nmi_backtrace: add more trigger_*_cpu_backtrace() methods
[cascardo/linux.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map;               /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93         int i;
94
95         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97         if (smp_num_siblings > 1) {
98                 for_each_cpu(i, &cpu_sibling_setup_map) {
99                         if (cpu_data[cpu].package == cpu_data[i].package &&
100                                     cpu_data[cpu].core == cpu_data[i].core) {
101                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103                         }
104                 }
105         } else
106                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111         int i;
112
113         cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115         for_each_cpu(i, &cpu_core_setup_map) {
116                 if (cpu_data[cpu].package == cpu_data[i].package) {
117                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
118                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
119                 }
120         }
121 }
122
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129         int i, k, core_present;
130         cpumask_t temp_foreign_map;
131
132         /* Re-calculate the mask */
133         cpumask_clear(&temp_foreign_map);
134         for_each_online_cpu(i) {
135                 core_present = 0;
136                 for_each_cpu(k, &temp_foreign_map)
137                         if (cpu_data[i].package == cpu_data[k].package &&
138                             cpu_data[i].core == cpu_data[k].core)
139                                 core_present = 1;
140                 if (!core_present)
141                         cpumask_set_cpu(i, &temp_foreign_map);
142         }
143
144         for_each_online_cpu(i)
145                 cpumask_andnot(&cpu_foreign_map[i],
146                                &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154         if (mp_ops)
155                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157         mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168         unsigned long flags;
169         unsigned int core;
170         int cpu;
171
172         local_irq_save(flags);
173
174         switch (action) {
175         case SMP_CALL_FUNCTION:
176                 __ipi_send_mask(call_desc, mask);
177                 break;
178
179         case SMP_RESCHEDULE_YOURSELF:
180                 __ipi_send_mask(sched_desc, mask);
181                 break;
182
183         default:
184                 BUG();
185         }
186
187         if (mips_cpc_present()) {
188                 for_each_cpu(cpu, mask) {
189                         core = cpu_data[cpu].core;
190
191                         if (core == current_cpu_data.core)
192                                 continue;
193
194                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195                                 mips_cpc_lock_other(core);
196                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197                                 mips_cpc_unlock_other();
198                         }
199                 }
200         }
201
202         local_irq_restore(flags);
203 }
204
205
206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
207 {
208         scheduler_ipi();
209
210         return IRQ_HANDLED;
211 }
212
213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
214 {
215         generic_smp_call_function_interrupt();
216
217         return IRQ_HANDLED;
218 }
219
220 static struct irqaction irq_resched = {
221         .handler        = ipi_resched_interrupt,
222         .flags          = IRQF_PERCPU,
223         .name           = "IPI resched"
224 };
225
226 static struct irqaction irq_call = {
227         .handler        = ipi_call_interrupt,
228         .flags          = IRQF_PERCPU,
229         .name           = "IPI call"
230 };
231
232 static __init void smp_ipi_init_one(unsigned int virq,
233                                     struct irqaction *action)
234 {
235         int ret;
236
237         irq_set_handler(virq, handle_percpu_irq);
238         ret = setup_irq(virq, action);
239         BUG_ON(ret);
240 }
241
242 static int __init mips_smp_ipi_init(void)
243 {
244         unsigned int call_virq, sched_virq;
245         struct irq_domain *ipidomain;
246         struct device_node *node;
247
248         node = of_irq_find_parent(of_root);
249         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
250
251         /*
252          * Some platforms have half DT setup. So if we found irq node but
253          * didn't find an ipidomain, try to search for one that is not in the
254          * DT.
255          */
256         if (node && !ipidomain)
257                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
258
259         /*
260          * There are systems which only use IPI domains some of the time,
261          * depending upon configuration we don't know until runtime. An
262          * example is Malta where we may compile in support for GIC & the
263          * MT ASE, but run on a system which has multiple VPEs in a single
264          * core and doesn't include a GIC. Until all IPI implementations
265          * have been converted to use IPI domains the best we can do here
266          * is to return & hope some other code sets up the IPIs.
267          */
268         if (!ipidomain)
269                 return 0;
270
271         call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272         BUG_ON(!call_virq);
273
274         sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275         BUG_ON(!sched_virq);
276
277         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278                 int cpu;
279
280                 for_each_cpu(cpu, cpu_possible_mask) {
281                         smp_ipi_init_one(call_virq + cpu, &irq_call);
282                         smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283                 }
284         } else {
285                 smp_ipi_init_one(call_virq, &irq_call);
286                 smp_ipi_init_one(sched_virq, &irq_resched);
287         }
288
289         call_desc = irq_to_desc(call_virq);
290         sched_desc = irq_to_desc(sched_virq);
291
292         return 0;
293 }
294 early_initcall(mips_smp_ipi_init);
295 #endif
296
297 /*
298  * First C code run on the secondary CPUs after being started up by
299  * the master.
300  */
301 asmlinkage void start_secondary(void)
302 {
303         unsigned int cpu;
304
305         cpu_probe();
306         per_cpu_trap_init(false);
307         mips_clockevent_init();
308         mp_ops->init_secondary();
309         cpu_report();
310         maar_init();
311
312         /*
313          * XXX parity protection should be folded in here when it's converted
314          * to an option instead of something based on .cputype
315          */
316
317         calibrate_delay();
318         preempt_disable();
319         cpu = smp_processor_id();
320         cpu_data[cpu].udelay_val = loops_per_jiffy;
321
322         cpumask_set_cpu(cpu, &cpu_coherent_mask);
323         notify_cpu_starting(cpu);
324
325         cpumask_set_cpu(cpu, &cpu_callin_map);
326         synchronise_count_slave(cpu);
327
328         set_cpu_online(cpu, true);
329
330         set_cpu_sibling_map(cpu);
331         set_cpu_core_map(cpu);
332
333         calculate_cpu_foreign_map();
334
335         /*
336          * irq will be enabled in ->smp_finish(), enabling it too early
337          * is dangerous.
338          */
339         WARN_ON_ONCE(!irqs_disabled());
340         mp_ops->smp_finish();
341
342         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
343 }
344
345 static void stop_this_cpu(void *dummy)
346 {
347         /*
348          * Remove this CPU:
349          */
350
351         set_cpu_online(smp_processor_id(), false);
352         calculate_cpu_foreign_map();
353         local_irq_disable();
354         while (1);
355 }
356
357 void smp_send_stop(void)
358 {
359         smp_call_function(stop_this_cpu, NULL, 0);
360 }
361
362 void __init smp_cpus_done(unsigned int max_cpus)
363 {
364 }
365
366 /* called from main before smp_init() */
367 void __init smp_prepare_cpus(unsigned int max_cpus)
368 {
369         init_new_context(current, &init_mm);
370         current_thread_info()->cpu = 0;
371         mp_ops->prepare_cpus(max_cpus);
372         set_cpu_sibling_map(0);
373         set_cpu_core_map(0);
374         calculate_cpu_foreign_map();
375 #ifndef CONFIG_HOTPLUG_CPU
376         init_cpu_present(cpu_possible_mask);
377 #endif
378         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
379 }
380
381 /* preload SMP state for boot cpu */
382 void smp_prepare_boot_cpu(void)
383 {
384         set_cpu_possible(0, true);
385         set_cpu_online(0, true);
386         cpumask_set_cpu(0, &cpu_callin_map);
387 }
388
389 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
390 {
391         mp_ops->boot_secondary(cpu, tidle);
392
393         /*
394          * Trust is futile.  We should really have timeouts ...
395          */
396         while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
397                 udelay(100);
398                 schedule();
399         }
400
401         synchronise_count_master(cpu);
402         return 0;
403 }
404
405 /* Not really SMP stuff ... */
406 int setup_profiling_timer(unsigned int multiplier)
407 {
408         return 0;
409 }
410
411 static void flush_tlb_all_ipi(void *info)
412 {
413         local_flush_tlb_all();
414 }
415
416 void flush_tlb_all(void)
417 {
418         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
419 }
420
421 static void flush_tlb_mm_ipi(void *mm)
422 {
423         local_flush_tlb_mm((struct mm_struct *)mm);
424 }
425
426 /*
427  * Special Variant of smp_call_function for use by TLB functions:
428  *
429  *  o No return value
430  *  o collapses to normal function call on UP kernels
431  *  o collapses to normal function call on systems with a single shared
432  *    primary cache.
433  */
434 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
435 {
436         smp_call_function(func, info, 1);
437 }
438
439 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
440 {
441         preempt_disable();
442
443         smp_on_other_tlbs(func, info);
444         func(info);
445
446         preempt_enable();
447 }
448
449 /*
450  * The following tlb flush calls are invoked when old translations are
451  * being torn down, or pte attributes are changing. For single threaded
452  * address spaces, a new context is obtained on the current cpu, and tlb
453  * context on other cpus are invalidated to force a new context allocation
454  * at switch_mm time, should the mm ever be used on other cpus. For
455  * multithreaded address spaces, intercpu interrupts have to be sent.
456  * Another case where intercpu interrupts are required is when the target
457  * mm might be active on another cpu (eg debuggers doing the flushes on
458  * behalf of debugees, kswapd stealing pages from another process etc).
459  * Kanoj 07/00.
460  */
461
462 void flush_tlb_mm(struct mm_struct *mm)
463 {
464         preempt_disable();
465
466         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
467                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
468         } else {
469                 unsigned int cpu;
470
471                 for_each_online_cpu(cpu) {
472                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
473                                 cpu_context(cpu, mm) = 0;
474                 }
475         }
476         local_flush_tlb_mm(mm);
477
478         preempt_enable();
479 }
480
481 struct flush_tlb_data {
482         struct vm_area_struct *vma;
483         unsigned long addr1;
484         unsigned long addr2;
485 };
486
487 static void flush_tlb_range_ipi(void *info)
488 {
489         struct flush_tlb_data *fd = info;
490
491         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
492 }
493
494 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
495 {
496         struct mm_struct *mm = vma->vm_mm;
497
498         preempt_disable();
499         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
500                 struct flush_tlb_data fd = {
501                         .vma = vma,
502                         .addr1 = start,
503                         .addr2 = end,
504                 };
505
506                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
507         } else {
508                 unsigned int cpu;
509                 int exec = vma->vm_flags & VM_EXEC;
510
511                 for_each_online_cpu(cpu) {
512                         /*
513                          * flush_cache_range() will only fully flush icache if
514                          * the VMA is executable, otherwise we must invalidate
515                          * ASID without it appearing to has_valid_asid() as if
516                          * mm has been completely unused by that CPU.
517                          */
518                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
519                                 cpu_context(cpu, mm) = !exec;
520                 }
521         }
522         local_flush_tlb_range(vma, start, end);
523         preempt_enable();
524 }
525
526 static void flush_tlb_kernel_range_ipi(void *info)
527 {
528         struct flush_tlb_data *fd = info;
529
530         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
531 }
532
533 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
534 {
535         struct flush_tlb_data fd = {
536                 .addr1 = start,
537                 .addr2 = end,
538         };
539
540         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
541 }
542
543 static void flush_tlb_page_ipi(void *info)
544 {
545         struct flush_tlb_data *fd = info;
546
547         local_flush_tlb_page(fd->vma, fd->addr1);
548 }
549
550 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
551 {
552         preempt_disable();
553         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
554                 struct flush_tlb_data fd = {
555                         .vma = vma,
556                         .addr1 = page,
557                 };
558
559                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
560         } else {
561                 unsigned int cpu;
562
563                 for_each_online_cpu(cpu) {
564                         /*
565                          * flush_cache_page() only does partial flushes, so
566                          * invalidate ASID without it appearing to
567                          * has_valid_asid() as if mm has been completely unused
568                          * by that CPU.
569                          */
570                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
571                                 cpu_context(cpu, vma->vm_mm) = 1;
572                 }
573         }
574         local_flush_tlb_page(vma, page);
575         preempt_enable();
576 }
577
578 static void flush_tlb_one_ipi(void *info)
579 {
580         unsigned long vaddr = (unsigned long) info;
581
582         local_flush_tlb_one(vaddr);
583 }
584
585 void flush_tlb_one(unsigned long vaddr)
586 {
587         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
588 }
589
590 EXPORT_SYMBOL(flush_tlb_page);
591 EXPORT_SYMBOL(flush_tlb_one);
592
593 #if defined(CONFIG_KEXEC)
594 void (*dump_ipi_function_ptr)(void *) = NULL;
595 void dump_send_ipi(void (*dump_ipi_callback)(void *))
596 {
597         int i;
598         int cpu = smp_processor_id();
599
600         dump_ipi_function_ptr = dump_ipi_callback;
601         smp_mb();
602         for_each_online_cpu(i)
603                 if (i != cpu)
604                         mp_ops->send_ipi_single(i, SMP_DUMP);
605
606 }
607 EXPORT_SYMBOL(dump_send_ipi);
608 #endif
609
610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
611
612 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
613 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
614
615 void tick_broadcast(const struct cpumask *mask)
616 {
617         atomic_t *count;
618         struct call_single_data *csd;
619         int cpu;
620
621         for_each_cpu(cpu, mask) {
622                 count = &per_cpu(tick_broadcast_count, cpu);
623                 csd = &per_cpu(tick_broadcast_csd, cpu);
624
625                 if (atomic_inc_return(count) == 1)
626                         smp_call_function_single_async(cpu, csd);
627         }
628 }
629
630 static void tick_broadcast_callee(void *info)
631 {
632         int cpu = smp_processor_id();
633         tick_receive_broadcast();
634         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
635 }
636
637 static int __init tick_broadcast_init(void)
638 {
639         struct call_single_data *csd;
640         int cpu;
641
642         for (cpu = 0; cpu < NR_CPUS; cpu++) {
643                 csd = &per_cpu(tick_broadcast_csd, cpu);
644                 csd->func = tick_broadcast_callee;
645         }
646
647         return 0;
648 }
649 early_initcall(tick_broadcast_init);
650
651 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */