Merge tag 'pci-v4.6-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[cascardo/linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static DECLARE_BITMAP(core_power, NR_CPUS);
31
32 struct core_boot_config *mips_cps_core_bootcfg;
33
34 static unsigned core_vpe_count(unsigned core)
35 {
36         unsigned cfg;
37
38         if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
39                 return 1;
40
41         mips_cm_lock_other(core, 0);
42         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
43         mips_cm_unlock_other();
44         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
45 }
46
47 static void __init cps_smp_setup(void)
48 {
49         unsigned int ncores, nvpes, core_vpes;
50         int c, v;
51
52         /* Detect & record VPE topology */
53         ncores = mips_cm_numcores();
54         pr_info("VPE topology ");
55         for (c = nvpes = 0; c < ncores; c++) {
56                 core_vpes = core_vpe_count(c);
57                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
58
59                 /* Use the number of VPEs in core 0 for smp_num_siblings */
60                 if (!c)
61                         smp_num_siblings = core_vpes;
62
63                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
64                         cpu_data[nvpes + v].core = c;
65 #ifdef CONFIG_MIPS_MT_SMP
66                         cpu_data[nvpes + v].vpe_id = v;
67 #endif
68                 }
69
70                 nvpes += core_vpes;
71         }
72         pr_cont("} total %u\n", nvpes);
73
74         /* Indicate present CPUs (CPU being synonymous with VPE) */
75         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
76                 set_cpu_possible(v, true);
77                 set_cpu_present(v, true);
78                 __cpu_number_map[v] = v;
79                 __cpu_logical_map[v] = v;
80         }
81
82         /* Set a coherent default CCA (CWB) */
83         change_c0_config(CONF_CM_CMASK, 0x5);
84
85         /* Core 0 is powered up (we're running on it) */
86         bitmap_set(core_power, 0, 1);
87
88         /* Initialise core 0 */
89         mips_cps_core_init();
90
91         /* Make core 0 coherent with everything */
92         write_gcr_cl_coherence(0xff);
93
94 #ifdef CONFIG_MIPS_MT_FPAFF
95         /* If we have an FPU, enroll ourselves in the FPU-full mask */
96         if (cpu_has_fpu)
97                 cpumask_set_cpu(0, &mt_fpu_cpumask);
98 #endif /* CONFIG_MIPS_MT_FPAFF */
99 }
100
101 static void __init cps_prepare_cpus(unsigned int max_cpus)
102 {
103         unsigned ncores, core_vpes, c, cca;
104         bool cca_unsuitable;
105         u32 *entry_code;
106
107         mips_mt_set_cpuoptions();
108
109         /* Detect whether the CCA is unsuited to multi-core SMP */
110         cca = read_c0_config() & CONF_CM_CMASK;
111         switch (cca) {
112         case 0x4: /* CWBE */
113         case 0x5: /* CWB */
114                 /* The CCA is coherent, multi-core is fine */
115                 cca_unsuitable = false;
116                 break;
117
118         default:
119                 /* CCA is not coherent, multi-core is not usable */
120                 cca_unsuitable = true;
121         }
122
123         /* Warn the user if the CCA prevents multi-core */
124         ncores = mips_cm_numcores();
125         if (cca_unsuitable && ncores > 1) {
126                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
127                         cca);
128
129                 for_each_present_cpu(c) {
130                         if (cpu_data[c].core)
131                                 set_cpu_present(c, false);
132                 }
133         }
134
135         /*
136          * Patch the start of mips_cps_core_entry to provide:
137          *
138          * s0 = kseg0 CCA
139          */
140         entry_code = (u32 *)&mips_cps_core_entry;
141         uasm_i_addiu(&entry_code, 16, 0, cca);
142         blast_dcache_range((unsigned long)&mips_cps_core_entry,
143                            (unsigned long)entry_code);
144         bc_wback_inv((unsigned long)&mips_cps_core_entry,
145                      (void *)entry_code - (void *)&mips_cps_core_entry);
146         __sync();
147
148         /* Allocate core boot configuration structs */
149         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150                                         GFP_KERNEL);
151         if (!mips_cps_core_bootcfg) {
152                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
153                 goto err_out;
154         }
155
156         /* Allocate VPE boot configuration structs */
157         for (c = 0; c < ncores; c++) {
158                 core_vpes = core_vpe_count(c);
159                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161                                 GFP_KERNEL);
162                 if (!mips_cps_core_bootcfg[c].vpe_config) {
163                         pr_err("Failed to allocate %u VPE boot configs\n",
164                                core_vpes);
165                         goto err_out;
166                 }
167         }
168
169         /* Mark this CPU as booted */
170         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171                    1 << cpu_vpe_id(&current_cpu_data));
172
173         return;
174 err_out:
175         /* Clean up allocations */
176         if (mips_cps_core_bootcfg) {
177                 for (c = 0; c < ncores; c++)
178                         kfree(mips_cps_core_bootcfg[c].vpe_config);
179                 kfree(mips_cps_core_bootcfg);
180                 mips_cps_core_bootcfg = NULL;
181         }
182
183         /* Effectively disable SMP by declaring CPUs not present */
184         for_each_possible_cpu(c) {
185                 if (c == 0)
186                         continue;
187                 set_cpu_present(c, false);
188         }
189 }
190
191 static void boot_core(unsigned core)
192 {
193         u32 access, stat, seq_state;
194         unsigned timeout;
195
196         /* Select the appropriate core */
197         mips_cm_lock_other(core, 0);
198
199         /* Set its reset vector */
200         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
201
202         /* Ensure its coherency is disabled */
203         write_gcr_co_coherence(0);
204
205         /* Start it with the legacy memory map and exception base */
206         write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
207
208         /* Ensure the core can access the GCRs */
209         access = read_gcr_access();
210         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
211         write_gcr_access(access);
212
213         if (mips_cpc_present()) {
214                 /* Reset the core */
215                 mips_cpc_lock_other(core);
216                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
217
218                 timeout = 100;
219                 while (true) {
220                         stat = read_cpc_co_stat_conf();
221                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
222
223                         /* U6 == coherent execution, ie. the core is up */
224                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
225                                 break;
226
227                         /* Delay a little while before we start warning */
228                         if (timeout) {
229                                 timeout--;
230                                 mdelay(10);
231                                 continue;
232                         }
233
234                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
235                                 core, stat);
236                         mdelay(1000);
237                 }
238
239                 mips_cpc_unlock_other();
240         } else {
241                 /* Take the core out of reset */
242                 write_gcr_co_reset_release(0);
243         }
244
245         mips_cm_unlock_other();
246
247         /* The core is now powered up */
248         bitmap_set(core_power, core, 1);
249 }
250
251 static void remote_vpe_boot(void *dummy)
252 {
253         mips_cps_boot_vpes();
254 }
255
256 static void cps_boot_secondary(int cpu, struct task_struct *idle)
257 {
258         unsigned core = cpu_data[cpu].core;
259         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
260         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
261         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
262         unsigned int remote;
263         int err;
264
265         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
266         vpe_cfg->sp = __KSTK_TOS(idle);
267         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
268
269         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
270
271         preempt_disable();
272
273         if (!test_bit(core, core_power)) {
274                 /* Boot a VPE on a powered down core */
275                 boot_core(core);
276                 goto out;
277         }
278
279         if (core != current_cpu_data.core) {
280                 /* Boot a VPE on another powered up core */
281                 for (remote = 0; remote < NR_CPUS; remote++) {
282                         if (cpu_data[remote].core != core)
283                                 continue;
284                         if (cpu_online(remote))
285                                 break;
286                 }
287                 BUG_ON(remote >= NR_CPUS);
288
289                 err = smp_call_function_single(remote, remote_vpe_boot,
290                                                NULL, 1);
291                 if (err)
292                         panic("Failed to call remote CPU\n");
293                 goto out;
294         }
295
296         BUG_ON(!cpu_has_mipsmt);
297
298         /* Boot a VPE on this core */
299         mips_cps_boot_vpes();
300 out:
301         preempt_enable();
302 }
303
304 static void cps_init_secondary(void)
305 {
306         /* Disable MT - we only want to run 1 TC per VPE */
307         if (cpu_has_mipsmt)
308                 dmt();
309
310         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
311                                  STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
312 }
313
314 static void cps_smp_finish(void)
315 {
316         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
317
318 #ifdef CONFIG_MIPS_MT_FPAFF
319         /* If we have an FPU, enroll ourselves in the FPU-full mask */
320         if (cpu_has_fpu)
321                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
322 #endif /* CONFIG_MIPS_MT_FPAFF */
323
324         local_irq_enable();
325 }
326
327 #ifdef CONFIG_HOTPLUG_CPU
328
329 static int cps_cpu_disable(void)
330 {
331         unsigned cpu = smp_processor_id();
332         struct core_boot_config *core_cfg;
333
334         if (!cpu)
335                 return -EBUSY;
336
337         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
338                 return -EINVAL;
339
340         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
341         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
342         smp_mb__after_atomic();
343         set_cpu_online(cpu, false);
344         cpumask_clear_cpu(cpu, &cpu_callin_map);
345
346         return 0;
347 }
348
349 static DECLARE_COMPLETION(cpu_death_chosen);
350 static unsigned cpu_death_sibling;
351 static enum {
352         CPU_DEATH_HALT,
353         CPU_DEATH_POWER,
354 } cpu_death;
355
356 void play_dead(void)
357 {
358         unsigned cpu, core;
359
360         local_irq_disable();
361         idle_task_exit();
362         cpu = smp_processor_id();
363         cpu_death = CPU_DEATH_POWER;
364
365         if (cpu_has_mipsmt) {
366                 core = cpu_data[cpu].core;
367
368                 /* Look for another online VPE within the core */
369                 for_each_online_cpu(cpu_death_sibling) {
370                         if (cpu_data[cpu_death_sibling].core != core)
371                                 continue;
372
373                         /*
374                          * There is an online VPE within the core. Just halt
375                          * this TC and leave the core alone.
376                          */
377                         cpu_death = CPU_DEATH_HALT;
378                         break;
379                 }
380         }
381
382         /* This CPU has chosen its way out */
383         complete(&cpu_death_chosen);
384
385         if (cpu_death == CPU_DEATH_HALT) {
386                 /* Halt this TC */
387                 write_c0_tchalt(TCHALT_H);
388                 instruction_hazard();
389         } else {
390                 /* Power down the core */
391                 cps_pm_enter_state(CPS_PM_POWER_GATED);
392         }
393
394         /* This should never be reached */
395         panic("Failed to offline CPU %u", cpu);
396 }
397
398 static void wait_for_sibling_halt(void *ptr_cpu)
399 {
400         unsigned cpu = (unsigned long)ptr_cpu;
401         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
402         unsigned halted;
403         unsigned long flags;
404
405         do {
406                 local_irq_save(flags);
407                 settc(vpe_id);
408                 halted = read_tc_c0_tchalt();
409                 local_irq_restore(flags);
410         } while (!(halted & TCHALT_H));
411 }
412
413 static void cps_cpu_die(unsigned int cpu)
414 {
415         unsigned core = cpu_data[cpu].core;
416         unsigned stat;
417         int err;
418
419         /* Wait for the cpu to choose its way out */
420         if (!wait_for_completion_timeout(&cpu_death_chosen,
421                                          msecs_to_jiffies(5000))) {
422                 pr_err("CPU%u: didn't offline\n", cpu);
423                 return;
424         }
425
426         /*
427          * Now wait for the CPU to actually offline. Without doing this that
428          * offlining may race with one or more of:
429          *
430          *   - Onlining the CPU again.
431          *   - Powering down the core if another VPE within it is offlined.
432          *   - A sibling VPE entering a non-coherent state.
433          *
434          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
435          * with which we could race, so do nothing.
436          */
437         if (cpu_death == CPU_DEATH_POWER) {
438                 /*
439                  * Wait for the core to enter a powered down or clock gated
440                  * state, the latter happening when a JTAG probe is connected
441                  * in which case the CPC will refuse to power down the core.
442                  */
443                 do {
444                         mips_cpc_lock_other(core);
445                         stat = read_cpc_co_stat_conf();
446                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
447                         mips_cpc_unlock_other();
448                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
449                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
450                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
451
452                 /* Indicate the core is powered off */
453                 bitmap_clear(core_power, core, 1);
454         } else if (cpu_has_mipsmt) {
455                 /*
456                  * Have a CPU with access to the offlined CPUs registers wait
457                  * for its TC to halt.
458                  */
459                 err = smp_call_function_single(cpu_death_sibling,
460                                                wait_for_sibling_halt,
461                                                (void *)(unsigned long)cpu, 1);
462                 if (err)
463                         panic("Failed to call remote sibling CPU\n");
464         }
465 }
466
467 #endif /* CONFIG_HOTPLUG_CPU */
468
469 static struct plat_smp_ops cps_smp_ops = {
470         .smp_setup              = cps_smp_setup,
471         .prepare_cpus           = cps_prepare_cpus,
472         .boot_secondary         = cps_boot_secondary,
473         .init_secondary         = cps_init_secondary,
474         .smp_finish             = cps_smp_finish,
475         .send_ipi_single        = mips_smp_send_ipi_single,
476         .send_ipi_mask          = mips_smp_send_ipi_mask,
477 #ifdef CONFIG_HOTPLUG_CPU
478         .cpu_disable            = cps_cpu_disable,
479         .cpu_die                = cps_cpu_die,
480 #endif
481 };
482
483 bool mips_cps_smp_in_use(void)
484 {
485         extern struct plat_smp_ops *mp_ops;
486         return mp_ops == &cps_smp_ops;
487 }
488
489 int register_cps_smp_ops(void)
490 {
491         if (!mips_cm_present()) {
492                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
493                 return -ENODEV;
494         }
495
496         /* check we have a GIC - we need one for IPIs */
497         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
498                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
499                 return -ENODEV;
500         }
501
502         register_smp_ops(&cps_smp_ops);
503         return 0;
504 }