Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[cascardo/linux.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((u32 *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:   /* POP06 */
165 #ifndef CONFIG_CPU_MIPSR6
166         case blezl_op:  /* removed in R6 */
167 #endif
168                 if (insn.i_format.rt != 0)
169                         goto compact_branch;
170                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
171                         epc = epc + 4 + (insn.i_format.simmediate << 2);
172                 else
173                         epc += 8;
174                 nextpc = epc;
175                 break;
176
177         case bgtz_op:   /* POP07 */
178 #ifndef CONFIG_CPU_MIPSR6
179         case bgtzl_op:  /* removed in R6 */
180 #endif
181                 if (insn.i_format.rt != 0)
182                         goto compact_branch;
183                 if ((long)arch->gprs[insn.i_format.rs] > 0)
184                         epc = epc + 4 + (insn.i_format.simmediate << 2);
185                 else
186                         epc += 8;
187                 nextpc = epc;
188                 break;
189
190                 /* And now the FPA/cp1 branch instructions. */
191         case cop1_op:
192                 kvm_err("%s: unsupported cop1_op\n", __func__);
193                 break;
194
195 #ifdef CONFIG_CPU_MIPSR6
196         /* R6 added the following compact branches with forbidden slots */
197         case blezl_op:  /* POP26 */
198         case bgtzl_op:  /* POP27 */
199                 /* only rt == 0 isn't compact branch */
200                 if (insn.i_format.rt != 0)
201                         goto compact_branch;
202                 break;
203         case pop10_op:
204         case pop30_op:
205                 /* only rs == rt == 0 is reserved, rest are compact branches */
206                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
207                         goto compact_branch;
208                 break;
209         case pop66_op:
210         case pop76_op:
211                 /* only rs == 0 isn't compact branch */
212                 if (insn.i_format.rs != 0)
213                         goto compact_branch;
214                 break;
215 compact_branch:
216                 /*
217                  * If we've hit an exception on the forbidden slot, then
218                  * the branch must not have been taken.
219                  */
220                 epc += 8;
221                 nextpc = epc;
222                 break;
223 #else
224 compact_branch:
225                 /* Compact branches not supported before R6 */
226                 break;
227 #endif
228         }
229
230         return nextpc;
231
232 unaligned:
233         kvm_err("%s: unaligned epc\n", __func__);
234         return nextpc;
235
236 sigill:
237         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
238         return nextpc;
239 }
240
241 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
242 {
243         unsigned long branch_pc;
244         enum emulation_result er = EMULATE_DONE;
245
246         if (cause & CAUSEF_BD) {
247                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
248                 if (branch_pc == KVM_INVALID_INST) {
249                         er = EMULATE_FAIL;
250                 } else {
251                         vcpu->arch.pc = branch_pc;
252                         kvm_debug("BD update_pc(): New PC: %#lx\n",
253                                   vcpu->arch.pc);
254                 }
255         } else
256                 vcpu->arch.pc += 4;
257
258         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
259
260         return er;
261 }
262
263 /**
264  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
265  * @vcpu:       Virtual CPU.
266  *
267  * Returns:     1 if the CP0_Count timer is disabled by either the guest
268  *              CP0_Cause.DC bit or the count_ctl.DC bit.
269  *              0 otherwise (in which case CP0_Count timer is running).
270  */
271 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
272 {
273         struct mips_coproc *cop0 = vcpu->arch.cop0;
274
275         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
276                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
277 }
278
279 /**
280  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
281  *
282  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
283  *
284  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
285  */
286 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
287 {
288         s64 now_ns, periods;
289         u64 delta;
290
291         now_ns = ktime_to_ns(now);
292         delta = now_ns + vcpu->arch.count_dyn_bias;
293
294         if (delta >= vcpu->arch.count_period) {
295                 /* If delta is out of safe range the bias needs adjusting */
296                 periods = div64_s64(now_ns, vcpu->arch.count_period);
297                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
298                 /* Recalculate delta with new bias */
299                 delta = now_ns + vcpu->arch.count_dyn_bias;
300         }
301
302         /*
303          * We've ensured that:
304          *   delta < count_period
305          *
306          * Therefore the intermediate delta*count_hz will never overflow since
307          * at the boundary condition:
308          *   delta = count_period
309          *   delta = NSEC_PER_SEC * 2^32 / count_hz
310          *   delta * count_hz = NSEC_PER_SEC * 2^32
311          */
312         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
313 }
314
315 /**
316  * kvm_mips_count_time() - Get effective current time.
317  * @vcpu:       Virtual CPU.
318  *
319  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
320  * except when the master disable bit is set in count_ctl, in which case it is
321  * count_resume, i.e. the time that the count was disabled.
322  *
323  * Returns:     Effective monotonic ktime for CP0_Count.
324  */
325 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
326 {
327         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
328                 return vcpu->arch.count_resume;
329
330         return ktime_get();
331 }
332
333 /**
334  * kvm_mips_read_count_running() - Read the current count value as if running.
335  * @vcpu:       Virtual CPU.
336  * @now:        Kernel time to read CP0_Count at.
337  *
338  * Returns the current guest CP0_Count register at time @now and handles if the
339  * timer interrupt is pending and hasn't been handled yet.
340  *
341  * Returns:     The current value of the guest CP0_Count register.
342  */
343 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
344 {
345         struct mips_coproc *cop0 = vcpu->arch.cop0;
346         ktime_t expires, threshold;
347         u32 count, compare;
348         int running;
349
350         /* Calculate the biased and scaled guest CP0_Count */
351         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
352         compare = kvm_read_c0_guest_compare(cop0);
353
354         /*
355          * Find whether CP0_Count has reached the closest timer interrupt. If
356          * not, we shouldn't inject it.
357          */
358         if ((s32)(count - compare) < 0)
359                 return count;
360
361         /*
362          * The CP0_Count we're going to return has already reached the closest
363          * timer interrupt. Quickly check if it really is a new interrupt by
364          * looking at whether the interval until the hrtimer expiry time is
365          * less than 1/4 of the timer period.
366          */
367         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
368         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
369         if (ktime_before(expires, threshold)) {
370                 /*
371                  * Cancel it while we handle it so there's no chance of
372                  * interference with the timeout handler.
373                  */
374                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
375
376                 /* Nothing should be waiting on the timeout */
377                 kvm_mips_callbacks->queue_timer_int(vcpu);
378
379                 /*
380                  * Restart the timer if it was running based on the expiry time
381                  * we read, so that we don't push it back 2 periods.
382                  */
383                 if (running) {
384                         expires = ktime_add_ns(expires,
385                                                vcpu->arch.count_period);
386                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
387                                       HRTIMER_MODE_ABS);
388                 }
389         }
390
391         return count;
392 }
393
394 /**
395  * kvm_mips_read_count() - Read the current count value.
396  * @vcpu:       Virtual CPU.
397  *
398  * Read the current guest CP0_Count value, taking into account whether the timer
399  * is stopped.
400  *
401  * Returns:     The current guest CP0_Count value.
402  */
403 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
404 {
405         struct mips_coproc *cop0 = vcpu->arch.cop0;
406
407         /* If count disabled just read static copy of count */
408         if (kvm_mips_count_disabled(vcpu))
409                 return kvm_read_c0_guest_count(cop0);
410
411         return kvm_mips_read_count_running(vcpu, ktime_get());
412 }
413
414 /**
415  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
416  * @vcpu:       Virtual CPU.
417  * @count:      Output pointer for CP0_Count value at point of freeze.
418  *
419  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
420  * at the point it was frozen. It is guaranteed that any pending interrupts at
421  * the point it was frozen are handled, and none after that point.
422  *
423  * This is useful where the time/CP0_Count is needed in the calculation of the
424  * new parameters.
425  *
426  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
427  *
428  * Returns:     The ktime at the point of freeze.
429  */
430 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
431 {
432         ktime_t now;
433
434         /* stop hrtimer before finding time */
435         hrtimer_cancel(&vcpu->arch.comparecount_timer);
436         now = ktime_get();
437
438         /* find count at this point and handle pending hrtimer */
439         *count = kvm_mips_read_count_running(vcpu, now);
440
441         return now;
442 }
443
444 /**
445  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
446  * @vcpu:       Virtual CPU.
447  * @now:        ktime at point of resume.
448  * @count:      CP0_Count at point of resume.
449  *
450  * Resumes the timer and updates the timer expiry based on @now and @count.
451  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
452  * parameters need to be changed.
453  *
454  * It is guaranteed that a timer interrupt immediately after resume will be
455  * handled, but not if CP_Compare is exactly at @count. That case is already
456  * handled by kvm_mips_freeze_timer().
457  *
458  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
459  */
460 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
461                                     ktime_t now, u32 count)
462 {
463         struct mips_coproc *cop0 = vcpu->arch.cop0;
464         u32 compare;
465         u64 delta;
466         ktime_t expire;
467
468         /* Calculate timeout (wrap 0 to 2^32) */
469         compare = kvm_read_c0_guest_compare(cop0);
470         delta = (u64)(u32)(compare - count - 1) + 1;
471         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
472         expire = ktime_add_ns(now, delta);
473
474         /* Update hrtimer to use new timeout */
475         hrtimer_cancel(&vcpu->arch.comparecount_timer);
476         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
477 }
478
479 /**
480  * kvm_mips_write_count() - Modify the count and update timer.
481  * @vcpu:       Virtual CPU.
482  * @count:      Guest CP0_Count value to set.
483  *
484  * Sets the CP0_Count value and updates the timer accordingly.
485  */
486 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
487 {
488         struct mips_coproc *cop0 = vcpu->arch.cop0;
489         ktime_t now;
490
491         /* Calculate bias */
492         now = kvm_mips_count_time(vcpu);
493         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
494
495         if (kvm_mips_count_disabled(vcpu))
496                 /* The timer's disabled, adjust the static count */
497                 kvm_write_c0_guest_count(cop0, count);
498         else
499                 /* Update timeout */
500                 kvm_mips_resume_hrtimer(vcpu, now, count);
501 }
502
503 /**
504  * kvm_mips_init_count() - Initialise timer.
505  * @vcpu:       Virtual CPU.
506  *
507  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
508  * it going if it's enabled.
509  */
510 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
511 {
512         /* 100 MHz */
513         vcpu->arch.count_hz = 100*1000*1000;
514         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
515                                           vcpu->arch.count_hz);
516         vcpu->arch.count_dyn_bias = 0;
517
518         /* Starting at 0 */
519         kvm_mips_write_count(vcpu, 0);
520 }
521
522 /**
523  * kvm_mips_set_count_hz() - Update the frequency of the timer.
524  * @vcpu:       Virtual CPU.
525  * @count_hz:   Frequency of CP0_Count timer in Hz.
526  *
527  * Change the frequency of the CP0_Count timer. This is done atomically so that
528  * CP0_Count is continuous and no timer interrupt is lost.
529  *
530  * Returns:     -EINVAL if @count_hz is out of range.
531  *              0 on success.
532  */
533 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
534 {
535         struct mips_coproc *cop0 = vcpu->arch.cop0;
536         int dc;
537         ktime_t now;
538         u32 count;
539
540         /* ensure the frequency is in a sensible range... */
541         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
542                 return -EINVAL;
543         /* ... and has actually changed */
544         if (vcpu->arch.count_hz == count_hz)
545                 return 0;
546
547         /* Safely freeze timer so we can keep it continuous */
548         dc = kvm_mips_count_disabled(vcpu);
549         if (dc) {
550                 now = kvm_mips_count_time(vcpu);
551                 count = kvm_read_c0_guest_count(cop0);
552         } else {
553                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
554         }
555
556         /* Update the frequency */
557         vcpu->arch.count_hz = count_hz;
558         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
559         vcpu->arch.count_dyn_bias = 0;
560
561         /* Calculate adjusted bias so dynamic count is unchanged */
562         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
563
564         /* Update and resume hrtimer */
565         if (!dc)
566                 kvm_mips_resume_hrtimer(vcpu, now, count);
567         return 0;
568 }
569
570 /**
571  * kvm_mips_write_compare() - Modify compare and update timer.
572  * @vcpu:       Virtual CPU.
573  * @compare:    New CP0_Compare value.
574  * @ack:        Whether to acknowledge timer interrupt.
575  *
576  * Update CP0_Compare to a new value and update the timeout.
577  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
578  * any pending timer interrupt is preserved.
579  */
580 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
581 {
582         struct mips_coproc *cop0 = vcpu->arch.cop0;
583         int dc;
584         u32 old_compare = kvm_read_c0_guest_compare(cop0);
585         ktime_t now;
586         u32 count;
587
588         /* if unchanged, must just be an ack */
589         if (old_compare == compare) {
590                 if (!ack)
591                         return;
592                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
593                 kvm_write_c0_guest_compare(cop0, compare);
594                 return;
595         }
596
597         /* freeze_hrtimer() takes care of timer interrupts <= count */
598         dc = kvm_mips_count_disabled(vcpu);
599         if (!dc)
600                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
601
602         if (ack)
603                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
604
605         kvm_write_c0_guest_compare(cop0, compare);
606
607         /* resume_hrtimer() takes care of timer interrupts > count */
608         if (!dc)
609                 kvm_mips_resume_hrtimer(vcpu, now, count);
610 }
611
612 /**
613  * kvm_mips_count_disable() - Disable count.
614  * @vcpu:       Virtual CPU.
615  *
616  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
617  * time will be handled but not after.
618  *
619  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
620  * count_ctl.DC has been set (count disabled).
621  *
622  * Returns:     The time that the timer was stopped.
623  */
624 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
625 {
626         struct mips_coproc *cop0 = vcpu->arch.cop0;
627         u32 count;
628         ktime_t now;
629
630         /* Stop hrtimer */
631         hrtimer_cancel(&vcpu->arch.comparecount_timer);
632
633         /* Set the static count from the dynamic count, handling pending TI */
634         now = ktime_get();
635         count = kvm_mips_read_count_running(vcpu, now);
636         kvm_write_c0_guest_count(cop0, count);
637
638         return now;
639 }
640
641 /**
642  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
643  * @vcpu:       Virtual CPU.
644  *
645  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
646  * before the final stop time will be handled if the timer isn't disabled by
647  * count_ctl.DC, but not after.
648  *
649  * Assumes CP0_Cause.DC is clear (count enabled).
650  */
651 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
652 {
653         struct mips_coproc *cop0 = vcpu->arch.cop0;
654
655         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
656         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
657                 kvm_mips_count_disable(vcpu);
658 }
659
660 /**
661  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
662  * @vcpu:       Virtual CPU.
663  *
664  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
665  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
666  * potentially before even returning, so the caller should be careful with
667  * ordering of CP0_Cause modifications so as not to lose it.
668  *
669  * Assumes CP0_Cause.DC is set (count disabled).
670  */
671 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
672 {
673         struct mips_coproc *cop0 = vcpu->arch.cop0;
674         u32 count;
675
676         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
677
678         /*
679          * Set the dynamic count to match the static count.
680          * This starts the hrtimer if count_ctl.DC allows it.
681          * Otherwise it conveniently updates the biases.
682          */
683         count = kvm_read_c0_guest_count(cop0);
684         kvm_mips_write_count(vcpu, count);
685 }
686
687 /**
688  * kvm_mips_set_count_ctl() - Update the count control KVM register.
689  * @vcpu:       Virtual CPU.
690  * @count_ctl:  Count control register new value.
691  *
692  * Set the count control KVM register. The timer is updated accordingly.
693  *
694  * Returns:     -EINVAL if reserved bits are set.
695  *              0 on success.
696  */
697 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
698 {
699         struct mips_coproc *cop0 = vcpu->arch.cop0;
700         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
701         s64 delta;
702         ktime_t expire, now;
703         u32 count, compare;
704
705         /* Only allow defined bits to be changed */
706         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
707                 return -EINVAL;
708
709         /* Apply new value */
710         vcpu->arch.count_ctl = count_ctl;
711
712         /* Master CP0_Count disable */
713         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
714                 /* Is CP0_Cause.DC already disabling CP0_Count? */
715                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
716                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
717                                 /* Just record the current time */
718                                 vcpu->arch.count_resume = ktime_get();
719                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
720                         /* disable timer and record current time */
721                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
722                 } else {
723                         /*
724                          * Calculate timeout relative to static count at resume
725                          * time (wrap 0 to 2^32).
726                          */
727                         count = kvm_read_c0_guest_count(cop0);
728                         compare = kvm_read_c0_guest_compare(cop0);
729                         delta = (u64)(u32)(compare - count - 1) + 1;
730                         delta = div_u64(delta * NSEC_PER_SEC,
731                                         vcpu->arch.count_hz);
732                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
733
734                         /* Handle pending interrupt */
735                         now = ktime_get();
736                         if (ktime_compare(now, expire) >= 0)
737                                 /* Nothing should be waiting on the timeout */
738                                 kvm_mips_callbacks->queue_timer_int(vcpu);
739
740                         /* Resume hrtimer without changing bias */
741                         count = kvm_mips_read_count_running(vcpu, now);
742                         kvm_mips_resume_hrtimer(vcpu, now, count);
743                 }
744         }
745
746         return 0;
747 }
748
749 /**
750  * kvm_mips_set_count_resume() - Update the count resume KVM register.
751  * @vcpu:               Virtual CPU.
752  * @count_resume:       Count resume register new value.
753  *
754  * Set the count resume KVM register.
755  *
756  * Returns:     -EINVAL if out of valid range (0..now).
757  *              0 on success.
758  */
759 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
760 {
761         /*
762          * It doesn't make sense for the resume time to be in the future, as it
763          * would be possible for the next interrupt to be more than a full
764          * period in the future.
765          */
766         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
767                 return -EINVAL;
768
769         vcpu->arch.count_resume = ns_to_ktime(count_resume);
770         return 0;
771 }
772
773 /**
774  * kvm_mips_count_timeout() - Push timer forward on timeout.
775  * @vcpu:       Virtual CPU.
776  *
777  * Handle an hrtimer event by push the hrtimer forward a period.
778  *
779  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
780  */
781 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
782 {
783         /* Add the Count period to the current expiry time */
784         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
785                                vcpu->arch.count_period);
786         return HRTIMER_RESTART;
787 }
788
789 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
790 {
791         struct mips_coproc *cop0 = vcpu->arch.cop0;
792         enum emulation_result er = EMULATE_DONE;
793
794         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
795                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
796                           kvm_read_c0_guest_epc(cop0));
797                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
798                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
799
800         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
801                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
802                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
803         } else {
804                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
805                         vcpu->arch.pc);
806                 er = EMULATE_FAIL;
807         }
808
809         return er;
810 }
811
812 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
813 {
814         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
815                   vcpu->arch.pending_exceptions);
816
817         ++vcpu->stat.wait_exits;
818         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
819         if (!vcpu->arch.pending_exceptions) {
820                 vcpu->arch.wait = 1;
821                 kvm_vcpu_block(vcpu);
822
823                 /*
824                  * We we are runnable, then definitely go off to user space to
825                  * check if any I/O interrupts are pending.
826                  */
827                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
828                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
829                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
830                 }
831         }
832
833         return EMULATE_DONE;
834 }
835
836 /*
837  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
838  * we can catch this, if things ever change
839  */
840 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
841 {
842         struct mips_coproc *cop0 = vcpu->arch.cop0;
843         unsigned long pc = vcpu->arch.pc;
844
845         kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
846         return EMULATE_FAIL;
847 }
848
849 /* Write Guest TLB Entry @ Index */
850 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
851 {
852         struct mips_coproc *cop0 = vcpu->arch.cop0;
853         int index = kvm_read_c0_guest_index(cop0);
854         struct kvm_mips_tlb *tlb = NULL;
855         unsigned long pc = vcpu->arch.pc;
856
857         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
858                 kvm_debug("%s: illegal index: %d\n", __func__, index);
859                 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
860                           pc, index, kvm_read_c0_guest_entryhi(cop0),
861                           kvm_read_c0_guest_entrylo0(cop0),
862                           kvm_read_c0_guest_entrylo1(cop0),
863                           kvm_read_c0_guest_pagemask(cop0));
864                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
865         }
866
867         tlb = &vcpu->arch.guest_tlb[index];
868         /*
869          * Probe the shadow host TLB for the entry being overwritten, if one
870          * matches, invalidate it
871          */
872         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
873
874         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
875         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
876         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
877         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
878
879         kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
880                   pc, index, kvm_read_c0_guest_entryhi(cop0),
881                   kvm_read_c0_guest_entrylo0(cop0),
882                   kvm_read_c0_guest_entrylo1(cop0),
883                   kvm_read_c0_guest_pagemask(cop0));
884
885         return EMULATE_DONE;
886 }
887
888 /* Write Guest TLB Entry @ Random Index */
889 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
890 {
891         struct mips_coproc *cop0 = vcpu->arch.cop0;
892         struct kvm_mips_tlb *tlb = NULL;
893         unsigned long pc = vcpu->arch.pc;
894         int index;
895
896         get_random_bytes(&index, sizeof(index));
897         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
898
899         tlb = &vcpu->arch.guest_tlb[index];
900
901         /*
902          * Probe the shadow host TLB for the entry being overwritten, if one
903          * matches, invalidate it
904          */
905         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
906
907         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
908         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
909         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
910         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
911
912         kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
913                   pc, index, kvm_read_c0_guest_entryhi(cop0),
914                   kvm_read_c0_guest_entrylo0(cop0),
915                   kvm_read_c0_guest_entrylo1(cop0));
916
917         return EMULATE_DONE;
918 }
919
920 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
921 {
922         struct mips_coproc *cop0 = vcpu->arch.cop0;
923         long entryhi = kvm_read_c0_guest_entryhi(cop0);
924         unsigned long pc = vcpu->arch.pc;
925         int index = -1;
926
927         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
928
929         kvm_write_c0_guest_index(cop0, index);
930
931         kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
932                   index);
933
934         return EMULATE_DONE;
935 }
936
937 /**
938  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
939  * @vcpu:       Virtual CPU.
940  *
941  * Finds the mask of bits which are writable in the guest's Config1 CP0
942  * register, by userland (currently read-only to the guest).
943  */
944 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
945 {
946         unsigned int mask = 0;
947
948         /* Permit FPU to be present if FPU is supported */
949         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
950                 mask |= MIPS_CONF1_FP;
951
952         return mask;
953 }
954
955 /**
956  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
957  * @vcpu:       Virtual CPU.
958  *
959  * Finds the mask of bits which are writable in the guest's Config3 CP0
960  * register, by userland (currently read-only to the guest).
961  */
962 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
963 {
964         /* Config4 and ULRI are optional */
965         unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
966
967         /* Permit MSA to be present if MSA is supported */
968         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
969                 mask |= MIPS_CONF3_MSA;
970
971         return mask;
972 }
973
974 /**
975  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
976  * @vcpu:       Virtual CPU.
977  *
978  * Finds the mask of bits which are writable in the guest's Config4 CP0
979  * register, by userland (currently read-only to the guest).
980  */
981 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
982 {
983         /* Config5 is optional */
984         unsigned int mask = MIPS_CONF_M;
985
986         /* KScrExist */
987         mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
988
989         return mask;
990 }
991
992 /**
993  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
994  * @vcpu:       Virtual CPU.
995  *
996  * Finds the mask of bits which are writable in the guest's Config5 CP0
997  * register, by the guest itself.
998  */
999 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1000 {
1001         unsigned int mask = 0;
1002
1003         /* Permit MSAEn changes if MSA supported and enabled */
1004         if (kvm_mips_guest_has_msa(&vcpu->arch))
1005                 mask |= MIPS_CONF5_MSAEN;
1006
1007         /*
1008          * Permit guest FPU mode changes if FPU is enabled and the relevant
1009          * feature exists according to FIR register.
1010          */
1011         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1012                 if (cpu_has_fre)
1013                         mask |= MIPS_CONF5_FRE;
1014                 /* We don't support UFR or UFE */
1015         }
1016
1017         return mask;
1018 }
1019
1020 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1021                                            u32 *opc, u32 cause,
1022                                            struct kvm_run *run,
1023                                            struct kvm_vcpu *vcpu)
1024 {
1025         struct mips_coproc *cop0 = vcpu->arch.cop0;
1026         enum emulation_result er = EMULATE_DONE;
1027         u32 rt, rd, sel;
1028         unsigned long curr_pc;
1029
1030         /*
1031          * Update PC and hold onto current PC in case there is
1032          * an error and we want to rollback the PC
1033          */
1034         curr_pc = vcpu->arch.pc;
1035         er = update_pc(vcpu, cause);
1036         if (er == EMULATE_FAIL)
1037                 return er;
1038
1039         if (inst.co_format.co) {
1040                 switch (inst.co_format.func) {
1041                 case tlbr_op:   /*  Read indexed TLB entry  */
1042                         er = kvm_mips_emul_tlbr(vcpu);
1043                         break;
1044                 case tlbwi_op:  /*  Write indexed  */
1045                         er = kvm_mips_emul_tlbwi(vcpu);
1046                         break;
1047                 case tlbwr_op:  /*  Write random  */
1048                         er = kvm_mips_emul_tlbwr(vcpu);
1049                         break;
1050                 case tlbp_op:   /* TLB Probe */
1051                         er = kvm_mips_emul_tlbp(vcpu);
1052                         break;
1053                 case rfe_op:
1054                         kvm_err("!!!COP0_RFE!!!\n");
1055                         break;
1056                 case eret_op:
1057                         er = kvm_mips_emul_eret(vcpu);
1058                         goto dont_update_pc;
1059                 case wait_op:
1060                         er = kvm_mips_emul_wait(vcpu);
1061                         break;
1062                 }
1063         } else {
1064                 rt = inst.c0r_format.rt;
1065                 rd = inst.c0r_format.rd;
1066                 sel = inst.c0r_format.sel;
1067
1068                 switch (inst.c0r_format.rs) {
1069                 case mfc_op:
1070 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1071                         cop0->stat[rd][sel]++;
1072 #endif
1073                         /* Get reg */
1074                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1075                                 vcpu->arch.gprs[rt] =
1076                                     (s32)kvm_mips_read_count(vcpu);
1077                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1078                                 vcpu->arch.gprs[rt] = 0x0;
1079 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1080                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1081 #endif
1082                         } else {
1083                                 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1084
1085 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1086                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1087 #endif
1088                         }
1089
1090                         trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1091                                       KVM_TRACE_COP0(rd, sel),
1092                                       vcpu->arch.gprs[rt]);
1093                         break;
1094
1095                 case dmfc_op:
1096                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1097
1098                         trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1099                                       KVM_TRACE_COP0(rd, sel),
1100                                       vcpu->arch.gprs[rt]);
1101                         break;
1102
1103                 case mtc_op:
1104 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1105                         cop0->stat[rd][sel]++;
1106 #endif
1107                         trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1108                                       KVM_TRACE_COP0(rd, sel),
1109                                       vcpu->arch.gprs[rt]);
1110
1111                         if ((rd == MIPS_CP0_TLB_INDEX)
1112                             && (vcpu->arch.gprs[rt] >=
1113                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1114                                 kvm_err("Invalid TLB Index: %ld",
1115                                         vcpu->arch.gprs[rt]);
1116                                 er = EMULATE_FAIL;
1117                                 break;
1118                         }
1119 #define C0_EBASE_CORE_MASK 0xff
1120                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1121                                 /* Preserve CORE number */
1122                                 kvm_change_c0_guest_ebase(cop0,
1123                                                           ~(C0_EBASE_CORE_MASK),
1124                                                           vcpu->arch.gprs[rt]);
1125                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1126                                         kvm_read_c0_guest_ebase(cop0));
1127                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1128                                 u32 nasid =
1129                                         vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1130                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1131                                     ((kvm_read_c0_guest_entryhi(cop0) &
1132                                       KVM_ENTRYHI_ASID) != nasid)) {
1133                                         trace_kvm_asid_change(vcpu,
1134                                                 kvm_read_c0_guest_entryhi(cop0)
1135                                                         & KVM_ENTRYHI_ASID,
1136                                                 nasid);
1137
1138                                         /* Blow away the shadow host TLBs */
1139                                         kvm_mips_flush_host_tlb(1);
1140                                 }
1141                                 kvm_write_c0_guest_entryhi(cop0,
1142                                                            vcpu->arch.gprs[rt]);
1143                         }
1144                         /* Are we writing to COUNT */
1145                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1146                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1147                                 goto done;
1148                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1149                                 /* If we are writing to COMPARE */
1150                                 /* Clear pending timer interrupt, if any */
1151                                 kvm_mips_write_compare(vcpu,
1152                                                        vcpu->arch.gprs[rt],
1153                                                        true);
1154                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1155                                 unsigned int old_val, val, change;
1156
1157                                 old_val = kvm_read_c0_guest_status(cop0);
1158                                 val = vcpu->arch.gprs[rt];
1159                                 change = val ^ old_val;
1160
1161                                 /* Make sure that the NMI bit is never set */
1162                                 val &= ~ST0_NMI;
1163
1164                                 /*
1165                                  * Don't allow CU1 or FR to be set unless FPU
1166                                  * capability enabled and exists in guest
1167                                  * configuration.
1168                                  */
1169                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1170                                         val &= ~(ST0_CU1 | ST0_FR);
1171
1172                                 /*
1173                                  * Also don't allow FR to be set if host doesn't
1174                                  * support it.
1175                                  */
1176                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1177                                         val &= ~ST0_FR;
1178
1179
1180                                 /* Handle changes in FPU mode */
1181                                 preempt_disable();
1182
1183                                 /*
1184                                  * FPU and Vector register state is made
1185                                  * UNPREDICTABLE by a change of FR, so don't
1186                                  * even bother saving it.
1187                                  */
1188                                 if (change & ST0_FR)
1189                                         kvm_drop_fpu(vcpu);
1190
1191                                 /*
1192                                  * If MSA state is already live, it is undefined
1193                                  * how it interacts with FR=0 FPU state, and we
1194                                  * don't want to hit reserved instruction
1195                                  * exceptions trying to save the MSA state later
1196                                  * when CU=1 && FR=1, so play it safe and save
1197                                  * it first.
1198                                  */
1199                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1200                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1201                                         kvm_lose_fpu(vcpu);
1202
1203                                 /*
1204                                  * Propagate CU1 (FPU enable) changes
1205                                  * immediately if the FPU context is already
1206                                  * loaded. When disabling we leave the context
1207                                  * loaded so it can be quickly enabled again in
1208                                  * the near future.
1209                                  */
1210                                 if (change & ST0_CU1 &&
1211                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1212                                         change_c0_status(ST0_CU1, val);
1213
1214                                 preempt_enable();
1215
1216                                 kvm_write_c0_guest_status(cop0, val);
1217
1218 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1219                                 /*
1220                                  * If FPU present, we need CU1/FR bits to take
1221                                  * effect fairly soon.
1222                                  */
1223                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1224                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1225 #endif
1226                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1227                                 unsigned int old_val, val, change, wrmask;
1228
1229                                 old_val = kvm_read_c0_guest_config5(cop0);
1230                                 val = vcpu->arch.gprs[rt];
1231
1232                                 /* Only a few bits are writable in Config5 */
1233                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1234                                 change = (val ^ old_val) & wrmask;
1235                                 val = old_val ^ change;
1236
1237
1238                                 /* Handle changes in FPU/MSA modes */
1239                                 preempt_disable();
1240
1241                                 /*
1242                                  * Propagate FRE changes immediately if the FPU
1243                                  * context is already loaded.
1244                                  */
1245                                 if (change & MIPS_CONF5_FRE &&
1246                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1247                                         change_c0_config5(MIPS_CONF5_FRE, val);
1248
1249                                 /*
1250                                  * Propagate MSAEn changes immediately if the
1251                                  * MSA context is already loaded. When disabling
1252                                  * we leave the context loaded so it can be
1253                                  * quickly enabled again in the near future.
1254                                  */
1255                                 if (change & MIPS_CONF5_MSAEN &&
1256                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1257                                         change_c0_config5(MIPS_CONF5_MSAEN,
1258                                                           val);
1259
1260                                 preempt_enable();
1261
1262                                 kvm_write_c0_guest_config5(cop0, val);
1263                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1264                                 u32 old_cause, new_cause;
1265
1266                                 old_cause = kvm_read_c0_guest_cause(cop0);
1267                                 new_cause = vcpu->arch.gprs[rt];
1268                                 /* Update R/W bits */
1269                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1270                                                           new_cause);
1271                                 /* DC bit enabling/disabling timer? */
1272                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1273                                         if (new_cause & CAUSEF_DC)
1274                                                 kvm_mips_count_disable_cause(vcpu);
1275                                         else
1276                                                 kvm_mips_count_enable_cause(vcpu);
1277                                 }
1278                         } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1279                                 u32 mask = MIPS_HWRENA_CPUNUM |
1280                                            MIPS_HWRENA_SYNCISTEP |
1281                                            MIPS_HWRENA_CC |
1282                                            MIPS_HWRENA_CCRES;
1283
1284                                 if (kvm_read_c0_guest_config3(cop0) &
1285                                     MIPS_CONF3_ULRI)
1286                                         mask |= MIPS_HWRENA_ULR;
1287                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1288                         } else {
1289                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1290 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1291                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1292 #endif
1293                         }
1294                         break;
1295
1296                 case dmtc_op:
1297                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1298                                 vcpu->arch.pc, rt, rd, sel);
1299                         trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1300                                       KVM_TRACE_COP0(rd, sel),
1301                                       vcpu->arch.gprs[rt]);
1302                         er = EMULATE_FAIL;
1303                         break;
1304
1305                 case mfmc0_op:
1306 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1307                         cop0->stat[MIPS_CP0_STATUS][0]++;
1308 #endif
1309                         if (rt != 0)
1310                                 vcpu->arch.gprs[rt] =
1311                                     kvm_read_c0_guest_status(cop0);
1312                         /* EI */
1313                         if (inst.mfmc0_format.sc) {
1314                                 kvm_debug("[%#lx] mfmc0_op: EI\n",
1315                                           vcpu->arch.pc);
1316                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1317                         } else {
1318                                 kvm_debug("[%#lx] mfmc0_op: DI\n",
1319                                           vcpu->arch.pc);
1320                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1321                         }
1322
1323                         break;
1324
1325                 case wrpgpr_op:
1326                         {
1327                                 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1328                                 u32 pss =
1329                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1330                                 /*
1331                                  * We don't support any shadow register sets, so
1332                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1333                                  */
1334                                 if (css || pss) {
1335                                         er = EMULATE_FAIL;
1336                                         break;
1337                                 }
1338                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1339                                           vcpu->arch.gprs[rt]);
1340                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1341                         }
1342                         break;
1343                 default:
1344                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1345                                 vcpu->arch.pc, inst.c0r_format.rs);
1346                         er = EMULATE_FAIL;
1347                         break;
1348                 }
1349         }
1350
1351 done:
1352         /* Rollback PC only if emulation was unsuccessful */
1353         if (er == EMULATE_FAIL)
1354                 vcpu->arch.pc = curr_pc;
1355
1356 dont_update_pc:
1357         /*
1358          * This is for special instructions whose emulation
1359          * updates the PC, so do not overwrite the PC under
1360          * any circumstances
1361          */
1362
1363         return er;
1364 }
1365
1366 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1367                                              u32 cause,
1368                                              struct kvm_run *run,
1369                                              struct kvm_vcpu *vcpu)
1370 {
1371         enum emulation_result er = EMULATE_DO_MMIO;
1372         u32 rt;
1373         u32 bytes;
1374         void *data = run->mmio.data;
1375         unsigned long curr_pc;
1376
1377         /*
1378          * Update PC and hold onto current PC in case there is
1379          * an error and we want to rollback the PC
1380          */
1381         curr_pc = vcpu->arch.pc;
1382         er = update_pc(vcpu, cause);
1383         if (er == EMULATE_FAIL)
1384                 return er;
1385
1386         rt = inst.i_format.rt;
1387
1388         switch (inst.i_format.opcode) {
1389         case sb_op:
1390                 bytes = 1;
1391                 if (bytes > sizeof(run->mmio.data)) {
1392                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1393                                run->mmio.len);
1394                 }
1395                 run->mmio.phys_addr =
1396                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397                                                    host_cp0_badvaddr);
1398                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399                         er = EMULATE_FAIL;
1400                         break;
1401                 }
1402                 run->mmio.len = bytes;
1403                 run->mmio.is_write = 1;
1404                 vcpu->mmio_needed = 1;
1405                 vcpu->mmio_is_write = 1;
1406                 *(u8 *) data = vcpu->arch.gprs[rt];
1407                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1408                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1409                           *(u8 *) data);
1410
1411                 break;
1412
1413         case sw_op:
1414                 bytes = 4;
1415                 if (bytes > sizeof(run->mmio.data)) {
1416                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1417                                run->mmio.len);
1418                 }
1419                 run->mmio.phys_addr =
1420                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1421                                                    host_cp0_badvaddr);
1422                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1423                         er = EMULATE_FAIL;
1424                         break;
1425                 }
1426
1427                 run->mmio.len = bytes;
1428                 run->mmio.is_write = 1;
1429                 vcpu->mmio_needed = 1;
1430                 vcpu->mmio_is_write = 1;
1431                 *(u32 *) data = vcpu->arch.gprs[rt];
1432
1433                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1434                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1435                           vcpu->arch.gprs[rt], *(u32 *) data);
1436                 break;
1437
1438         case sh_op:
1439                 bytes = 2;
1440                 if (bytes > sizeof(run->mmio.data)) {
1441                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1442                                run->mmio.len);
1443                 }
1444                 run->mmio.phys_addr =
1445                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1446                                                    host_cp0_badvaddr);
1447                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1448                         er = EMULATE_FAIL;
1449                         break;
1450                 }
1451
1452                 run->mmio.len = bytes;
1453                 run->mmio.is_write = 1;
1454                 vcpu->mmio_needed = 1;
1455                 vcpu->mmio_is_write = 1;
1456                 *(u16 *) data = vcpu->arch.gprs[rt];
1457
1458                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1459                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1460                           vcpu->arch.gprs[rt], *(u32 *) data);
1461                 break;
1462
1463         default:
1464                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1465                         inst.word);
1466                 er = EMULATE_FAIL;
1467                 break;
1468         }
1469
1470         /* Rollback PC if emulation was unsuccessful */
1471         if (er == EMULATE_FAIL)
1472                 vcpu->arch.pc = curr_pc;
1473
1474         return er;
1475 }
1476
1477 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1478                                             u32 cause, struct kvm_run *run,
1479                                             struct kvm_vcpu *vcpu)
1480 {
1481         enum emulation_result er = EMULATE_DO_MMIO;
1482         u32 op, rt;
1483         u32 bytes;
1484
1485         rt = inst.i_format.rt;
1486         op = inst.i_format.opcode;
1487
1488         vcpu->arch.pending_load_cause = cause;
1489         vcpu->arch.io_gpr = rt;
1490
1491         switch (op) {
1492         case lw_op:
1493                 bytes = 4;
1494                 if (bytes > sizeof(run->mmio.data)) {
1495                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1496                                run->mmio.len);
1497                         er = EMULATE_FAIL;
1498                         break;
1499                 }
1500                 run->mmio.phys_addr =
1501                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1502                                                    host_cp0_badvaddr);
1503                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1504                         er = EMULATE_FAIL;
1505                         break;
1506                 }
1507
1508                 run->mmio.len = bytes;
1509                 run->mmio.is_write = 0;
1510                 vcpu->mmio_needed = 1;
1511                 vcpu->mmio_is_write = 0;
1512                 break;
1513
1514         case lh_op:
1515         case lhu_op:
1516                 bytes = 2;
1517                 if (bytes > sizeof(run->mmio.data)) {
1518                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1519                                run->mmio.len);
1520                         er = EMULATE_FAIL;
1521                         break;
1522                 }
1523                 run->mmio.phys_addr =
1524                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1525                                                    host_cp0_badvaddr);
1526                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1527                         er = EMULATE_FAIL;
1528                         break;
1529                 }
1530
1531                 run->mmio.len = bytes;
1532                 run->mmio.is_write = 0;
1533                 vcpu->mmio_needed = 1;
1534                 vcpu->mmio_is_write = 0;
1535
1536                 if (op == lh_op)
1537                         vcpu->mmio_needed = 2;
1538                 else
1539                         vcpu->mmio_needed = 1;
1540
1541                 break;
1542
1543         case lbu_op:
1544         case lb_op:
1545                 bytes = 1;
1546                 if (bytes > sizeof(run->mmio.data)) {
1547                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1548                                run->mmio.len);
1549                         er = EMULATE_FAIL;
1550                         break;
1551                 }
1552                 run->mmio.phys_addr =
1553                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1554                                                    host_cp0_badvaddr);
1555                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1556                         er = EMULATE_FAIL;
1557                         break;
1558                 }
1559
1560                 run->mmio.len = bytes;
1561                 run->mmio.is_write = 0;
1562                 vcpu->mmio_is_write = 0;
1563
1564                 if (op == lb_op)
1565                         vcpu->mmio_needed = 2;
1566                 else
1567                         vcpu->mmio_needed = 1;
1568
1569                 break;
1570
1571         default:
1572                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1573                         inst.word);
1574                 er = EMULATE_FAIL;
1575                 break;
1576         }
1577
1578         return er;
1579 }
1580
1581 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1582                                              u32 *opc, u32 cause,
1583                                              struct kvm_run *run,
1584                                              struct kvm_vcpu *vcpu)
1585 {
1586         struct mips_coproc *cop0 = vcpu->arch.cop0;
1587         enum emulation_result er = EMULATE_DONE;
1588         u32 cache, op_inst, op, base;
1589         s16 offset;
1590         struct kvm_vcpu_arch *arch = &vcpu->arch;
1591         unsigned long va;
1592         unsigned long curr_pc;
1593
1594         /*
1595          * Update PC and hold onto current PC in case there is
1596          * an error and we want to rollback the PC
1597          */
1598         curr_pc = vcpu->arch.pc;
1599         er = update_pc(vcpu, cause);
1600         if (er == EMULATE_FAIL)
1601                 return er;
1602
1603         base = inst.i_format.rs;
1604         op_inst = inst.i_format.rt;
1605         if (cpu_has_mips_r6)
1606                 offset = inst.spec3_format.simmediate;
1607         else
1608                 offset = inst.i_format.simmediate;
1609         cache = op_inst & CacheOp_Cache;
1610         op = op_inst & CacheOp_Op;
1611
1612         va = arch->gprs[base] + offset;
1613
1614         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1615                   cache, op, base, arch->gprs[base], offset);
1616
1617         /*
1618          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1619          * invalidate the caches entirely by stepping through all the
1620          * ways/indexes
1621          */
1622         if (op == Index_Writeback_Inv) {
1623                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1624                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1625                           arch->gprs[base], offset);
1626
1627                 if (cache == Cache_D)
1628                         r4k_blast_dcache();
1629                 else if (cache == Cache_I)
1630                         r4k_blast_icache();
1631                 else {
1632                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1633                                 __func__);
1634                         return EMULATE_FAIL;
1635                 }
1636
1637 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1638                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1639 #endif
1640                 goto done;
1641         }
1642
1643         preempt_disable();
1644         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1645                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1646                     kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1647                         kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1648                                 __func__, va, vcpu, read_c0_entryhi());
1649                         er = EMULATE_FAIL;
1650                         preempt_enable();
1651                         goto done;
1652                 }
1653         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1654                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1655                 int index;
1656
1657                 /* If an entry already exists then skip */
1658                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1659                         goto skip_fault;
1660
1661                 /*
1662                  * If address not in the guest TLB, then give the guest a fault,
1663                  * the resulting handler will do the right thing
1664                  */
1665                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1666                                                   (kvm_read_c0_guest_entryhi
1667                                                    (cop0) & KVM_ENTRYHI_ASID));
1668
1669                 if (index < 0) {
1670                         vcpu->arch.host_cp0_badvaddr = va;
1671                         vcpu->arch.pc = curr_pc;
1672                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1673                                                          vcpu);
1674                         preempt_enable();
1675                         goto dont_update_pc;
1676                 } else {
1677                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1678                         /*
1679                          * Check if the entry is valid, if not then setup a TLB
1680                          * invalid exception to the guest
1681                          */
1682                         if (!TLB_IS_VALID(*tlb, va)) {
1683                                 vcpu->arch.host_cp0_badvaddr = va;
1684                                 vcpu->arch.pc = curr_pc;
1685                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1686                                                                 run, vcpu);
1687                                 preempt_enable();
1688                                 goto dont_update_pc;
1689                         }
1690                         /*
1691                          * We fault an entry from the guest tlb to the
1692                          * shadow host TLB
1693                          */
1694                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
1695                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1696                                         __func__, va, index, vcpu,
1697                                         read_c0_entryhi());
1698                                 er = EMULATE_FAIL;
1699                                 preempt_enable();
1700                                 goto done;
1701                         }
1702                 }
1703         } else {
1704                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1705                         cache, op, base, arch->gprs[base], offset);
1706                 er = EMULATE_FAIL;
1707                 preempt_enable();
1708                 goto done;
1709
1710         }
1711
1712 skip_fault:
1713         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1714         if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1715                 flush_dcache_line(va);
1716
1717 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1718                 /*
1719                  * Replace the CACHE instruction, with a SYNCI, not the same,
1720                  * but avoids a trap
1721                  */
1722                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1723 #endif
1724         } else if (op_inst == Hit_Invalidate_I) {
1725                 flush_dcache_line(va);
1726                 flush_icache_line(va);
1727
1728 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1729                 /* Replace the CACHE instruction, with a SYNCI */
1730                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1731 #endif
1732         } else {
1733                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1734                         cache, op, base, arch->gprs[base], offset);
1735                 er = EMULATE_FAIL;
1736         }
1737
1738         preempt_enable();
1739 done:
1740         /* Rollback PC only if emulation was unsuccessful */
1741         if (er == EMULATE_FAIL)
1742                 vcpu->arch.pc = curr_pc;
1743
1744 dont_update_pc:
1745         /*
1746          * This is for exceptions whose emulation updates the PC, so do not
1747          * overwrite the PC under any circumstances
1748          */
1749
1750         return er;
1751 }
1752
1753 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1754                                             struct kvm_run *run,
1755                                             struct kvm_vcpu *vcpu)
1756 {
1757         union mips_instruction inst;
1758         enum emulation_result er = EMULATE_DONE;
1759
1760         /* Fetch the instruction. */
1761         if (cause & CAUSEF_BD)
1762                 opc += 1;
1763
1764         inst.word = kvm_get_inst(opc, vcpu);
1765
1766         switch (inst.r_format.opcode) {
1767         case cop0_op:
1768                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1769                 break;
1770         case sb_op:
1771         case sh_op:
1772         case sw_op:
1773                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1774                 break;
1775         case lb_op:
1776         case lbu_op:
1777         case lhu_op:
1778         case lh_op:
1779         case lw_op:
1780                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1781                 break;
1782
1783 #ifndef CONFIG_CPU_MIPSR6
1784         case cache_op:
1785                 ++vcpu->stat.cache_exits;
1786                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1787                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1788                 break;
1789 #else
1790         case spec3_op:
1791                 switch (inst.spec3_format.func) {
1792                 case cache6_op:
1793                         ++vcpu->stat.cache_exits;
1794                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1795                         er = kvm_mips_emulate_cache(inst, opc, cause, run,
1796                                                     vcpu);
1797                         break;
1798                 default:
1799                         goto unknown;
1800                 };
1801                 break;
1802 unknown:
1803 #endif
1804
1805         default:
1806                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1807                         inst.word);
1808                 kvm_arch_vcpu_dump_regs(vcpu);
1809                 er = EMULATE_FAIL;
1810                 break;
1811         }
1812
1813         return er;
1814 }
1815
1816 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1817                                                u32 *opc,
1818                                                struct kvm_run *run,
1819                                                struct kvm_vcpu *vcpu)
1820 {
1821         struct mips_coproc *cop0 = vcpu->arch.cop0;
1822         struct kvm_vcpu_arch *arch = &vcpu->arch;
1823         enum emulation_result er = EMULATE_DONE;
1824
1825         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1826                 /* save old pc */
1827                 kvm_write_c0_guest_epc(cop0, arch->pc);
1828                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1829
1830                 if (cause & CAUSEF_BD)
1831                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1832                 else
1833                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1834
1835                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1836
1837                 kvm_change_c0_guest_cause(cop0, (0xff),
1838                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
1839
1840                 /* Set PC to the exception entry point */
1841                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1842
1843         } else {
1844                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1845                 er = EMULATE_FAIL;
1846         }
1847
1848         return er;
1849 }
1850
1851 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1852                                                   u32 *opc,
1853                                                   struct kvm_run *run,
1854                                                   struct kvm_vcpu *vcpu)
1855 {
1856         struct mips_coproc *cop0 = vcpu->arch.cop0;
1857         struct kvm_vcpu_arch *arch = &vcpu->arch;
1858         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1859                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1860
1861         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1862                 /* save old pc */
1863                 kvm_write_c0_guest_epc(cop0, arch->pc);
1864                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1865
1866                 if (cause & CAUSEF_BD)
1867                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1868                 else
1869                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1870
1871                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1872                           arch->pc);
1873
1874                 /* set pc to the exception entry point */
1875                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1876
1877         } else {
1878                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1879                           arch->pc);
1880
1881                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1882         }
1883
1884         kvm_change_c0_guest_cause(cop0, (0xff),
1885                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1886
1887         /* setup badvaddr, context and entryhi registers for the guest */
1888         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1889         /* XXXKYMA: is the context register used by linux??? */
1890         kvm_write_c0_guest_entryhi(cop0, entryhi);
1891         /* Blow away the shadow host TLBs */
1892         kvm_mips_flush_host_tlb(1);
1893
1894         return EMULATE_DONE;
1895 }
1896
1897 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1898                                                  u32 *opc,
1899                                                  struct kvm_run *run,
1900                                                  struct kvm_vcpu *vcpu)
1901 {
1902         struct mips_coproc *cop0 = vcpu->arch.cop0;
1903         struct kvm_vcpu_arch *arch = &vcpu->arch;
1904         unsigned long entryhi =
1905                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1906                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1907
1908         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1909                 /* save old pc */
1910                 kvm_write_c0_guest_epc(cop0, arch->pc);
1911                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1912
1913                 if (cause & CAUSEF_BD)
1914                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1915                 else
1916                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1917
1918                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1919                           arch->pc);
1920
1921                 /* set pc to the exception entry point */
1922                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1923
1924         } else {
1925                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1926                           arch->pc);
1927                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1928         }
1929
1930         kvm_change_c0_guest_cause(cop0, (0xff),
1931                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1932
1933         /* setup badvaddr, context and entryhi registers for the guest */
1934         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1935         /* XXXKYMA: is the context register used by linux??? */
1936         kvm_write_c0_guest_entryhi(cop0, entryhi);
1937         /* Blow away the shadow host TLBs */
1938         kvm_mips_flush_host_tlb(1);
1939
1940         return EMULATE_DONE;
1941 }
1942
1943 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1944                                                   u32 *opc,
1945                                                   struct kvm_run *run,
1946                                                   struct kvm_vcpu *vcpu)
1947 {
1948         struct mips_coproc *cop0 = vcpu->arch.cop0;
1949         struct kvm_vcpu_arch *arch = &vcpu->arch;
1950         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1951                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1952
1953         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1954                 /* save old pc */
1955                 kvm_write_c0_guest_epc(cop0, arch->pc);
1956                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1957
1958                 if (cause & CAUSEF_BD)
1959                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1960                 else
1961                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1962
1963                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1964                           arch->pc);
1965
1966                 /* Set PC to the exception entry point */
1967                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1968         } else {
1969                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1970                           arch->pc);
1971                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1972         }
1973
1974         kvm_change_c0_guest_cause(cop0, (0xff),
1975                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
1976
1977         /* setup badvaddr, context and entryhi registers for the guest */
1978         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1979         /* XXXKYMA: is the context register used by linux??? */
1980         kvm_write_c0_guest_entryhi(cop0, entryhi);
1981         /* Blow away the shadow host TLBs */
1982         kvm_mips_flush_host_tlb(1);
1983
1984         return EMULATE_DONE;
1985 }
1986
1987 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
1988                                                  u32 *opc,
1989                                                  struct kvm_run *run,
1990                                                  struct kvm_vcpu *vcpu)
1991 {
1992         struct mips_coproc *cop0 = vcpu->arch.cop0;
1993         struct kvm_vcpu_arch *arch = &vcpu->arch;
1994         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1995                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1996
1997         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1998                 /* save old pc */
1999                 kvm_write_c0_guest_epc(cop0, arch->pc);
2000                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2001
2002                 if (cause & CAUSEF_BD)
2003                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2004                 else
2005                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2006
2007                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2008                           arch->pc);
2009
2010                 /* Set PC to the exception entry point */
2011                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2012         } else {
2013                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2014                           arch->pc);
2015                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2016         }
2017
2018         kvm_change_c0_guest_cause(cop0, (0xff),
2019                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2020
2021         /* setup badvaddr, context and entryhi registers for the guest */
2022         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2023         /* XXXKYMA: is the context register used by linux??? */
2024         kvm_write_c0_guest_entryhi(cop0, entryhi);
2025         /* Blow away the shadow host TLBs */
2026         kvm_mips_flush_host_tlb(1);
2027
2028         return EMULATE_DONE;
2029 }
2030
2031 /* TLBMOD: store into address matching TLB with Dirty bit off */
2032 enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
2033                                              struct kvm_run *run,
2034                                              struct kvm_vcpu *vcpu)
2035 {
2036         enum emulation_result er = EMULATE_DONE;
2037 #ifdef DEBUG
2038         struct mips_coproc *cop0 = vcpu->arch.cop0;
2039         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2040                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2041         int index;
2042
2043         /* If address not in the guest TLB, then we are in trouble */
2044         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2045         if (index < 0) {
2046                 /* XXXKYMA Invalidate and retry */
2047                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2048                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2049                      __func__, entryhi);
2050                 kvm_mips_dump_guest_tlbs(vcpu);
2051                 kvm_mips_dump_host_tlbs();
2052                 return EMULATE_FAIL;
2053         }
2054 #endif
2055
2056         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2057         return er;
2058 }
2059
2060 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2061                                               u32 *opc,
2062                                               struct kvm_run *run,
2063                                               struct kvm_vcpu *vcpu)
2064 {
2065         struct mips_coproc *cop0 = vcpu->arch.cop0;
2066         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2067                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2068         struct kvm_vcpu_arch *arch = &vcpu->arch;
2069
2070         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2071                 /* save old pc */
2072                 kvm_write_c0_guest_epc(cop0, arch->pc);
2073                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2074
2075                 if (cause & CAUSEF_BD)
2076                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2077                 else
2078                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2079
2080                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2081                           arch->pc);
2082
2083                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2084         } else {
2085                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2086                           arch->pc);
2087                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2088         }
2089
2090         kvm_change_c0_guest_cause(cop0, (0xff),
2091                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2092
2093         /* setup badvaddr, context and entryhi registers for the guest */
2094         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2095         /* XXXKYMA: is the context register used by linux??? */
2096         kvm_write_c0_guest_entryhi(cop0, entryhi);
2097         /* Blow away the shadow host TLBs */
2098         kvm_mips_flush_host_tlb(1);
2099
2100         return EMULATE_DONE;
2101 }
2102
2103 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2104                                                u32 *opc,
2105                                                struct kvm_run *run,
2106                                                struct kvm_vcpu *vcpu)
2107 {
2108         struct mips_coproc *cop0 = vcpu->arch.cop0;
2109         struct kvm_vcpu_arch *arch = &vcpu->arch;
2110
2111         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2112                 /* save old pc */
2113                 kvm_write_c0_guest_epc(cop0, arch->pc);
2114                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2115
2116                 if (cause & CAUSEF_BD)
2117                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2118                 else
2119                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2120
2121         }
2122
2123         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2124
2125         kvm_change_c0_guest_cause(cop0, (0xff),
2126                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2127         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2128
2129         return EMULATE_DONE;
2130 }
2131
2132 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2133                                               u32 *opc,
2134                                               struct kvm_run *run,
2135                                               struct kvm_vcpu *vcpu)
2136 {
2137         struct mips_coproc *cop0 = vcpu->arch.cop0;
2138         struct kvm_vcpu_arch *arch = &vcpu->arch;
2139         enum emulation_result er = EMULATE_DONE;
2140
2141         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2142                 /* save old pc */
2143                 kvm_write_c0_guest_epc(cop0, arch->pc);
2144                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2145
2146                 if (cause & CAUSEF_BD)
2147                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2148                 else
2149                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2150
2151                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2152
2153                 kvm_change_c0_guest_cause(cop0, (0xff),
2154                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2155
2156                 /* Set PC to the exception entry point */
2157                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2158
2159         } else {
2160                 kvm_err("Trying to deliver RI when EXL is already set\n");
2161                 er = EMULATE_FAIL;
2162         }
2163
2164         return er;
2165 }
2166
2167 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2168                                               u32 *opc,
2169                                               struct kvm_run *run,
2170                                               struct kvm_vcpu *vcpu)
2171 {
2172         struct mips_coproc *cop0 = vcpu->arch.cop0;
2173         struct kvm_vcpu_arch *arch = &vcpu->arch;
2174         enum emulation_result er = EMULATE_DONE;
2175
2176         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2177                 /* save old pc */
2178                 kvm_write_c0_guest_epc(cop0, arch->pc);
2179                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2180
2181                 if (cause & CAUSEF_BD)
2182                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2183                 else
2184                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2185
2186                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2187
2188                 kvm_change_c0_guest_cause(cop0, (0xff),
2189                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2190
2191                 /* Set PC to the exception entry point */
2192                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2193
2194         } else {
2195                 kvm_err("Trying to deliver BP when EXL is already set\n");
2196                 er = EMULATE_FAIL;
2197         }
2198
2199         return er;
2200 }
2201
2202 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2203                                                 u32 *opc,
2204                                                 struct kvm_run *run,
2205                                                 struct kvm_vcpu *vcpu)
2206 {
2207         struct mips_coproc *cop0 = vcpu->arch.cop0;
2208         struct kvm_vcpu_arch *arch = &vcpu->arch;
2209         enum emulation_result er = EMULATE_DONE;
2210
2211         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2212                 /* save old pc */
2213                 kvm_write_c0_guest_epc(cop0, arch->pc);
2214                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2215
2216                 if (cause & CAUSEF_BD)
2217                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2218                 else
2219                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2220
2221                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2222
2223                 kvm_change_c0_guest_cause(cop0, (0xff),
2224                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2225
2226                 /* Set PC to the exception entry point */
2227                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2228
2229         } else {
2230                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2231                 er = EMULATE_FAIL;
2232         }
2233
2234         return er;
2235 }
2236
2237 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2238                                                   u32 *opc,
2239                                                   struct kvm_run *run,
2240                                                   struct kvm_vcpu *vcpu)
2241 {
2242         struct mips_coproc *cop0 = vcpu->arch.cop0;
2243         struct kvm_vcpu_arch *arch = &vcpu->arch;
2244         enum emulation_result er = EMULATE_DONE;
2245
2246         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2247                 /* save old pc */
2248                 kvm_write_c0_guest_epc(cop0, arch->pc);
2249                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2250
2251                 if (cause & CAUSEF_BD)
2252                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2253                 else
2254                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2255
2256                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2257
2258                 kvm_change_c0_guest_cause(cop0, (0xff),
2259                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2260
2261                 /* Set PC to the exception entry point */
2262                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2263
2264         } else {
2265                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2266                 er = EMULATE_FAIL;
2267         }
2268
2269         return er;
2270 }
2271
2272 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2273                                                u32 *opc,
2274                                                struct kvm_run *run,
2275                                                struct kvm_vcpu *vcpu)
2276 {
2277         struct mips_coproc *cop0 = vcpu->arch.cop0;
2278         struct kvm_vcpu_arch *arch = &vcpu->arch;
2279         enum emulation_result er = EMULATE_DONE;
2280
2281         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2282                 /* save old pc */
2283                 kvm_write_c0_guest_epc(cop0, arch->pc);
2284                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2285
2286                 if (cause & CAUSEF_BD)
2287                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2288                 else
2289                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2290
2291                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2292
2293                 kvm_change_c0_guest_cause(cop0, (0xff),
2294                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2295
2296                 /* Set PC to the exception entry point */
2297                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2298
2299         } else {
2300                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2301                 er = EMULATE_FAIL;
2302         }
2303
2304         return er;
2305 }
2306
2307 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2308                                                   u32 *opc,
2309                                                   struct kvm_run *run,
2310                                                   struct kvm_vcpu *vcpu)
2311 {
2312         struct mips_coproc *cop0 = vcpu->arch.cop0;
2313         struct kvm_vcpu_arch *arch = &vcpu->arch;
2314         enum emulation_result er = EMULATE_DONE;
2315
2316         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2317                 /* save old pc */
2318                 kvm_write_c0_guest_epc(cop0, arch->pc);
2319                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2320
2321                 if (cause & CAUSEF_BD)
2322                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2323                 else
2324                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2325
2326                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2327
2328                 kvm_change_c0_guest_cause(cop0, (0xff),
2329                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2330
2331                 /* Set PC to the exception entry point */
2332                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2333
2334         } else {
2335                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2336                 er = EMULATE_FAIL;
2337         }
2338
2339         return er;
2340 }
2341
2342 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2343                                          struct kvm_run *run,
2344                                          struct kvm_vcpu *vcpu)
2345 {
2346         struct mips_coproc *cop0 = vcpu->arch.cop0;
2347         struct kvm_vcpu_arch *arch = &vcpu->arch;
2348         enum emulation_result er = EMULATE_DONE;
2349         unsigned long curr_pc;
2350         union mips_instruction inst;
2351
2352         /*
2353          * Update PC and hold onto current PC in case there is
2354          * an error and we want to rollback the PC
2355          */
2356         curr_pc = vcpu->arch.pc;
2357         er = update_pc(vcpu, cause);
2358         if (er == EMULATE_FAIL)
2359                 return er;
2360
2361         /* Fetch the instruction. */
2362         if (cause & CAUSEF_BD)
2363                 opc += 1;
2364
2365         inst.word = kvm_get_inst(opc, vcpu);
2366
2367         if (inst.word == KVM_INVALID_INST) {
2368                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2369                 return EMULATE_FAIL;
2370         }
2371
2372         if (inst.r_format.opcode == spec3_op &&
2373             inst.r_format.func == rdhwr_op &&
2374             inst.r_format.rs == 0 &&
2375             (inst.r_format.re >> 3) == 0) {
2376                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2377                 int rd = inst.r_format.rd;
2378                 int rt = inst.r_format.rt;
2379                 int sel = inst.r_format.re & 0x7;
2380
2381                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2382                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2383                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2384                                   rd, opc);
2385                         goto emulate_ri;
2386                 }
2387                 switch (rd) {
2388                 case MIPS_HWR_CPUNUM:           /* CPU number */
2389                         arch->gprs[rt] = vcpu->vcpu_id;
2390                         break;
2391                 case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
2392                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2393                                              current_cpu_data.icache.linesz);
2394                         break;
2395                 case MIPS_HWR_CC:               /* Read count register */
2396                         arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2397                         break;
2398                 case MIPS_HWR_CCRES:            /* Count register resolution */
2399                         switch (current_cpu_data.cputype) {
2400                         case CPU_20KC:
2401                         case CPU_25KF:
2402                                 arch->gprs[rt] = 1;
2403                                 break;
2404                         default:
2405                                 arch->gprs[rt] = 2;
2406                         }
2407                         break;
2408                 case MIPS_HWR_ULR:              /* Read UserLocal register */
2409                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2410                         break;
2411
2412                 default:
2413                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2414                         goto emulate_ri;
2415                 }
2416
2417                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2418                               vcpu->arch.gprs[rt]);
2419         } else {
2420                 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2421                           opc, inst.word);
2422                 goto emulate_ri;
2423         }
2424
2425         return EMULATE_DONE;
2426
2427 emulate_ri:
2428         /*
2429          * Rollback PC (if in branch delay slot then the PC already points to
2430          * branch target), and pass the RI exception to the guest OS.
2431          */
2432         vcpu->arch.pc = curr_pc;
2433         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2434 }
2435
2436 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2437                                                   struct kvm_run *run)
2438 {
2439         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2440         enum emulation_result er = EMULATE_DONE;
2441
2442         if (run->mmio.len > sizeof(*gpr)) {
2443                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2444                 er = EMULATE_FAIL;
2445                 goto done;
2446         }
2447
2448         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2449         if (er == EMULATE_FAIL)
2450                 return er;
2451
2452         switch (run->mmio.len) {
2453         case 4:
2454                 *gpr = *(s32 *) run->mmio.data;
2455                 break;
2456
2457         case 2:
2458                 if (vcpu->mmio_needed == 2)
2459                         *gpr = *(s16 *) run->mmio.data;
2460                 else
2461                         *gpr = *(u16 *)run->mmio.data;
2462
2463                 break;
2464         case 1:
2465                 if (vcpu->mmio_needed == 2)
2466                         *gpr = *(s8 *) run->mmio.data;
2467                 else
2468                         *gpr = *(u8 *) run->mmio.data;
2469                 break;
2470         }
2471
2472         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2473                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2474                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2475                           vcpu->mmio_needed);
2476
2477 done:
2478         return er;
2479 }
2480
2481 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2482                                                   u32 *opc,
2483                                                   struct kvm_run *run,
2484                                                   struct kvm_vcpu *vcpu)
2485 {
2486         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2487         struct mips_coproc *cop0 = vcpu->arch.cop0;
2488         struct kvm_vcpu_arch *arch = &vcpu->arch;
2489         enum emulation_result er = EMULATE_DONE;
2490
2491         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2492                 /* save old pc */
2493                 kvm_write_c0_guest_epc(cop0, arch->pc);
2494                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2495
2496                 if (cause & CAUSEF_BD)
2497                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2498                 else
2499                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2500
2501                 kvm_change_c0_guest_cause(cop0, (0xff),
2502                                           (exccode << CAUSEB_EXCCODE));
2503
2504                 /* Set PC to the exception entry point */
2505                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2506                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2507
2508                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2509                           exccode, kvm_read_c0_guest_epc(cop0),
2510                           kvm_read_c0_guest_badvaddr(cop0));
2511         } else {
2512                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2513                 er = EMULATE_FAIL;
2514         }
2515
2516         return er;
2517 }
2518
2519 enum emulation_result kvm_mips_check_privilege(u32 cause,
2520                                                u32 *opc,
2521                                                struct kvm_run *run,
2522                                                struct kvm_vcpu *vcpu)
2523 {
2524         enum emulation_result er = EMULATE_DONE;
2525         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2526         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2527
2528         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2529
2530         if (usermode) {
2531                 switch (exccode) {
2532                 case EXCCODE_INT:
2533                 case EXCCODE_SYS:
2534                 case EXCCODE_BP:
2535                 case EXCCODE_RI:
2536                 case EXCCODE_TR:
2537                 case EXCCODE_MSAFPE:
2538                 case EXCCODE_FPE:
2539                 case EXCCODE_MSADIS:
2540                         break;
2541
2542                 case EXCCODE_CPU:
2543                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2544                                 er = EMULATE_PRIV_FAIL;
2545                         break;
2546
2547                 case EXCCODE_MOD:
2548                         break;
2549
2550                 case EXCCODE_TLBL:
2551                         /*
2552                          * We we are accessing Guest kernel space, then send an
2553                          * address error exception to the guest
2554                          */
2555                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2556                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2557                                           badvaddr);
2558                                 cause &= ~0xff;
2559                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2560                                 er = EMULATE_PRIV_FAIL;
2561                         }
2562                         break;
2563
2564                 case EXCCODE_TLBS:
2565                         /*
2566                          * We we are accessing Guest kernel space, then send an
2567                          * address error exception to the guest
2568                          */
2569                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2570                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2571                                           badvaddr);
2572                                 cause &= ~0xff;
2573                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2574                                 er = EMULATE_PRIV_FAIL;
2575                         }
2576                         break;
2577
2578                 case EXCCODE_ADES:
2579                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2580                                   badvaddr);
2581                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2582                                 cause &= ~0xff;
2583                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2584                         }
2585                         er = EMULATE_PRIV_FAIL;
2586                         break;
2587                 case EXCCODE_ADEL:
2588                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2589                                   badvaddr);
2590                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2591                                 cause &= ~0xff;
2592                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2593                         }
2594                         er = EMULATE_PRIV_FAIL;
2595                         break;
2596                 default:
2597                         er = EMULATE_PRIV_FAIL;
2598                         break;
2599                 }
2600         }
2601
2602         if (er == EMULATE_PRIV_FAIL)
2603                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2604
2605         return er;
2606 }
2607
2608 /*
2609  * User Address (UA) fault, this could happen if
2610  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2611  *     case we pass on the fault to the guest kernel and let it handle it.
2612  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2613  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2614  */
2615 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2616                                               u32 *opc,
2617                                               struct kvm_run *run,
2618                                               struct kvm_vcpu *vcpu)
2619 {
2620         enum emulation_result er = EMULATE_DONE;
2621         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2622         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2623         int index;
2624
2625         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2626                   vcpu->arch.host_cp0_badvaddr);
2627
2628         /*
2629          * KVM would not have got the exception if this entry was valid in the
2630          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2631          * send the guest an exception. The guest exc handler should then inject
2632          * an entry into the guest TLB.
2633          */
2634         index = kvm_mips_guest_tlb_lookup(vcpu,
2635                       (va & VPN2_MASK) |
2636                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2637                        KVM_ENTRYHI_ASID));
2638         if (index < 0) {
2639                 if (exccode == EXCCODE_TLBL) {
2640                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2641                 } else if (exccode == EXCCODE_TLBS) {
2642                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2643                 } else {
2644                         kvm_err("%s: invalid exc code: %d\n", __func__,
2645                                 exccode);
2646                         er = EMULATE_FAIL;
2647                 }
2648         } else {
2649                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2650
2651                 /*
2652                  * Check if the entry is valid, if not then setup a TLB invalid
2653                  * exception to the guest
2654                  */
2655                 if (!TLB_IS_VALID(*tlb, va)) {
2656                         if (exccode == EXCCODE_TLBL) {
2657                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2658                                                                 vcpu);
2659                         } else if (exccode == EXCCODE_TLBS) {
2660                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2661                                                                 vcpu);
2662                         } else {
2663                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2664                                         exccode);
2665                                 er = EMULATE_FAIL;
2666                         }
2667                 } else {
2668                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2669                                   tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2670                         /*
2671                          * OK we have a Guest TLB entry, now inject it into the
2672                          * shadow host TLB
2673                          */
2674                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
2675                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2676                                         __func__, va, index, vcpu,
2677                                         read_c0_entryhi());
2678                                 er = EMULATE_FAIL;
2679                         }
2680                 }
2681         }
2682
2683         return er;
2684 }