KVM: remove kvm_guest_enter/exit wrappers
[cascardo/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100     /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
41         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
42         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
43         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
44         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
46         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
47         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
50         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
51         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
52         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
53         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
54         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
55         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
56         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
62         {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67         int i;
68
69         for_each_possible_cpu(i) {
70                 vcpu->arch.guest_kernel_asid[i] = 0;
71                 vcpu->arch.guest_user_asid[i] = 0;
72         }
73
74         return 0;
75 }
76
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83         return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98         return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103         *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108         unsigned long wired;
109
110         /*
111          * Add a wired entry to the TLB, it is used to map the commpage to
112          * the Guest kernel
113          */
114         wired = read_c0_wired();
115         write_c0_wired(wired + 1);
116         mtc0_tlbw_hazard();
117         kvm->arch.commpage_tlb = wired;
118
119         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120                   kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125         struct kvm *kvm = (struct kvm *)arg;
126
127         kvm_mips_init_tlbs(kvm);
128         kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134         if (atomic_inc_return(&kvm_mips_instance) == 1) {
135                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136                           __func__);
137                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138         }
139
140         return 0;
141 }
142
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145         unsigned int i;
146         struct kvm_vcpu *vcpu;
147
148         /* Put the pages we reserved for the guest pmap */
149         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152         }
153         kfree(kvm->arch.guest_pmap);
154
155         kvm_for_each_vcpu(i, vcpu, kvm) {
156                 kvm_arch_vcpu_free(vcpu);
157         }
158
159         mutex_lock(&kvm->lock);
160
161         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162                 kvm->vcpus[i] = NULL;
163
164         atomic_set(&kvm->online_vcpus, 0);
165
166         mutex_unlock(&kvm->lock);
167 }
168
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171         /* Restore wired count */
172         write_c0_wired(0);
173         mtc0_tlbw_hazard();
174         /* Clear out all the TLBs */
175         kvm_local_flush_tlb_all();
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         kvm_mips_free_vcpus(kvm);
181
182         /* If this is the last instance, restore wired count */
183         if (atomic_dec_return(&kvm_mips_instance) == 0) {
184                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185                           __func__);
186                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187         }
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191                         unsigned long arg)
192 {
193         return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197                             unsigned long npages)
198 {
199         return 0;
200 }
201
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203                                    struct kvm_memory_slot *memslot,
204                                    const struct kvm_userspace_memory_region *mem,
205                                    enum kvm_mr_change change)
206 {
207         return 0;
208 }
209
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211                                    const struct kvm_userspace_memory_region *mem,
212                                    const struct kvm_memory_slot *old,
213                                    const struct kvm_memory_slot *new,
214                                    enum kvm_mr_change change)
215 {
216         unsigned long npages = 0;
217         int i;
218
219         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220                   __func__, kvm, mem->slot, mem->guest_phys_addr,
221                   mem->memory_size, mem->userspace_addr);
222
223         /* Setup Guest PMAP table */
224         if (!kvm->arch.guest_pmap) {
225                 if (mem->slot == 0)
226                         npages = mem->memory_size >> PAGE_SHIFT;
227
228                 if (npages) {
229                         kvm->arch.guest_pmap_npages = npages;
230                         kvm->arch.guest_pmap =
231                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232
233                         if (!kvm->arch.guest_pmap) {
234                                 kvm_err("Failed to allocate guest PMAP\n");
235                                 return;
236                         }
237
238                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239                                   npages, kvm->arch.guest_pmap);
240
241                         /* Now setup the page table */
242                         for (i = 0; i < npages; i++)
243                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244                 }
245         }
246 }
247
248 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
249 {
250         int err, size, offset;
251         void *gebase;
252         int i;
253
254         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
255
256         if (!vcpu) {
257                 err = -ENOMEM;
258                 goto out;
259         }
260
261         err = kvm_vcpu_init(vcpu, kvm, id);
262
263         if (err)
264                 goto out_free_cpu;
265
266         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
267
268         /*
269          * Allocate space for host mode exception handlers that handle
270          * guest mode exits
271          */
272         if (cpu_has_veic || cpu_has_vint)
273                 size = 0x200 + VECTORSPACING * 64;
274         else
275                 size = 0x4000;
276
277         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278
279         if (!gebase) {
280                 err = -ENOMEM;
281                 goto out_uninit_cpu;
282         }
283         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284                   ALIGN(size, PAGE_SIZE), gebase);
285
286         /* Save new ebase */
287         vcpu->arch.guest_ebase = gebase;
288
289         /* Copy L1 Guest Exception handler to correct offset */
290
291         /* TLB Refill, EXL = 0 */
292         memcpy(gebase, mips32_exception,
293                mips32_exceptionEnd - mips32_exception);
294
295         /* General Exception Entry point */
296         memcpy(gebase + 0x180, mips32_exception,
297                mips32_exceptionEnd - mips32_exception);
298
299         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
300         for (i = 0; i < 8; i++) {
301                 kvm_debug("L1 Vectored handler @ %p\n",
302                           gebase + 0x200 + (i * VECTORSPACING));
303                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
304                        mips32_exceptionEnd - mips32_exception);
305         }
306
307         /* General handler, relocate to unmapped space for sanity's sake */
308         offset = 0x2000;
309         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
310                   gebase + offset,
311                   mips32_GuestExceptionEnd - mips32_GuestException);
312
313         memcpy(gebase + offset, mips32_GuestException,
314                mips32_GuestExceptionEnd - mips32_GuestException);
315
316 #ifdef MODULE
317         offset += mips32_GuestExceptionEnd - mips32_GuestException;
318         memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
319                __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
320         vcpu->arch.vcpu_run = gebase + offset;
321 #else
322         vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
323 #endif
324
325         /* Invalidate the icache for these ranges */
326         local_flush_icache_range((unsigned long)gebase,
327                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
328
329         /*
330          * Allocate comm page for guest kernel, a TLB will be reserved for
331          * mapping GVA @ 0xFFFF8000 to this page
332          */
333         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
334
335         if (!vcpu->arch.kseg0_commpage) {
336                 err = -ENOMEM;
337                 goto out_free_gebase;
338         }
339
340         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
341         kvm_mips_commpage_init(vcpu);
342
343         /* Init */
344         vcpu->arch.last_sched_cpu = -1;
345
346         /* Start off the timer */
347         kvm_mips_init_count(vcpu);
348
349         return vcpu;
350
351 out_free_gebase:
352         kfree(gebase);
353
354 out_uninit_cpu:
355         kvm_vcpu_uninit(vcpu);
356
357 out_free_cpu:
358         kfree(vcpu);
359
360 out:
361         return ERR_PTR(err);
362 }
363
364 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
365 {
366         hrtimer_cancel(&vcpu->arch.comparecount_timer);
367
368         kvm_vcpu_uninit(vcpu);
369
370         kvm_mips_dump_stats(vcpu);
371
372         kfree(vcpu->arch.guest_ebase);
373         kfree(vcpu->arch.kseg0_commpage);
374         kfree(vcpu);
375 }
376
377 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
378 {
379         kvm_arch_vcpu_free(vcpu);
380 }
381
382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
383                                         struct kvm_guest_debug *dbg)
384 {
385         return -ENOIOCTLCMD;
386 }
387
388 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
389 {
390         int r = 0;
391         sigset_t sigsaved;
392
393         if (vcpu->sigset_active)
394                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
395
396         if (vcpu->mmio_needed) {
397                 if (!vcpu->mmio_is_write)
398                         kvm_mips_complete_mmio_load(vcpu, run);
399                 vcpu->mmio_needed = 0;
400         }
401
402         lose_fpu(1);
403
404         local_irq_disable();
405         /* Check if we have any exceptions/interrupts pending */
406         kvm_mips_deliver_interrupts(vcpu,
407                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
408
409         guest_enter_irqoff();
410
411         /* Disable hardware page table walking while in guest */
412         htw_stop();
413
414         trace_kvm_enter(vcpu);
415         r = vcpu->arch.vcpu_run(run, vcpu);
416         trace_kvm_out(vcpu);
417
418         /* Re-enable HTW before enabling interrupts */
419         htw_start();
420
421         guest_exit_irqoff();
422         local_irq_enable();
423
424         if (vcpu->sigset_active)
425                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
426
427         return r;
428 }
429
430 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
431                              struct kvm_mips_interrupt *irq)
432 {
433         int intr = (int)irq->irq;
434         struct kvm_vcpu *dvcpu = NULL;
435
436         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
437                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
438                           (int)intr);
439
440         if (irq->cpu == -1)
441                 dvcpu = vcpu;
442         else
443                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
444
445         if (intr == 2 || intr == 3 || intr == 4) {
446                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
447
448         } else if (intr == -2 || intr == -3 || intr == -4) {
449                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
450         } else {
451                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
452                         irq->cpu, irq->irq);
453                 return -EINVAL;
454         }
455
456         dvcpu->arch.wait = 0;
457
458         if (swait_active(&dvcpu->wq))
459                 swake_up(&dvcpu->wq);
460
461         return 0;
462 }
463
464 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
465                                     struct kvm_mp_state *mp_state)
466 {
467         return -ENOIOCTLCMD;
468 }
469
470 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
471                                     struct kvm_mp_state *mp_state)
472 {
473         return -ENOIOCTLCMD;
474 }
475
476 static u64 kvm_mips_get_one_regs[] = {
477         KVM_REG_MIPS_R0,
478         KVM_REG_MIPS_R1,
479         KVM_REG_MIPS_R2,
480         KVM_REG_MIPS_R3,
481         KVM_REG_MIPS_R4,
482         KVM_REG_MIPS_R5,
483         KVM_REG_MIPS_R6,
484         KVM_REG_MIPS_R7,
485         KVM_REG_MIPS_R8,
486         KVM_REG_MIPS_R9,
487         KVM_REG_MIPS_R10,
488         KVM_REG_MIPS_R11,
489         KVM_REG_MIPS_R12,
490         KVM_REG_MIPS_R13,
491         KVM_REG_MIPS_R14,
492         KVM_REG_MIPS_R15,
493         KVM_REG_MIPS_R16,
494         KVM_REG_MIPS_R17,
495         KVM_REG_MIPS_R18,
496         KVM_REG_MIPS_R19,
497         KVM_REG_MIPS_R20,
498         KVM_REG_MIPS_R21,
499         KVM_REG_MIPS_R22,
500         KVM_REG_MIPS_R23,
501         KVM_REG_MIPS_R24,
502         KVM_REG_MIPS_R25,
503         KVM_REG_MIPS_R26,
504         KVM_REG_MIPS_R27,
505         KVM_REG_MIPS_R28,
506         KVM_REG_MIPS_R29,
507         KVM_REG_MIPS_R30,
508         KVM_REG_MIPS_R31,
509
510         KVM_REG_MIPS_HI,
511         KVM_REG_MIPS_LO,
512         KVM_REG_MIPS_PC,
513
514         KVM_REG_MIPS_CP0_INDEX,
515         KVM_REG_MIPS_CP0_CONTEXT,
516         KVM_REG_MIPS_CP0_USERLOCAL,
517         KVM_REG_MIPS_CP0_PAGEMASK,
518         KVM_REG_MIPS_CP0_WIRED,
519         KVM_REG_MIPS_CP0_HWRENA,
520         KVM_REG_MIPS_CP0_BADVADDR,
521         KVM_REG_MIPS_CP0_COUNT,
522         KVM_REG_MIPS_CP0_ENTRYHI,
523         KVM_REG_MIPS_CP0_COMPARE,
524         KVM_REG_MIPS_CP0_STATUS,
525         KVM_REG_MIPS_CP0_CAUSE,
526         KVM_REG_MIPS_CP0_EPC,
527         KVM_REG_MIPS_CP0_PRID,
528         KVM_REG_MIPS_CP0_CONFIG,
529         KVM_REG_MIPS_CP0_CONFIG1,
530         KVM_REG_MIPS_CP0_CONFIG2,
531         KVM_REG_MIPS_CP0_CONFIG3,
532         KVM_REG_MIPS_CP0_CONFIG4,
533         KVM_REG_MIPS_CP0_CONFIG5,
534         KVM_REG_MIPS_CP0_CONFIG7,
535         KVM_REG_MIPS_CP0_ERROREPC,
536
537         KVM_REG_MIPS_COUNT_CTL,
538         KVM_REG_MIPS_COUNT_RESUME,
539         KVM_REG_MIPS_COUNT_HZ,
540 };
541
542 static u64 kvm_mips_get_one_regs_fpu[] = {
543         KVM_REG_MIPS_FCR_IR,
544         KVM_REG_MIPS_FCR_CSR,
545 };
546
547 static u64 kvm_mips_get_one_regs_msa[] = {
548         KVM_REG_MIPS_MSA_IR,
549         KVM_REG_MIPS_MSA_CSR,
550 };
551
552 static u64 kvm_mips_get_one_regs_kscratch[] = {
553         KVM_REG_MIPS_CP0_KSCRATCH1,
554         KVM_REG_MIPS_CP0_KSCRATCH2,
555         KVM_REG_MIPS_CP0_KSCRATCH3,
556         KVM_REG_MIPS_CP0_KSCRATCH4,
557         KVM_REG_MIPS_CP0_KSCRATCH5,
558         KVM_REG_MIPS_CP0_KSCRATCH6,
559 };
560
561 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
562 {
563         unsigned long ret;
564
565         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
566         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
567                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
568                 /* odd doubles */
569                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
570                         ret += 16;
571         }
572         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
573                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
574         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
575         ret += kvm_mips_callbacks->num_regs(vcpu);
576
577         return ret;
578 }
579
580 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
581 {
582         u64 index;
583         unsigned int i;
584
585         if (copy_to_user(indices, kvm_mips_get_one_regs,
586                          sizeof(kvm_mips_get_one_regs)))
587                 return -EFAULT;
588         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
589
590         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
591                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
592                                  sizeof(kvm_mips_get_one_regs_fpu)))
593                         return -EFAULT;
594                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
595
596                 for (i = 0; i < 32; ++i) {
597                         index = KVM_REG_MIPS_FPR_32(i);
598                         if (copy_to_user(indices, &index, sizeof(index)))
599                                 return -EFAULT;
600                         ++indices;
601
602                         /* skip odd doubles if no F64 */
603                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
604                                 continue;
605
606                         index = KVM_REG_MIPS_FPR_64(i);
607                         if (copy_to_user(indices, &index, sizeof(index)))
608                                 return -EFAULT;
609                         ++indices;
610                 }
611         }
612
613         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
614                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
615                                  sizeof(kvm_mips_get_one_regs_msa)))
616                         return -EFAULT;
617                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
618
619                 for (i = 0; i < 32; ++i) {
620                         index = KVM_REG_MIPS_VEC_128(i);
621                         if (copy_to_user(indices, &index, sizeof(index)))
622                                 return -EFAULT;
623                         ++indices;
624                 }
625         }
626
627         for (i = 0; i < 6; ++i) {
628                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
629                         continue;
630
631                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
632                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
633                         return -EFAULT;
634                 ++indices;
635         }
636
637         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
638 }
639
640 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
641                             const struct kvm_one_reg *reg)
642 {
643         struct mips_coproc *cop0 = vcpu->arch.cop0;
644         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
645         int ret;
646         s64 v;
647         s64 vs[2];
648         unsigned int idx;
649
650         switch (reg->id) {
651         /* General purpose registers */
652         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
653                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
654                 break;
655         case KVM_REG_MIPS_HI:
656                 v = (long)vcpu->arch.hi;
657                 break;
658         case KVM_REG_MIPS_LO:
659                 v = (long)vcpu->arch.lo;
660                 break;
661         case KVM_REG_MIPS_PC:
662                 v = (long)vcpu->arch.pc;
663                 break;
664
665         /* Floating point registers */
666         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
667                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
668                         return -EINVAL;
669                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
670                 /* Odd singles in top of even double when FR=0 */
671                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
672                         v = get_fpr32(&fpu->fpr[idx], 0);
673                 else
674                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
675                 break;
676         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
677                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
678                         return -EINVAL;
679                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
680                 /* Can't access odd doubles in FR=0 mode */
681                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
682                         return -EINVAL;
683                 v = get_fpr64(&fpu->fpr[idx], 0);
684                 break;
685         case KVM_REG_MIPS_FCR_IR:
686                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687                         return -EINVAL;
688                 v = boot_cpu_data.fpu_id;
689                 break;
690         case KVM_REG_MIPS_FCR_CSR:
691                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
692                         return -EINVAL;
693                 v = fpu->fcr31;
694                 break;
695
696         /* MIPS SIMD Architecture (MSA) registers */
697         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
698                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
699                         return -EINVAL;
700                 /* Can't access MSA registers in FR=0 mode */
701                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
702                         return -EINVAL;
703                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
704 #ifdef CONFIG_CPU_LITTLE_ENDIAN
705                 /* least significant byte first */
706                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
707                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
708 #else
709                 /* most significant byte first */
710                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
711                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
712 #endif
713                 break;
714         case KVM_REG_MIPS_MSA_IR:
715                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
716                         return -EINVAL;
717                 v = boot_cpu_data.msa_id;
718                 break;
719         case KVM_REG_MIPS_MSA_CSR:
720                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
721                         return -EINVAL;
722                 v = fpu->msacsr;
723                 break;
724
725         /* Co-processor 0 registers */
726         case KVM_REG_MIPS_CP0_INDEX:
727                 v = (long)kvm_read_c0_guest_index(cop0);
728                 break;
729         case KVM_REG_MIPS_CP0_CONTEXT:
730                 v = (long)kvm_read_c0_guest_context(cop0);
731                 break;
732         case KVM_REG_MIPS_CP0_USERLOCAL:
733                 v = (long)kvm_read_c0_guest_userlocal(cop0);
734                 break;
735         case KVM_REG_MIPS_CP0_PAGEMASK:
736                 v = (long)kvm_read_c0_guest_pagemask(cop0);
737                 break;
738         case KVM_REG_MIPS_CP0_WIRED:
739                 v = (long)kvm_read_c0_guest_wired(cop0);
740                 break;
741         case KVM_REG_MIPS_CP0_HWRENA:
742                 v = (long)kvm_read_c0_guest_hwrena(cop0);
743                 break;
744         case KVM_REG_MIPS_CP0_BADVADDR:
745                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
746                 break;
747         case KVM_REG_MIPS_CP0_ENTRYHI:
748                 v = (long)kvm_read_c0_guest_entryhi(cop0);
749                 break;
750         case KVM_REG_MIPS_CP0_COMPARE:
751                 v = (long)kvm_read_c0_guest_compare(cop0);
752                 break;
753         case KVM_REG_MIPS_CP0_STATUS:
754                 v = (long)kvm_read_c0_guest_status(cop0);
755                 break;
756         case KVM_REG_MIPS_CP0_CAUSE:
757                 v = (long)kvm_read_c0_guest_cause(cop0);
758                 break;
759         case KVM_REG_MIPS_CP0_EPC:
760                 v = (long)kvm_read_c0_guest_epc(cop0);
761                 break;
762         case KVM_REG_MIPS_CP0_PRID:
763                 v = (long)kvm_read_c0_guest_prid(cop0);
764                 break;
765         case KVM_REG_MIPS_CP0_CONFIG:
766                 v = (long)kvm_read_c0_guest_config(cop0);
767                 break;
768         case KVM_REG_MIPS_CP0_CONFIG1:
769                 v = (long)kvm_read_c0_guest_config1(cop0);
770                 break;
771         case KVM_REG_MIPS_CP0_CONFIG2:
772                 v = (long)kvm_read_c0_guest_config2(cop0);
773                 break;
774         case KVM_REG_MIPS_CP0_CONFIG3:
775                 v = (long)kvm_read_c0_guest_config3(cop0);
776                 break;
777         case KVM_REG_MIPS_CP0_CONFIG4:
778                 v = (long)kvm_read_c0_guest_config4(cop0);
779                 break;
780         case KVM_REG_MIPS_CP0_CONFIG5:
781                 v = (long)kvm_read_c0_guest_config5(cop0);
782                 break;
783         case KVM_REG_MIPS_CP0_CONFIG7:
784                 v = (long)kvm_read_c0_guest_config7(cop0);
785                 break;
786         case KVM_REG_MIPS_CP0_ERROREPC:
787                 v = (long)kvm_read_c0_guest_errorepc(cop0);
788                 break;
789         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
790                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
791                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
792                         return -EINVAL;
793                 switch (idx) {
794                 case 2:
795                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
796                         break;
797                 case 3:
798                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
799                         break;
800                 case 4:
801                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
802                         break;
803                 case 5:
804                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
805                         break;
806                 case 6:
807                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
808                         break;
809                 case 7:
810                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
811                         break;
812                 }
813                 break;
814         /* registers to be handled specially */
815         default:
816                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
817                 if (ret)
818                         return ret;
819                 break;
820         }
821         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
822                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
823
824                 return put_user(v, uaddr64);
825         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
826                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
827                 u32 v32 = (u32)v;
828
829                 return put_user(v32, uaddr32);
830         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
831                 void __user *uaddr = (void __user *)(long)reg->addr;
832
833                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
834         } else {
835                 return -EINVAL;
836         }
837 }
838
839 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
840                             const struct kvm_one_reg *reg)
841 {
842         struct mips_coproc *cop0 = vcpu->arch.cop0;
843         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
844         s64 v;
845         s64 vs[2];
846         unsigned int idx;
847
848         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
849                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
850
851                 if (get_user(v, uaddr64) != 0)
852                         return -EFAULT;
853         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
854                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
855                 s32 v32;
856
857                 if (get_user(v32, uaddr32) != 0)
858                         return -EFAULT;
859                 v = (s64)v32;
860         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
861                 void __user *uaddr = (void __user *)(long)reg->addr;
862
863                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
864         } else {
865                 return -EINVAL;
866         }
867
868         switch (reg->id) {
869         /* General purpose registers */
870         case KVM_REG_MIPS_R0:
871                 /* Silently ignore requests to set $0 */
872                 break;
873         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
874                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
875                 break;
876         case KVM_REG_MIPS_HI:
877                 vcpu->arch.hi = v;
878                 break;
879         case KVM_REG_MIPS_LO:
880                 vcpu->arch.lo = v;
881                 break;
882         case KVM_REG_MIPS_PC:
883                 vcpu->arch.pc = v;
884                 break;
885
886         /* Floating point registers */
887         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
888                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
889                         return -EINVAL;
890                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
891                 /* Odd singles in top of even double when FR=0 */
892                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
893                         set_fpr32(&fpu->fpr[idx], 0, v);
894                 else
895                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
896                 break;
897         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
898                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
899                         return -EINVAL;
900                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
901                 /* Can't access odd doubles in FR=0 mode */
902                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
903                         return -EINVAL;
904                 set_fpr64(&fpu->fpr[idx], 0, v);
905                 break;
906         case KVM_REG_MIPS_FCR_IR:
907                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
908                         return -EINVAL;
909                 /* Read-only */
910                 break;
911         case KVM_REG_MIPS_FCR_CSR:
912                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
913                         return -EINVAL;
914                 fpu->fcr31 = v;
915                 break;
916
917         /* MIPS SIMD Architecture (MSA) registers */
918         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
919                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
920                         return -EINVAL;
921                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
922 #ifdef CONFIG_CPU_LITTLE_ENDIAN
923                 /* least significant byte first */
924                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
925                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
926 #else
927                 /* most significant byte first */
928                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
929                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
930 #endif
931                 break;
932         case KVM_REG_MIPS_MSA_IR:
933                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
934                         return -EINVAL;
935                 /* Read-only */
936                 break;
937         case KVM_REG_MIPS_MSA_CSR:
938                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
939                         return -EINVAL;
940                 fpu->msacsr = v;
941                 break;
942
943         /* Co-processor 0 registers */
944         case KVM_REG_MIPS_CP0_INDEX:
945                 kvm_write_c0_guest_index(cop0, v);
946                 break;
947         case KVM_REG_MIPS_CP0_CONTEXT:
948                 kvm_write_c0_guest_context(cop0, v);
949                 break;
950         case KVM_REG_MIPS_CP0_USERLOCAL:
951                 kvm_write_c0_guest_userlocal(cop0, v);
952                 break;
953         case KVM_REG_MIPS_CP0_PAGEMASK:
954                 kvm_write_c0_guest_pagemask(cop0, v);
955                 break;
956         case KVM_REG_MIPS_CP0_WIRED:
957                 kvm_write_c0_guest_wired(cop0, v);
958                 break;
959         case KVM_REG_MIPS_CP0_HWRENA:
960                 kvm_write_c0_guest_hwrena(cop0, v);
961                 break;
962         case KVM_REG_MIPS_CP0_BADVADDR:
963                 kvm_write_c0_guest_badvaddr(cop0, v);
964                 break;
965         case KVM_REG_MIPS_CP0_ENTRYHI:
966                 kvm_write_c0_guest_entryhi(cop0, v);
967                 break;
968         case KVM_REG_MIPS_CP0_STATUS:
969                 kvm_write_c0_guest_status(cop0, v);
970                 break;
971         case KVM_REG_MIPS_CP0_EPC:
972                 kvm_write_c0_guest_epc(cop0, v);
973                 break;
974         case KVM_REG_MIPS_CP0_PRID:
975                 kvm_write_c0_guest_prid(cop0, v);
976                 break;
977         case KVM_REG_MIPS_CP0_ERROREPC:
978                 kvm_write_c0_guest_errorepc(cop0, v);
979                 break;
980         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
981                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
982                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
983                         return -EINVAL;
984                 switch (idx) {
985                 case 2:
986                         kvm_write_c0_guest_kscratch1(cop0, v);
987                         break;
988                 case 3:
989                         kvm_write_c0_guest_kscratch2(cop0, v);
990                         break;
991                 case 4:
992                         kvm_write_c0_guest_kscratch3(cop0, v);
993                         break;
994                 case 5:
995                         kvm_write_c0_guest_kscratch4(cop0, v);
996                         break;
997                 case 6:
998                         kvm_write_c0_guest_kscratch5(cop0, v);
999                         break;
1000                 case 7:
1001                         kvm_write_c0_guest_kscratch6(cop0, v);
1002                         break;
1003                 }
1004                 break;
1005         /* registers to be handled specially */
1006         default:
1007                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1008         }
1009         return 0;
1010 }
1011
1012 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1013                                      struct kvm_enable_cap *cap)
1014 {
1015         int r = 0;
1016
1017         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1018                 return -EINVAL;
1019         if (cap->flags)
1020                 return -EINVAL;
1021         if (cap->args[0])
1022                 return -EINVAL;
1023
1024         switch (cap->cap) {
1025         case KVM_CAP_MIPS_FPU:
1026                 vcpu->arch.fpu_enabled = true;
1027                 break;
1028         case KVM_CAP_MIPS_MSA:
1029                 vcpu->arch.msa_enabled = true;
1030                 break;
1031         default:
1032                 r = -EINVAL;
1033                 break;
1034         }
1035
1036         return r;
1037 }
1038
1039 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1040                          unsigned long arg)
1041 {
1042         struct kvm_vcpu *vcpu = filp->private_data;
1043         void __user *argp = (void __user *)arg;
1044         long r;
1045
1046         switch (ioctl) {
1047         case KVM_SET_ONE_REG:
1048         case KVM_GET_ONE_REG: {
1049                 struct kvm_one_reg reg;
1050
1051                 if (copy_from_user(&reg, argp, sizeof(reg)))
1052                         return -EFAULT;
1053                 if (ioctl == KVM_SET_ONE_REG)
1054                         return kvm_mips_set_reg(vcpu, &reg);
1055                 else
1056                         return kvm_mips_get_reg(vcpu, &reg);
1057         }
1058         case KVM_GET_REG_LIST: {
1059                 struct kvm_reg_list __user *user_list = argp;
1060                 struct kvm_reg_list reg_list;
1061                 unsigned n;
1062
1063                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1064                         return -EFAULT;
1065                 n = reg_list.n;
1066                 reg_list.n = kvm_mips_num_regs(vcpu);
1067                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1068                         return -EFAULT;
1069                 if (n < reg_list.n)
1070                         return -E2BIG;
1071                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1072         }
1073         case KVM_NMI:
1074                 /* Treat the NMI as a CPU reset */
1075                 r = kvm_mips_reset_vcpu(vcpu);
1076                 break;
1077         case KVM_INTERRUPT:
1078                 {
1079                         struct kvm_mips_interrupt irq;
1080
1081                         r = -EFAULT;
1082                         if (copy_from_user(&irq, argp, sizeof(irq)))
1083                                 goto out;
1084
1085                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1086                                   irq.irq);
1087
1088                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1089                         break;
1090                 }
1091         case KVM_ENABLE_CAP: {
1092                 struct kvm_enable_cap cap;
1093
1094                 r = -EFAULT;
1095                 if (copy_from_user(&cap, argp, sizeof(cap)))
1096                         goto out;
1097                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1098                 break;
1099         }
1100         default:
1101                 r = -ENOIOCTLCMD;
1102         }
1103
1104 out:
1105         return r;
1106 }
1107
1108 /* Get (and clear) the dirty memory log for a memory slot. */
1109 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1110 {
1111         struct kvm_memslots *slots;
1112         struct kvm_memory_slot *memslot;
1113         unsigned long ga, ga_end;
1114         int is_dirty = 0;
1115         int r;
1116         unsigned long n;
1117
1118         mutex_lock(&kvm->slots_lock);
1119
1120         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1121         if (r)
1122                 goto out;
1123
1124         /* If nothing is dirty, don't bother messing with page tables. */
1125         if (is_dirty) {
1126                 slots = kvm_memslots(kvm);
1127                 memslot = id_to_memslot(slots, log->slot);
1128
1129                 ga = memslot->base_gfn << PAGE_SHIFT;
1130                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1131
1132                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1133                          ga_end);
1134
1135                 n = kvm_dirty_bitmap_bytes(memslot);
1136                 memset(memslot->dirty_bitmap, 0, n);
1137         }
1138
1139         r = 0;
1140 out:
1141         mutex_unlock(&kvm->slots_lock);
1142         return r;
1143
1144 }
1145
1146 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1147 {
1148         long r;
1149
1150         switch (ioctl) {
1151         default:
1152                 r = -ENOIOCTLCMD;
1153         }
1154
1155         return r;
1156 }
1157
1158 int kvm_arch_init(void *opaque)
1159 {
1160         if (kvm_mips_callbacks) {
1161                 kvm_err("kvm: module already exists\n");
1162                 return -EEXIST;
1163         }
1164
1165         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1166 }
1167
1168 void kvm_arch_exit(void)
1169 {
1170         kvm_mips_callbacks = NULL;
1171 }
1172
1173 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1174                                   struct kvm_sregs *sregs)
1175 {
1176         return -ENOIOCTLCMD;
1177 }
1178
1179 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1180                                   struct kvm_sregs *sregs)
1181 {
1182         return -ENOIOCTLCMD;
1183 }
1184
1185 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1186 {
1187 }
1188
1189 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1190 {
1191         return -ENOIOCTLCMD;
1192 }
1193
1194 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1195 {
1196         return -ENOIOCTLCMD;
1197 }
1198
1199 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1200 {
1201         return VM_FAULT_SIGBUS;
1202 }
1203
1204 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1205 {
1206         int r;
1207
1208         switch (ext) {
1209         case KVM_CAP_ONE_REG:
1210         case KVM_CAP_ENABLE_CAP:
1211                 r = 1;
1212                 break;
1213         case KVM_CAP_COALESCED_MMIO:
1214                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1215                 break;
1216         case KVM_CAP_MIPS_FPU:
1217                 /* We don't handle systems with inconsistent cpu_has_fpu */
1218                 r = !!raw_cpu_has_fpu;
1219                 break;
1220         case KVM_CAP_MIPS_MSA:
1221                 /*
1222                  * We don't support MSA vector partitioning yet:
1223                  * 1) It would require explicit support which can't be tested
1224                  *    yet due to lack of support in current hardware.
1225                  * 2) It extends the state that would need to be saved/restored
1226                  *    by e.g. QEMU for migration.
1227                  *
1228                  * When vector partitioning hardware becomes available, support
1229                  * could be added by requiring a flag when enabling
1230                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1231                  * to save/restore the appropriate extra state.
1232                  */
1233                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1234                 break;
1235         default:
1236                 r = 0;
1237                 break;
1238         }
1239         return r;
1240 }
1241
1242 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1243 {
1244         return kvm_mips_pending_timer(vcpu);
1245 }
1246
1247 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1248 {
1249         int i;
1250         struct mips_coproc *cop0;
1251
1252         if (!vcpu)
1253                 return -1;
1254
1255         kvm_debug("VCPU Register Dump:\n");
1256         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1257         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1258
1259         for (i = 0; i < 32; i += 4) {
1260                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1261                        vcpu->arch.gprs[i],
1262                        vcpu->arch.gprs[i + 1],
1263                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1264         }
1265         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1266         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1267
1268         cop0 = vcpu->arch.cop0;
1269         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1270                   kvm_read_c0_guest_status(cop0),
1271                   kvm_read_c0_guest_cause(cop0));
1272
1273         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1274
1275         return 0;
1276 }
1277
1278 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1279 {
1280         int i;
1281
1282         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1283                 vcpu->arch.gprs[i] = regs->gpr[i];
1284         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1285         vcpu->arch.hi = regs->hi;
1286         vcpu->arch.lo = regs->lo;
1287         vcpu->arch.pc = regs->pc;
1288
1289         return 0;
1290 }
1291
1292 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1293 {
1294         int i;
1295
1296         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1297                 regs->gpr[i] = vcpu->arch.gprs[i];
1298
1299         regs->hi = vcpu->arch.hi;
1300         regs->lo = vcpu->arch.lo;
1301         regs->pc = vcpu->arch.pc;
1302
1303         return 0;
1304 }
1305
1306 static void kvm_mips_comparecount_func(unsigned long data)
1307 {
1308         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1309
1310         kvm_mips_callbacks->queue_timer_int(vcpu);
1311
1312         vcpu->arch.wait = 0;
1313         if (swait_active(&vcpu->wq))
1314                 swake_up(&vcpu->wq);
1315 }
1316
1317 /* low level hrtimer wake routine */
1318 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1319 {
1320         struct kvm_vcpu *vcpu;
1321
1322         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1323         kvm_mips_comparecount_func((unsigned long) vcpu);
1324         return kvm_mips_count_timeout(vcpu);
1325 }
1326
1327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1328 {
1329         kvm_mips_callbacks->vcpu_init(vcpu);
1330         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1331                      HRTIMER_MODE_REL);
1332         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1333         return 0;
1334 }
1335
1336 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1337                                   struct kvm_translation *tr)
1338 {
1339         return 0;
1340 }
1341
1342 /* Initial guest state */
1343 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1344 {
1345         return kvm_mips_callbacks->vcpu_setup(vcpu);
1346 }
1347
1348 static void kvm_mips_set_c0_status(void)
1349 {
1350         u32 status = read_c0_status();
1351
1352         if (cpu_has_dsp)
1353                 status |= (ST0_MX);
1354
1355         write_c0_status(status);
1356         ehb();
1357 }
1358
1359 /*
1360  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1361  */
1362 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1363 {
1364         u32 cause = vcpu->arch.host_cp0_cause;
1365         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1366         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1367         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1368         enum emulation_result er = EMULATE_DONE;
1369         int ret = RESUME_GUEST;
1370
1371         /* re-enable HTW before enabling interrupts */
1372         htw_start();
1373
1374         /* Set a default exit reason */
1375         run->exit_reason = KVM_EXIT_UNKNOWN;
1376         run->ready_for_interrupt_injection = 1;
1377
1378         /*
1379          * Set the appropriate status bits based on host CPU features,
1380          * before we hit the scheduler
1381          */
1382         kvm_mips_set_c0_status();
1383
1384         local_irq_enable();
1385
1386         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1387                         cause, opc, run, vcpu);
1388         trace_kvm_exit(vcpu, exccode);
1389
1390         /*
1391          * Do a privilege check, if in UM most of these exit conditions end up
1392          * causing an exception to be delivered to the Guest Kernel
1393          */
1394         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1395         if (er == EMULATE_PRIV_FAIL) {
1396                 goto skip_emul;
1397         } else if (er == EMULATE_FAIL) {
1398                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1399                 ret = RESUME_HOST;
1400                 goto skip_emul;
1401         }
1402
1403         switch (exccode) {
1404         case EXCCODE_INT:
1405                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1406
1407                 ++vcpu->stat.int_exits;
1408
1409                 if (need_resched())
1410                         cond_resched();
1411
1412                 ret = RESUME_GUEST;
1413                 break;
1414
1415         case EXCCODE_CPU:
1416                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1417
1418                 ++vcpu->stat.cop_unusable_exits;
1419                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1420                 /* XXXKYMA: Might need to return to user space */
1421                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1422                         ret = RESUME_HOST;
1423                 break;
1424
1425         case EXCCODE_MOD:
1426                 ++vcpu->stat.tlbmod_exits;
1427                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1428                 break;
1429
1430         case EXCCODE_TLBS:
1431                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1432                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1433                           badvaddr);
1434
1435                 ++vcpu->stat.tlbmiss_st_exits;
1436                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1437                 break;
1438
1439         case EXCCODE_TLBL:
1440                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1441                           cause, opc, badvaddr);
1442
1443                 ++vcpu->stat.tlbmiss_ld_exits;
1444                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1445                 break;
1446
1447         case EXCCODE_ADES:
1448                 ++vcpu->stat.addrerr_st_exits;
1449                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1450                 break;
1451
1452         case EXCCODE_ADEL:
1453                 ++vcpu->stat.addrerr_ld_exits;
1454                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1455                 break;
1456
1457         case EXCCODE_SYS:
1458                 ++vcpu->stat.syscall_exits;
1459                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1460                 break;
1461
1462         case EXCCODE_RI:
1463                 ++vcpu->stat.resvd_inst_exits;
1464                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1465                 break;
1466
1467         case EXCCODE_BP:
1468                 ++vcpu->stat.break_inst_exits;
1469                 ret = kvm_mips_callbacks->handle_break(vcpu);
1470                 break;
1471
1472         case EXCCODE_TR:
1473                 ++vcpu->stat.trap_inst_exits;
1474                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1475                 break;
1476
1477         case EXCCODE_MSAFPE:
1478                 ++vcpu->stat.msa_fpe_exits;
1479                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1480                 break;
1481
1482         case EXCCODE_FPE:
1483                 ++vcpu->stat.fpe_exits;
1484                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1485                 break;
1486
1487         case EXCCODE_MSADIS:
1488                 ++vcpu->stat.msa_disabled_exits;
1489                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1490                 break;
1491
1492         default:
1493                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1494                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1495                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1496                 kvm_arch_vcpu_dump_regs(vcpu);
1497                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1498                 ret = RESUME_HOST;
1499                 break;
1500
1501         }
1502
1503 skip_emul:
1504         local_irq_disable();
1505
1506         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1507                 kvm_mips_deliver_interrupts(vcpu, cause);
1508
1509         if (!(ret & RESUME_HOST)) {
1510                 /* Only check for signals if not already exiting to userspace */
1511                 if (signal_pending(current)) {
1512                         run->exit_reason = KVM_EXIT_INTR;
1513                         ret = (-EINTR << 2) | RESUME_HOST;
1514                         ++vcpu->stat.signal_exits;
1515                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1516                 }
1517         }
1518
1519         if (ret == RESUME_GUEST) {
1520                 trace_kvm_reenter(vcpu);
1521
1522                 /*
1523                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1524                  * is live), restore FCR31 / MSACSR.
1525                  *
1526                  * This should be before returning to the guest exception
1527                  * vector, as it may well cause an [MSA] FP exception if there
1528                  * are pending exception bits unmasked. (see
1529                  * kvm_mips_csr_die_notifier() for how that is handled).
1530                  */
1531                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1532                     read_c0_status() & ST0_CU1)
1533                         __kvm_restore_fcsr(&vcpu->arch);
1534
1535                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1536                     read_c0_config5() & MIPS_CONF5_MSAEN)
1537                         __kvm_restore_msacsr(&vcpu->arch);
1538         }
1539
1540         /* Disable HTW before returning to guest or host */
1541         htw_stop();
1542
1543         return ret;
1544 }
1545
1546 /* Enable FPU for guest and restore context */
1547 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1548 {
1549         struct mips_coproc *cop0 = vcpu->arch.cop0;
1550         unsigned int sr, cfg5;
1551
1552         preempt_disable();
1553
1554         sr = kvm_read_c0_guest_status(cop0);
1555
1556         /*
1557          * If MSA state is already live, it is undefined how it interacts with
1558          * FR=0 FPU state, and we don't want to hit reserved instruction
1559          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1560          * play it safe and save it first.
1561          *
1562          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1563          * get called when guest CU1 is set, however we can't trust the guest
1564          * not to clobber the status register directly via the commpage.
1565          */
1566         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1567             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1568                 kvm_lose_fpu(vcpu);
1569
1570         /*
1571          * Enable FPU for guest
1572          * We set FR and FRE according to guest context
1573          */
1574         change_c0_status(ST0_CU1 | ST0_FR, sr);
1575         if (cpu_has_fre) {
1576                 cfg5 = kvm_read_c0_guest_config5(cop0);
1577                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1578         }
1579         enable_fpu_hazard();
1580
1581         /* If guest FPU state not active, restore it now */
1582         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1583                 __kvm_restore_fpu(&vcpu->arch);
1584                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1585                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1586         } else {
1587                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1588         }
1589
1590         preempt_enable();
1591 }
1592
1593 #ifdef CONFIG_CPU_HAS_MSA
1594 /* Enable MSA for guest and restore context */
1595 void kvm_own_msa(struct kvm_vcpu *vcpu)
1596 {
1597         struct mips_coproc *cop0 = vcpu->arch.cop0;
1598         unsigned int sr, cfg5;
1599
1600         preempt_disable();
1601
1602         /*
1603          * Enable FPU if enabled in guest, since we're restoring FPU context
1604          * anyway. We set FR and FRE according to guest context.
1605          */
1606         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1607                 sr = kvm_read_c0_guest_status(cop0);
1608
1609                 /*
1610                  * If FR=0 FPU state is already live, it is undefined how it
1611                  * interacts with MSA state, so play it safe and save it first.
1612                  */
1613                 if (!(sr & ST0_FR) &&
1614                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1615                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1616                         kvm_lose_fpu(vcpu);
1617
1618                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1619                 if (sr & ST0_CU1 && cpu_has_fre) {
1620                         cfg5 = kvm_read_c0_guest_config5(cop0);
1621                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1622                 }
1623         }
1624
1625         /* Enable MSA for guest */
1626         set_c0_config5(MIPS_CONF5_MSAEN);
1627         enable_fpu_hazard();
1628
1629         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1630         case KVM_MIPS_AUX_FPU:
1631                 /*
1632                  * Guest FPU state already loaded, only restore upper MSA state
1633                  */
1634                 __kvm_restore_msa_upper(&vcpu->arch);
1635                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1636                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1637                 break;
1638         case 0:
1639                 /* Neither FPU or MSA already active, restore full MSA state */
1640                 __kvm_restore_msa(&vcpu->arch);
1641                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1642                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1643                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1644                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1645                               KVM_TRACE_AUX_FPU_MSA);
1646                 break;
1647         default:
1648                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1649                 break;
1650         }
1651
1652         preempt_enable();
1653 }
1654 #endif
1655
1656 /* Drop FPU & MSA without saving it */
1657 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1658 {
1659         preempt_disable();
1660         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1661                 disable_msa();
1662                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1663                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1664         }
1665         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1666                 clear_c0_status(ST0_CU1 | ST0_FR);
1667                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1668                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1669         }
1670         preempt_enable();
1671 }
1672
1673 /* Save and disable FPU & MSA */
1674 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1675 {
1676         /*
1677          * FPU & MSA get disabled in root context (hardware) when it is disabled
1678          * in guest context (software), but the register state in the hardware
1679          * may still be in use. This is why we explicitly re-enable the hardware
1680          * before saving.
1681          */
1682
1683         preempt_disable();
1684         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1685                 set_c0_config5(MIPS_CONF5_MSAEN);
1686                 enable_fpu_hazard();
1687
1688                 __kvm_save_msa(&vcpu->arch);
1689                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1690
1691                 /* Disable MSA & FPU */
1692                 disable_msa();
1693                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1694                         clear_c0_status(ST0_CU1 | ST0_FR);
1695                         disable_fpu_hazard();
1696                 }
1697                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1698         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1699                 set_c0_status(ST0_CU1);
1700                 enable_fpu_hazard();
1701
1702                 __kvm_save_fpu(&vcpu->arch);
1703                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1704                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1705
1706                 /* Disable FPU */
1707                 clear_c0_status(ST0_CU1 | ST0_FR);
1708                 disable_fpu_hazard();
1709         }
1710         preempt_enable();
1711 }
1712
1713 /*
1714  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1715  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1716  * exception if cause bits are set in the value being written.
1717  */
1718 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1719                                    unsigned long cmd, void *ptr)
1720 {
1721         struct die_args *args = (struct die_args *)ptr;
1722         struct pt_regs *regs = args->regs;
1723         unsigned long pc;
1724
1725         /* Only interested in FPE and MSAFPE */
1726         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1727                 return NOTIFY_DONE;
1728
1729         /* Return immediately if guest context isn't active */
1730         if (!(current->flags & PF_VCPU))
1731                 return NOTIFY_DONE;
1732
1733         /* Should never get here from user mode */
1734         BUG_ON(user_mode(regs));
1735
1736         pc = instruction_pointer(regs);
1737         switch (cmd) {
1738         case DIE_FP:
1739                 /* match 2nd instruction in __kvm_restore_fcsr */
1740                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1741                         return NOTIFY_DONE;
1742                 break;
1743         case DIE_MSAFP:
1744                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1745                 if (!cpu_has_msa ||
1746                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1747                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1748                         return NOTIFY_DONE;
1749                 break;
1750         }
1751
1752         /* Move PC forward a little and continue executing */
1753         instruction_pointer(regs) += 4;
1754
1755         return NOTIFY_STOP;
1756 }
1757
1758 static struct notifier_block kvm_mips_csr_die_notifier = {
1759         .notifier_call = kvm_mips_csr_die_notify,
1760 };
1761
1762 static int __init kvm_mips_init(void)
1763 {
1764         int ret;
1765
1766         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1767
1768         if (ret)
1769                 return ret;
1770
1771         register_die_notifier(&kvm_mips_csr_die_notifier);
1772
1773         return 0;
1774 }
1775
1776 static void __exit kvm_mips_exit(void)
1777 {
1778         kvm_exit();
1779
1780         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1781 }
1782
1783 module_init(kvm_mips_init);
1784 module_exit(kvm_mips_exit);
1785
1786 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);