Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / arch / mips / mm / c-r4k.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cm.h>
41
42 /*
43  * Bits describing what cache ops an SMP callback function may perform.
44  *
45  * R4K_HIT   -  Virtual user or kernel address based cache operations. The
46  *              active_mm must be checked before using user addresses, falling
47  *              back to kmap.
48  * R4K_INDEX -  Index based cache operations.
49  */
50
51 #define R4K_HIT         BIT(0)
52 #define R4K_INDEX       BIT(1)
53
54 /**
55  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56  * @type:       Type of cache operations (R4K_HIT or R4K_INDEX).
57  *
58  * Decides whether a cache op needs to be performed on every core in the system.
59  * This may change depending on the @type of cache operation, as well as the set
60  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61  * hotplug from changing the result.
62  *
63  * Returns:     1 if the cache operation @type should be done on every core in
64  *              the system.
65  *              0 if the cache operation @type is globalized and only needs to
66  *              be performed on a simple CPU.
67  */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70         /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71         if (type == R4K_HIT && mips_cm_present())
72                 return false;
73
74         /*
75          * Hardware doesn't globalize the required cache ops, so SMP calls may
76          * be needed, but only if there are foreign CPUs (non-siblings with
77          * separate caches).
78          */
79         /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81         return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83         return false;
84 #endif
85 }
86
87 /*
88  * Special Variant of smp_call_function for use by cache functions:
89  *
90  *  o No return value
91  *  o collapses to normal function call on UP kernels
92  *  o collapses to normal function call on systems with a single shared
93  *    primary cache.
94  *  o doesn't disable interrupts on the local CPU
95  */
96 static inline void r4k_on_each_cpu(unsigned int type,
97                                    void (*func)(void *info), void *info)
98 {
99         preempt_disable();
100         if (r4k_op_needs_ipi(type))
101                 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102                                        func, info, 1);
103         func(info);
104         preempt_enable();
105 }
106
107 /*
108  * Must die.
109  */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114
115 /*
116  * Dummy cache handling routines for machines without boardcaches
117  */
118 static void cache_noop(void) {}
119
120 static struct bcache_ops no_sc_ops = {
121         .bc_enable = (void *)cache_noop,
122         .bc_disable = (void *)cache_noop,
123         .bc_wback_inv = (void *)cache_noop,
124         .bc_inv = (void *)cache_noop
125 };
126
127 struct bcache_ops *bcops = &no_sc_ops;
128
129 #define cpu_is_r4600_v1_x()     ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x()     ((read_c0_prid() & 0xfffffff0) == 0x00002020)
131
132 #define R4600_HIT_CACHEOP_WAR_IMPL                                      \
133 do {                                                                    \
134         if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())            \
135                 *(volatile unsigned long *)CKSEG1;                      \
136         if (R4600_V1_HIT_CACHEOP_WAR)                                   \
137                 __asm__ __volatile__("nop;nop;nop;nop");                \
138 } while (0)
139
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144         R4600_HIT_CACHEOP_WAR_IMPL;
145         blast_dcache32_page(addr);
146 }
147
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150         blast_dcache64_page(addr);
151 }
152
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155         blast_dcache128_page(addr);
156 }
157
158 static void r4k_blast_dcache_page_setup(void)
159 {
160         unsigned long  dc_lsize = cpu_dcache_line_size();
161
162         switch (dc_lsize) {
163         case 0:
164                 r4k_blast_dcache_page = (void *)cache_noop;
165                 break;
166         case 16:
167                 r4k_blast_dcache_page = blast_dcache16_page;
168                 break;
169         case 32:
170                 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171                 break;
172         case 64:
173                 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174                 break;
175         case 128:
176                 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177                 break;
178         default:
179                 break;
180         }
181 }
182
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191         unsigned long  dc_lsize = cpu_dcache_line_size();
192
193         if (dc_lsize == 0)
194                 r4k_blast_dcache_user_page = (void *)cache_noop;
195         else if (dc_lsize == 16)
196                 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197         else if (dc_lsize == 32)
198                 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199         else if (dc_lsize == 64)
200                 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202
203 #endif
204
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209         unsigned long dc_lsize = cpu_dcache_line_size();
210
211         if (dc_lsize == 0)
212                 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213         else if (dc_lsize == 16)
214                 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215         else if (dc_lsize == 32)
216                 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217         else if (dc_lsize == 64)
218                 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219         else if (dc_lsize == 128)
220                 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225
226 static void r4k_blast_dcache_setup(void)
227 {
228         unsigned long dc_lsize = cpu_dcache_line_size();
229
230         if (dc_lsize == 0)
231                 r4k_blast_dcache = (void *)cache_noop;
232         else if (dc_lsize == 16)
233                 r4k_blast_dcache = blast_dcache16;
234         else if (dc_lsize == 32)
235                 r4k_blast_dcache = blast_dcache32;
236         else if (dc_lsize == 64)
237                 r4k_blast_dcache = blast_dcache64;
238         else if (dc_lsize == 128)
239                 r4k_blast_dcache = blast_dcache128;
240 }
241
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244         __asm__ __volatile__( \
245                 "b\t1f\n\t" \
246                 ".align\t" #order "\n\t" \
247                 "1:\n\t" \
248                 )
249 #define CACHE32_UNROLL32_ALIGN  JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252 static inline void blast_r4600_v1_icache32(void)
253 {
254         unsigned long flags;
255
256         local_irq_save(flags);
257         blast_icache32();
258         local_irq_restore(flags);
259 }
260
261 static inline void tx49_blast_icache32(void)
262 {
263         unsigned long start = INDEX_BASE;
264         unsigned long end = start + current_cpu_data.icache.waysize;
265         unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266         unsigned long ws_end = current_cpu_data.icache.ways <<
267                                current_cpu_data.icache.waybit;
268         unsigned long ws, addr;
269
270         CACHE32_UNROLL32_ALIGN2;
271         /* I'm in even chunk.  blast odd chunks */
272         for (ws = 0; ws < ws_end; ws += ws_inc)
273                 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274                         cache32_unroll32(addr|ws, Index_Invalidate_I);
275         CACHE32_UNROLL32_ALIGN;
276         /* I'm in odd chunk.  blast even chunks */
277         for (ws = 0; ws < ws_end; ws += ws_inc)
278                 for (addr = start; addr < end; addr += 0x400 * 2)
279                         cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284         unsigned long flags;
285
286         local_irq_save(flags);
287         blast_icache32_page_indexed(page);
288         local_irq_restore(flags);
289 }
290
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293         unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294         unsigned long start = INDEX_BASE + (page & indexmask);
295         unsigned long end = start + PAGE_SIZE;
296         unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297         unsigned long ws_end = current_cpu_data.icache.ways <<
298                                current_cpu_data.icache.waybit;
299         unsigned long ws, addr;
300
301         CACHE32_UNROLL32_ALIGN2;
302         /* I'm in even chunk.  blast odd chunks */
303         for (ws = 0; ws < ws_end; ws += ws_inc)
304                 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305                         cache32_unroll32(addr|ws, Index_Invalidate_I);
306         CACHE32_UNROLL32_ALIGN;
307         /* I'm in odd chunk.  blast even chunks */
308         for (ws = 0; ws < ws_end; ws += ws_inc)
309                 for (addr = start; addr < end; addr += 0x400 * 2)
310                         cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314
315 static void r4k_blast_icache_page_setup(void)
316 {
317         unsigned long ic_lsize = cpu_icache_line_size();
318
319         if (ic_lsize == 0)
320                 r4k_blast_icache_page = (void *)cache_noop;
321         else if (ic_lsize == 16)
322                 r4k_blast_icache_page = blast_icache16_page;
323         else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324                 r4k_blast_icache_page = loongson2_blast_icache32_page;
325         else if (ic_lsize == 32)
326                 r4k_blast_icache_page = blast_icache32_page;
327         else if (ic_lsize == 64)
328                 r4k_blast_icache_page = blast_icache64_page;
329         else if (ic_lsize == 128)
330                 r4k_blast_icache_page = blast_icache128_page;
331 }
332
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page  r4k_blast_icache_page
335 #else
336
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341         unsigned long ic_lsize = cpu_icache_line_size();
342
343         if (ic_lsize == 0)
344                 r4k_blast_icache_user_page = (void *)cache_noop;
345         else if (ic_lsize == 16)
346                 r4k_blast_icache_user_page = blast_icache16_user_page;
347         else if (ic_lsize == 32)
348                 r4k_blast_icache_user_page = blast_icache32_user_page;
349         else if (ic_lsize == 64)
350                 r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352
353 #endif
354
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359         unsigned long ic_lsize = cpu_icache_line_size();
360
361         if (ic_lsize == 0)
362                 r4k_blast_icache_page_indexed = (void *)cache_noop;
363         else if (ic_lsize == 16)
364                 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365         else if (ic_lsize == 32) {
366                 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367                         r4k_blast_icache_page_indexed =
368                                 blast_icache32_r4600_v1_page_indexed;
369                 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370                         r4k_blast_icache_page_indexed =
371                                 tx49_blast_icache32_page_indexed;
372                 else if (current_cpu_type() == CPU_LOONGSON2)
373                         r4k_blast_icache_page_indexed =
374                                 loongson2_blast_icache32_page_indexed;
375                 else
376                         r4k_blast_icache_page_indexed =
377                                 blast_icache32_page_indexed;
378         } else if (ic_lsize == 64)
379                 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384
385 static void r4k_blast_icache_setup(void)
386 {
387         unsigned long ic_lsize = cpu_icache_line_size();
388
389         if (ic_lsize == 0)
390                 r4k_blast_icache = (void *)cache_noop;
391         else if (ic_lsize == 16)
392                 r4k_blast_icache = blast_icache16;
393         else if (ic_lsize == 32) {
394                 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395                         r4k_blast_icache = blast_r4600_v1_icache32;
396                 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397                         r4k_blast_icache = tx49_blast_icache32;
398                 else if (current_cpu_type() == CPU_LOONGSON2)
399                         r4k_blast_icache = loongson2_blast_icache32;
400                 else
401                         r4k_blast_icache = blast_icache32;
402         } else if (ic_lsize == 64)
403                 r4k_blast_icache = blast_icache64;
404         else if (ic_lsize == 128)
405                 r4k_blast_icache = blast_icache128;
406 }
407
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409
410 static void r4k_blast_scache_page_setup(void)
411 {
412         unsigned long sc_lsize = cpu_scache_line_size();
413
414         if (scache_size == 0)
415                 r4k_blast_scache_page = (void *)cache_noop;
416         else if (sc_lsize == 16)
417                 r4k_blast_scache_page = blast_scache16_page;
418         else if (sc_lsize == 32)
419                 r4k_blast_scache_page = blast_scache32_page;
420         else if (sc_lsize == 64)
421                 r4k_blast_scache_page = blast_scache64_page;
422         else if (sc_lsize == 128)
423                 r4k_blast_scache_page = blast_scache128_page;
424 }
425
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430         unsigned long sc_lsize = cpu_scache_line_size();
431
432         if (scache_size == 0)
433                 r4k_blast_scache_page_indexed = (void *)cache_noop;
434         else if (sc_lsize == 16)
435                 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436         else if (sc_lsize == 32)
437                 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438         else if (sc_lsize == 64)
439                 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440         else if (sc_lsize == 128)
441                 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443
444 static void (* r4k_blast_scache)(void);
445
446 static void r4k_blast_scache_setup(void)
447 {
448         unsigned long sc_lsize = cpu_scache_line_size();
449
450         if (scache_size == 0)
451                 r4k_blast_scache = (void *)cache_noop;
452         else if (sc_lsize == 16)
453                 r4k_blast_scache = blast_scache16;
454         else if (sc_lsize == 32)
455                 r4k_blast_scache = blast_scache32;
456         else if (sc_lsize == 64)
457                 r4k_blast_scache = blast_scache64;
458         else if (sc_lsize == 128)
459                 r4k_blast_scache = blast_scache128;
460 }
461
462 static inline void local_r4k___flush_cache_all(void * args)
463 {
464         switch (current_cpu_type()) {
465         case CPU_LOONGSON2:
466         case CPU_LOONGSON3:
467         case CPU_R4000SC:
468         case CPU_R4000MC:
469         case CPU_R4400SC:
470         case CPU_R4400MC:
471         case CPU_R10000:
472         case CPU_R12000:
473         case CPU_R14000:
474         case CPU_R16000:
475                 /*
476                  * These caches are inclusive caches, that is, if something
477                  * is not cached in the S-cache, we know it also won't be
478                  * in one of the primary caches.
479                  */
480                 r4k_blast_scache();
481                 break;
482
483         case CPU_BMIPS5000:
484                 r4k_blast_scache();
485                 __sync();
486                 break;
487
488         default:
489                 r4k_blast_dcache();
490                 r4k_blast_icache();
491                 break;
492         }
493 }
494
495 static void r4k___flush_cache_all(void)
496 {
497         r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
498 }
499
500 /**
501  * has_valid_asid() - Determine if an mm already has an ASID.
502  * @mm:         Memory map.
503  * @type:       R4K_HIT or R4K_INDEX, type of cache op.
504  *
505  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506  * of type @type within an r4k_on_each_cpu() call will affect. If
507  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509  * will need to be checked.
510  *
511  * Must be called in non-preemptive context.
512  *
513  * Returns:     1 if the CPUs affected by @type cache ops have an ASID for @mm.
514  *              0 otherwise.
515  */
516 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
517 {
518         unsigned int i;
519         const cpumask_t *mask = cpu_present_mask;
520
521         /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
522 #ifdef CONFIG_SMP
523         /*
524          * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525          * each foreign core, so we only need to worry about siblings.
526          * Otherwise we need to worry about all present CPUs.
527          */
528         if (r4k_op_needs_ipi(type))
529                 mask = &cpu_sibling_map[smp_processor_id()];
530 #endif
531         for_each_cpu(i, mask)
532                 if (cpu_context(i, mm))
533                         return 1;
534         return 0;
535 }
536
537 static void r4k__flush_cache_vmap(void)
538 {
539         r4k_blast_dcache();
540 }
541
542 static void r4k__flush_cache_vunmap(void)
543 {
544         r4k_blast_dcache();
545 }
546
547 /*
548  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549  * whole caches when vma is executable.
550  */
551 static inline void local_r4k_flush_cache_range(void * args)
552 {
553         struct vm_area_struct *vma = args;
554         int exec = vma->vm_flags & VM_EXEC;
555
556         if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
557                 return;
558
559         /*
560          * If dcache can alias, we must blast it since mapping is changing.
561          * If executable, we must ensure any dirty lines are written back far
562          * enough to be visible to icache.
563          */
564         if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
565                 r4k_blast_dcache();
566         /* If executable, blast stale lines from icache */
567         if (exec)
568                 r4k_blast_icache();
569 }
570
571 static void r4k_flush_cache_range(struct vm_area_struct *vma,
572         unsigned long start, unsigned long end)
573 {
574         int exec = vma->vm_flags & VM_EXEC;
575
576         if (cpu_has_dc_aliases || exec)
577                 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
578 }
579
580 static inline void local_r4k_flush_cache_mm(void * args)
581 {
582         struct mm_struct *mm = args;
583
584         if (!has_valid_asid(mm, R4K_INDEX))
585                 return;
586
587         /*
588          * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
589          * only flush the primary caches but R1x000 behave sane ...
590          * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591          * caches, so we can bail out early.
592          */
593         if (current_cpu_type() == CPU_R4000SC ||
594             current_cpu_type() == CPU_R4000MC ||
595             current_cpu_type() == CPU_R4400SC ||
596             current_cpu_type() == CPU_R4400MC) {
597                 r4k_blast_scache();
598                 return;
599         }
600
601         r4k_blast_dcache();
602 }
603
604 static void r4k_flush_cache_mm(struct mm_struct *mm)
605 {
606         if (!cpu_has_dc_aliases)
607                 return;
608
609         r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
610 }
611
612 struct flush_cache_page_args {
613         struct vm_area_struct *vma;
614         unsigned long addr;
615         unsigned long pfn;
616 };
617
618 static inline void local_r4k_flush_cache_page(void *args)
619 {
620         struct flush_cache_page_args *fcp_args = args;
621         struct vm_area_struct *vma = fcp_args->vma;
622         unsigned long addr = fcp_args->addr;
623         struct page *page = pfn_to_page(fcp_args->pfn);
624         int exec = vma->vm_flags & VM_EXEC;
625         struct mm_struct *mm = vma->vm_mm;
626         int map_coherent = 0;
627         pgd_t *pgdp;
628         pud_t *pudp;
629         pmd_t *pmdp;
630         pte_t *ptep;
631         void *vaddr;
632
633         /*
634          * If owns no valid ASID yet, cannot possibly have gotten
635          * this page into the cache.
636          */
637         if (!has_valid_asid(mm, R4K_HIT))
638                 return;
639
640         addr &= PAGE_MASK;
641         pgdp = pgd_offset(mm, addr);
642         pudp = pud_offset(pgdp, addr);
643         pmdp = pmd_offset(pudp, addr);
644         ptep = pte_offset(pmdp, addr);
645
646         /*
647          * If the page isn't marked valid, the page cannot possibly be
648          * in the cache.
649          */
650         if (!(pte_present(*ptep)))
651                 return;
652
653         if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
654                 vaddr = NULL;
655         else {
656                 /*
657                  * Use kmap_coherent or kmap_atomic to do flushes for
658                  * another ASID than the current one.
659                  */
660                 map_coherent = (cpu_has_dc_aliases &&
661                                 page_mapcount(page) &&
662                                 !Page_dcache_dirty(page));
663                 if (map_coherent)
664                         vaddr = kmap_coherent(page, addr);
665                 else
666                         vaddr = kmap_atomic(page);
667                 addr = (unsigned long)vaddr;
668         }
669
670         if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
671                 vaddr ? r4k_blast_dcache_page(addr) :
672                         r4k_blast_dcache_user_page(addr);
673                 if (exec && !cpu_icache_snoops_remote_store)
674                         r4k_blast_scache_page(addr);
675         }
676         if (exec) {
677                 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
678                         int cpu = smp_processor_id();
679
680                         if (cpu_context(cpu, mm) != 0)
681                                 drop_mmu_context(mm, cpu);
682                 } else
683                         vaddr ? r4k_blast_icache_page(addr) :
684                                 r4k_blast_icache_user_page(addr);
685         }
686
687         if (vaddr) {
688                 if (map_coherent)
689                         kunmap_coherent();
690                 else
691                         kunmap_atomic(vaddr);
692         }
693 }
694
695 static void r4k_flush_cache_page(struct vm_area_struct *vma,
696         unsigned long addr, unsigned long pfn)
697 {
698         struct flush_cache_page_args args;
699
700         args.vma = vma;
701         args.addr = addr;
702         args.pfn = pfn;
703
704         r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
705 }
706
707 static inline void local_r4k_flush_data_cache_page(void * addr)
708 {
709         r4k_blast_dcache_page((unsigned long) addr);
710 }
711
712 static void r4k_flush_data_cache_page(unsigned long addr)
713 {
714         if (in_atomic())
715                 local_r4k_flush_data_cache_page((void *)addr);
716         else
717                 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
718                                 (void *) addr);
719 }
720
721 struct flush_icache_range_args {
722         unsigned long start;
723         unsigned long end;
724         unsigned int type;
725 };
726
727 static inline void __local_r4k_flush_icache_range(unsigned long start,
728                                                   unsigned long end,
729                                                   unsigned int type)
730 {
731         if (!cpu_has_ic_fills_f_dc) {
732                 if (type == R4K_INDEX ||
733                     (type & R4K_INDEX && end - start >= dcache_size)) {
734                         r4k_blast_dcache();
735                 } else {
736                         R4600_HIT_CACHEOP_WAR_IMPL;
737                         protected_blast_dcache_range(start, end);
738                 }
739         }
740
741         if (type == R4K_INDEX ||
742             (type & R4K_INDEX && end - start > icache_size))
743                 r4k_blast_icache();
744         else {
745                 switch (boot_cpu_type()) {
746                 case CPU_LOONGSON2:
747                         protected_loongson2_blast_icache_range(start, end);
748                         break;
749
750                 default:
751                         protected_blast_icache_range(start, end);
752                         break;
753                 }
754         }
755 #ifdef CONFIG_EVA
756         /*
757          * Due to all possible segment mappings, there might cache aliases
758          * caused by the bootloader being in non-EVA mode, and the CPU switching
759          * to EVA during early kernel init. It's best to flush the scache
760          * to avoid having secondary cores fetching stale data and lead to
761          * kernel crashes.
762          */
763         bc_wback_inv(start, (end - start));
764         __sync();
765 #endif
766 }
767
768 static inline void local_r4k_flush_icache_range(unsigned long start,
769                                                 unsigned long end)
770 {
771         __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX);
772 }
773
774 static inline void local_r4k_flush_icache_range_ipi(void *args)
775 {
776         struct flush_icache_range_args *fir_args = args;
777         unsigned long start = fir_args->start;
778         unsigned long end = fir_args->end;
779         unsigned int type = fir_args->type;
780
781         __local_r4k_flush_icache_range(start, end, type);
782 }
783
784 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
785 {
786         struct flush_icache_range_args args;
787         unsigned long size, cache_size;
788
789         args.start = start;
790         args.end = end;
791         args.type = R4K_HIT | R4K_INDEX;
792
793         /*
794          * Indexed cache ops require an SMP call.
795          * Consider if that can or should be avoided.
796          */
797         preempt_disable();
798         if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
799                 /*
800                  * If address-based cache ops don't require an SMP call, then
801                  * use them exclusively for small flushes.
802                  */
803                 size = start - end;
804                 cache_size = icache_size;
805                 if (!cpu_has_ic_fills_f_dc) {
806                         size *= 2;
807                         cache_size += dcache_size;
808                 }
809                 if (size <= cache_size)
810                         args.type &= ~R4K_INDEX;
811         }
812         r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
813         preempt_enable();
814         instruction_hazard();
815 }
816
817 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
818
819 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
820 {
821         /* Catch bad driver code */
822         BUG_ON(size == 0);
823
824         preempt_disable();
825         if (cpu_has_inclusive_pcaches) {
826                 if (size >= scache_size)
827                         r4k_blast_scache();
828                 else
829                         blast_scache_range(addr, addr + size);
830                 preempt_enable();
831                 __sync();
832                 return;
833         }
834
835         /*
836          * Either no secondary cache or the available caches don't have the
837          * subset property so we have to flush the primary caches
838          * explicitly
839          */
840         if (size >= dcache_size) {
841                 r4k_blast_dcache();
842         } else {
843                 R4600_HIT_CACHEOP_WAR_IMPL;
844                 blast_dcache_range(addr, addr + size);
845         }
846         preempt_enable();
847
848         bc_wback_inv(addr, size);
849         __sync();
850 }
851
852 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
853 {
854         /* Catch bad driver code */
855         BUG_ON(size == 0);
856
857         preempt_disable();
858         if (cpu_has_inclusive_pcaches) {
859                 if (size >= scache_size)
860                         r4k_blast_scache();
861                 else {
862                         /*
863                          * There is no clearly documented alignment requirement
864                          * for the cache instruction on MIPS processors and
865                          * some processors, among them the RM5200 and RM7000
866                          * QED processors will throw an address error for cache
867                          * hit ops with insufficient alignment.  Solved by
868                          * aligning the address to cache line size.
869                          */
870                         blast_inv_scache_range(addr, addr + size);
871                 }
872                 preempt_enable();
873                 __sync();
874                 return;
875         }
876
877         if (size >= dcache_size) {
878                 r4k_blast_dcache();
879         } else {
880                 R4600_HIT_CACHEOP_WAR_IMPL;
881                 blast_inv_dcache_range(addr, addr + size);
882         }
883         preempt_enable();
884
885         bc_inv(addr, size);
886         __sync();
887 }
888 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
889
890 struct flush_cache_sigtramp_args {
891         struct mm_struct *mm;
892         struct page *page;
893         unsigned long addr;
894 };
895
896 /*
897  * While we're protected against bad userland addresses we don't care
898  * very much about what happens in that case.  Usually a segmentation
899  * fault will dump the process later on anyway ...
900  */
901 static void local_r4k_flush_cache_sigtramp(void *args)
902 {
903         struct flush_cache_sigtramp_args *fcs_args = args;
904         unsigned long addr = fcs_args->addr;
905         struct page *page = fcs_args->page;
906         struct mm_struct *mm = fcs_args->mm;
907         int map_coherent = 0;
908         void *vaddr;
909
910         unsigned long ic_lsize = cpu_icache_line_size();
911         unsigned long dc_lsize = cpu_dcache_line_size();
912         unsigned long sc_lsize = cpu_scache_line_size();
913
914         /*
915          * If owns no valid ASID yet, cannot possibly have gotten
916          * this page into the cache.
917          */
918         if (!has_valid_asid(mm, R4K_HIT))
919                 return;
920
921         if (mm == current->active_mm) {
922                 vaddr = NULL;
923         } else {
924                 /*
925                  * Use kmap_coherent or kmap_atomic to do flushes for
926                  * another ASID than the current one.
927                  */
928                 map_coherent = (cpu_has_dc_aliases &&
929                                 page_mapcount(page) &&
930                                 !Page_dcache_dirty(page));
931                 if (map_coherent)
932                         vaddr = kmap_coherent(page, addr);
933                 else
934                         vaddr = kmap_atomic(page);
935                 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
936         }
937
938         R4600_HIT_CACHEOP_WAR_IMPL;
939         if (!cpu_has_ic_fills_f_dc) {
940                 if (dc_lsize)
941                         vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
942                               : protected_writeback_dcache_line(
943                                                         addr & ~(dc_lsize - 1));
944                 if (!cpu_icache_snoops_remote_store && scache_size)
945                         vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
946                               : protected_writeback_scache_line(
947                                                         addr & ~(sc_lsize - 1));
948         }
949         if (ic_lsize)
950                 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
951                       : protected_flush_icache_line(addr & ~(ic_lsize - 1));
952
953         if (vaddr) {
954                 if (map_coherent)
955                         kunmap_coherent();
956                 else
957                         kunmap_atomic(vaddr);
958         }
959
960         if (MIPS4K_ICACHE_REFILL_WAR) {
961                 __asm__ __volatile__ (
962                         ".set push\n\t"
963                         ".set noat\n\t"
964                         ".set "MIPS_ISA_LEVEL"\n\t"
965 #ifdef CONFIG_32BIT
966                         "la     $at,1f\n\t"
967 #endif
968 #ifdef CONFIG_64BIT
969                         "dla    $at,1f\n\t"
970 #endif
971                         "cache  %0,($at)\n\t"
972                         "nop; nop; nop\n"
973                         "1:\n\t"
974                         ".set pop"
975                         :
976                         : "i" (Hit_Invalidate_I));
977         }
978         if (MIPS_CACHE_SYNC_WAR)
979                 __asm__ __volatile__ ("sync");
980 }
981
982 static void r4k_flush_cache_sigtramp(unsigned long addr)
983 {
984         struct flush_cache_sigtramp_args args;
985         int npages;
986
987         down_read(&current->mm->mmap_sem);
988
989         npages = get_user_pages_fast(addr, 1, 0, &args.page);
990         if (npages < 1)
991                 goto out;
992
993         args.mm = current->mm;
994         args.addr = addr;
995
996         r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
997
998         put_page(args.page);
999 out:
1000         up_read(&current->mm->mmap_sem);
1001 }
1002
1003 static void r4k_flush_icache_all(void)
1004 {
1005         if (cpu_has_vtag_icache)
1006                 r4k_blast_icache();
1007 }
1008
1009 struct flush_kernel_vmap_range_args {
1010         unsigned long   vaddr;
1011         int             size;
1012 };
1013
1014 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1015 {
1016         /*
1017          * Aliases only affect the primary caches so don't bother with
1018          * S-caches or T-caches.
1019          */
1020         r4k_blast_dcache();
1021 }
1022
1023 static inline void local_r4k_flush_kernel_vmap_range(void *args)
1024 {
1025         struct flush_kernel_vmap_range_args *vmra = args;
1026         unsigned long vaddr = vmra->vaddr;
1027         int size = vmra->size;
1028
1029         /*
1030          * Aliases only affect the primary caches so don't bother with
1031          * S-caches or T-caches.
1032          */
1033         R4600_HIT_CACHEOP_WAR_IMPL;
1034         blast_dcache_range(vaddr, vaddr + size);
1035 }
1036
1037 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1038 {
1039         struct flush_kernel_vmap_range_args args;
1040
1041         args.vaddr = (unsigned long) vaddr;
1042         args.size = size;
1043
1044         if (size >= dcache_size)
1045                 r4k_on_each_cpu(R4K_INDEX,
1046                                 local_r4k_flush_kernel_vmap_range_index, NULL);
1047         else
1048                 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1049                                 &args);
1050 }
1051
1052 static inline void rm7k_erratum31(void)
1053 {
1054         const unsigned long ic_lsize = 32;
1055         unsigned long addr;
1056
1057         /* RM7000 erratum #31. The icache is screwed at startup. */
1058         write_c0_taglo(0);
1059         write_c0_taghi(0);
1060
1061         for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1062                 __asm__ __volatile__ (
1063                         ".set push\n\t"
1064                         ".set noreorder\n\t"
1065                         ".set mips3\n\t"
1066                         "cache\t%1, 0(%0)\n\t"
1067                         "cache\t%1, 0x1000(%0)\n\t"
1068                         "cache\t%1, 0x2000(%0)\n\t"
1069                         "cache\t%1, 0x3000(%0)\n\t"
1070                         "cache\t%2, 0(%0)\n\t"
1071                         "cache\t%2, 0x1000(%0)\n\t"
1072                         "cache\t%2, 0x2000(%0)\n\t"
1073                         "cache\t%2, 0x3000(%0)\n\t"
1074                         "cache\t%1, 0(%0)\n\t"
1075                         "cache\t%1, 0x1000(%0)\n\t"
1076                         "cache\t%1, 0x2000(%0)\n\t"
1077                         "cache\t%1, 0x3000(%0)\n\t"
1078                         ".set pop\n"
1079                         :
1080                         : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1081         }
1082 }
1083
1084 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1085 {
1086         unsigned int imp = c->processor_id & PRID_IMP_MASK;
1087         unsigned int rev = c->processor_id & PRID_REV_MASK;
1088         int present = 0;
1089
1090         /*
1091          * Early versions of the 74K do not update the cache tags on a
1092          * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1093          * aliases.  In this case it is better to treat the cache as always
1094          * having aliases.  Also disable the synonym tag update feature
1095          * where available.  In this case no opportunistic tag update will
1096          * happen where a load causes a virtual address miss but a physical
1097          * address hit during a D-cache look-up.
1098          */
1099         switch (imp) {
1100         case PRID_IMP_74K:
1101                 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1102                         present = 1;
1103                 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1104                         write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1105                 break;
1106         case PRID_IMP_1074K:
1107                 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1108                         present = 1;
1109                         write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1110                 }
1111                 break;
1112         default:
1113                 BUG();
1114         }
1115
1116         return present;
1117 }
1118
1119 static void b5k_instruction_hazard(void)
1120 {
1121         __sync();
1122         __sync();
1123         __asm__ __volatile__(
1124         "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1125         "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1126         "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1127         "       nop; nop; nop; nop; nop; nop; nop; nop\n"
1128         : : : "memory");
1129 }
1130
1131 static char *way_string[] = { NULL, "direct mapped", "2-way",
1132         "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1133         "9-way", "10-way", "11-way", "12-way",
1134         "13-way", "14-way", "15-way", "16-way",
1135 };
1136
1137 static void probe_pcache(void)
1138 {
1139         struct cpuinfo_mips *c = &current_cpu_data;
1140         unsigned int config = read_c0_config();
1141         unsigned int prid = read_c0_prid();
1142         int has_74k_erratum = 0;
1143         unsigned long config1;
1144         unsigned int lsize;
1145
1146         switch (current_cpu_type()) {
1147         case CPU_R4600:                 /* QED style two way caches? */
1148         case CPU_R4700:
1149         case CPU_R5000:
1150         case CPU_NEVADA:
1151                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1152                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1153                 c->icache.ways = 2;
1154                 c->icache.waybit = __ffs(icache_size/2);
1155
1156                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1157                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1158                 c->dcache.ways = 2;
1159                 c->dcache.waybit= __ffs(dcache_size/2);
1160
1161                 c->options |= MIPS_CPU_CACHE_CDEX_P;
1162                 break;
1163
1164         case CPU_R5432:
1165         case CPU_R5500:
1166                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1167                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1168                 c->icache.ways = 2;
1169                 c->icache.waybit= 0;
1170
1171                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1172                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1173                 c->dcache.ways = 2;
1174                 c->dcache.waybit = 0;
1175
1176                 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1177                 break;
1178
1179         case CPU_TX49XX:
1180                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1181                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1182                 c->icache.ways = 4;
1183                 c->icache.waybit= 0;
1184
1185                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1186                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1187                 c->dcache.ways = 4;
1188                 c->dcache.waybit = 0;
1189
1190                 c->options |= MIPS_CPU_CACHE_CDEX_P;
1191                 c->options |= MIPS_CPU_PREFETCH;
1192                 break;
1193
1194         case CPU_R4000PC:
1195         case CPU_R4000SC:
1196         case CPU_R4000MC:
1197         case CPU_R4400PC:
1198         case CPU_R4400SC:
1199         case CPU_R4400MC:
1200         case CPU_R4300:
1201                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1202                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1203                 c->icache.ways = 1;
1204                 c->icache.waybit = 0;   /* doesn't matter */
1205
1206                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1207                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1208                 c->dcache.ways = 1;
1209                 c->dcache.waybit = 0;   /* does not matter */
1210
1211                 c->options |= MIPS_CPU_CACHE_CDEX_P;
1212                 break;
1213
1214         case CPU_R10000:
1215         case CPU_R12000:
1216         case CPU_R14000:
1217         case CPU_R16000:
1218                 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1219                 c->icache.linesz = 64;
1220                 c->icache.ways = 2;
1221                 c->icache.waybit = 0;
1222
1223                 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1224                 c->dcache.linesz = 32;
1225                 c->dcache.ways = 2;
1226                 c->dcache.waybit = 0;
1227
1228                 c->options |= MIPS_CPU_PREFETCH;
1229                 break;
1230
1231         case CPU_VR4133:
1232                 write_c0_config(config & ~VR41_CONF_P4K);
1233         case CPU_VR4131:
1234                 /* Workaround for cache instruction bug of VR4131 */
1235                 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1236                     c->processor_id == 0x0c82U) {
1237                         config |= 0x00400000U;
1238                         if (c->processor_id == 0x0c80U)
1239                                 config |= VR41_CONF_BP;
1240                         write_c0_config(config);
1241                 } else
1242                         c->options |= MIPS_CPU_CACHE_CDEX_P;
1243
1244                 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1245                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246                 c->icache.ways = 2;
1247                 c->icache.waybit = __ffs(icache_size/2);
1248
1249                 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1250                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251                 c->dcache.ways = 2;
1252                 c->dcache.waybit = __ffs(dcache_size/2);
1253                 break;
1254
1255         case CPU_VR41XX:
1256         case CPU_VR4111:
1257         case CPU_VR4121:
1258         case CPU_VR4122:
1259         case CPU_VR4181:
1260         case CPU_VR4181A:
1261                 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1262                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1263                 c->icache.ways = 1;
1264                 c->icache.waybit = 0;   /* doesn't matter */
1265
1266                 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1267                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1268                 c->dcache.ways = 1;
1269                 c->dcache.waybit = 0;   /* does not matter */
1270
1271                 c->options |= MIPS_CPU_CACHE_CDEX_P;
1272                 break;
1273
1274         case CPU_RM7000:
1275                 rm7k_erratum31();
1276
1277                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1278                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1279                 c->icache.ways = 4;
1280                 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1281
1282                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1283                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1284                 c->dcache.ways = 4;
1285                 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1286
1287                 c->options |= MIPS_CPU_CACHE_CDEX_P;
1288                 c->options |= MIPS_CPU_PREFETCH;
1289                 break;
1290
1291         case CPU_LOONGSON2:
1292                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1293                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1294                 if (prid & 0x3)
1295                         c->icache.ways = 4;
1296                 else
1297                         c->icache.ways = 2;
1298                 c->icache.waybit = 0;
1299
1300                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1301                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1302                 if (prid & 0x3)
1303                         c->dcache.ways = 4;
1304                 else
1305                         c->dcache.ways = 2;
1306                 c->dcache.waybit = 0;
1307                 break;
1308
1309         case CPU_LOONGSON3:
1310                 config1 = read_c0_config1();
1311                 lsize = (config1 >> 19) & 7;
1312                 if (lsize)
1313                         c->icache.linesz = 2 << lsize;
1314                 else
1315                         c->icache.linesz = 0;
1316                 c->icache.sets = 64 << ((config1 >> 22) & 7);
1317                 c->icache.ways = 1 + ((config1 >> 16) & 7);
1318                 icache_size = c->icache.sets *
1319                                           c->icache.ways *
1320                                           c->icache.linesz;
1321                 c->icache.waybit = 0;
1322
1323                 lsize = (config1 >> 10) & 7;
1324                 if (lsize)
1325                         c->dcache.linesz = 2 << lsize;
1326                 else
1327                         c->dcache.linesz = 0;
1328                 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1329                 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1330                 dcache_size = c->dcache.sets *
1331                                           c->dcache.ways *
1332                                           c->dcache.linesz;
1333                 c->dcache.waybit = 0;
1334                 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
1335                         c->options |= MIPS_CPU_PREFETCH;
1336                 break;
1337
1338         case CPU_CAVIUM_OCTEON3:
1339                 /* For now lie about the number of ways. */
1340                 c->icache.linesz = 128;
1341                 c->icache.sets = 16;
1342                 c->icache.ways = 8;
1343                 c->icache.flags |= MIPS_CACHE_VTAG;
1344                 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1345
1346                 c->dcache.linesz = 128;
1347                 c->dcache.ways = 8;
1348                 c->dcache.sets = 8;
1349                 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1350                 c->options |= MIPS_CPU_PREFETCH;
1351                 break;
1352
1353         default:
1354                 if (!(config & MIPS_CONF_M))
1355                         panic("Don't know how to probe P-caches on this cpu.");
1356
1357                 /*
1358                  * So we seem to be a MIPS32 or MIPS64 CPU
1359                  * So let's probe the I-cache ...
1360                  */
1361                 config1 = read_c0_config1();
1362
1363                 lsize = (config1 >> 19) & 7;
1364
1365                 /* IL == 7 is reserved */
1366                 if (lsize == 7)
1367                         panic("Invalid icache line size");
1368
1369                 c->icache.linesz = lsize ? 2 << lsize : 0;
1370
1371                 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1372                 c->icache.ways = 1 + ((config1 >> 16) & 7);
1373
1374                 icache_size = c->icache.sets *
1375                               c->icache.ways *
1376                               c->icache.linesz;
1377                 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1378
1379                 if (config & MIPS_CONF_VI)
1380                         c->icache.flags |= MIPS_CACHE_VTAG;
1381
1382                 /*
1383                  * Now probe the MIPS32 / MIPS64 data cache.
1384                  */
1385                 c->dcache.flags = 0;
1386
1387                 lsize = (config1 >> 10) & 7;
1388
1389                 /* DL == 7 is reserved */
1390                 if (lsize == 7)
1391                         panic("Invalid dcache line size");
1392
1393                 c->dcache.linesz = lsize ? 2 << lsize : 0;
1394
1395                 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1396                 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1397
1398                 dcache_size = c->dcache.sets *
1399                               c->dcache.ways *
1400                               c->dcache.linesz;
1401                 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1402
1403                 c->options |= MIPS_CPU_PREFETCH;
1404                 break;
1405         }
1406
1407         /*
1408          * Processor configuration sanity check for the R4000SC erratum
1409          * #5.  With page sizes larger than 32kB there is no possibility
1410          * to get a VCE exception anymore so we don't care about this
1411          * misconfiguration.  The case is rather theoretical anyway;
1412          * presumably no vendor is shipping his hardware in the "bad"
1413          * configuration.
1414          */
1415         if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1416             (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1417             !(config & CONF_SC) && c->icache.linesz != 16 &&
1418             PAGE_SIZE <= 0x8000)
1419                 panic("Improper R4000SC processor configuration detected");
1420
1421         /* compute a couple of other cache variables */
1422         c->icache.waysize = icache_size / c->icache.ways;
1423         c->dcache.waysize = dcache_size / c->dcache.ways;
1424
1425         c->icache.sets = c->icache.linesz ?
1426                 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1427         c->dcache.sets = c->dcache.linesz ?
1428                 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1429
1430         /*
1431          * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1432          * virtually indexed so normally would suffer from aliases.  So
1433          * normally they'd suffer from aliases but magic in the hardware deals
1434          * with that for us so we don't need to take care ourselves.
1435          */
1436         switch (current_cpu_type()) {
1437         case CPU_20KC:
1438         case CPU_25KF:
1439         case CPU_SB1:
1440         case CPU_SB1A:
1441         case CPU_XLR:
1442                 c->dcache.flags |= MIPS_CACHE_PINDEX;
1443                 break;
1444
1445         case CPU_R10000:
1446         case CPU_R12000:
1447         case CPU_R14000:
1448         case CPU_R16000:
1449                 break;
1450
1451         case CPU_74K:
1452         case CPU_1074K:
1453                 has_74k_erratum = alias_74k_erratum(c);
1454                 /* Fall through. */
1455         case CPU_M14KC:
1456         case CPU_M14KEC:
1457         case CPU_24K:
1458         case CPU_34K:
1459         case CPU_1004K:
1460         case CPU_INTERAPTIV:
1461         case CPU_P5600:
1462         case CPU_PROAPTIV:
1463         case CPU_M5150:
1464         case CPU_QEMU_GENERIC:
1465         case CPU_I6400:
1466         case CPU_P6600:
1467         case CPU_M6250:
1468                 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1469                     (c->icache.waysize > PAGE_SIZE))
1470                         c->icache.flags |= MIPS_CACHE_ALIASES;
1471                 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1472                         /*
1473                          * Effectively physically indexed dcache,
1474                          * thus no virtual aliases.
1475                         */
1476                         c->dcache.flags |= MIPS_CACHE_PINDEX;
1477                         break;
1478                 }
1479         default:
1480                 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1481                         c->dcache.flags |= MIPS_CACHE_ALIASES;
1482         }
1483
1484         switch (current_cpu_type()) {
1485         case CPU_20KC:
1486                 /*
1487                  * Some older 20Kc chips doesn't have the 'VI' bit in
1488                  * the config register.
1489                  */
1490                 c->icache.flags |= MIPS_CACHE_VTAG;
1491                 break;
1492
1493         case CPU_ALCHEMY:
1494         case CPU_I6400:
1495                 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1496                 break;
1497
1498         case CPU_BMIPS5000:
1499                 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1500                 /* Cache aliases are handled in hardware; allow HIGHMEM */
1501                 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1502                 break;
1503
1504         case CPU_LOONGSON2:
1505                 /*
1506                  * LOONGSON2 has 4 way icache, but when using indexed cache op,
1507                  * one op will act on all 4 ways
1508                  */
1509                 c->icache.ways = 1;
1510         }
1511
1512         printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1513                icache_size >> 10,
1514                c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1515                way_string[c->icache.ways], c->icache.linesz);
1516
1517         printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1518                dcache_size >> 10, way_string[c->dcache.ways],
1519                (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1520                (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1521                         "cache aliases" : "no aliases",
1522                c->dcache.linesz);
1523 }
1524
1525 static void probe_vcache(void)
1526 {
1527         struct cpuinfo_mips *c = &current_cpu_data;
1528         unsigned int config2, lsize;
1529
1530         if (current_cpu_type() != CPU_LOONGSON3)
1531                 return;
1532
1533         config2 = read_c0_config2();
1534         if ((lsize = ((config2 >> 20) & 15)))
1535                 c->vcache.linesz = 2 << lsize;
1536         else
1537                 c->vcache.linesz = lsize;
1538
1539         c->vcache.sets = 64 << ((config2 >> 24) & 15);
1540         c->vcache.ways = 1 + ((config2 >> 16) & 15);
1541
1542         vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1543
1544         c->vcache.waybit = 0;
1545
1546         pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1547                 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1548 }
1549
1550 /*
1551  * If you even _breathe_ on this function, look at the gcc output and make sure
1552  * it does not pop things on and off the stack for the cache sizing loop that
1553  * executes in KSEG1 space or else you will crash and burn badly.  You have
1554  * been warned.
1555  */
1556 static int probe_scache(void)
1557 {
1558         unsigned long flags, addr, begin, end, pow2;
1559         unsigned int config = read_c0_config();
1560         struct cpuinfo_mips *c = &current_cpu_data;
1561
1562         if (config & CONF_SC)
1563                 return 0;
1564
1565         begin = (unsigned long) &_stext;
1566         begin &= ~((4 * 1024 * 1024) - 1);
1567         end = begin + (4 * 1024 * 1024);
1568
1569         /*
1570          * This is such a bitch, you'd think they would make it easy to do
1571          * this.  Away you daemons of stupidity!
1572          */
1573         local_irq_save(flags);
1574
1575         /* Fill each size-multiple cache line with a valid tag. */
1576         pow2 = (64 * 1024);
1577         for (addr = begin; addr < end; addr = (begin + pow2)) {
1578                 unsigned long *p = (unsigned long *) addr;
1579                 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1580                 pow2 <<= 1;
1581         }
1582
1583         /* Load first line with zero (therefore invalid) tag. */
1584         write_c0_taglo(0);
1585         write_c0_taghi(0);
1586         __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1587         cache_op(Index_Store_Tag_I, begin);
1588         cache_op(Index_Store_Tag_D, begin);
1589         cache_op(Index_Store_Tag_SD, begin);
1590
1591         /* Now search for the wrap around point. */
1592         pow2 = (128 * 1024);
1593         for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1594                 cache_op(Index_Load_Tag_SD, addr);
1595                 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1596                 if (!read_c0_taglo())
1597                         break;
1598                 pow2 <<= 1;
1599         }
1600         local_irq_restore(flags);
1601         addr -= begin;
1602
1603         scache_size = addr;
1604         c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1605         c->scache.ways = 1;
1606         c->scache.waybit = 0;           /* does not matter */
1607
1608         return 1;
1609 }
1610
1611 static void __init loongson2_sc_init(void)
1612 {
1613         struct cpuinfo_mips *c = &current_cpu_data;
1614
1615         scache_size = 512*1024;
1616         c->scache.linesz = 32;
1617         c->scache.ways = 4;
1618         c->scache.waybit = 0;
1619         c->scache.waysize = scache_size / (c->scache.ways);
1620         c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1621         pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1622                scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1623
1624         c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1625 }
1626
1627 static void __init loongson3_sc_init(void)
1628 {
1629         struct cpuinfo_mips *c = &current_cpu_data;
1630         unsigned int config2, lsize;
1631
1632         config2 = read_c0_config2();
1633         lsize = (config2 >> 4) & 15;
1634         if (lsize)
1635                 c->scache.linesz = 2 << lsize;
1636         else
1637                 c->scache.linesz = 0;
1638         c->scache.sets = 64 << ((config2 >> 8) & 15);
1639         c->scache.ways = 1 + (config2 & 15);
1640
1641         scache_size = c->scache.sets *
1642                                   c->scache.ways *
1643                                   c->scache.linesz;
1644         /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1645         scache_size *= 4;
1646         c->scache.waybit = 0;
1647         pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1648                scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1649         if (scache_size)
1650                 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1651         return;
1652 }
1653
1654 extern int r5k_sc_init(void);
1655 extern int rm7k_sc_init(void);
1656 extern int mips_sc_init(void);
1657
1658 static void setup_scache(void)
1659 {
1660         struct cpuinfo_mips *c = &current_cpu_data;
1661         unsigned int config = read_c0_config();
1662         int sc_present = 0;
1663
1664         /*
1665          * Do the probing thing on R4000SC and R4400SC processors.  Other
1666          * processors don't have a S-cache that would be relevant to the
1667          * Linux memory management.
1668          */
1669         switch (current_cpu_type()) {
1670         case CPU_R4000SC:
1671         case CPU_R4000MC:
1672         case CPU_R4400SC:
1673         case CPU_R4400MC:
1674                 sc_present = run_uncached(probe_scache);
1675                 if (sc_present)
1676                         c->options |= MIPS_CPU_CACHE_CDEX_S;
1677                 break;
1678
1679         case CPU_R10000:
1680         case CPU_R12000:
1681         case CPU_R14000:
1682         case CPU_R16000:
1683                 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1684                 c->scache.linesz = 64 << ((config >> 13) & 1);
1685                 c->scache.ways = 2;
1686                 c->scache.waybit= 0;
1687                 sc_present = 1;
1688                 break;
1689
1690         case CPU_R5000:
1691         case CPU_NEVADA:
1692 #ifdef CONFIG_R5000_CPU_SCACHE
1693                 r5k_sc_init();
1694 #endif
1695                 return;
1696
1697         case CPU_RM7000:
1698 #ifdef CONFIG_RM7000_CPU_SCACHE
1699                 rm7k_sc_init();
1700 #endif
1701                 return;
1702
1703         case CPU_LOONGSON2:
1704                 loongson2_sc_init();
1705                 return;
1706
1707         case CPU_LOONGSON3:
1708                 loongson3_sc_init();
1709                 return;
1710
1711         case CPU_CAVIUM_OCTEON3:
1712         case CPU_XLP:
1713                 /* don't need to worry about L2, fully coherent */
1714                 return;
1715
1716         default:
1717                 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1718                                     MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1719                                     MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1720 #ifdef CONFIG_MIPS_CPU_SCACHE
1721                         if (mips_sc_init ()) {
1722                                 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1723                                 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1724                                        scache_size >> 10,
1725                                        way_string[c->scache.ways], c->scache.linesz);
1726                         }
1727 #else
1728                         if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1729                                 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1730 #endif
1731                         return;
1732                 }
1733                 sc_present = 0;
1734         }
1735
1736         if (!sc_present)
1737                 return;
1738
1739         /* compute a couple of other cache variables */
1740         c->scache.waysize = scache_size / c->scache.ways;
1741
1742         c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1743
1744         printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1745                scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1746
1747         c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1748 }
1749
1750 void au1x00_fixup_config_od(void)
1751 {
1752         /*
1753          * c0_config.od (bit 19) was write only (and read as 0)
1754          * on the early revisions of Alchemy SOCs.  It disables the bus
1755          * transaction overlapping and needs to be set to fix various errata.
1756          */
1757         switch (read_c0_prid()) {
1758         case 0x00030100: /* Au1000 DA */
1759         case 0x00030201: /* Au1000 HA */
1760         case 0x00030202: /* Au1000 HB */
1761         case 0x01030200: /* Au1500 AB */
1762         /*
1763          * Au1100 errata actually keeps silence about this bit, so we set it
1764          * just in case for those revisions that require it to be set according
1765          * to the (now gone) cpu table.
1766          */
1767         case 0x02030200: /* Au1100 AB */
1768         case 0x02030201: /* Au1100 BA */
1769         case 0x02030202: /* Au1100 BC */
1770                 set_c0_config(1 << 19);
1771                 break;
1772         }
1773 }
1774
1775 /* CP0 hazard avoidance. */
1776 #define NXP_BARRIER()                                                   \
1777          __asm__ __volatile__(                                          \
1778         ".set noreorder\n\t"                                            \
1779         "nop; nop; nop; nop; nop; nop;\n\t"                             \
1780         ".set reorder\n\t")
1781
1782 static void nxp_pr4450_fixup_config(void)
1783 {
1784         unsigned long config0;
1785
1786         config0 = read_c0_config();
1787
1788         /* clear all three cache coherency fields */
1789         config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1790         config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1791                     ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1792                     ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1793         write_c0_config(config0);
1794         NXP_BARRIER();
1795 }
1796
1797 static int cca = -1;
1798
1799 static int __init cca_setup(char *str)
1800 {
1801         get_option(&str, &cca);
1802
1803         return 0;
1804 }
1805
1806 early_param("cca", cca_setup);
1807
1808 static void coherency_setup(void)
1809 {
1810         if (cca < 0 || cca > 7)
1811                 cca = read_c0_config() & CONF_CM_CMASK;
1812         _page_cachable_default = cca << _CACHE_SHIFT;
1813
1814         pr_debug("Using cache attribute %d\n", cca);
1815         change_c0_config(CONF_CM_CMASK, cca);
1816
1817         /*
1818          * c0_status.cu=0 specifies that updates by the sc instruction use
1819          * the coherency mode specified by the TLB; 1 means cachable
1820          * coherent update on write will be used.  Not all processors have
1821          * this bit and; some wire it to zero, others like Toshiba had the
1822          * silly idea of putting something else there ...
1823          */
1824         switch (current_cpu_type()) {
1825         case CPU_R4000PC:
1826         case CPU_R4000SC:
1827         case CPU_R4000MC:
1828         case CPU_R4400PC:
1829         case CPU_R4400SC:
1830         case CPU_R4400MC:
1831                 clear_c0_config(CONF_CU);
1832                 break;
1833         /*
1834          * We need to catch the early Alchemy SOCs with
1835          * the write-only co_config.od bit and set it back to one on:
1836          * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1837          */
1838         case CPU_ALCHEMY:
1839                 au1x00_fixup_config_od();
1840                 break;
1841
1842         case PRID_IMP_PR4450:
1843                 nxp_pr4450_fixup_config();
1844                 break;
1845         }
1846 }
1847
1848 static void r4k_cache_error_setup(void)
1849 {
1850         extern char __weak except_vec2_generic;
1851         extern char __weak except_vec2_sb1;
1852
1853         switch (current_cpu_type()) {
1854         case CPU_SB1:
1855         case CPU_SB1A:
1856                 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1857                 break;
1858
1859         default:
1860                 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1861                 break;
1862         }
1863 }
1864
1865 void r4k_cache_init(void)
1866 {
1867         extern void build_clear_page(void);
1868         extern void build_copy_page(void);
1869         struct cpuinfo_mips *c = &current_cpu_data;
1870
1871         probe_pcache();
1872         probe_vcache();
1873         setup_scache();
1874
1875         r4k_blast_dcache_page_setup();
1876         r4k_blast_dcache_page_indexed_setup();
1877         r4k_blast_dcache_setup();
1878         r4k_blast_icache_page_setup();
1879         r4k_blast_icache_page_indexed_setup();
1880         r4k_blast_icache_setup();
1881         r4k_blast_scache_page_setup();
1882         r4k_blast_scache_page_indexed_setup();
1883         r4k_blast_scache_setup();
1884 #ifdef CONFIG_EVA
1885         r4k_blast_dcache_user_page_setup();
1886         r4k_blast_icache_user_page_setup();
1887 #endif
1888
1889         /*
1890          * Some MIPS32 and MIPS64 processors have physically indexed caches.
1891          * This code supports virtually indexed processors and will be
1892          * unnecessarily inefficient on physically indexed processors.
1893          */
1894         if (c->dcache.linesz && cpu_has_dc_aliases)
1895                 shm_align_mask = max_t( unsigned long,
1896                                         c->dcache.sets * c->dcache.linesz - 1,
1897                                         PAGE_SIZE - 1);
1898         else
1899                 shm_align_mask = PAGE_SIZE-1;
1900
1901         __flush_cache_vmap      = r4k__flush_cache_vmap;
1902         __flush_cache_vunmap    = r4k__flush_cache_vunmap;
1903
1904         flush_cache_all         = cache_noop;
1905         __flush_cache_all       = r4k___flush_cache_all;
1906         flush_cache_mm          = r4k_flush_cache_mm;
1907         flush_cache_page        = r4k_flush_cache_page;
1908         flush_cache_range       = r4k_flush_cache_range;
1909
1910         __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1911
1912         flush_cache_sigtramp    = r4k_flush_cache_sigtramp;
1913         flush_icache_all        = r4k_flush_icache_all;
1914         local_flush_data_cache_page     = local_r4k_flush_data_cache_page;
1915         flush_data_cache_page   = r4k_flush_data_cache_page;
1916         flush_icache_range      = r4k_flush_icache_range;
1917         local_flush_icache_range        = local_r4k_flush_icache_range;
1918
1919 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1920         if (coherentio) {
1921                 _dma_cache_wback_inv    = (void *)cache_noop;
1922                 _dma_cache_wback        = (void *)cache_noop;
1923                 _dma_cache_inv          = (void *)cache_noop;
1924         } else {
1925                 _dma_cache_wback_inv    = r4k_dma_cache_wback_inv;
1926                 _dma_cache_wback        = r4k_dma_cache_wback_inv;
1927                 _dma_cache_inv          = r4k_dma_cache_inv;
1928         }
1929 #endif
1930
1931         build_clear_page();
1932         build_copy_page();
1933
1934         /*
1935          * We want to run CMP kernels on core with and without coherent
1936          * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1937          * or not to flush caches.
1938          */
1939         local_r4k___flush_cache_all(NULL);
1940
1941         coherency_setup();
1942         board_cache_error_setup = r4k_cache_error_setup;
1943
1944         /*
1945          * Per-CPU overrides
1946          */
1947         switch (current_cpu_type()) {
1948         case CPU_BMIPS4350:
1949         case CPU_BMIPS4380:
1950                 /* No IPI is needed because all CPUs share the same D$ */
1951                 flush_data_cache_page = r4k_blast_dcache_page;
1952                 break;
1953         case CPU_BMIPS5000:
1954                 /* We lose our superpowers if L2 is disabled */
1955                 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1956                         break;
1957
1958                 /* I$ fills from D$ just by emptying the write buffers */
1959                 flush_cache_page = (void *)b5k_instruction_hazard;
1960                 flush_cache_range = (void *)b5k_instruction_hazard;
1961                 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1962                 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1963                 flush_data_cache_page = (void *)b5k_instruction_hazard;
1964                 flush_icache_range = (void *)b5k_instruction_hazard;
1965                 local_flush_icache_range = (void *)b5k_instruction_hazard;
1966
1967
1968                 /* Optimization: an L2 flush implicitly flushes the L1 */
1969                 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1970                 break;
1971         case CPU_LOONGSON3:
1972                 /* Loongson-3 maintains cache coherency by hardware */
1973                 __flush_cache_all       = cache_noop;
1974                 __flush_cache_vmap      = cache_noop;
1975                 __flush_cache_vunmap    = cache_noop;
1976                 __flush_kernel_vmap_range = (void *)cache_noop;
1977                 flush_cache_mm          = (void *)cache_noop;
1978                 flush_cache_page        = (void *)cache_noop;
1979                 flush_cache_range       = (void *)cache_noop;
1980                 flush_cache_sigtramp    = (void *)cache_noop;
1981                 flush_icache_all        = (void *)cache_noop;
1982                 flush_data_cache_page   = (void *)cache_noop;
1983                 local_flush_data_cache_page     = (void *)cache_noop;
1984                 break;
1985         }
1986 }
1987
1988 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1989                                void *v)
1990 {
1991         switch (cmd) {
1992         case CPU_PM_ENTER_FAILED:
1993         case CPU_PM_EXIT:
1994                 coherency_setup();
1995                 break;
1996         }
1997
1998         return NOTIFY_OK;
1999 }
2000
2001 static struct notifier_block r4k_cache_pm_notifier_block = {
2002         .notifier_call = r4k_cache_pm_notifier,
2003 };
2004
2005 int __init r4k_cache_init_pm(void)
2006 {
2007         return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2008 }
2009 arch_initcall(r4k_cache_init_pm);