Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map;               /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93         int i;
94
95         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97         if (smp_num_siblings > 1) {
98                 for_each_cpu(i, &cpu_sibling_setup_map) {
99                         if (cpu_data[cpu].package == cpu_data[i].package &&
100                                     cpu_data[cpu].core == cpu_data[i].core) {
101                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103                         }
104                 }
105         } else
106                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111         int i;
112
113         cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115         for_each_cpu(i, &cpu_core_setup_map) {
116                 if (cpu_data[cpu].package == cpu_data[i].package) {
117                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
118                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
119                 }
120         }
121 }
122
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 static inline void calculate_cpu_foreign_map(void)
128 {
129         int i, k, core_present;
130         cpumask_t temp_foreign_map;
131
132         /* Re-calculate the mask */
133         cpumask_clear(&temp_foreign_map);
134         for_each_online_cpu(i) {
135                 core_present = 0;
136                 for_each_cpu(k, &temp_foreign_map)
137                         if (cpu_data[i].package == cpu_data[k].package &&
138                             cpu_data[i].core == cpu_data[k].core)
139                                 core_present = 1;
140                 if (!core_present)
141                         cpumask_set_cpu(i, &temp_foreign_map);
142         }
143
144         cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
145 }
146
147 struct plat_smp_ops *mp_ops;
148 EXPORT_SYMBOL(mp_ops);
149
150 void register_smp_ops(struct plat_smp_ops *ops)
151 {
152         if (mp_ops)
153                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
154
155         mp_ops = ops;
156 }
157
158 #ifdef CONFIG_GENERIC_IRQ_IPI
159 void mips_smp_send_ipi_single(int cpu, unsigned int action)
160 {
161         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162 }
163
164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165 {
166         unsigned long flags;
167         unsigned int core;
168         int cpu;
169
170         local_irq_save(flags);
171
172         switch (action) {
173         case SMP_CALL_FUNCTION:
174                 __ipi_send_mask(call_desc, mask);
175                 break;
176
177         case SMP_RESCHEDULE_YOURSELF:
178                 __ipi_send_mask(sched_desc, mask);
179                 break;
180
181         default:
182                 BUG();
183         }
184
185         if (mips_cpc_present()) {
186                 for_each_cpu(cpu, mask) {
187                         core = cpu_data[cpu].core;
188
189                         if (core == current_cpu_data.core)
190                                 continue;
191
192                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193                                 mips_cpc_lock_other(core);
194                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195                                 mips_cpc_unlock_other();
196                         }
197                 }
198         }
199
200         local_irq_restore(flags);
201 }
202
203
204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205 {
206         scheduler_ipi();
207
208         return IRQ_HANDLED;
209 }
210
211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212 {
213         generic_smp_call_function_interrupt();
214
215         return IRQ_HANDLED;
216 }
217
218 static struct irqaction irq_resched = {
219         .handler        = ipi_resched_interrupt,
220         .flags          = IRQF_PERCPU,
221         .name           = "IPI resched"
222 };
223
224 static struct irqaction irq_call = {
225         .handler        = ipi_call_interrupt,
226         .flags          = IRQF_PERCPU,
227         .name           = "IPI call"
228 };
229
230 static __init void smp_ipi_init_one(unsigned int virq,
231                                     struct irqaction *action)
232 {
233         int ret;
234
235         irq_set_handler(virq, handle_percpu_irq);
236         ret = setup_irq(virq, action);
237         BUG_ON(ret);
238 }
239
240 static int __init mips_smp_ipi_init(void)
241 {
242         unsigned int call_virq, sched_virq;
243         struct irq_domain *ipidomain;
244         struct device_node *node;
245
246         node = of_irq_find_parent(of_root);
247         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248
249         /*
250          * Some platforms have half DT setup. So if we found irq node but
251          * didn't find an ipidomain, try to search for one that is not in the
252          * DT.
253          */
254         if (node && !ipidomain)
255                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256
257         BUG_ON(!ipidomain);
258
259         call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
260         BUG_ON(!call_virq);
261
262         sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
263         BUG_ON(!sched_virq);
264
265         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266                 int cpu;
267
268                 for_each_cpu(cpu, cpu_possible_mask) {
269                         smp_ipi_init_one(call_virq + cpu, &irq_call);
270                         smp_ipi_init_one(sched_virq + cpu, &irq_resched);
271                 }
272         } else {
273                 smp_ipi_init_one(call_virq, &irq_call);
274                 smp_ipi_init_one(sched_virq, &irq_resched);
275         }
276
277         call_desc = irq_to_desc(call_virq);
278         sched_desc = irq_to_desc(sched_virq);
279
280         return 0;
281 }
282 early_initcall(mips_smp_ipi_init);
283 #endif
284
285 /*
286  * First C code run on the secondary CPUs after being started up by
287  * the master.
288  */
289 asmlinkage void start_secondary(void)
290 {
291         unsigned int cpu;
292
293         cpu_probe();
294         per_cpu_trap_init(false);
295         mips_clockevent_init();
296         mp_ops->init_secondary();
297         cpu_report();
298         maar_init();
299
300         /*
301          * XXX parity protection should be folded in here when it's converted
302          * to an option instead of something based on .cputype
303          */
304
305         calibrate_delay();
306         preempt_disable();
307         cpu = smp_processor_id();
308         cpu_data[cpu].udelay_val = loops_per_jiffy;
309
310         cpumask_set_cpu(cpu, &cpu_coherent_mask);
311         notify_cpu_starting(cpu);
312
313         set_cpu_online(cpu, true);
314
315         set_cpu_sibling_map(cpu);
316         set_cpu_core_map(cpu);
317
318         calculate_cpu_foreign_map();
319
320         cpumask_set_cpu(cpu, &cpu_callin_map);
321
322         synchronise_count_slave(cpu);
323
324         /*
325          * irq will be enabled in ->smp_finish(), enabling it too early
326          * is dangerous.
327          */
328         WARN_ON_ONCE(!irqs_disabled());
329         mp_ops->smp_finish();
330
331         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
332 }
333
334 static void stop_this_cpu(void *dummy)
335 {
336         /*
337          * Remove this CPU. Be a bit slow here and
338          * set the bits for every online CPU so we don't miss
339          * any IPI whilst taking this VPE down.
340          */
341
342         cpumask_copy(&cpu_foreign_map, cpu_online_mask);
343
344         /* Make it visible to every other CPU */
345         smp_mb();
346
347         set_cpu_online(smp_processor_id(), false);
348         calculate_cpu_foreign_map();
349         local_irq_disable();
350         while (1);
351 }
352
353 void smp_send_stop(void)
354 {
355         smp_call_function(stop_this_cpu, NULL, 0);
356 }
357
358 void __init smp_cpus_done(unsigned int max_cpus)
359 {
360 }
361
362 /* called from main before smp_init() */
363 void __init smp_prepare_cpus(unsigned int max_cpus)
364 {
365         init_new_context(current, &init_mm);
366         current_thread_info()->cpu = 0;
367         mp_ops->prepare_cpus(max_cpus);
368         set_cpu_sibling_map(0);
369         set_cpu_core_map(0);
370         calculate_cpu_foreign_map();
371 #ifndef CONFIG_HOTPLUG_CPU
372         init_cpu_present(cpu_possible_mask);
373 #endif
374         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
375 }
376
377 /* preload SMP state for boot cpu */
378 void smp_prepare_boot_cpu(void)
379 {
380         set_cpu_possible(0, true);
381         set_cpu_online(0, true);
382         cpumask_set_cpu(0, &cpu_callin_map);
383 }
384
385 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
386 {
387         mp_ops->boot_secondary(cpu, tidle);
388
389         /*
390          * Trust is futile.  We should really have timeouts ...
391          */
392         while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
393                 udelay(100);
394                 schedule();
395         }
396
397         synchronise_count_master(cpu);
398         return 0;
399 }
400
401 /* Not really SMP stuff ... */
402 int setup_profiling_timer(unsigned int multiplier)
403 {
404         return 0;
405 }
406
407 static void flush_tlb_all_ipi(void *info)
408 {
409         local_flush_tlb_all();
410 }
411
412 void flush_tlb_all(void)
413 {
414         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
415 }
416
417 static void flush_tlb_mm_ipi(void *mm)
418 {
419         local_flush_tlb_mm((struct mm_struct *)mm);
420 }
421
422 /*
423  * Special Variant of smp_call_function for use by TLB functions:
424  *
425  *  o No return value
426  *  o collapses to normal function call on UP kernels
427  *  o collapses to normal function call on systems with a single shared
428  *    primary cache.
429  */
430 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
431 {
432         smp_call_function(func, info, 1);
433 }
434
435 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
436 {
437         preempt_disable();
438
439         smp_on_other_tlbs(func, info);
440         func(info);
441
442         preempt_enable();
443 }
444
445 /*
446  * The following tlb flush calls are invoked when old translations are
447  * being torn down, or pte attributes are changing. For single threaded
448  * address spaces, a new context is obtained on the current cpu, and tlb
449  * context on other cpus are invalidated to force a new context allocation
450  * at switch_mm time, should the mm ever be used on other cpus. For
451  * multithreaded address spaces, intercpu interrupts have to be sent.
452  * Another case where intercpu interrupts are required is when the target
453  * mm might be active on another cpu (eg debuggers doing the flushes on
454  * behalf of debugees, kswapd stealing pages from another process etc).
455  * Kanoj 07/00.
456  */
457
458 void flush_tlb_mm(struct mm_struct *mm)
459 {
460         preempt_disable();
461
462         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
463                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
464         } else {
465                 unsigned int cpu;
466
467                 for_each_online_cpu(cpu) {
468                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
469                                 cpu_context(cpu, mm) = 0;
470                 }
471         }
472         local_flush_tlb_mm(mm);
473
474         preempt_enable();
475 }
476
477 struct flush_tlb_data {
478         struct vm_area_struct *vma;
479         unsigned long addr1;
480         unsigned long addr2;
481 };
482
483 static void flush_tlb_range_ipi(void *info)
484 {
485         struct flush_tlb_data *fd = info;
486
487         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
488 }
489
490 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
491 {
492         struct mm_struct *mm = vma->vm_mm;
493
494         preempt_disable();
495         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
496                 struct flush_tlb_data fd = {
497                         .vma = vma,
498                         .addr1 = start,
499                         .addr2 = end,
500                 };
501
502                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
503         } else {
504                 unsigned int cpu;
505
506                 for_each_online_cpu(cpu) {
507                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
508                                 cpu_context(cpu, mm) = 0;
509                 }
510         }
511         local_flush_tlb_range(vma, start, end);
512         preempt_enable();
513 }
514
515 static void flush_tlb_kernel_range_ipi(void *info)
516 {
517         struct flush_tlb_data *fd = info;
518
519         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
520 }
521
522 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
523 {
524         struct flush_tlb_data fd = {
525                 .addr1 = start,
526                 .addr2 = end,
527         };
528
529         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
530 }
531
532 static void flush_tlb_page_ipi(void *info)
533 {
534         struct flush_tlb_data *fd = info;
535
536         local_flush_tlb_page(fd->vma, fd->addr1);
537 }
538
539 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
540 {
541         preempt_disable();
542         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
543                 struct flush_tlb_data fd = {
544                         .vma = vma,
545                         .addr1 = page,
546                 };
547
548                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
549         } else {
550                 unsigned int cpu;
551
552                 for_each_online_cpu(cpu) {
553                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
554                                 cpu_context(cpu, vma->vm_mm) = 0;
555                 }
556         }
557         local_flush_tlb_page(vma, page);
558         preempt_enable();
559 }
560
561 static void flush_tlb_one_ipi(void *info)
562 {
563         unsigned long vaddr = (unsigned long) info;
564
565         local_flush_tlb_one(vaddr);
566 }
567
568 void flush_tlb_one(unsigned long vaddr)
569 {
570         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
571 }
572
573 EXPORT_SYMBOL(flush_tlb_page);
574 EXPORT_SYMBOL(flush_tlb_one);
575
576 #if defined(CONFIG_KEXEC)
577 void (*dump_ipi_function_ptr)(void *) = NULL;
578 void dump_send_ipi(void (*dump_ipi_callback)(void *))
579 {
580         int i;
581         int cpu = smp_processor_id();
582
583         dump_ipi_function_ptr = dump_ipi_callback;
584         smp_mb();
585         for_each_online_cpu(i)
586                 if (i != cpu)
587                         mp_ops->send_ipi_single(i, SMP_DUMP);
588
589 }
590 EXPORT_SYMBOL(dump_send_ipi);
591 #endif
592
593 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
594
595 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
596 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
597
598 void tick_broadcast(const struct cpumask *mask)
599 {
600         atomic_t *count;
601         struct call_single_data *csd;
602         int cpu;
603
604         for_each_cpu(cpu, mask) {
605                 count = &per_cpu(tick_broadcast_count, cpu);
606                 csd = &per_cpu(tick_broadcast_csd, cpu);
607
608                 if (atomic_inc_return(count) == 1)
609                         smp_call_function_single_async(cpu, csd);
610         }
611 }
612
613 static void tick_broadcast_callee(void *info)
614 {
615         int cpu = smp_processor_id();
616         tick_receive_broadcast();
617         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
618 }
619
620 static int __init tick_broadcast_init(void)
621 {
622         struct call_single_data *csd;
623         int cpu;
624
625         for (cpu = 0; cpu < NR_CPUS; cpu++) {
626                 csd = &per_cpu(tick_broadcast_csd, cpu);
627                 csd->func = tick_broadcast_callee;
628         }
629
630         return 0;
631 }
632 early_initcall(tick_broadcast_init);
633
634 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */