spi: st-ssc4: Fix misuse of devm_gpio_request/devm_gpio_free APIs
[cascardo/linux.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30
31 #include <asm/addrspace.h>
32 #include <asm/bootinfo.h>
33 #include <asm/bugs.h>
34 #include <asm/cache.h>
35 #include <asm/cdmm.h>
36 #include <asm/cpu.h>
37 #include <asm/debug.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/smp-ops.h>
41 #include <asm/prom.h>
42
43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
44 const char __section(.appended_dtb) __appended_dtb[0x100000];
45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
46
47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
48
49 EXPORT_SYMBOL(cpu_data);
50
51 #ifdef CONFIG_VT
52 struct screen_info screen_info;
53 #endif
54
55 /*
56  * Setup information
57  *
58  * These are initialized so they are in the .data section
59  */
60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61
62 EXPORT_SYMBOL(mips_machtype);
63
64 struct boot_mem_map boot_mem_map;
65
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68
69 #ifdef CONFIG_CMDLINE_BOOL
70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71 #endif
72
73 /*
74  * mips_io_port_base is the begin of the address space to which x86 style
75  * I/O ports are mapped.
76  */
77 const unsigned long mips_io_port_base = -1;
78 EXPORT_SYMBOL(mips_io_port_base);
79
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82
83 static void *detect_magic __initdata = detect_memory_region;
84
85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86 {
87         int x = boot_mem_map.nr_map;
88         int i;
89
90         /* Sanity check */
91         if (start + size < start) {
92                 pr_warn("Trying to add an invalid memory region, skipped\n");
93                 return;
94         }
95
96         /*
97          * Try to merge with existing entry, if any.
98          */
99         for (i = 0; i < boot_mem_map.nr_map; i++) {
100                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
101                 unsigned long top;
102
103                 if (entry->type != type)
104                         continue;
105
106                 if (start + size < entry->addr)
107                         continue;                       /* no overlap */
108
109                 if (entry->addr + entry->size < start)
110                         continue;                       /* no overlap */
111
112                 top = max(entry->addr + entry->size, start + size);
113                 entry->addr = min(entry->addr, start);
114                 entry->size = top - entry->addr;
115
116                 return;
117         }
118
119         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
120                 pr_err("Ooops! Too many entries in the memory map!\n");
121                 return;
122         }
123
124         boot_mem_map.map[x].addr = start;
125         boot_mem_map.map[x].size = size;
126         boot_mem_map.map[x].type = type;
127         boot_mem_map.nr_map++;
128 }
129
130 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
131 {
132         void *dm = &detect_magic;
133         phys_addr_t size;
134
135         for (size = sz_min; size < sz_max; size <<= 1) {
136                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
137                         break;
138         }
139
140         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
141                 ((unsigned long long) size) / SZ_1M,
142                 (unsigned long long) start,
143                 ((unsigned long long) sz_min) / SZ_1M,
144                 ((unsigned long long) sz_max) / SZ_1M);
145
146         add_memory_region(start, size, BOOT_MEM_RAM);
147 }
148
149 static void __init print_memory_map(void)
150 {
151         int i;
152         const int field = 2 * sizeof(unsigned long);
153
154         for (i = 0; i < boot_mem_map.nr_map; i++) {
155                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
156                        field, (unsigned long long) boot_mem_map.map[i].size,
157                        field, (unsigned long long) boot_mem_map.map[i].addr);
158
159                 switch (boot_mem_map.map[i].type) {
160                 case BOOT_MEM_RAM:
161                         printk(KERN_CONT "(usable)\n");
162                         break;
163                 case BOOT_MEM_INIT_RAM:
164                         printk(KERN_CONT "(usable after init)\n");
165                         break;
166                 case BOOT_MEM_ROM_DATA:
167                         printk(KERN_CONT "(ROM data)\n");
168                         break;
169                 case BOOT_MEM_RESERVED:
170                         printk(KERN_CONT "(reserved)\n");
171                         break;
172                 default:
173                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
174                         break;
175                 }
176         }
177 }
178
179 /*
180  * Manage initrd
181  */
182 #ifdef CONFIG_BLK_DEV_INITRD
183
184 static int __init rd_start_early(char *p)
185 {
186         unsigned long start = memparse(p, &p);
187
188 #ifdef CONFIG_64BIT
189         /* Guess if the sign extension was forgotten by bootloader */
190         if (start < XKPHYS)
191                 start = (int)start;
192 #endif
193         initrd_start = start;
194         initrd_end += start;
195         return 0;
196 }
197 early_param("rd_start", rd_start_early);
198
199 static int __init rd_size_early(char *p)
200 {
201         initrd_end += memparse(p, &p);
202         return 0;
203 }
204 early_param("rd_size", rd_size_early);
205
206 /* it returns the next free pfn after initrd */
207 static unsigned long __init init_initrd(void)
208 {
209         unsigned long end;
210
211         /*
212          * Board specific code or command line parser should have
213          * already set up initrd_start and initrd_end. In these cases
214          * perfom sanity checks and use them if all looks good.
215          */
216         if (!initrd_start || initrd_end <= initrd_start)
217                 goto disable;
218
219         if (initrd_start & ~PAGE_MASK) {
220                 pr_err("initrd start must be page aligned\n");
221                 goto disable;
222         }
223         if (initrd_start < PAGE_OFFSET) {
224                 pr_err("initrd start < PAGE_OFFSET\n");
225                 goto disable;
226         }
227
228         /*
229          * Sanitize initrd addresses. For example firmware
230          * can't guess if they need to pass them through
231          * 64-bits values if the kernel has been built in pure
232          * 32-bit. We need also to switch from KSEG0 to XKPHYS
233          * addresses now, so the code can now safely use __pa().
234          */
235         end = __pa(initrd_end);
236         initrd_end = (unsigned long)__va(end);
237         initrd_start = (unsigned long)__va(__pa(initrd_start));
238
239         ROOT_DEV = Root_RAM0;
240         return PFN_UP(end);
241 disable:
242         initrd_start = 0;
243         initrd_end = 0;
244         return 0;
245 }
246
247 /* In some conditions (e.g. big endian bootloader with a little endian
248    kernel), the initrd might appear byte swapped.  Try to detect this and
249    byte swap it if needed.  */
250 static void __init maybe_bswap_initrd(void)
251 {
252 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
253         u64 buf;
254
255         /* Check for CPIO signature */
256         if (!memcmp((void *)initrd_start, "070701", 6))
257                 return;
258
259         /* Check for compressed initrd */
260         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
261                 return;
262
263         /* Try again with a byte swapped header */
264         buf = swab64p((u64 *)initrd_start);
265         if (!memcmp(&buf, "070701", 6) ||
266             decompress_method((unsigned char *)(&buf), 8, NULL)) {
267                 unsigned long i;
268
269                 pr_info("Byteswapped initrd detected\n");
270                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
271                         swab64s((u64 *)i);
272         }
273 #endif
274 }
275
276 static void __init finalize_initrd(void)
277 {
278         unsigned long size = initrd_end - initrd_start;
279
280         if (size == 0) {
281                 printk(KERN_INFO "Initrd not found or empty");
282                 goto disable;
283         }
284         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
285                 printk(KERN_ERR "Initrd extends beyond end of memory");
286                 goto disable;
287         }
288
289         maybe_bswap_initrd();
290
291         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
292         initrd_below_start_ok = 1;
293
294         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
295                 initrd_start, size);
296         return;
297 disable:
298         printk(KERN_CONT " - disabling initrd\n");
299         initrd_start = 0;
300         initrd_end = 0;
301 }
302
303 #else  /* !CONFIG_BLK_DEV_INITRD */
304
305 static unsigned long __init init_initrd(void)
306 {
307         return 0;
308 }
309
310 #define finalize_initrd()       do {} while (0)
311
312 #endif
313
314 /*
315  * Initialize the bootmem allocator. It also setup initrd related data
316  * if needed.
317  */
318 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
319
320 static void __init bootmem_init(void)
321 {
322         init_initrd();
323         finalize_initrd();
324 }
325
326 #else  /* !CONFIG_SGI_IP27 */
327
328 static void __init bootmem_init(void)
329 {
330         unsigned long reserved_end;
331         unsigned long mapstart = ~0UL;
332         unsigned long bootmap_size;
333         int i;
334
335         /*
336          * Sanity check any INITRD first. We don't take it into account
337          * for bootmem setup initially, rely on the end-of-kernel-code
338          * as our memory range starting point. Once bootmem is inited we
339          * will reserve the area used for the initrd.
340          */
341         init_initrd();
342         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
343
344         /*
345          * max_low_pfn is not a number of pages. The number of pages
346          * of the system is given by 'max_low_pfn - min_low_pfn'.
347          */
348         min_low_pfn = ~0UL;
349         max_low_pfn = 0;
350
351         /*
352          * Find the highest page frame number we have available.
353          */
354         for (i = 0; i < boot_mem_map.nr_map; i++) {
355                 unsigned long start, end;
356
357                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
358                         continue;
359
360                 start = PFN_UP(boot_mem_map.map[i].addr);
361                 end = PFN_DOWN(boot_mem_map.map[i].addr
362                                 + boot_mem_map.map[i].size);
363
364                 if (end > max_low_pfn)
365                         max_low_pfn = end;
366                 if (start < min_low_pfn)
367                         min_low_pfn = start;
368                 if (end <= reserved_end)
369                         continue;
370 #ifdef CONFIG_BLK_DEV_INITRD
371                 /* Skip zones before initrd and initrd itself */
372                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
373                         continue;
374 #endif
375                 if (start >= mapstart)
376                         continue;
377                 mapstart = max(reserved_end, start);
378         }
379
380         if (min_low_pfn >= max_low_pfn)
381                 panic("Incorrect memory mapping !!!");
382         if (min_low_pfn > ARCH_PFN_OFFSET) {
383                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
384                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
385                         min_low_pfn - ARCH_PFN_OFFSET);
386         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
387                 pr_info("%lu free pages won't be used\n",
388                         ARCH_PFN_OFFSET - min_low_pfn);
389         }
390         min_low_pfn = ARCH_PFN_OFFSET;
391
392         /*
393          * Determine low and high memory ranges
394          */
395         max_pfn = max_low_pfn;
396         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
397 #ifdef CONFIG_HIGHMEM
398                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
399                 highend_pfn = max_low_pfn;
400 #endif
401                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
402         }
403
404 #ifdef CONFIG_BLK_DEV_INITRD
405         /*
406          * mapstart should be after initrd_end
407          */
408         if (initrd_end)
409                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
410 #endif
411
412         /*
413          * Initialize the boot-time allocator with low memory only.
414          */
415         bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
416                                          min_low_pfn, max_low_pfn);
417
418
419         for (i = 0; i < boot_mem_map.nr_map; i++) {
420                 unsigned long start, end;
421
422                 start = PFN_UP(boot_mem_map.map[i].addr);
423                 end = PFN_DOWN(boot_mem_map.map[i].addr
424                                 + boot_mem_map.map[i].size);
425
426                 if (start <= min_low_pfn)
427                         start = min_low_pfn;
428                 if (start >= end)
429                         continue;
430
431 #ifndef CONFIG_HIGHMEM
432                 if (end > max_low_pfn)
433                         end = max_low_pfn;
434
435                 /*
436                  * ... finally, is the area going away?
437                  */
438                 if (end <= start)
439                         continue;
440 #endif
441
442                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
443         }
444
445         /*
446          * Register fully available low RAM pages with the bootmem allocator.
447          */
448         for (i = 0; i < boot_mem_map.nr_map; i++) {
449                 unsigned long start, end, size;
450
451                 start = PFN_UP(boot_mem_map.map[i].addr);
452                 end   = PFN_DOWN(boot_mem_map.map[i].addr
453                                     + boot_mem_map.map[i].size);
454
455                 /*
456                  * Reserve usable memory.
457                  */
458                 switch (boot_mem_map.map[i].type) {
459                 case BOOT_MEM_RAM:
460                         break;
461                 case BOOT_MEM_INIT_RAM:
462                         memory_present(0, start, end);
463                         continue;
464                 default:
465                         /* Not usable memory */
466                         continue;
467                 }
468
469                 /*
470                  * We are rounding up the start address of usable memory
471                  * and at the end of the usable range downwards.
472                  */
473                 if (start >= max_low_pfn)
474                         continue;
475                 if (start < reserved_end)
476                         start = reserved_end;
477                 if (end > max_low_pfn)
478                         end = max_low_pfn;
479
480                 /*
481                  * ... finally, is the area going away?
482                  */
483                 if (end <= start)
484                         continue;
485                 size = end - start;
486
487                 /* Register lowmem ranges */
488                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
489                 memory_present(0, start, end);
490         }
491
492         /*
493          * Reserve the bootmap memory.
494          */
495         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
496
497 #ifdef CONFIG_RELOCATABLE
498         /*
499          * The kernel reserves all memory below its _end symbol as bootmem,
500          * but the kernel may now be at a much higher address. The memory
501          * between the original and new locations may be returned to the system.
502          */
503         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
504                 unsigned long offset;
505                 extern void show_kernel_relocation(const char *level);
506
507                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
508                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
509
510 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
511                 /*
512                  * This information is necessary when debugging the kernel
513                  * But is a security vulnerability otherwise!
514                  */
515                 show_kernel_relocation(KERN_INFO);
516 #endif
517         }
518 #endif
519
520         /*
521          * Reserve initrd memory if needed.
522          */
523         finalize_initrd();
524 }
525
526 #endif  /* CONFIG_SGI_IP27 */
527
528 /*
529  * arch_mem_init - initialize memory management subsystem
530  *
531  *  o plat_mem_setup() detects the memory configuration and will record detected
532  *    memory areas using add_memory_region.
533  *
534  * At this stage the memory configuration of the system is known to the
535  * kernel but generic memory management system is still entirely uninitialized.
536  *
537  *  o bootmem_init()
538  *  o sparse_init()
539  *  o paging_init()
540  *  o dma_contiguous_reserve()
541  *
542  * At this stage the bootmem allocator is ready to use.
543  *
544  * NOTE: historically plat_mem_setup did the entire platform initialization.
545  *       This was rather impractical because it meant plat_mem_setup had to
546  * get away without any kind of memory allocator.  To keep old code from
547  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
548  * initialization hook for anything else was introduced.
549  */
550
551 static int usermem __initdata;
552
553 static int __init early_parse_mem(char *p)
554 {
555         phys_addr_t start, size;
556
557         /*
558          * If a user specifies memory size, we
559          * blow away any automatically generated
560          * size.
561          */
562         if (usermem == 0) {
563                 boot_mem_map.nr_map = 0;
564                 usermem = 1;
565         }
566         start = 0;
567         size = memparse(p, &p);
568         if (*p == '@')
569                 start = memparse(p + 1, &p);
570
571         add_memory_region(start, size, BOOT_MEM_RAM);
572         return 0;
573 }
574 early_param("mem", early_parse_mem);
575
576 #ifdef CONFIG_PROC_VMCORE
577 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
578 static int __init early_parse_elfcorehdr(char *p)
579 {
580         int i;
581
582         setup_elfcorehdr = memparse(p, &p);
583
584         for (i = 0; i < boot_mem_map.nr_map; i++) {
585                 unsigned long start = boot_mem_map.map[i].addr;
586                 unsigned long end = (boot_mem_map.map[i].addr +
587                                      boot_mem_map.map[i].size);
588                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
589                         /*
590                          * Reserve from the elf core header to the end of
591                          * the memory segment, that should all be kdump
592                          * reserved memory.
593                          */
594                         setup_elfcorehdr_size = end - setup_elfcorehdr;
595                         break;
596                 }
597         }
598         /*
599          * If we don't find it in the memory map, then we shouldn't
600          * have to worry about it, as the new kernel won't use it.
601          */
602         return 0;
603 }
604 early_param("elfcorehdr", early_parse_elfcorehdr);
605 #endif
606
607 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
608 {
609         phys_addr_t size;
610         int i;
611
612         size = end - mem;
613         if (!size)
614                 return;
615
616         /* Make sure it is in the boot_mem_map */
617         for (i = 0; i < boot_mem_map.nr_map; i++) {
618                 if (mem >= boot_mem_map.map[i].addr &&
619                     mem < (boot_mem_map.map[i].addr +
620                            boot_mem_map.map[i].size))
621                         return;
622         }
623         add_memory_region(mem, size, type);
624 }
625
626 #ifdef CONFIG_KEXEC
627 static inline unsigned long long get_total_mem(void)
628 {
629         unsigned long long total;
630
631         total = max_pfn - min_low_pfn;
632         return total << PAGE_SHIFT;
633 }
634
635 static void __init mips_parse_crashkernel(void)
636 {
637         unsigned long long total_mem;
638         unsigned long long crash_size, crash_base;
639         int ret;
640
641         total_mem = get_total_mem();
642         ret = parse_crashkernel(boot_command_line, total_mem,
643                                 &crash_size, &crash_base);
644         if (ret != 0 || crash_size <= 0)
645                 return;
646
647         crashk_res.start = crash_base;
648         crashk_res.end   = crash_base + crash_size - 1;
649 }
650
651 static void __init request_crashkernel(struct resource *res)
652 {
653         int ret;
654
655         ret = request_resource(res, &crashk_res);
656         if (!ret)
657                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
658                         (unsigned long)((crashk_res.end -
659                                          crashk_res.start + 1) >> 20),
660                         (unsigned long)(crashk_res.start  >> 20));
661 }
662 #else /* !defined(CONFIG_KEXEC)         */
663 static void __init mips_parse_crashkernel(void)
664 {
665 }
666
667 static void __init request_crashkernel(struct resource *res)
668 {
669 }
670 #endif /* !defined(CONFIG_KEXEC)  */
671
672 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
673 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
674 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
675 #define BUILTIN_EXTEND_WITH_PROM        \
676         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
677
678 static void __init arch_mem_init(char **cmdline_p)
679 {
680         struct memblock_region *reg;
681         extern void plat_mem_setup(void);
682
683         /* call board setup routine */
684         plat_mem_setup();
685
686         /*
687          * Make sure all kernel memory is in the maps.  The "UP" and
688          * "DOWN" are opposite for initdata since if it crosses over
689          * into another memory section you don't want that to be
690          * freed when the initdata is freed.
691          */
692         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
693                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
694                          BOOT_MEM_RAM);
695         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
696                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
697                          BOOT_MEM_INIT_RAM);
698
699         pr_info("Determined physical RAM map:\n");
700         print_memory_map();
701
702 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
703         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
704 #else
705         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
706             (USE_DTB_CMDLINE && !boot_command_line[0]))
707                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
708
709         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
710                 if (boot_command_line[0])
711                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
712                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
713         }
714
715 #if defined(CONFIG_CMDLINE_BOOL)
716         if (builtin_cmdline[0]) {
717                 if (boot_command_line[0])
718                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
719                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
720         }
721
722         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
723                 if (boot_command_line[0])
724                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
725                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
726         }
727 #endif
728 #endif
729         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
730
731         *cmdline_p = command_line;
732
733         parse_early_param();
734
735         if (usermem) {
736                 pr_info("User-defined physical RAM map:\n");
737                 print_memory_map();
738         }
739
740         bootmem_init();
741 #ifdef CONFIG_PROC_VMCORE
742         if (setup_elfcorehdr && setup_elfcorehdr_size) {
743                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
744                        setup_elfcorehdr, setup_elfcorehdr_size);
745                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
746                                 BOOTMEM_DEFAULT);
747         }
748 #endif
749
750         mips_parse_crashkernel();
751 #ifdef CONFIG_KEXEC
752         if (crashk_res.start != crashk_res.end)
753                 reserve_bootmem(crashk_res.start,
754                                 crashk_res.end - crashk_res.start + 1,
755                                 BOOTMEM_DEFAULT);
756 #endif
757         device_tree_init();
758         sparse_init();
759         plat_swiotlb_setup();
760         paging_init();
761
762         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
763         /* Tell bootmem about cma reserved memblock section */
764         for_each_memblock(reserved, reg)
765                 if (reg->size != 0)
766                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
767
768         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
769                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
770 }
771
772 static void __init resource_init(void)
773 {
774         int i;
775
776         if (UNCAC_BASE != IO_BASE)
777                 return;
778
779         code_resource.start = __pa_symbol(&_text);
780         code_resource.end = __pa_symbol(&_etext) - 1;
781         data_resource.start = __pa_symbol(&_etext);
782         data_resource.end = __pa_symbol(&_edata) - 1;
783
784         for (i = 0; i < boot_mem_map.nr_map; i++) {
785                 struct resource *res;
786                 unsigned long start, end;
787
788                 start = boot_mem_map.map[i].addr;
789                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
790                 if (start >= HIGHMEM_START)
791                         continue;
792                 if (end >= HIGHMEM_START)
793                         end = HIGHMEM_START - 1;
794
795                 res = alloc_bootmem(sizeof(struct resource));
796
797                 res->start = start;
798                 res->end = end;
799                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
800
801                 switch (boot_mem_map.map[i].type) {
802                 case BOOT_MEM_RAM:
803                 case BOOT_MEM_INIT_RAM:
804                 case BOOT_MEM_ROM_DATA:
805                         res->name = "System RAM";
806                         res->flags |= IORESOURCE_SYSRAM;
807                         break;
808                 case BOOT_MEM_RESERVED:
809                 default:
810                         res->name = "reserved";
811                 }
812
813                 request_resource(&iomem_resource, res);
814
815                 /*
816                  *  We don't know which RAM region contains kernel data,
817                  *  so we try it repeatedly and let the resource manager
818                  *  test it.
819                  */
820                 request_resource(res, &code_resource);
821                 request_resource(res, &data_resource);
822                 request_crashkernel(res);
823         }
824 }
825
826 #ifdef CONFIG_SMP
827 static void __init prefill_possible_map(void)
828 {
829         int i, possible = num_possible_cpus();
830
831         if (possible > nr_cpu_ids)
832                 possible = nr_cpu_ids;
833
834         for (i = 0; i < possible; i++)
835                 set_cpu_possible(i, true);
836         for (; i < NR_CPUS; i++)
837                 set_cpu_possible(i, false);
838
839         nr_cpu_ids = possible;
840 }
841 #else
842 static inline void prefill_possible_map(void) {}
843 #endif
844
845 void __init setup_arch(char **cmdline_p)
846 {
847         cpu_probe();
848         mips_cm_probe();
849         prom_init();
850
851         setup_early_fdc_console();
852 #ifdef CONFIG_EARLY_PRINTK
853         setup_early_printk();
854 #endif
855         cpu_report();
856         check_bugs_early();
857
858 #if defined(CONFIG_VT)
859 #if defined(CONFIG_VGA_CONSOLE)
860         conswitchp = &vga_con;
861 #elif defined(CONFIG_DUMMY_CONSOLE)
862         conswitchp = &dummy_con;
863 #endif
864 #endif
865
866         arch_mem_init(cmdline_p);
867
868         resource_init();
869         plat_smp_setup();
870         prefill_possible_map();
871
872         cpu_cache_init();
873 }
874
875 unsigned long kernelsp[NR_CPUS];
876 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
877
878 #ifdef CONFIG_USE_OF
879 unsigned long fw_passed_dtb;
880 #endif
881
882 #ifdef CONFIG_DEBUG_FS
883 struct dentry *mips_debugfs_dir;
884 static int __init debugfs_mips(void)
885 {
886         struct dentry *d;
887
888         d = debugfs_create_dir("mips", NULL);
889         if (!d)
890                 return -ENOMEM;
891         mips_debugfs_dir = d;
892         return 0;
893 }
894 arch_initcall(debugfs_mips);
895 #endif