Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39
40 static int __maybe_unused max_cpus = 1;
41
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46 unsigned long bmips_tp1_irqs = IE_IRQ1;
47
48 #define RESET_FROM_KSEG0                0x80080800
49 #define RESET_FROM_KSEG1                0xa0080800
50
51 static void bmips_set_reset_vec(int cpu, u32 val);
52
53 #ifdef CONFIG_SMP
54
55 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
56 unsigned long bmips_smp_boot_sp;
57 unsigned long bmips_smp_boot_gp;
58
59 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
60 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
61 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
62 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
63
64 /* SW interrupts 0,1 are used for interprocessor signaling */
65 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
66 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
67
68 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
69 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
72
73 static void __init bmips_smp_setup(void)
74 {
75         int i, cpu = 1, boot_cpu = 0;
76         int cpu_hw_intr;
77
78         switch (current_cpu_type()) {
79         case CPU_BMIPS4350:
80         case CPU_BMIPS4380:
81                 /* arbitration priority */
82                 clear_c0_brcm_cmt_ctrl(0x30);
83
84                 /* NBK and weak order flags */
85                 set_c0_brcm_config_0(0x30000);
86
87                 /* Find out if we are running on TP0 or TP1 */
88                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
89
90                 /*
91                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
92                  * thread
93                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
94                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
95                  */
96                 if (boot_cpu == 0)
97                         cpu_hw_intr = 0x02;
98                 else
99                         cpu_hw_intr = 0x1d;
100
101                 change_c0_brcm_cmt_intr(0xf8018000,
102                                         (cpu_hw_intr << 27) | (0x03 << 15));
103
104                 /* single core, 2 threads (2 pipelines) */
105                 max_cpus = 2;
106
107                 break;
108         case CPU_BMIPS5000:
109                 /* enable raceless SW interrupts */
110                 set_c0_brcm_config(0x03 << 22);
111
112                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114
115                 /* N cores, 2 threads per core */
116                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117
118                 /* clear any pending SW interrupts */
119                 for (i = 0; i < max_cpus; i++) {
120                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122                 }
123
124                 break;
125         default:
126                 max_cpus = 1;
127         }
128
129         if (!bmips_smp_enabled)
130                 max_cpus = 1;
131
132         /* this can be overridden by the BSP */
133         if (!board_ebase_setup)
134                 board_ebase_setup = &bmips_ebase_setup;
135
136         __cpu_number_map[boot_cpu] = 0;
137         __cpu_logical_map[0] = boot_cpu;
138
139         for (i = 0; i < max_cpus; i++) {
140                 if (i != boot_cpu) {
141                         __cpu_number_map[i] = cpu;
142                         __cpu_logical_map[cpu] = i;
143                         cpu++;
144                 }
145                 set_cpu_possible(i, 1);
146                 set_cpu_present(i, 1);
147         }
148 }
149
150 /*
151  * IPI IRQ setup - runs on CPU0
152  */
153 static void bmips_prepare_cpus(unsigned int max_cpus)
154 {
155         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156
157         switch (current_cpu_type()) {
158         case CPU_BMIPS4350:
159         case CPU_BMIPS4380:
160                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161                 break;
162         case CPU_BMIPS5000:
163                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164                 break;
165         default:
166                 return;
167         }
168
169         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170                         "smp_ipi0", NULL))
171                 panic("Can't request IPI0 interrupt");
172         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173                         "smp_ipi1", NULL))
174                 panic("Can't request IPI1 interrupt");
175 }
176
177 /*
178  * Tell the hardware to boot CPUx - runs on CPU0
179  */
180 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181 {
182         bmips_smp_boot_sp = __KSTK_TOS(idle);
183         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184         mb();
185
186         /*
187          * Initial boot sequence for secondary CPU:
188          *   bmips_reset_nmi_vec @ a000_0000 ->
189          *   bmips_smp_entry ->
190          *   plat_wired_tlb_setup (cached function call; optional) ->
191          *   start_secondary (cached jump)
192          *
193          * Warm restart sequence:
194          *   play_dead WAIT loop ->
195          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196          *   eret to play_dead ->
197          *   bmips_secondary_reentry ->
198          *   start_secondary
199          */
200
201         pr_info("SMP: Booting CPU%d...\n", cpu);
202
203         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204                 /* kseg1 might not exist if this CPU enabled XKS01 */
205                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206
207                 switch (current_cpu_type()) {
208                 case CPU_BMIPS4350:
209                 case CPU_BMIPS4380:
210                         bmips43xx_send_ipi_single(cpu, 0);
211                         break;
212                 case CPU_BMIPS5000:
213                         bmips5000_send_ipi_single(cpu, 0);
214                         break;
215                 }
216         } else {
217                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218
219                 switch (current_cpu_type()) {
220                 case CPU_BMIPS4350:
221                 case CPU_BMIPS4380:
222                         /* Reset slave TP1 if booting from TP0 */
223                         if (cpu_logical_map(cpu) == 1)
224                                 set_c0_brcm_cmt_ctrl(0x01);
225                         break;
226                 case CPU_BMIPS5000:
227                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228                         break;
229                 }
230                 cpumask_set_cpu(cpu, &bmips_booted_mask);
231         }
232 }
233
234 /*
235  * Early setup - runs on secondary CPU after cache probe
236  */
237 static void bmips_init_secondary(void)
238 {
239         switch (current_cpu_type()) {
240         case CPU_BMIPS4350:
241         case CPU_BMIPS4380:
242                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243                 break;
244         case CPU_BMIPS5000:
245                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246                 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
247                 break;
248         }
249 }
250
251 /*
252  * Late setup - runs on secondary CPU before entering the idle loop
253  */
254 static void bmips_smp_finish(void)
255 {
256         pr_info("SMP: CPU%d is running\n", smp_processor_id());
257
258         /* make sure there won't be a timer interrupt for a little while */
259         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
260
261         irq_enable_hazard();
262         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
263         irq_enable_hazard();
264 }
265
266 /*
267  * BMIPS5000 raceless IPIs
268  *
269  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
270  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
271  * IPI1 is used for SMP_CALL_FUNCTION
272  */
273
274 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
275 {
276         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
277 }
278
279 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
280 {
281         int action = irq - IPI0_IRQ;
282
283         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
284
285         if (action == 0)
286                 scheduler_ipi();
287         else
288                 generic_smp_call_function_interrupt();
289
290         return IRQ_HANDLED;
291 }
292
293 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
294         unsigned int action)
295 {
296         unsigned int i;
297
298         for_each_cpu(i, mask)
299                 bmips5000_send_ipi_single(i, action);
300 }
301
302 /*
303  * BMIPS43xx racey IPIs
304  *
305  * We use one inbound SW IRQ for each CPU.
306  *
307  * A spinlock must be held in order to keep CPUx from accidentally clearing
308  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
309  * same spinlock is used to protect the action masks.
310  */
311
312 static DEFINE_SPINLOCK(ipi_lock);
313 static DEFINE_PER_CPU(int, ipi_action_mask);
314
315 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
316 {
317         unsigned long flags;
318
319         spin_lock_irqsave(&ipi_lock, flags);
320         set_c0_cause(cpu ? C_SW1 : C_SW0);
321         per_cpu(ipi_action_mask, cpu) |= action;
322         irq_enable_hazard();
323         spin_unlock_irqrestore(&ipi_lock, flags);
324 }
325
326 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
327 {
328         unsigned long flags;
329         int action, cpu = irq - IPI0_IRQ;
330
331         spin_lock_irqsave(&ipi_lock, flags);
332         action = __this_cpu_read(ipi_action_mask);
333         per_cpu(ipi_action_mask, cpu) = 0;
334         clear_c0_cause(cpu ? C_SW1 : C_SW0);
335         spin_unlock_irqrestore(&ipi_lock, flags);
336
337         if (action & SMP_RESCHEDULE_YOURSELF)
338                 scheduler_ipi();
339         if (action & SMP_CALL_FUNCTION)
340                 generic_smp_call_function_interrupt();
341
342         return IRQ_HANDLED;
343 }
344
345 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
346         unsigned int action)
347 {
348         unsigned int i;
349
350         for_each_cpu(i, mask)
351                 bmips43xx_send_ipi_single(i, action);
352 }
353
354 #ifdef CONFIG_HOTPLUG_CPU
355
356 static int bmips_cpu_disable(void)
357 {
358         unsigned int cpu = smp_processor_id();
359
360         if (cpu == 0)
361                 return -EBUSY;
362
363         pr_info("SMP: CPU%d is offline\n", cpu);
364
365         set_cpu_online(cpu, false);
366         calculate_cpu_foreign_map();
367         cpumask_clear_cpu(cpu, &cpu_callin_map);
368         clear_c0_status(IE_IRQ5);
369
370         local_flush_tlb_all();
371         local_flush_icache_range(0, ~0);
372
373         return 0;
374 }
375
376 static void bmips_cpu_die(unsigned int cpu)
377 {
378 }
379
380 void __ref play_dead(void)
381 {
382         idle_task_exit();
383
384         /* flush data cache */
385         _dma_cache_wback_inv(0, ~0);
386
387         /*
388          * Wakeup is on SW0 or SW1; disable everything else
389          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
390          * IRQ handlers; this clears ST0_IE and returns immediately.
391          */
392         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
393         change_c0_status(
394                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
395                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
396         irq_disable_hazard();
397
398         /*
399          * wait for SW interrupt from bmips_boot_secondary(), then jump
400          * back to start_secondary()
401          */
402         __asm__ __volatile__(
403         "       wait\n"
404         "       j       bmips_secondary_reentry\n"
405         : : : "memory");
406 }
407
408 #endif /* CONFIG_HOTPLUG_CPU */
409
410 struct plat_smp_ops bmips43xx_smp_ops = {
411         .smp_setup              = bmips_smp_setup,
412         .prepare_cpus           = bmips_prepare_cpus,
413         .boot_secondary         = bmips_boot_secondary,
414         .smp_finish             = bmips_smp_finish,
415         .init_secondary         = bmips_init_secondary,
416         .send_ipi_single        = bmips43xx_send_ipi_single,
417         .send_ipi_mask          = bmips43xx_send_ipi_mask,
418 #ifdef CONFIG_HOTPLUG_CPU
419         .cpu_disable            = bmips_cpu_disable,
420         .cpu_die                = bmips_cpu_die,
421 #endif
422 };
423
424 struct plat_smp_ops bmips5000_smp_ops = {
425         .smp_setup              = bmips_smp_setup,
426         .prepare_cpus           = bmips_prepare_cpus,
427         .boot_secondary         = bmips_boot_secondary,
428         .smp_finish             = bmips_smp_finish,
429         .init_secondary         = bmips_init_secondary,
430         .send_ipi_single        = bmips5000_send_ipi_single,
431         .send_ipi_mask          = bmips5000_send_ipi_mask,
432 #ifdef CONFIG_HOTPLUG_CPU
433         .cpu_disable            = bmips_cpu_disable,
434         .cpu_die                = bmips_cpu_die,
435 #endif
436 };
437
438 #endif /* CONFIG_SMP */
439
440 /***********************************************************************
441  * BMIPS vector relocation
442  * This is primarily used for SMP boot, but it is applicable to some
443  * UP BMIPS systems as well.
444  ***********************************************************************/
445
446 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
447 {
448         memcpy((void *)dst, start, end - start);
449         dma_cache_wback(dst, end - start);
450         local_flush_icache_range(dst, dst + (end - start));
451         instruction_hazard();
452 }
453
454 static inline void bmips_nmi_handler_setup(void)
455 {
456         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
457                 &bmips_reset_nmi_vec_end);
458         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
459                 &bmips_smp_int_vec_end);
460 }
461
462 struct reset_vec_info {
463         int cpu;
464         u32 val;
465 };
466
467 static void bmips_set_reset_vec_remote(void *vinfo)
468 {
469         struct reset_vec_info *info = vinfo;
470         int shift = info->cpu & 0x01 ? 16 : 0;
471         u32 mask = ~(0xffff << shift), val = info->val >> 16;
472
473         preempt_disable();
474         if (smp_processor_id() > 0) {
475                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
476                                          info, 1);
477         } else {
478                 if (info->cpu & 0x02) {
479                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
480                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
481                         bmips_read_zscm_reg(0xa0);
482                 } else {
483                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
484                                               (val << shift));
485                 }
486         }
487         preempt_enable();
488 }
489
490 static void bmips_set_reset_vec(int cpu, u32 val)
491 {
492         struct reset_vec_info info;
493
494         if (current_cpu_type() == CPU_BMIPS5000) {
495                 /* this needs to run from CPU0 (which is always online) */
496                 info.cpu = cpu;
497                 info.val = val;
498                 bmips_set_reset_vec_remote(&info);
499         } else {
500                 void __iomem *cbr = BMIPS_GET_CBR();
501
502                 if (cpu == 0)
503                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
504                 else {
505                         if (current_cpu_type() != CPU_BMIPS4380)
506                                 return;
507                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508                 }
509         }
510         __sync();
511         back_to_back_c0_hazard();
512 }
513
514 void bmips_ebase_setup(void)
515 {
516         unsigned long new_ebase = ebase;
517
518         BUG_ON(ebase != CKSEG0);
519
520         switch (current_cpu_type()) {
521         case CPU_BMIPS4350:
522                 /*
523                  * BMIPS4350 cannot relocate the normal vectors, but it
524                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
525                  * the relocated BEV=1, IV=0 general exception vector @
526                  * 0xa000_0380.
527                  *
528                  * set_uncached_handler() is used here because:
529                  *  - CPU1 will run this from uncached space
530                  *  - None of the cacheflush functions are set up yet
531                  */
532                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
533                         &bmips_smp_int_vec, 0x80);
534                 __sync();
535                 return;
536         case CPU_BMIPS3300:
537         case CPU_BMIPS4380:
538                 /*
539                  * 0x8000_0000: reset/NMI (initially in kseg1)
540                  * 0x8000_0400: normal vectors
541                  */
542                 new_ebase = 0x80000400;
543                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
544                 break;
545         case CPU_BMIPS5000:
546                 /*
547                  * 0x8000_0000: reset/NMI (initially in kseg1)
548                  * 0x8000_1000: normal vectors
549                  */
550                 new_ebase = 0x80001000;
551                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552                 write_c0_ebase(new_ebase);
553                 break;
554         default:
555                 return;
556         }
557
558         board_nmi_handler_setup = &bmips_nmi_handler_setup;
559         ebase = new_ebase;
560 }
561
562 asmlinkage void __weak plat_wired_tlb_setup(void)
563 {
564         /*
565          * Called when starting/restarting a secondary CPU.
566          * Kernel stacks and other important data might only be accessible
567          * once the wired entries are present.
568          */
569 }
570
571 void __init bmips_cpu_setup(void)
572 {
573         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
574         u32 __maybe_unused cfg;
575
576         switch (current_cpu_type()) {
577         case CPU_BMIPS3300:
578                 /* Set BIU to async mode */
579                 set_c0_brcm_bus_pll(BIT(22));
580                 __sync();
581
582                 /* put the BIU back in sync mode */
583                 clear_c0_brcm_bus_pll(BIT(22));
584
585                 /* clear BHTD to enable branch history table */
586                 clear_c0_brcm_reset(BIT(16));
587
588                 /* Flush and enable RAC */
589                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
590                 __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
591                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
592
593                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594                 __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
595                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
598                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
599                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600                 break;
601
602         case CPU_BMIPS4380:
603                 /* CBG workaround for early BMIPS4380 CPUs */
604                 switch (read_c0_prid()) {
605                 case 0x2a040:
606                 case 0x2a042:
607                 case 0x2a044:
608                 case 0x2a060:
609                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
610                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
611                         __raw_readl(cbr + BMIPS_L2_CONFIG);
612                 }
613
614                 /* clear BHTD to enable branch history table */
615                 clear_c0_brcm_config_0(BIT(21));
616
617                 /* XI/ROTR enable */
618                 set_c0_brcm_config_0(BIT(23));
619                 set_c0_brcm_cmt_ctrl(BIT(15));
620                 break;
621
622         case CPU_BMIPS5000:
623                 /* enable RDHWR, BRDHWR */
624                 set_c0_brcm_config(BIT(17) | BIT(21));
625
626                 /* Disable JTB */
627                 __asm__ __volatile__(
628                 "       .set    noreorder\n"
629                 "       li      $8, 0x5a455048\n"
630                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
631                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
632                 "       li      $9, 0x00008000\n"
633                 "       or      $8, $8, $9\n"
634                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
635                 "       sync\n"
636                 "       li      $8, 0x0\n"
637                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
638                 "       .set    reorder\n"
639                 : : : "$8", "$9");
640
641                 /* XI enable */
642                 set_c0_brcm_config(BIT(27));
643
644                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
645                 __asm__ __volatile__(
646                 "       li      $8, 0x5a455048\n"
647                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
648                 "       nop; nop; nop\n"
649                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
650                 "       lui     $9, 0x0100\n"
651                 "       or      $8, $9\n"
652                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
653                 : : : "$8", "$9");
654                 break;
655         }
656 }