (event->cpu >= 0) {
1172                 if (pev->range > V) {
1173                         /*
1174                          * The user selected an event that is processor
1175                          * wide, while expecting it to be VPE wide.
1176                          */
1177                         hwc->config_base |= M_TC_EN_ALL;
1178                 } else {
1179                         /*
1180                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1181                          * for both CPUs.
1182                          */
1183                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1184                         hwc->config_base |= M_TC_EN_VPE;
1185                 }
1186         } else
1187                 hwc->config_base |= M_TC_EN_ALL;
1188 }
1189 #else
1190 static void check_and_calc_range(struct perf_event *event,
1191                                  const struct mips_perf_event *pev)
1192 {
1193 }
1194 #endif
1195
1196 static int __hw_perf_event_init(struct perf_event *event)
1197 {
1198         struct perf_event_attr *attr = &event->attr;
1199         struct hw_perf_event *hwc = &event->hw;
1200         const struct mips_perf_event *pev;
1201         int err;
1202
1203         /* Returning MIPS event descriptor for generic perf event. */
1204         if (PERF_TYPE_HARDWARE == event->attr.type) {
1205                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1206                         return -EINVAL;
1207                 pev = mipspmu_map_general_event(event->attr.config);
1208         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1209                 pev = mipspmu_map_cache_event(event->attr.config);
1210         } else if (PERF_TYPE_RAW == event->attr.type) {
1211                 /* We are working on the global raw event. */
1212                 mutex_lock(&raw_event_mutex);
1213                 pev = mipspmu.map_raw_event(event->attr.config);
1214         } else {
1215                 /* The event type is not (yet) supported. */
1216                 return -EOPNOTSUPP;
1217         }
1218
1219         if (IS_ERR(pev)) {
1220                 if (PERF_TYPE_RAW == event->attr.type)
1221                         mutex_unlock(&raw_event_mutex);
1222                 return PTR_ERR(pev);
1223         }
1224
1225         /*
1226          * We allow max flexibility on how each individual counter shared
1227          * by the single CPU operates (the mode exclusion and the range).
1228          */
1229         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1230
1231         /* Calculate range bits and validate it. */
1232         if (num_possible_cpus() > 1)
1233                 check_and_calc_range(event, pev);
1234
1235         hwc->event_base = mipspmu_perf_event_encode(pev);
1236         if (PERF_TYPE_RAW == event->attr.type)
1237                 mutex_unlock(&raw_event_mutex);
1238
1239         if (!attr->exclude_user)
1240                 hwc->config_base |= M_PERFCTL_USER;
1241         if (!attr->exclude_kernel) {
1242                 hwc->config_base |= M_PERFCTL_KERNEL;
1243                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1244                 hwc->config_base |= M_PERFCTL_EXL;
1245         }
1246         if (!attr->exclude_hv)
1247                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1248
1249         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1250         /*
1251          * The event can belong to another cpu. We do not assign a local
1252          * counter for it for now.
1253          */
1254         hwc->idx = -1;
1255         hwc->config = 0;
1256
1257         if (!hwc->sample_period) {
1258                 hwc->sample_period  = mipspmu.max_period;
1259                 hwc->last_period    = hwc->sample_period;
1260                 local64_set(&hwc->period_left, hwc->sample_period);
1261         }
1262
1263         err = 0;
1264         if (event->group_leader != event)
1265                 err = validate_group(event);
1266
1267         event->destroy = hw_perf_event_destroy;
1268
1269         if (err)
1270                 event->destroy(event);
1271
1272         return err;
1273 }
1274
1275 static void pause_local_counters(void)
1276 {
1277         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1278         int ctr = mipspmu.num_counters;
1279         unsigned long flags;
1280
1281         local_irq_save(flags);
1282         do {
1283                 ctr--;
1284                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1285                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1286                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1287         } while (ctr > 0);
1288         local_irq_restore(flags);
1289 }
1290
1291 static void resume_local_counters(void)
1292 {
1293         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1294         int ctr = mipspmu.num_counters;
1295
1296         do {
1297                 ctr--;
1298                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1299         } while (ctr > 0);
1300 }
1301
1302 static int mipsxx_pmu_handle_shared_irq(void)
1303 {
1304         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1305         struct perf_sample_data data;
1306         unsigned int counters = mipspmu.num_counters;
1307         u64 counter;
1308         int handled = IRQ_NONE;
1309         struct pt_regs *regs;
1310
1311         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1312                 return handled;
1313         /*
1314          * First we pause the local counters, so that when we are locked
1315          * here, the counters are all paused. When it gets locked due to
1316          * perf_disable(), the timer interrupt handler will be delayed.
1317          *
1318          * See also mipsxx_pmu_start().
1319          */
1320         pause_local_counters();
1321 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1322         read_lock(&pmuint_rwlock);
1323 #endif
1324
1325         regs = get_irq_regs();
1326
1327         perf_sample_data_init(&data, 0, 0);
1328
1329         switch (counters) {
1330 #define HANDLE_COUNTER(n)                                               \
1331         case n + 1:                                                     \
1332                 if (test_bit(n, cpuc->used_mask)) {                     \
1333                         counter = mipspmu.read_counter(n);              \
1334                         if (counter & mipspmu.overflow) {               \
1335                                 handle_associated_event(cpuc, n, &data, regs); \
1336                                 handled = IRQ_HANDLED;                  \
1337                         }                                               \
1338                 }
1339         HANDLE_COUNTER(3)
1340         HANDLE_COUNTER(2)
1341         HANDLE_COUNTER(1)
1342         HANDLE_COUNTER(0)
1343         }
1344
1345         /*
1346          * Do all the work for the pending perf events. We can do this
1347          * in here because the performance counter interrupt is a regular
1348          * interrupt, not NMI.
1349          */
1350         if (handled == IRQ_HANDLED)
1351                 irq_work_run();
1352
1353 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1354         read_unlock(&pmuint_rwlock);
1355 #endif
1356         resume_local_counters();
1357         return handled;
1358 }
1359
1360 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1361 {
1362         return mipsxx_pmu_handle_shared_irq();
1363 }
1364
1365 /* 24K */
1366 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1367         ((b) == 0 || (b) == 1 || (b) == 11)
1368
1369 /* 34K */
1370 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1371         ((b) == 0 || (b) == 1 || (b) == 11)
1372 #ifdef CONFIG_MIPS_MT_SMP
1373 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1374         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1375          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1376          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1377          ((b) >= 64 && (b) <= 67))
1378 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1379 #endif
1380
1381 /* 74K */
1382 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1383         ((b) == 0 || (b) == 1)
1384
1385 /* proAptiv */
1386 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1387         ((b) == 0 || (b) == 1)
1388 /* P5600 */
1389 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1390         ((b) == 0 || (b) == 1)
1391
1392 /* 1004K */
1393 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1394         ((b) == 0 || (b) == 1 || (b) == 11)
1395 #ifdef CONFIG_MIPS_MT_SMP
1396 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1397         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1398          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1399          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1400          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1401          ((b) >= 64 && (b) <= 67))
1402 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1403 #endif
1404
1405 /* interAptiv */
1406 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1407         ((b) == 0 || (b) == 1 || (b) == 11)
1408 #ifdef CONFIG_MIPS_MT_SMP
1409 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1410 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1411         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1412          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1413          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1414          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1415          ((b) >= 64 && (b) <= 67))
1416 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1417 #endif
1418
1419 /* BMIPS5000 */
1420 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1421         ((b) == 0 || (b) == 1)
1422
1423
1424 /*
1425  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1426  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1427  * indicate the even/odd bank selector. So, for example, when user wants to take
1428  * the Event Num of 15 for odd counters (by referring to the user manual), then
1429  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1430  * to be used.
1431  *
1432  * Some newer cores have even more events, in which case the user can use raw
1433  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1434  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1435  */
1436 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1437 {
1438         /* currently most cores have 7-bit event numbers */
1439         unsigned int raw_id = config & 0xff;
1440         unsigned int base_id = raw_id & 0x7f;
1441
1442         switch (current_cpu_type()) {
1443         case CPU_24K:
1444                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1445                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1446                 else
1447                         raw_event.cntr_mask =
1448                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1449 #ifdef CONFIG_MIPS_MT_SMP
1450                 /*
1451                  * This is actually doing nothing. Non-multithreading
1452                  * CPUs will not check and calculate the range.
1453                  */
1454                 raw_event.range = P;
1455 #endif
1456                 break;
1457         case CPU_34K:
1458                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1459                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1460                 else
1461                         raw_event.cntr_mask =
1462                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1463 #ifdef CONFIG_MIPS_MT_SMP
1464                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1465                         raw_event.range = P;
1466                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1467                         raw_event.range = V;
1468                 else
1469                         raw_event.range = T;
1470 #endif
1471                 break;
1472         case CPU_74K:
1473         case CPU_1074K:
1474                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1475                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1476                 else
1477                         raw_event.cntr_mask =
1478                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1479 #ifdef CONFIG_MIPS_MT_SMP
1480                 raw_event.range = P;
1481 #endif
1482                 break;
1483         case CPU_PROAPTIV:
1484                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1485                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1486                 else
1487                         raw_event.cntr_mask =
1488                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1489 #ifdef CONFIG_MIPS_MT_SMP
1490                 raw_event.range = P;
1491 #endif
1492                 break;
1493         case CPU_P5600:
1494                 /* 8-bit event numbers */
1495                 raw_id = config & 0x1ff;
1496                 base_id = raw_id & 0xff;
1497                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1498                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1499                 else
1500                         raw_event.cntr_mask =
1501                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1502 #ifdef CONFIG_MIPS_MT_SMP
1503                 raw_event.range = P;
1504 #endif
1505                 break;
1506         case CPU_1004K:
1507                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1508                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1509                 else
1510                         raw_event.cntr_mask =
1511                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1512 #ifdef CONFIG_MIPS_MT_SMP
1513                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1514                         raw_event.range = P;
1515                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1516                         raw_event.range = V;
1517                 else
1518                         raw_event.range = T;
1519 #endif
1520                 break;
1521         case CPU_INTERAPTIV:
1522                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1523                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1524                 else
1525                         raw_event.cntr_mask =
1526                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1527 #ifdef CONFIG_MIPS_MT_SMP
1528                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1529                         raw_event.range = P;
1530                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1531                         raw_event.range = V;
1532                 else
1533                         raw_event.range = T;
1534 #endif
1535                 break;
1536         case CPU_BMIPS5000:
1537                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1538                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1539                 else
1540                         raw_event.cntr_mask =
1541                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1542         }
1543
1544         raw_event.event_id = base_id;
1545
1546         return &raw_event;
1547 }
1548
1549 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1550 {
1551         unsigned int raw_id = config & 0xff;
1552         unsigned int base_id = raw_id & 0x7f;
1553
1554
1555         raw_event.cntr_mask = CNTR_ALL;
1556         raw_event.event_id = base_id;
1557
1558         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1559                 if (base_id > 0x42)
1560                         return ERR_PTR(-EOPNOTSUPP);
1561         } else {
1562                 if (base_id > 0x3a)
1563                         return ERR_PTR(-EOPNOTSUPP);
1564         }
1565
1566         switch (base_id) {
1567         case 0x00:
1568         case 0x0f:
1569         case 0x1e:
1570         case 0x1f:
1571         case 0x2f:
1572         case 0x34:
1573         case 0x3b ... 0x3f:
1574                 return ERR_PTR(-EOPNOTSUPP);
1575         default:
1576                 break;
1577         }
1578
1579         return &raw_event;
1580 }
1581
1582 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1583 {
1584         unsigned int raw_id = config & 0xff;
1585
1586         /* Only 1-63 are defined */
1587         if ((raw_id < 0x01) || (raw_id > 0x3f))
1588                 return ERR_PTR(-EOPNOTSUPP);
1589
1590         raw_event.cntr_mask = CNTR_ALL;
1591         raw_event.event_id = raw_id;
1592
1593         return &raw_event;
1594 }
1595
1596 static int __init
1597 init_hw_perf_events(void)
1598 {
1599         int counters, irq;
1600         int counter_bits;
1601
1602         pr_info("Performance counters: ");
1603
1604         counters = n_counters();
1605         if (counters == 0) {
1606                 pr_cont("No available PMU.\n");
1607                 return -ENODEV;
1608         }
1609
1610 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1611         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1612         if (!cpu_has_mipsmt_pertccounters)
1613                 counters = counters_total_to_per_cpu(counters);
1614 #endif
1615
1616         if (get_c0_perfcount_int)
1617                 irq = get_c0_perfcount_int();
1618         else if ((cp0_perfcount_irq >= 0) &&
1619                  (cp0_compare_irq != cp0_perfcount_irq))
1620                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1621         else
1622                 irq = -1;
1623
1624         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1625
1626         switch (current_cpu_type()) {
1627         case CPU_24K:
1628                 mipspmu.name = "mips/24K";
1629                 mipspmu.general_event_map = &mipsxxcore_event_map;
1630                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1631                 break;
1632         case CPU_34K:
1633                 mipspmu.name = "mips/34K";
1634                 mipspmu.general_event_map = &mipsxxcore_event_map;
1635                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1636                 break;
1637         case CPU_74K:
1638                 mipspmu.name = "mips/74K";
1639                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1640                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1641                 break;
1642         case CPU_PROAPTIV:
1643                 mipspmu.name = "mips/proAptiv";
1644                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1645                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1646                 break;
1647         case CPU_P5600:
1648                 mipspmu.name = "mips/P5600";
1649                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1650                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1651                 break;
1652         case CPU_1004K:
1653                 mipspmu.name = "mips/1004K";
1654                 mipspmu.general_event_map = &mipsxxcore_event_map;
1655                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1656                 break;
1657         case CPU_1074K:
1658                 mipspmu.name = "mips/1074K";
1659                 mipspmu.general_event_map = &mipsxxcore_event_map;
1660                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1661                 break;
1662         case CPU_INTERAPTIV:
1663                 mipspmu.name = "mips/interAptiv";
1664                 mipspmu.general_event_map = &mipsxxcore_event_map;
1665                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1666                 break;
1667         case CPU_LOONGSON1:
1668                 mipspmu.name = "mips/loongson1";
1669                 mipspmu.general_event_map = &mipsxxcore_event_map;
1670                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1671                 break;
1672         case CPU_CAVIUM_OCTEON:
1673         case CPU_CAVIUM_OCTEON_PLUS:
1674         case CPU_CAVIUM_OCTEON2:
1675                 mipspmu.name = "octeon";
1676                 mipspmu.general_event_map = &octeon_event_map;
1677                 mipspmu.cache_event_map = &octeon_cache_map;
1678                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1679                 break;
1680         case CPU_BMIPS5000:
1681                 mipspmu.name = "BMIPS5000";
1682                 mipspmu.general_event_map = &bmips5000_event_map;
1683                 mipspmu.cache_event_map = &bmips5000_cache_map;
1684                 break;
1685         case CPU_XLP:
1686                 mipspmu.name = "xlp";
1687                 mipspmu.general_event_map = &xlp_event_map;
1688                 mipspmu.cache_event_map = &xlp_cache_map;
1689                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1690                 break;
1691         default:
1692                 pr_cont("Either hardware does not support performance "
1693                         "counters, or not yet implemented.\n");
1694                 return -ENODEV;
1695         }
1696
1697         mipspmu.num_counters = counters;
1698         mipspmu.irq = irq;
1699
1700         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1701                 mipspmu.max_period = (1ULL << 63) - 1;
1702                 mipspmu.valid_count = (1ULL << 63) - 1;
1703                 mipspmu.overflow = 1ULL << 63;
1704                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1705                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1706                 counter_bits = 64;
1707         } else {
1708                 mipspmu.max_period = (1ULL << 31) - 1;
1709                 mipspmu.valid_count = (1ULL << 31) - 1;
1710                 mipspmu.overflow = 1ULL << 31;
1711                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1712                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1713                 counter_bits = 32;
1714         }
1715
1716         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1717
1718         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1719                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1720                 irq < 0 ? " (share with timer interrupt)" : "");
1721
1722         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1723
1724         return 0;
1725 }
1726 early_initcall(init_hw_perf_events);