Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32
33 struct core_boot_config *mips_cps_core_bootcfg;
34
35 static int __init setup_nothreads(char *s)
36 {
37         threads_disabled = true;
38         return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41
42 static unsigned core_vpe_count(unsigned core)
43 {
44         unsigned cfg;
45
46         if (threads_disabled)
47                 return 1;
48
49         if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50                 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51                 return 1;
52
53         mips_cm_lock_other(core, 0);
54         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55         mips_cm_unlock_other();
56         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58
59 static void __init cps_smp_setup(void)
60 {
61         unsigned int ncores, nvpes, core_vpes;
62         unsigned long core_entry;
63         int c, v;
64
65         /* Detect & record VPE topology */
66         ncores = mips_cm_numcores();
67         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68         for (c = nvpes = 0; c < ncores; c++) {
69                 core_vpes = core_vpe_count(c);
70                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
71
72                 /* Use the number of VPEs in core 0 for smp_num_siblings */
73                 if (!c)
74                         smp_num_siblings = core_vpes;
75
76                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77                         cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79                         cpu_data[nvpes + v].vpe_id = v;
80 #endif
81                 }
82
83                 nvpes += core_vpes;
84         }
85         pr_cont("} total %u\n", nvpes);
86
87         /* Indicate present CPUs (CPU being synonymous with VPE) */
88         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89                 set_cpu_possible(v, true);
90                 set_cpu_present(v, true);
91                 __cpu_number_map[v] = v;
92                 __cpu_logical_map[v] = v;
93         }
94
95         /* Set a coherent default CCA (CWB) */
96         change_c0_config(CONF_CM_CMASK, 0x5);
97
98         /* Core 0 is powered up (we're running on it) */
99         bitmap_set(core_power, 0, 1);
100
101         /* Initialise core 0 */
102         mips_cps_core_init();
103
104         /* Make core 0 coherent with everything */
105         write_gcr_cl_coherence(0xff);
106
107         if (mips_cm_revision() >= CM_REV_CM3) {
108                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109                 write_gcr_bev_base(core_entry);
110         }
111
112 #ifdef CONFIG_MIPS_MT_FPAFF
113         /* If we have an FPU, enroll ourselves in the FPU-full mask */
114         if (cpu_has_fpu)
115                 cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121         unsigned ncores, core_vpes, c, cca;
122         bool cca_unsuitable;
123         u32 *entry_code;
124
125         mips_mt_set_cpuoptions();
126
127         /* Detect whether the CCA is unsuited to multi-core SMP */
128         cca = read_c0_config() & CONF_CM_CMASK;
129         switch (cca) {
130         case 0x4: /* CWBE */
131         case 0x5: /* CWB */
132                 /* The CCA is coherent, multi-core is fine */
133                 cca_unsuitable = false;
134                 break;
135
136         default:
137                 /* CCA is not coherent, multi-core is not usable */
138                 cca_unsuitable = true;
139         }
140
141         /* Warn the user if the CCA prevents multi-core */
142         ncores = mips_cm_numcores();
143         if (cca_unsuitable && ncores > 1) {
144                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145                         cca);
146
147                 for_each_present_cpu(c) {
148                         if (cpu_data[c].core)
149                                 set_cpu_present(c, false);
150                 }
151         }
152
153         /*
154          * Patch the start of mips_cps_core_entry to provide:
155          *
156          * s0 = kseg0 CCA
157          */
158         entry_code = (u32 *)&mips_cps_core_entry;
159         uasm_i_addiu(&entry_code, 16, 0, cca);
160         blast_dcache_range((unsigned long)&mips_cps_core_entry,
161                            (unsigned long)entry_code);
162         bc_wback_inv((unsigned long)&mips_cps_core_entry,
163                      (void *)entry_code - (void *)&mips_cps_core_entry);
164         __sync();
165
166         /* Allocate core boot configuration structs */
167         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168                                         GFP_KERNEL);
169         if (!mips_cps_core_bootcfg) {
170                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
171                 goto err_out;
172         }
173
174         /* Allocate VPE boot configuration structs */
175         for (c = 0; c < ncores; c++) {
176                 core_vpes = core_vpe_count(c);
177                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179                                 GFP_KERNEL);
180                 if (!mips_cps_core_bootcfg[c].vpe_config) {
181                         pr_err("Failed to allocate %u VPE boot configs\n",
182                                core_vpes);
183                         goto err_out;
184                 }
185         }
186
187         /* Mark this CPU as booted */
188         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189                    1 << cpu_vpe_id(&current_cpu_data));
190
191         return;
192 err_out:
193         /* Clean up allocations */
194         if (mips_cps_core_bootcfg) {
195                 for (c = 0; c < ncores; c++)
196                         kfree(mips_cps_core_bootcfg[c].vpe_config);
197                 kfree(mips_cps_core_bootcfg);
198                 mips_cps_core_bootcfg = NULL;
199         }
200
201         /* Effectively disable SMP by declaring CPUs not present */
202         for_each_possible_cpu(c) {
203                 if (c == 0)
204                         continue;
205                 set_cpu_present(c, false);
206         }
207 }
208
209 static void boot_core(unsigned int core, unsigned int vpe_id)
210 {
211         u32 access, stat, seq_state;
212         unsigned timeout;
213
214         /* Select the appropriate core */
215         mips_cm_lock_other(core, 0);
216
217         /* Set its reset vector */
218         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219
220         /* Ensure its coherency is disabled */
221         write_gcr_co_coherence(0);
222
223         /* Start it with the legacy memory map and exception base */
224         write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225
226         /* Ensure the core can access the GCRs */
227         access = read_gcr_access();
228         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229         write_gcr_access(access);
230
231         if (mips_cpc_present()) {
232                 /* Reset the core */
233                 mips_cpc_lock_other(core);
234
235                 if (mips_cm_revision() >= CM_REV_CM3) {
236                         /* Run only the requested VP following the reset */
237                         write_cpc_co_vp_stop(0xf);
238                         write_cpc_co_vp_run(1 << vpe_id);
239
240                         /*
241                          * Ensure that the VP_RUN register is written before the
242                          * core leaves reset.
243                          */
244                         wmb();
245                 }
246
247                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
248
249                 timeout = 100;
250                 while (true) {
251                         stat = read_cpc_co_stat_conf();
252                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
253
254                         /* U6 == coherent execution, ie. the core is up */
255                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256                                 break;
257
258                         /* Delay a little while before we start warning */
259                         if (timeout) {
260                                 timeout--;
261                                 mdelay(10);
262                                 continue;
263                         }
264
265                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266                                 core, stat);
267                         mdelay(1000);
268                 }
269
270                 mips_cpc_unlock_other();
271         } else {
272                 /* Take the core out of reset */
273                 write_gcr_co_reset_release(0);
274         }
275
276         mips_cm_unlock_other();
277
278         /* The core is now powered up */
279         bitmap_set(core_power, core, 1);
280 }
281
282 static void remote_vpe_boot(void *dummy)
283 {
284         unsigned core = current_cpu_data.core;
285         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286
287         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288 }
289
290 static void cps_boot_secondary(int cpu, struct task_struct *idle)
291 {
292         unsigned core = cpu_data[cpu].core;
293         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296         unsigned long core_entry;
297         unsigned int remote;
298         int err;
299
300         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
301         vpe_cfg->sp = __KSTK_TOS(idle);
302         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
303
304         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
305
306         preempt_disable();
307
308         if (!test_bit(core, core_power)) {
309                 /* Boot a VPE on a powered down core */
310                 boot_core(core, vpe_id);
311                 goto out;
312         }
313
314         if (cpu_has_vp) {
315                 mips_cm_lock_other(core, vpe_id);
316                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
317                 write_gcr_co_reset_base(core_entry);
318                 mips_cm_unlock_other();
319         }
320
321         if (core != current_cpu_data.core) {
322                 /* Boot a VPE on another powered up core */
323                 for (remote = 0; remote < NR_CPUS; remote++) {
324                         if (cpu_data[remote].core != core)
325                                 continue;
326                         if (cpu_online(remote))
327                                 break;
328                 }
329                 BUG_ON(remote >= NR_CPUS);
330
331                 err = smp_call_function_single(remote, remote_vpe_boot,
332                                                NULL, 1);
333                 if (err)
334                         panic("Failed to call remote CPU\n");
335                 goto out;
336         }
337
338         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
339
340         /* Boot a VPE on this core */
341         mips_cps_boot_vpes(core_cfg, vpe_id);
342 out:
343         preempt_enable();
344 }
345
346 static void cps_init_secondary(void)
347 {
348         /* Disable MT - we only want to run 1 TC per VPE */
349         if (cpu_has_mipsmt)
350                 dmt();
351
352         if (mips_cm_revision() >= CM_REV_CM3) {
353                 unsigned ident = gic_read_local_vp_id();
354
355                 /*
356                  * Ensure that our calculation of the VP ID matches up with
357                  * what the GIC reports, otherwise we'll have configured
358                  * interrupts incorrectly.
359                  */
360                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
361         }
362
363         if (cpu_has_veic)
364                 clear_c0_status(ST0_IM);
365         else
366                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
367                                          STATUSF_IP4 | STATUSF_IP5 |
368                                          STATUSF_IP6 | STATUSF_IP7);
369 }
370
371 static void cps_smp_finish(void)
372 {
373         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
374
375 #ifdef CONFIG_MIPS_MT_FPAFF
376         /* If we have an FPU, enroll ourselves in the FPU-full mask */
377         if (cpu_has_fpu)
378                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
379 #endif /* CONFIG_MIPS_MT_FPAFF */
380
381         local_irq_enable();
382 }
383
384 #ifdef CONFIG_HOTPLUG_CPU
385
386 static int cps_cpu_disable(void)
387 {
388         unsigned cpu = smp_processor_id();
389         struct core_boot_config *core_cfg;
390
391         if (!cpu)
392                 return -EBUSY;
393
394         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
395                 return -EINVAL;
396
397         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
398         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
399         smp_mb__after_atomic();
400         set_cpu_online(cpu, false);
401         calculate_cpu_foreign_map();
402         cpumask_clear_cpu(cpu, &cpu_callin_map);
403
404         return 0;
405 }
406
407 static DECLARE_COMPLETION(cpu_death_chosen);
408 static unsigned cpu_death_sibling;
409 static enum {
410         CPU_DEATH_HALT,
411         CPU_DEATH_POWER,
412 } cpu_death;
413
414 void play_dead(void)
415 {
416         unsigned int cpu, core, vpe_id;
417
418         local_irq_disable();
419         idle_task_exit();
420         cpu = smp_processor_id();
421         cpu_death = CPU_DEATH_POWER;
422
423         pr_debug("CPU%d going offline\n", cpu);
424
425         if (cpu_has_mipsmt || cpu_has_vp) {
426                 core = cpu_data[cpu].core;
427
428                 /* Look for another online VPE within the core */
429                 for_each_online_cpu(cpu_death_sibling) {
430                         if (cpu_data[cpu_death_sibling].core != core)
431                                 continue;
432
433                         /*
434                          * There is an online VPE within the core. Just halt
435                          * this TC and leave the core alone.
436                          */
437                         cpu_death = CPU_DEATH_HALT;
438                         break;
439                 }
440         }
441
442         /* This CPU has chosen its way out */
443         complete(&cpu_death_chosen);
444
445         if (cpu_death == CPU_DEATH_HALT) {
446                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
447
448                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
449                 if (cpu_has_mipsmt) {
450                         /* Halt this TC */
451                         write_c0_tchalt(TCHALT_H);
452                         instruction_hazard();
453                 } else if (cpu_has_vp) {
454                         write_cpc_cl_vp_stop(1 << vpe_id);
455
456                         /* Ensure that the VP_STOP register is written */
457                         wmb();
458                 }
459         } else {
460                 pr_debug("Gating power to core %d\n", core);
461                 /* Power down the core */
462                 cps_pm_enter_state(CPS_PM_POWER_GATED);
463         }
464
465         /* This should never be reached */
466         panic("Failed to offline CPU %u", cpu);
467 }
468
469 static void wait_for_sibling_halt(void *ptr_cpu)
470 {
471         unsigned cpu = (unsigned long)ptr_cpu;
472         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
473         unsigned halted;
474         unsigned long flags;
475
476         do {
477                 local_irq_save(flags);
478                 settc(vpe_id);
479                 halted = read_tc_c0_tchalt();
480                 local_irq_restore(flags);
481         } while (!(halted & TCHALT_H));
482 }
483
484 static void cps_cpu_die(unsigned int cpu)
485 {
486         unsigned core = cpu_data[cpu].core;
487         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
488         unsigned stat;
489         int err;
490
491         /* Wait for the cpu to choose its way out */
492         if (!wait_for_completion_timeout(&cpu_death_chosen,
493                                          msecs_to_jiffies(5000))) {
494                 pr_err("CPU%u: didn't offline\n", cpu);
495                 return;
496         }
497
498         /*
499          * Now wait for the CPU to actually offline. Without doing this that
500          * offlining may race with one or more of:
501          *
502          *   - Onlining the CPU again.
503          *   - Powering down the core if another VPE within it is offlined.
504          *   - A sibling VPE entering a non-coherent state.
505          *
506          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
507          * with which we could race, so do nothing.
508          */
509         if (cpu_death == CPU_DEATH_POWER) {
510                 /*
511                  * Wait for the core to enter a powered down or clock gated
512                  * state, the latter happening when a JTAG probe is connected
513                  * in which case the CPC will refuse to power down the core.
514                  */
515                 do {
516                         mips_cm_lock_other(core, vpe_id);
517                         mips_cpc_lock_other(core);
518                         stat = read_cpc_co_stat_conf();
519                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
520                         mips_cpc_unlock_other();
521                         mips_cm_unlock_other();
522                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
523                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
524                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
525
526                 /* Indicate the core is powered off */
527                 bitmap_clear(core_power, core, 1);
528         } else if (cpu_has_mipsmt) {
529                 /*
530                  * Have a CPU with access to the offlined CPUs registers wait
531                  * for its TC to halt.
532                  */
533                 err = smp_call_function_single(cpu_death_sibling,
534                                                wait_for_sibling_halt,
535                                                (void *)(unsigned long)cpu, 1);
536                 if (err)
537                         panic("Failed to call remote sibling CPU\n");
538         } else if (cpu_has_vp) {
539                 do {
540                         mips_cm_lock_other(core, vpe_id);
541                         stat = read_cpc_co_vp_running();
542                         mips_cm_unlock_other();
543                 } while (stat & (1 << vpe_id));
544         }
545 }
546
547 #endif /* CONFIG_HOTPLUG_CPU */
548
549 static struct plat_smp_ops cps_smp_ops = {
550         .smp_setup              = cps_smp_setup,
551         .prepare_cpus           = cps_prepare_cpus,
552         .boot_secondary         = cps_boot_secondary,
553         .init_secondary         = cps_init_secondary,
554         .smp_finish             = cps_smp_finish,
555         .send_ipi_single        = mips_smp_send_ipi_single,
556         .send_ipi_mask          = mips_smp_send_ipi_mask,
557 #ifdef CONFIG_HOTPLUG_CPU
558         .cpu_disable            = cps_cpu_disable,
559         .cpu_die                = cps_cpu_die,
560 #endif
561 };
562
563 bool mips_cps_smp_in_use(void)
564 {
565         extern struct plat_smp_ops *mp_ops;
566         return mp_ops == &cps_smp_ops;
567 }
568
569 int register_cps_smp_ops(void)
570 {
571         if (!mips_cm_present()) {
572                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
573                 return -ENODEV;
574         }
575
576         /* check we have a GIC - we need one for IPIs */
577         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
578                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
579                 return -ENODEV;
580         }
581
582         register_smp_ops(&cps_smp_ops);
583         return 0;
584 }